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Abstract—In this paper we develop a deep learning
model to distinguish dust from cloud and surface using
satellite remote sensing image data. The occurrence of
dust storms is increasing along with global climate change,
especially in the arid and semi-arid regions. Originated
from the soil, dust acts as a type of aerosol that causes
significant impacts on the environment and human health.
The dust and cloud data labels used in this paper are from
CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation) satellite. The radiometric channels
and geometric parameters from VIIRS (Visible Infrared
Imaging Radiometer Suite) satellite sensor serve as features
for our model.

We trained and tested our deep learning model using
10,000 samples in March 2012. The developed model has
five hidden layers and 512 neurons in each layer. The
classification accuracy on the test set is 71.1%. In addition,
we performed a shuffling procedure to identify the impor-
tance of features, which is calculated as the increase in
the prediction error after we permute the feature’s values.
We also developed a method based on genetic algorithm
to find the best subset of features for dust detection. The
results show that the genetic algorithm can select a subset
of features that have comparable performance as that of
a model with all features. The shuffling procedure and
the genetic algorithm both identify geometric information
as important features for detecting mineral dust. The
chosen subset will improve computational efficiency for
dust detection and improve physical based methods.

Index Terms—Climate pollution; Deep learning; Feature
selection; Classification; Genetic algorithm
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I. INTRODUCTION

Dust storm affects many domains related to smart
computing, including transportation, environmental pro-
tection and healthcare. Dust storm occurrence is increas-
ing under the background of global climate change, espe-
cially in the arid and semi-arid regions. Dust, originated
from the soil, acts as a type of aerosol that causes sig-
nificant impacts on the environment and human health.
Dust storms reduce visibility and cause dangers for high
way traffic. For people with respiratory conditions like
asthma, chronic obstructive airways disease (COAD) or
emphysema, even small increases of dust concentration
can make their symptoms worse.

Dust is also the most abundant aerosol component in
terms of dry mass [1], [2]. Dust aerosols can interact
with both solar and thermal infrared radiation, which
gives them an important role in regulating the radiative
energy balance of Earth-Atmosphere system. After lifted
and transported by wind, dust aerosols can absorb and
scatter solar radiation and warm the surrounding air.
It reduces the sun’s radiation that reaches the surface,
imposing a shortwave cooling effect [3], [4]. On the other
hand, dust absorbs longwave radiation and re-emits to the
surface, imposing a warming effect on the surface [5],
[6]. Dust particles can also act as cloud condensation
nuclei (CCN) or ice nuclei (IN) in cloud formation
processes and alter cloud lifetime and radiative effect by
changing cloud droplet number concentration and size
[7], [8]. The radiative effects dust depend on a variety
of factors including dust loading, dust particle size, dust
refractive index and dust vertical distribution. Currently



and in the near future satellite observation is the only
means to monitor the occurrence of dust storm and the
properties of dust aerosols on a regional to global scale.

With the rapid development of satellite remote sens-
ing, various methods have been proposed to utilize
multi-channel observations to detect and retrieve dust
information [9]. The Moderate Resolution Imaging Spec-
troradiometer (MODIS) is a widely used passive sensor
with 36 channels in dust detection. Starting from 2011,
as a replacement to MODIS, the Visible Infrared Imaging
Radiometer Suite (VIIRS) on board Suomi National
Polar-orbiting Partnership (NPP) spacecraft and Aqua
satellite was launched. The VIIRS sensor has 16 moder-
ate resolution (750 m) channels. Physical-based retrieval
methods, such as [10] and [11], have been proposed to
identify dust aerosols from the VIIRS moderate resolu-
tion channels and some of them were adopted from the
MODIS channels.

The physical-based methods, however, highly depend
on empirical thresholds to differentiate dust and dust-
free pixels. Also, the detection accuracy is 40-50% when
compared with collocated active remote sensing (e.g.,
the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation, CALIPSO) dust index [12]. Because of
the ample information from multispectral satellite ob-
servations, machine learning and deep learning based
approaches have been proposed to automate the dust
detection process. In this paper, we propose a deep
learning model to detect mineral dust using VIIRS data.

The rest of the paper is organized as follows. Section
II connects our study to existing studies in the literature.
Section III discusses datasets and the deep learning
model used in this paper. Section IV presents the results
of cloud and dust identification from the deep learning
model, followed by discussions of the results in terms
of significance and impacts in Section V. Section VI
concludes the paper.

II. RELATED WORK

Some widely used physical-based retrieval methods
include (a) Normalized Difference Dust Index (NDDI)
[10], [11]; (b) Brightness Temperature Difference (BTD)
(11 pm — 12 pm) [13], [14]; (c) BTD (8.6 pym — 11
pm) [15]; (d) Reflective Solar Band (RSB) [16]. NDDI
is only appropriate in detecting dust storms when a
dust-free image from a nearby time period is available.
The BTD methods are simple and efficient in detecting
dust. However, any pixel that have BTD exceed the
threshold difference will be classified as dust pixel and
this can mis-identify land pixels as dust. The RSB
method requires significant amount of dust-free pixels
in determining the threshold and this method has the

same problem of mis-identifying land pixels as dust as
in the BTD methods.

Several machine learning based approaches have also
been proposed over the last decade. Based on the feature
set of spectral bands reported in literature, Murguia et
al. developed a Maximum Likelihood (ML) classifier
and a Probabilistic Neural Network (PNN) to detect the
dust storms [17]. They found PNN provides improved
classification performance with reference to the ML clas-
sifier and their method allows for real-time processing.
Han et al. developed a decision tree classifier based
on visually inspected dust events and their associated
multispectral MODIS images, and found that the pre-
diction agree in general with surface observations [18].
Mario et al. developed an Artificial Neural Network
(ANN) to detect dust storm from multispectral MODIS
images [19]. Using selected MODIS channels, Amir and
Sanaz proposed a random forests algorithm to detect
dust plums over water and land. The results were shown
to be better than those physics-based methods [20].
In [12], Shi et al. proposed a hybrid approach combining
physical model with traditional data mining models such
as Random Forest, which achieved better accuracy than
each individual method.

III. METHODOLOGY

Existing machine learning studies have used either
visually selected dust events or pre-selected channels to
train the models. The models may not always perform
well in the thin dust layer events, and the models may
miss information from spectral channels that were not
selected as input features. In addition, the proposed
methods above did not perform feature selection after
training their models. Selecting a subset of features with
similar prediction accuracy can reduce the computational
time and make it easier to apply the model to real-time
detection. In addition, knowing important features on
dust detection could also help sensor design for future
satellite missions. In this paper, we develop and test a
deep learning model for dust detection and select a best
subset that have similar prediction accuracy as using all
channels.

Besides simply classifying dust and dust-free pixels,
we also add cloud information in the learning procedure.
Dust affect climate through cloud by changing cloud
lifetime, thus it is imperative to study dust effect on cloud
using synthetic dust and cloud observations. The true
dust and cloud information is from collocated CALIPSO
level-2 data and it is used in training and verifying the
deep learning model.

The Visible Infrared Imaging Radiometer Suite (VI-
IRS) is one of the key instruments on board the Suomi



National Polar-Orbiting Partnership (Suomi NPP) space-
craft, which was successfully launched on October 28,
2011. VIIRS has 22 channels, 16 of which are moderate
resolution bands (M-bands) and have a spatial resolution
of 750 m at the nadir. The other six channels are made
up of five imaging resolution bands (I-bands), which
have a spatial resolution of 375 m at the nadir, and one
day/night panchromatic band with a spatial resolution of
750 m. The 22 channels cover wavelengths from 0.41 to
12.5 pum and can provide data records for clouds, aerosol,
sea surface temperature, snow and ice, vegetation and
fire.

The satellite, sun, and target relative positions are im-
portant factors affecting the amount of radiation received
by the satellite sensor. Though it is hard to quantify
the 3D radiative effect, the geometric information cannot
be ignored in classifying pixel categories. In this study,
in addition to the radiometric channels, four geometric
parameters from VIIRS, namely view zenith angels, solar
zenith angels, view azimuth angels and solar azimuth
angels, are used in training the deep learning model.

The dust and cloud information from CALIPSO satel-
lite was used as labels in the deep learning model.
CALIPSO was launched in 2006 as part of A-Train and
on board CALIPSO. There is an active remote sensor,
lidar, available that can provide reliable cloud and dust
aerosol index.

Four categories were classified in this project with (1)
dust with no cloud, (2) cloud with no dust, (3) dust with
cloud, and (4) others. From global perspective, cloud
occurrence is much higher than dust, this will likely
to cause imbalanced samples in the training and test
datasets. To avoid this, we chose the same number of
samples for each category. For test purpose and to speed
up the code, we selected total 10,000 samples in March
2012 and the samples are equally distributed among the
four categories.

A. Deep learning model

A deep learning model simulates the way biological
nervous systems (e.g., human brain) process information
[21]. A deep learning model composes multiple layers of
neurons. In this study, we used Deep Neural Networks
(DNN) deep learning model. The first layer contains in-
put predictors (in this case, 16 radiometric channels and
four geometric parameters), and the last layer contains
output responses (in this case, the classification of the
pixel types). Between the input layer and the output layer
are one or more hidden layers interconnected with each
other by hidden neurons. Each layer extracts features of
the input for classification. The use of multiple hidden
layers allows the construction of hierarchical features at

different levels of resolution [22]. The choice of the num-
ber of hidden layers and the number of hidden neurons in
each layer is often guided by background knowledge and
experimentation. It is most common to have a reasonably
large number of hidden neurons and train them with
regularization. In this study, we determine the number
of hidden layers and the number of hidden neurons by
trial and error. We use L2 regularization in each layer to
suppress the large weights and result in a model that is
more stable and less like to overfit the training data. The
activation function and the learning algorithm in deep
learning models are also selected by trial and error.

B. Feature selection

Another goal of this study is to find the important
input features for dust detection. We use two approaches
to conduct feature selection in the deep learning model:
a shuffling procedure and a genetic algorithm. The
shuffling procedure gives an importance order of the
features, while the genetic algorithm selects a subset
of the features that can generate the optimal prediction
performance.

1) Shuffling procedure: The procedure is first to get
a benchmark test accuracy by training the model once
and then predict multiple times while randomizing each
variable in the test set. The difference of the benchmark
test accuracy and the test accuracy after permuting the
variable, meaning with and without the help of this
variable, is used as an importance measure (i.e., per-
mutation importance). If the accuracy after randomizing
a variable is lower than the benchmark test accuracy, it
is an important variable. On the other hand, if nothing
changes or the accuracy is higher than the benchmark,
it is a useless variable. We randomize 50 times and get
an average test accuracy for each variable and compare
with the benchmark test accuracy.

2) Genetic algorithm: Genetic algorithm is a directed
random search technique that simulates the natural se-
lection and evolution process [23]. Because it can be
directly integrated to existing simulations and models,
genetic algorithm has been widely used for many op-
timization problems which have a large number of pa-
rameters and their analytical solutions are hard to derive
[24]. Rationally, genetic algorithm has also been used to
optimize deep learning models [25], [26]. Here, we use
a genetic algorithm to select a subset of features in our
deep learning model. A sequence indicating whether a
features is selected or not is defined as a genome.

1) Initialization: we create a certain number of deep
learning models with randomly generated genomes
to be the population of the first generation.



2) Fitness evaluation: we train each model in the
population and evaluate its performance on the test
set using classification accuracy.

3) Selection: we rank all models in the population by
accuracy and keep 20% of the top-ranked models
to become part of the next generation to breed
children. we also randomly keep 10% of the rest of
the models. This helps find potentially successful
combinations between worse-performers and top-
performers, and also helps avoiding stuck in local
maximum.

4) Crossover: crossover is the combination process
from two members of a population to generate
one or more children. Besides the top 20% models
and the randomly kept 10% non-top models, to
keep our population of 30 models, 21 children are
generated for breeding in each generation.

5) Mutation: we randomly mutate some of the
genomes on some of the kept models.

6) Genome replacement: genomes of the previous
generations are replaced using the genomes after
crossover and mutation.

7) Step 2 to step 6 are repeated for multiple genera-
tions until the model performance converges, i.e.,
the test accuracy will not get any better. The best
performed genome in the final generation is the
selected best deep learning model, and the best
performed genome indicates the selected subset of
the features.

1V. EMPIRICAL EVALUATION
A. Deep learning model

Our final developed deep learning model has five
hidden layers with 512 neruons in each layer. The
activation function in each layer is “relu”, which is found
to achieve better results than other functions. And we
use the optimizer “adam” to train the model. Figure 1
shows the training and validation loss on the test set.
The validation loss is very close to the training loss,
indicating no over-fitting occurred. The classification
accuracy on the test dataset is 71.1%.

B. Feature selection by shuffling procedure

Figure 2 shows the test accuracy when shuffling each
feature in the model. The red horizontal line indicates
the benchmark test accuracy (68.3%) when no variable
is shuffled. Note the accuracy is different from 71.1%
in Section IV-A. This is due to the randomness in the
training process. Neural networks and genetic algorithm
are both stochastic, which means they make use of
randomness (e.g., random weights initialized in the deep
learning model, population random generated in the
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Fig. 1. Training and validation loss on the test dataset.

genetic algorithm) and therefore each time can produce
different results. Each box in Figure 2 indicates the
distribution of the test accuracy of each variable being
shuffled 50 times. Overall, the average test accuracy
of all the variables are smaller than the benchmark
test accuracy, which means all the variables contribute
to the model to a certain degree. But some are more
important than others. The most important features are
the geometric information of solar zenith angle (18),
view zenith angle (20), and solar azimuth angle (17),
followed by channels 15 and 16 (11 and 12 pum) which
are consistent with the NDDI and RSB methods from
physical retrievals mentioned in Section II. Because dust
particles are non-sphere particles, so their reflectance are
different from different view angles, so are the emittance.
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Fig. 2. Test accuracy after shuffling each feature.

C. Feature selection by genetic algorithm

Table I shows the selected features by genetic al-
gorithm and their performance. We test scenarios with



TABLE I
FEATURES SELECTED BY GENETIC ALGORITHM

Population size | Number of generations Selected features Best test accuracy
8 4 2,3,6,8,9,11, 12, 14, 15, 17, 18, 19 67.8%
16 4 2, 4,8, 11, 13, 14, 15, 17,18, 19, 20 68.1%
32 4 1,2,3,4,5,9, 10, 12, 13, 14, 16, 17, 18, 19, 20 70.3%
32 8 1,3,6,8,9, 10, 11, 17, 18, 19, 20 70.1%
64 8 1,5,7,9,12, 15, 16, 17, 18, 19, 20 71.5%

different population size and different number of genera-
tions. The results show that, in general, when we have a
larger population size and more generations, the genetic
algorithm is able to find a better solution. When we
have a population size as 64 and 8 generations, the test
accuracy can achieve 71.5%, which is even better than
using all the features (71.1%). This proves that genetic
algorithm is able to find a subset of features that can
generate comparable results with all available features.

For the selected features in Table I, the geometric
information are important regardless of the population
size and number of generations. This is consistent with
the result from the shuffling procedure and is physically
reasonable due to the non-spherical radiative properties
of dust particles. The geometric matrix, however, are not
adequately characterized in the physical based classi-
fication methods. Shi et al. also showed that machine
learning methods that include geometric angles have
a higher prediction accuracy than the physical based
methods [12].

The channels used in physical based models are all
selected as important features in Table I, suggesting the
deep learning model is capable of classifying dust and
cloud in a physically feasible way.

Note that the prediction accuracy from our deep
learning model is lower than that by Shi et al. in [12].
This is due to several reasons. First, they use 36 channels
from MODIS, while we use 16 channels and 4 geometric
parameters from VIIRS. Second, they only classify dust
pixels while we classify both dust and cloud pixels.
Besides, they use the training data and test data from
the same day, which is likely to have higher prediction
accuracy because of the similar dust and atmospheric
properties. While in our study, the training and test
datasets are randomly chosen and are not necessarily
from the same day or over a specified region. To further
improve our deep learning model, a more extensive
dataset is required.

V. DISCUSSION

The selections of some of the channels are obvious
from physics point view. The reflectance of dust in
visible wavelength (0.4-0.7 pm) increase steadily, so

the reflectance and differences in visible channels (e.g.,
channel 1 to channel 5) can be indications of dust aloft.
Dust layers usually transport at an altitude of 5 km,
a height that above most of water vapor, so the dust
particles have higher reflectance in channel 9 (1.38 pum)
than cloud and this provides the possibility to separate
dust pixels from cloudy pixels. From radiative transfer
calculations in [13], the ratio of channel 4 (0.54 um) to
channel 7 (0.86 um) is greater than 1 when no cloud or
dust is present in the pixel, and the difference in the two
channels is mainly contributed by molecular scattering.
Because shorter VIIRS wavelength often saturates in
cloud filled pixels, this ratio is near 1 for cloudy pixels.
For dust, the reflectance is lower in shorter wavelength,
so this ratio will decrease to below 1 in dust pixels. With
the increase of dust optical depth, this ratio decreases.
Fine dust particles have different emissivites in channel
14 (8.6 pum) and channel 15 (11 pm). This produces
brightness temperature differences in the two channels.
In window regions, Ackerman found that the difference
of brightness temperature in channel 15 (11 pm) and
channel 16 (12 pm) is negative (less than 1K) for dust,
among other aerosol types [10]. This threshold has been
used in BTD method ever since it was proposed. The
channels used in physical-based methods are all selected
as important features in our model.

Besides those, some other channels also appear to be
significant, for example, channels 8 and 11. Although it
is not clear how, this may suggest that channels 8 and 11
also contain useful information to identify dust, and this
can provide directions for future satellite dust detection
retrieval developments.

Identify a limited number of features is valuable
for dust detection. First, with fewer data to train the
model, the computational efficiency of predicting the
dust storm will significantly be improved. Real-time
prediction is vital for providing in-time prevention and
warning and thus reduce the harmful impacts caused by
dust storms. Second, we can implement the geometric
angles that identified as important features into physical
based methods, which will improve the accuracy of these
methods. To further enhance the deep learning model,



more data points are needed. With the additional training
data, more CPU nodes or GPU will likely be required
to facilitate the computation.

VI. CONCLUSION

The quantitative monitoring of dust storm is of great
significance for disease prevention, environmental pro-
tection, and sustainable development. In this study, a
deep learning model was trained and used to classify
dust and cloud using VIIRS and CALIPSO data. The
deep learning model achieved a benchmark prediction
accuracy of 71.1%. We use a shuffling procedure to iden-
tify the importance of features in the model and a genetic
algorithm to conduct feature selection. Through careful
tuning of population size and number of generations,
the model can predict with comparable accuracy using
a subset of the variables. The selected subsets consist
of the channels used in the physical based classification
methods, and the geometric angles are always shown
importance in the subsets for duct detection.
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