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We study ’t Hooft anomalies of symmetry-enriched rational conformal field theories (RCFT) in (1 + 1)d. Such
anomalies determine whether a theory can be realized in a truly (1 + 1)d system with on-site symmetry, or on
the edge of a (2 + 1)d symmetry-protected topological phase. RCFTs with the identical symmetry actions on
their chiral algebras may have different ’t Hooft anomalies due to additional symmetry charges on local primary
operators. To compute the relative anomaly, we establish a precise correspondence between (1 + 1)d nonchiral
RCFTs and (2 + 1)d doubled symmetry-enriched topological (SET) phases with a choice of a symmetric gapped
boundary. Based on these results we derive a general formula for the relative ’t Hooft anomaly in terms of
algebraic data that characterizes the SET phase and its boundary.
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I. INTRODUCTION

Boundary states of a symmetry-protected topological
(SPT) phase [1] exhibit a ’t Hooft anomaly, and thus can
not be trivially gapped, i.e., can not form symmetric short-
range entangled (SRE) states. For a (2 + 1)d SPT phase,
the (1 + 1)d edge is either gapless or symmetry-breaking.
Symmetry-protected gapless edge states are often taken as a
hallmark of topologically nontrivial bulk phases.

Often, such edge states can be described by conformal field
theories (CFT) at low energy. For example, many bosonic SPT
phases have a Luttinger liquid edge theory [2–4]. Given a
CFT with a global symmetry group G, a natural question is
whether this “symmetry-enriched” CFT must be realized on
the boundary of a (2 + 1)d SPT phase, i.e., whether the theory
has a ’t Hooft anomaly. In principle, the anomaly can be com-
puted by studying correlation functions of symmetry defect
operators. In practice, this may not be easy to implement, and
the connection to the local operator algebra remains obscure.
A number of alternative ways to compute the ’t Hooft anomaly
in a CFT have been developed, and a common method is
to consider the modular covariance properties of symmetry-
twisted partition functions on general Riemann surfaces [5–9],
which signals the obstruction to orbifolding. This method
works well for cyclic groups such as Zn, whose anomalies can
be detected by modular properties of torus partition functions,
but can become cumbersome for more general groups, in
particular when the anomaly can only be seen on higher-genus
surfaces [10–12].

In this work, we are mainly concerned with the com-
putation of “relative” anomalies for rational CFTs (RCFT)
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enriched by unitary symmetry. (1 + 1)d RCFTs are defined
by having a finite number of primary operators. A remarkable
property of any RCFT is that its chiral/holomorphic half can
be regarded as the edge theory of a (2 + 1)d chiral topological
phase [13–15], whose anyon excitations are in one-to-one cor-
respondence with chiral primary operators. The full nonchiral
theory can be obtained by “gluing” the chiral and the antichi-
ral parts together consistently, such that the partition function
on an arbitrary Riemann surface is modular-invariant(i.e.,
invariant under the action of the mapping class group). More
precisely, the full RCFT corresponds to a doubled topologi-
cal phase with a gapped boundary [16]. This bulk-boundary
correspondence presents a new way to understand ’t Hooft
anomalies in symmetry-enriched RCFTs.

Generally, symmetry-enriched CFTs are characterized by
symmetry actions on local scaling operators. For (1 + 1)d
RCFTs, a distinguished class of local operators are those that
are fully chiral/antichiral, which form the extended chiral
algebra of the RCFT. In essence, the chiral algebra describes
the mathematical structure of local operators on the chiral
edge of the corresponding (2 + 1)d bulk, and thus completely
defines the topological order that underlies the chiral RCFT.
When global symmetry is taken into account, we show that
the symmetry action on the chiral algebra uniquely defines the
symmetry-enriched topological order of the bulk. Once this is
given, different symmetry-enriched RCFTs can further differ
by additional “charges” on local primary operators, which
correspond to quantum numbers of anyons condensing on the
gapped boundary. This charge assignment may change the ’t
Hooft anomaly of the theory, which is defined as the relative
anomaly.

We relate relative ’t Hooft anomalies of a (1 + 1)d RCFT
to the question of symmetric gapped boundary conditions
for a (2 + 1)d topological phase [17], enriched by a global
symmetry. We classify such boundary conditions and, in the
case of doubled SET phases that are relevant to RCFT, use an
exactly solvable lattice model to find a formula for the relative
anomaly purely in terms of algebraic data that describes the
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(2 + 1)d bulk. As a by-product, the same result also provides
a sufficient condition for when a (2 + 1)d SET phase can
“absorb” an SPT phase.

II. SYMMETRIC GAPPED BOUNDARIES OF DOUBLED
SET PHASES

We first study symmetric gapped boundaries of a special
family of (2 + 1)d SET phases, namely those that can be
viewed as two separate layers with opposite SET order, i.e.,
“doubled.” It turns out that this problem is closely related (in
a way equivalent) to the classification of relative anomalies in
(1 + 1)d RCFTs. We develop a general theory of such gapped
boundaries within the mathematical framework of G-crossed
braided tensor categories [18,19], which is reviewed briefly
below. A brief summary of the basic notions of a modular
tensor category (MTC), the algebraic theory of anyons in
(2 + 1)d gapped phases, is provided in Appendix A.

A. Review of the bulk classification

First we briefly recall the classification of (2 + 1)d SET
phases [19–21], mainly following Ref. [19]. Given a bulk
MTC C, a fundamental property is its “topological symmetry
group” Aut(C), which consists of all permutations of anyon
types preserving their universal topological properties. Global
symmetry transformations can permute anyons, specified by a
group homomorphism ρ : G → Aut(C).

Anyon excitations can also transform projectively under
G, a phenomenon known as symmetry fractionalization. Let
us discuss the simpler case where global symmetries do not
permute anyon types. Let Rg be the representation of g ∈ G
on the full Hilbert space. Consider an excited state with n
well-separated anyons a1, . . . , an. Since the ground state is
symmetric, we expect that the G action can be localized to
the neighborhood of aj , as a local unitary operator U ( j)

g .
More precisely, for any local operator O supported on a small
neighborhood of a j , we should have

RgOR
−1
g ≈ U ( j)

g O
(
U ( j)
g

)−1
. (1)

Thus, within the subspace of states with fixed anyons
a1, a2, . . . , an, we have the following decomposition:

Rg ≈
∏
j

U ( j)
g . (2)

We expect that this assumption, that the global symmetry
transformation can be “localized” must be true for any on-site
symmetries.

In general, these local unitary operators only form projec-
tive representations of G:

U (a)
g U (a)

h = ηa(g,h)U (a)
gh , (3)

where ηa ∈ U(1) is referred to as the projective phases (or
factor set). One can show that

ηa(g,h)ηb(g,h) = ηc(g,h). (4)

whenever Nc
ab > 0, which ensures that the physical states

transform regularly under G. Thus one can express ηa(g,h)

as the braiding of a with an Abelian anyon w(g,h):

ηa(g,h) = Ma,w (g,h). (5)

It is shown in Ref. [19] that w(g,h), called the fractionaliza-
tion class, is classified by cohomology classes in H2[G,A],
where A is the group of Abelian anyons in C. The trivial class,
where one can set ηa(g,h) ≡ 1 for all a, corresponds to an
SET phase where the symmetry acts trivially.

This classification is generalized to symmetries permuting
anyon types in Ref. [19], in other words the group homomor-
phism ρ is nontrivial. The crucial difference is the following:
while locally in the neighborhood of anyon excitations, Rg

is still approximated by U ( j)
g ’s, globally the decomposition

Eq. (2) fails, as one also needs to take into account the non-
trivial action on the topological fusion space. Intuitively, the
symmetry transformation also acts on the “splitting” operators
that are used to create the state with multiple anyons, given
by the so-called U symbols (see for more details). Thus the
relation Eq. (4) must be modified accordingly. It turns out
that not every ρ is compatible with symmetry localization.
The failure is captured by an obstruction class in H3

ρ[G,A]. If
the obstruction class is nontrivial cohomologically, then ρ can
not be realized by an on-site symmetry group G in a pure 2D
system.

When the symmetry localization obstruction vanishes, one
can show that H2

ρ[G,A] gives a “torsor” over all fractionaliza-
tion classes. Namely, given [w] ∈ H2

ρ[G,A], one can modify
the projective phases

ηa(g,h) → ηa(g,h)Ma,w (g,h) (6)

to arrive at a new fractionalization class, and hence a distinct
SET phase.

When the symmetry is finite and unitary, extrinsic defects
carrying symmetry fluxes can be introduced to the system to
characterize the SET order. An algebraic theory for symmetry
defects is formulated in Ref. [19], known mathematically as
a G-crossed braided tensor category. The defect theory can
be consistently defined if and only if an obstruction class in
H4[G, U(1)] vanishes. Otherwise, the SET must exist on the
surface of a 3D G bosonic SPT phase [21]. When the H4

obstruction class is trivial, the defect theory can be modified
by a 3-cocycle [α] in H3[G, U(1)], physically corresponding
to stacking 2D bosonic SPT phases. This stacking can only
affect the properties of symmetry defects, and possibly edge
excitations, but does not change anything about anyon excita-
tions in the bulk.

While each choice of ρ and [w] yields a distinct SET
phase, different choices of [α] may actually lead to the same
SET phase. In other words, an SET phase may “trivialize” an
SPT phase. In the following we denote the SPT phase with
3-cocycle [α] by SPT[α], and the stacking operation by �.

Suppose that an SET phase, denoted abstractly by B, can
trivialize an SPT phase with [α] ∈ H3[G, U(1)]. This means
that B and B � SPT[α] are in the same symmetry-enriched
phase. Since in the absence of symmetry defects the SPT
phase merely changes boundary excitations, it should be pos-
sible to form a completely gapped and symmetric boundary
between B � SPT[α] and B. If we “fold” B, i.e., take its
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FIG. 1. A symmetric gapped boundary between B � B and
SPT[ω], equivalent to the trivialization of SPT[ω] by B.

conjugate theory B 1 then we have a gapped and symmetric
boundary between B � B and SPT[α], as illustrated in Fig. 1.
Thus we conclude that the existence of a gapped and symmet-
ric boundary between B � B and SPT[α] is equivalent to the
trivialization of SPT[α] by the SET phase B. In the following,
we will study symmetric gapped boundaries of B � B in great
detail.

B. Gapped boundary of doubled SET phases

Before discussing the general theory, let us study an exam-
ple of the interface between a Z2 SPT phase and a doubled
U(1)2n topological phase (the n = 1 case was considered in
Ref. [22]). Edge excitations of both phases can be described
by multicomponent Luttinger liquids [23], whose action gen-
erally takes the following form:

S =
∫

dtdx

(
1

4π
∂t�

TK∂x� − 1

4π
∂x�

TV ∂x� + · · ·
)

. (7)

Here, � denotes a column vector of bosonic fields, all of
which are 2π -periodic, and K is a symmetric integer matrix
that encodes the commutation relations between � fields.

The edge of the doubled U(1)2n state can be described
using K = (2n 0

0 −2n), with the two fields denoted by ϕ1 and
ϕ2. The SPT edge theory is a Luttinger liquid with K =
(0 1
1 0), and the two fields are denoted by ϕ and θ . Under the
Z2 symmetry they transform as [2]

ϕ → ϕ + π, θ → θ + π. (8)

The Z2 transformations of ϕ1 and ϕ2 are given by

ϕ1 → ϕ1 + π p

2n
, ϕ2 → ϕ2 − π p

2n
, (9)

where p is an integer. We remark that ϕ1 and ϕ2 have opposite
phase shifts since the two “layers” are supposed to be conju-
gate to each other. The reason that the phases are quantized
in this way is to make sure local operators, in particular
e2nπ iϕ1,2 only pick up ±1 phase factors under the symmetry.

1Here the conjugate of B can be defined algebraically, namely one
defines another G-crossed braided category, with the same anyons
and defects as B, the same fusion rules, but all other data are complex
conjugate of those of B. The corresponding SET phase is B.

In fact, p being even (odd) corresponds to exactly the trivial
(nontrivial) fractionalization class of Z2 in U(1)2n, since
H2[Z2,Z2n] = Z2.

The SPT and the doubled U(1)2n edges are coupled through
the following gapping terms:

L = �[cos(2nϕ1 + nϕ − θ ) + cos(2nϕ2 + nϕ + θ )]. (10)

On this edge, ϕ + ϕ1 + ϕ2 is pinned (when n = 1, ϕ1 − ϕ2 −
θ is also pinned). Demanding both terms preserve the global
Z2 symmetry, we have

p+ n + 1 ≡ 0 (mod 2). (11)

One can show that the edge is gapped out without local
degeneracy. We remark that for odd n, n + 1 is already even
so p can be set to 0. However, for even n it is necessary
to take p = 1. In other words, the Z2 symmetry must be
fractionalized [24,25] for even n.

Now let us consider the other edge of the doubled U(1)2n

state, denoted by ϕ′
1 and ϕ′

2. As edges of the same layer, we
may assume that ϕa and ϕ′

a are in fact the “same” edge modes.
This means vertex operators eiϕa and eiϕ

′
a are identified with

the same bulk anyon type. In other words, ei(ϕa−ϕ′
a ) tunnels an

anyon from one edge to another. The K matrix for the primed
fields is (−2n 0

0 2n), in the basis of ϕ′
1, ϕ

′
2. The Z2 symmetry

transformation takes the same form:

ϕ′
1 → ϕ′

1 + π p

2n
, ϕ′

2 → ϕ′
2 − π p

2n
. (12)

On this edge, one can add a gapping term

L′ ∼ cos 2n(ϕ′
1 + ϕ′

2), (13)

which gaps out all edge modes without breaking the Z2 sym-
metry. Thus we have a symmetric gapped boundary between
the doubled U(1)2n SET phase and the vacuum.

Now if we consider a strip of the doubled U(1)2n SET
phase, between the Z2 SPT phase and the vacuum, where
both boundaries are gapped and symmetric (using L and L′,
respectively). Naively it may seem that one has constructed a
symmetric gapped boundary between the Z2 SPT phase and
the vacuum, as there is no local symmetry-breaking order on
either edges. This kind of “paradox” was studied in Ref. [26]
and the resolution is the following: the symmetry is broken by
a string operator connecting the two edges.

W = ei(ϕ
′
1−ϕ1−ϕ2+ϕ′

2−ϕ). (14)

It is easy to see thatW has a finite expectation value, and under
the Z2 symmetry W → −W . Effectively, if one decreases the
width of the SET strip to make it quasi-1D,W becomes a local
order parameter on a gapped boundary which spontaneously
breaks the symmetry.

We now move on to a more abstract but general descrip-
tion of gapped boundaries for 2D topological phases. The
theory can be formulated in a number of different ways. We
will describe the boundary in terms of anyon condensation
[27–30]. Another description is based on the fact that a
topological phase which admits a fully gapped boundary must
be a quantum double of a unitary fusion category and can
be realized by a generalized string-net model. Then one may
directly construct and classify gapped boundaries in the lattice
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model [31,32]. This approach is used for the full calculation
in Appendix F 1.

Suppose the bulk is described by a MTC C. A gapped
boundary corresponds to a Lagrangian algebra L of the bulk
MTC C. Mathematically a Lagrangian algebra is a general
object

L =
∑
a∈C

naa. (15)

Here, na � 0 are non-negative integers, satisfying
∑

a nada =
D, where D = √∑

a∈C d2
a is the total quantum dimension of

C. Physically, if na > 0, it means that the anyon a is condensed
on the boundary. It follows that such condensed anyons must
be bosonic and have trivial mutual braiding statistics with
each other. There are other conditions, such as associativity
condition on the fusion of anyons in the algebra, to be satisfied
for the anyons to condense and we refer to Refs. [30,33,34]
for more comprehensive account of the theory. In the previous
example of doubled U(1)2n theory, the pinned field ϕ1 + ϕ2 +
ϕ exactly corresponds to a condensed bosonic anyon.

Here we specialize to the case where C = B � B for some
MTC B that corresponds to the SET phase. We denote the
anyons in C by (a, a′) where a, a′ ∈ B. The most natural
boundary condition corresponds to an anyon from one layer
becoming the same type of anyon on the other layer via the
folding. Equivalently, (a, a) condenses on the boundary. Thus
the Lagrangian algebra is given by

L =
∑
a∈B

(a, a). (16)

Alternatively, when anyons go from one layer to the other they
may be transformed by an automorphism ϕ ∈ Aut(B), which
corresponds to a Lagrangian algebra

L =
∑
a∈B

(a, ϕ(a)). (17)

This is equivalent to folding along a nontrivial invertible
domain wall. We note that there may be other Lagrangian
algebras in C different from those given in Eq. (17), for ex-
ample when anyons in B or B alone condense, corresponding
to folding along a noninvertible domain wall.

Let us spell out the Lagrangian algebra for the doubled
U(1)2n theory. Denote anyon types in a (single) U(1)2n theory
by [ j], j = 0, 1, · · · , 2n − 1. Then the Lagrangian algebra is
L = ∑2n−1

j=0 ( j, j). As we have already mentioned, the (1,1)
boson, which corresponds to the field ei(ϕ1+ϕ2+ϕ) in the edge
theory, condenses on the boundary.

Now we take into account the global symmetry and con-
sider gapped boundaries preserving the global symmetry
group. Intuitively, in order to have such a symmetric gapped
boundary it is reasonable to impose the following general
conditions on the condensed anyons.

(1) The Lagrangian algebra must be invariant, i.e., ρg(L) =
L for each g ∈ G. Therefore, if a is condensed, ρg(a) must be
in the condensation as well.

(2) Condensed anyons can not carry any projective quan-
tum numbers, or multidimensional representations.

The first condition is fairly obvious, as if L is not invariant,
then the gapped boundary explicitly breaks the symmetry.

The second condition essentially ensures that there is no
spontaneous symmetry breaking on the boundary. We give a
more precise definition in Appendix D 2.

Therefore, the only remaining freedom is to have con-
densed anyons being charged under the symmetry group. Here
by “charge” we mean one-dimensional representations. Let us
classify such charged condensation for the doubled SET phase
Z (B), with the Lagrangian algebra L = ∑

a∈B (a, ϕ(a)). Sup-
pose that ρ is trivial for simplicity. Since the SET order in
the two layers are conjugate to each other, (a, a) carries no
projective representation. Denote the one-dimensional repre-
sentation carried by (a, ϕ(a)) by φa. These representations
should satisfy fusion rules: since (c, c) appears in the fusion
channels of (a, a) and (b, b) if Nc

ab > 0:

φa(g)φb(g) = φc(g), Nc
ab > 0. (18)

Thus we can express

φa(g) = M∗
a,v (g), (19)

where v(g) ∈ A. The requirement that φa(g) forms a rep-
resentation means v(g) × v(h) = v(gh), i.e., v belongs to
H1[G,A].

This discussion can be generalized to the case where
anyons are permuted by the symmetry. A general definition
of symmetry-preserving anyon condensation is presented in
Appendix D 2. In this case, one finds that [v] ∈ H1

ρ[G,A] is
only a torsor over different types of charged condensations.

We now determine whether this is a gapped boundary
between the doubled SET phase and an SPT phase. Notice that
there is a “canonical” gapped boundary between the doubled
SET phase and the vacuum from the folding construction. It
corresponds to all the condensed anyons being neutral under
the symmetry. Suppose we modify the charges with [v] ∈
H1

ρ[G,A]. One would like to know what is the resulting phase
after condensing the Lagrangian algebra.

To this end, it is useful to gauge the G symmetry. Namely,
the SET phase is coupled to a dynamical G gauge field.
Roughly speaking, gauging introduces G fluxes to the theory,
and projects to the gauge-invariant subspace. In particular,
an anyon in the original theory can transform under different
representations of the gauge group, which all become topolog-
ically distinct excitations after gauging. Thus the Lagrangian
algebra becomes a condensable algebra in the resulting MTC.
Condensing this algebra should leave behind a pure G gauge
theory, as all the anyons from the SET phase become confined.

Generally gauging can be quite complicated, so let us
consider a simplified case where the symmetry acts trivially
on anyons (i.e., ρ ≡ 1 and [w] = [0]). In this case, the gauged
MTC can be written as Z (B) � D(G). Here, D(G) represents
the topological order of an (untwisted) G gauge theory. Ex-
citations in D(G) can be labeled by their gauge flux, i.e., a
conjugacy class [g] where g is a representative element, and
an irreducible representation π of the centralizer group of g.
We thus label a general anyon in the fully gauged theory as
((a, a′), [g], π ). The Lagrangian algebra naturally lifts to the
following algebra:

AG =
∑
a∈B

((a, ϕ(a)), [1], φa). (20)
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Condensing AG confines all anyons in Z (B). In fact, it is easy
to check that only anyons of the following form survive the
condensation:

((a × v([g]), ϕ(a)), [g], π )

= ((v([g]), 1), [g], π ⊗ φa) × ((a, ϕ(a)), [1], φa). (21)

Here we make it explicit that a one-dimensional represen-
tation must be a class function. Thus the remaining anyons
are given by ((v([g]), 1), [g], π ). As all gauge charges remain
deconfined, the resulting phase is still a G gauge theory, but
now twisted by the following 3-cocycle:

ω(g,h,k) = F v (g),v (h),v (k). (22)

When the bulk fractionalization class is nontrivial, we
obtain a general expression for the 3-cocycle with the diagonal
condensation in Eq. (16):

ω(g,h,k)=F v (g),gv (h),ghv (k) ·U−1
g (gv (h), ghv (k))ηghv (k)(g,h)

(23)
Here, gx ≡ ρg(x). The formula is written in terms of U and
η symbols, defined in Appendix A. The derivation, based on
a symmetry-enriched string-net construction of the doubled
SET phase, can be found in Appendix F 1.

When ρ ≡ 1, one makes a canonical choice Ug(a, b; c) =
1, and ηa(g,h) = Mw (g,h),a. The anomaly formula becomes

ω(g,h,k) = F v (g),v (h),v (k)Mw (g,h),v (k). (24)

Let us explain the formula in more physical albeit heuristic
terms. From the gauging construction above, one can see that
due to the symmetry charges of the condensed anyons, gauge
fluxes must be “dressed” with additional Abelian anyons v’s
to be deconfined after condensation. The two terms in Eq. (24)
can now be understood easily, as the F symbols of the dressed
Abelian anyons and the projective representations that defects
now carry due to the dressing. At the level of defect theory
(i.e., G-crossed braided tensor category), the dressing amounts
to a relabeling of g defects by ag → ag × v(g) for each ag ∈
Cg. Such a relabeling does not affect the symmetry action
on anyons, but can result in a change of defect properties.
From the general classification, the effect is equivalent to the
stacking of an SPT phase. Related results have been obtained
in Ref. [35] from the point of view of higher-form symmetries.

This example demonstrates a general phenomenon: for a
symmetric Lagrangian algebra to create a symmetric gapped
boundary to vacuum via its condensation, an obstruction val-
ued in H3[G, U(1)] must vanish. Physically this obstruction
means the condensation leads to an SPT phase [36,37].

III. REVIEW OF RATIONAL CONFORMAL
FIELD THEORIES

Here we provide a brief review of RCFTs [38]. In (1 + 1)d
CFT, left-moving and right-moving conformal symmetries
are decoupled (under, e.g., periodic boundary conditions).
The (holomorphic) energy-momentum tensor T (z), together
with other mutually commuting holomorphic operators, such
as conserved currents, form the chiral algebra V of the
CFT. Mode expansions of these operators generate infinite-
dimensional algebras. Any CFT has the Virasoro algebra from
stress tensor, and one often encounters affine Kac-Moody

algebra from Lie group symmetry, e.g., Wess-Zumino-Witten
(WZW) models. Higher-spin extensions of the Virasoro al-
gebra, generally known as W-algebras, can also occur, e.g.,
in coset constructions.2 The chiral algebra characterizes the
structure of holomorphic local scaling operators. We write VL

to emphasize that this is the algebra of chiral (left-moving)
operators. In the full CFT, the identity sector (i.e., all descen-
dants of the identity operator) is V = VL ⊗ VR.

Once the chiral algebra VL is known, its representations
give the states/operators in the chiral CFT. Denote the space
of irreducible representations of the chiral algebra by Ha,
where a is a chiral primary operator (with respect to the
chiral algebra VL). These fields are also called chiral vertex
operators. The defining characteristic of a RCFT is that the
number of primary fields is finite.

From the topological data of the chiral primary fields of a
RCFT, one can extract a unitary MTC B, which is called the
“representation category” of the chiral algebra, also denoted
by Rep(VL ). The chiral CFT describes the boundary excita-
tions of the bulk topological phase described by B. There is a
one-to-one correspondence between chiral primary fields and
anyon types of the topological phase. This statement captures
the essence of the bulk-boundary correspondence in these
systems. Physically, the Hilbert space Ha is realized on the
edge of a disk of the topological phase B, where inside the
disk there is a single anyonic excitation a. One may also imag-
ine starting from a disk without any bulk excitation (so the
boundary CFT Hilbert space is H0), creating a pair of anyons
a and ā and moving ā to the edge. This process changes the
space of the boundary CFT to Ha. For this purpose, it is
useful to consider the torus partition function. We define the
character associated with a chiral primary operator a:

χa(τ ) = TrHa e
2π iτ (L0− c

24 ). (25)

Here τ is the modular parameter of the torus, and Ln is the nth
Virasoro generator.

The full CFT in (1 + 1)d contains both the chiral and an-
tichiral parts. For simplicity, we assume their chiral algebras
are isomorphic to each other. The complete Hilbert space is
then

H =
⊕
a,b

MabHa ⊗ Hb. (26)

Here, Hb denotes the Hilbert space of the right-moving sector,
which is isomorphic to Hb. Mab are non-negative integers.
For Mab > 0, the corresponding chiral and antichiral sectors
a and b are “paired” to form a local primary operator, with
the multiplicity given by Mab. Thus the operator content is
determined by Mab. The partition function then reads

Z (τ, τ̄ ) =
∑
a

χa(τ )Mabχb(τ̄ ). (27)

Moreover, the naturality theorem due to Moore and Seiberg
[39] states that when the chiral algebra is maximally extended,
M must take the form Mab = δb,ϕ(a) where ϕ is an automor-
phism of the fusion algebra. In fact, ϕ must be a braided

2In this work, we only allow integer-spin operators in the chiral
algebra, thus excluding superconformal algebras.
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L

FIG. 2. An illustration of the strip construction. The (blue) dot on
the lower edge denotes local operators on the edge, which form the
chiral algebra VL . The thick line across the strip represents a primary
operator, which can be thought of as an anyon tunneling between the
two edges. The dashed line denotes a gapped domain wall inside the
bulk of the strip.

tensor autoequivalence of the MTC. From the bulk perspective
this corresponds to the absence of condensable bosons in B.
Physical primary fields can be built out of linear combinations
of products of chiral and antichiral primary fields (how they
can be paired up to form local primaries are dictated by the
partition function, due to the state-operator correspondence).
The most common choice is Mab = δab, known as the diagonal
CFT.

We now discuss a physical picture of the full CFT as a
(2 + 1)d chiral topological phase on a strip geometry [40,41].
This picture gives an intuitive explanation of the known clas-
sification of RCFTs [16,42–44], and has also been rigorously
established [45–47]. Let us consider a (2 + 1) topological
phase, which has the topological order described by the repre-
sentation category of the left chiral algebra, so the edge modes
are given by the corresponding chiral CFT. Suppose that the
couplings between the top and bottom edges are negligible.
We focus on the low-energy states of this strip, so that no
bulk anyon excitations are allowed. In general, one should
also allow a line defect (i.e., a domain wall) in the middle
of the strip. This line defect may or may not be invertible.
An invertible line defect in a 2D topological phase must
correspond to a topological symmetry of the MTC B. When
the strip is wide and the system is viewed as two-dimensional,
the only low-energy observables available are local operators
on either edges, i.e., the chiral algebras. However, when the
strip is viewed as a quasi-one-dimensional system, the top
and bottom edges of the strip together become a nonchiral
CFT [27]. In this one-dimensional limit, operators which are
localized in the extended direction, but straddle across the
whole strip are considered local. In fact, these are the string
operators that tunnel anyons between the two edges. Which
types of anyons are allowed to tunnel is precisely determined
by the line defect in the middle [29]. An illustration of the
strip construction is shown in Fig. 2.

It is also instructive to view the strip as a doubled topolog-
ical phase Z (B) = B � B, which has been unfolded along a
gapped boundary condition specified by a Lagrangian algebra
A in Z (B). This gapped boundary is the line defect in the strip
construction.

Let us now discuss the operator content in this phys-
ical picture. (1) Local scaling operators on each bound-
ary. They include spin-2 stress tensors, as well as other
holomorphic/antiholomorphic scaling operators with integer

spins, such as spin-1 conserved currents of continuous sym-
metry. Importantly, these operators form the extended chiral
algebra.

(2) Local primary fields of the form �aā for a holomorphic
primary a. They correspond to “tunneling” operators, which
transport an anyon of type a from one edge to another. If an
invertible domain wall is inserted in the middle of the strip,
corresponding to a topological symmetry ϕ of the bulk MTC,
the tunneling operator consists of creation of a, converted by
the domain wall to ϕ(a), and annihilation on the other edge.
For a nontrivial ϕ this strip corresponds to a nondiagonal
partition function.

IV. RCFT ENRICHED BY GLOBAL SYMMETRIES

Now we consider RCFTs with global internal symmetry
G. In our discussion, G is the symmetry of the microscopic
Hamiltonian. We focus our attention on a unitary G. We
believe our discussions can be generalized easily to lattice
translations.

We assume that the system does not spontaneously break
G. It is necessary to specify how local scaling operators
transform under the symmetry. Since these are local, they
must transform as linear representations of the symmetry
group. More concretely, we distinguish three classes of local
scaling operators. (1) Chiral and antichiral stress tensor. They
by definition should transform completely trivially under any
internal symmetry group G, i.e., G commutes with the Vira-
soro algebra. (2) Other chiral/antichiral operators in the chiral
algebra, such as conserved currents of continuous symmetries.
(3) Local primary operators of the form �aā for a chiral
primary a.

It is quite common that low-energy effective field theories
have more symmetries larger than the microscopic one (i.e.,
operators breaking the emergent symmetry are irrelevant).
Therefore we first describe the full symmetry group of the
CFT. Since we mainly consider CFTs with maximally ex-
tended chiral algebra, we denote the CFT by a pair V, ϕ, and
its symmetry group as Sym(V, ϕ). Because the CFT Hilbert
space is a representation space of the chiral algebra, it is useful
to consider the following “two-step” description of global
(unitary) symmetry.

First of all, symmetries act on the chiral algebra VL ⊗ VR.
Due to the factorization, it is sufficient to consider symmetries
acting on one of them (note that this does not apply to
orientation-reversing symmetries, as they must swap the two
chiral algebras). In addition, as symmetries of the theory they
must keep the Virasoro algebra (i.e., stress tensor) completely
invariant. Let us define Aut(V ) as the automorphism group of
the chiral algebra VL.

It is useful to distinguish “inner” and “outer” automor-
phisms, denoted by Inn(V ) and Out(V ), respectively. Recall
for finite or compact Lie groups, outer automorphisms are
discrete and act nontrivially on classes of irreducible represen-
tations, while inner automorphisms are conjugations by group
elements. For chiral CFTs, analogously outer automorphisms
may permute different primaries, leaving all correlation func-
tions invariant. They can usually be identified by inspecting
the CFT data given by chiral primaries. In contrast, inner
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automorphisms keep classes of representations invariant (but
may still act nontrivially on the representation space). We
remark that Inn(VL ) is continuous if and only if the chiral
algebra contains a Kac-Moody subalgebra, i.e., there are spin-
1 currents, otherwise it is a finite group.

Coming back to the full nonchiral CFT, automorphisms
of the full chiral algebra V = VL ⊗ VR is a subgroup of
Aut(VL ) × Aut(VR) preserving modular invariance, or equiva-
lently the Hilbert space structure in Eq. (26). For example, one
has to restrict the outer automorphisms Out(VL ) × Out(VR) to
a diagonal subgroup.

Once the symmetry action on the chiral algebras is given,
the action on the representation spaces (i.e., local primaries) is
essentially fixed up to a phase factor. The remaining freedom
will be referred to as central symmetries (since they commute
with the chiral algebra). For a primary �aā, a central symme-
try acts as

�aā → eiφa�aā. (28)

Importantly, commutativity with the chiral algebra means that
the phase eiφa must satisfy

φaφb = φc, if Nc
ab > 0. (29)

Therefore φa must take the following form:

φa = Mv ,a, (30)

where v is a certain Abelian anyon in the MTC. Using the
terminology of Ref. [48], central symmetries are all generated
by invertible Verlinde lines.

To summarize, the full symmetry group of a (nonchiral)
CFT with maximally extended chiral algebra is an extension
of Aut(V ) by A. In other words, we have the following short
exact sequence:

1 → A → Sym(V, ϕ) → Aut(V ) → 1, (31)

where A is acted on by Out(V ).
Now suppose the physical system that realizes the CFT has

a global symmetry G. The action of G on the CFT corresponds
to a group homomorphism

� : G → Sym(V, ϕ). (32)

Clearly, � induces a homomorphism α : G → Aut(V ), i.e.,
a G action on the chiral algebra, which in turn induces a
homomorphism ρ : G → Out(V ) (a G action permuting local
primaries). An important caveat is that α should be consistent
with local operators transforming as linear representations of
G. We address this point in more detail below when the bulk
interpretation is discussed. On top of that, different choices
of � are given by twisted homomorphisms from G to A,
formally [v] ∈ H1

ρ[G,A].
In the following, we illustrate these general remarks with

examples of WZW CFTs and the Z3 parafermion CFT.

1. WZW CFT

Consider a WZW CFT gk with diagonal partition function,
where g is a simple Lie algebra. Denote by G the correspond-
ing simply connected Lie group. The primaries are labeled
by irreducible representations of G. The corresponding MTC

describes the topological order of a level k Chern-Simons
theory with gauge group G.

It is well-known that the CFT has the following continuous
global symmetry:

GWZW = (GL × GR)/Zdiag(G ). (33)

Here Zdiag(G ) denotes the diagonal axial center group: namely,
Zdiag(G ) consists of (g, g−1) for each g in the center of G. For
example, if g = su(2), GWZW = SO(4).

Let us consider the symmetry action on the chiral algebra
VL, which is the g level k Kac-Moody algebra, generated
by the current operators Ja. The inner automorphism group
therefore can be identified with

Inn(VL ) = G/Z (G ), (34)

generated by the currents Ja0 .
In addition, discrete symmetries which permute primary

fields are given by the group of outer automorphisms of the
Lie group, which coincides with the symmetry group of the
Dynkin diagram. For instance, for g = so(n) one finds that
Out(so(n)k ) = Z2 (except for n = 8, so(8) has an S3 outer
automorphism group), thus together with Inn(VL ) = SO(n)
we have

Aut(so(n)k ) = O(n). (35)

Or for g = su(n), we find Inn(su(n)k ) = PSU(n) and for
n > 2 there is a Z2 charge conjugation symmetry, so
Aut(su(n)k ) = PSU(n) � Z2. Notice that what we have writ-
ten down so far are automorphisms of the left (or right) chiral
algebra. If both left and right chiral algebras are considered,
then

[GL/Z (GL ) × GR/Z (GR)] � Out(G ), (36)

where now elements of Out(G ) act diagonally on both chiral
algebras.

Notice that this differs from the actual symmetry group,
whose connected component is given in Eq. (33). The differ-
ence is exactly the center Z (GL ) (or Z (GR)). In other words,
if the symmetry action on the chiral algebra is known, the
symmetry transformations on all the primaries are known up
to the center group. The remaining degree of freedom is a
homomorphism v : G → Z (G ). That is, on a primary labeled
by an irrep R, one attaches a one-dimensional representation
defined by

φR(g) = R(v(g)). (37)

As we have shown in Eq. (30), such a one-dimensional rep.
must be generated by braiding with Abelian anyons in the
corresponding MTC. Indeed, the group A of abelian anyons
is naturally isomorphic to the center Z (G ), with one notable
exception being (E8)2.

2. Z3 parafermion CFT

The Z3 parafermion (PF) CFT can be realized as the
coset SU(2)3/U(1), or from the minimal model M(6, 5) by
extending the Virasoro algebra by a spin-3 chiral primary. The
resulting chiral algebra is known as the W3-algebra [49]. We
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denote the spin-3 chiral primary by W (z). The OPE of W is
quite complicated, with the leading terms beingW (z)W (w) ∼

2/3
(z−w)6 + 2T (w)

(z−w)4 + · · · (a few more singular terms are omitted).
The only nontrivial discrete unitary symmetry on the chiral
algebra is given by

W → −W. (38)

This is nothing but the charge conjugation symmetry that
sends a parafermionic field ψ (z) to ψ†(z).

The Z3 central symmetry of the CFT is generated by
parafermionic fields ψ . Together with the Z2 symmetry they
form the S3 group.

A. (2 + 1)d bulk interpretation

It is natural to interpret the symmetry action on a CFT from
the perspective of the (2 + 1)d bulk. Recall that global G ac-
tion in a (1 + 1)d CFT can be specified by two maps: α : G →
Aut(V ) and [v] ∈ H1

ρ[G,A] where ρ : G → Aut(Rep(V )) is
induced by α.

Let us first consider the symmetry action on the chiral
algebra, given by α : G → Aut(V ). Due to the holomorphic
factorization of the chiral algebras, α can be restricted to the
left or the right algebra. Suppose we have a group homomor-
phism αL : G → Aut(VL ). Via the bulk-boundary correspon-
dence, the homomorphism αL encodes the symmetry action on
local operators on the chiral edge of the bulk topological phase
Rep(VL ). We argue that αL in fact completely determines
the symmetry action on anyons, i.e., the symmetry-enriched
topological order in C = Rep(VL ). Namely, ρ,U and η are
completely determined.

Let us elaborate on this statement. Denote C = Rep(VL ),
whose anyon types are labeled as a, b, c, . . . in one-to-one
correspondence with chiral primaries of the chiral CFT. αL

induces a group homomorphism from G to Out(VL ). Each
element of Out(VL ) corresponds to an element in Aut(C),
although not the other way around. In other words, there
is a canonical embedding Out(VL ) ⊂ Aut(C). Therefore αL

defines uniquely a homomorphism ρ : G → Aut(C).
It is less obvious that that αL also determines Ug(a, b; c)

and ηa(g,h). Here we present physical arguments for why this
is the case. In short, this is because αL defines the symmetry
action on local operators in the chiral edge theory.

Each chiral primary/anyon type a is associated with a
Hilbert space Ha in the chiral CFT, which is the edge Hilbert
space on a disk with an anyon a inside. As {Ha} are the rep-
resentation spaces of the chiral algebra VL, any automorphism
of VL induces a unitary map on {Ha}. More specifically, an
inner automorphism induces a unitary transformation on each
Ha. An outer automorphism maps a to a′, thus inducing a
map between isomorphic spaces Ha and Ha′ . These unitary
transformations provide a concrete realization of the symme-
try localization in Eq. (2), and one can then directly compute
the η symbols following the definition.

It is also instructive to define η in the operator language. An
anyon must be created by a nonlocal string operator, where
the string itself commutes with Hamiltonian at low energy.
In other words, it corresponds to a topological defect line in
the chiral CFT. In the Hamiltonian formalism, let us denote
the chiral primary operator by Va(x), which is a semi-infinite

string operator. Under an outer automorphism that sends a to
a′,Va(x) should be transformed toVa′ (x), up to a local operator
at x. Via the state-operator map, this local unitary operator
corresponds to the map between Ha and Ha′ .

Next we consider U , the symmetry action on splitting
spaces. Intuitively, the splitting space V ab

c is the equivalence
classes of local operators that split an anyon c to two anyons
a and b. Since αL defines the action on local operators, the
symmetry action can be computed once the splitting operator
is known.

In Appendix C, we present more precise definitions of U
and η in terms of CFT operators, and explicitly compute them
for the charge-conjugation symmetry in a U(1)N CFT (i.e.,
compactified chiral free boson).

We remark that while we define U and η for a chiral
CFT, essentially the same can be done for a full nonchiral
theory, where now chiral primaries become topological defect
operators.

Here we illustrate the definition of η using the example
of WZW CFTs. Neglecting the outer automorphisms for the
moment, the symmetry action on the chiral algebra is given by
the group homomorphism α : G → G/Z (G ). Consider states
in HR where R is an irreducible representation of G. For g ∈
G, the group homomorphism fixes a unitary transformation
R(g) ≡ R(α(g)) on HR (as the representation R of G) up to
the center Z (G ), which is just the ambiguity of phase factors
given in Eq. (37). In other words, the chiral primary R may
transform projectively under G:

R(g)R(h) = φR(w(g,h))R(gh), (39)

where w(g,h) ∈ Z (G ). Through the bulk-boundary corre-
spondence, φR(w(g,h)) is also the projective phase on the
bulk anyon labeled by R. As a result, the fractionalization
class [w] ∈ H2[G,A] is determined through the canonical
map between Z (G ) and A.

A useful corollary is that if αL = 1, i.e., the symmetry
group commutes with the entire chiral algebra, then one
may set ρ ≡ 1, and U, η all to 1. The symmetry thus acts
completely trivially on anyons.

We remark that most familiar examples of chiral
symmetry-enriched RCFTs with nontrivial symmetry frac-
tionalization class η are WZW CFTs. More exotic examples
without Kac-Moody algebra do exist, which are discussed in
Sec. V D.

Now let us come back to the full (1 + 1)d CFT. As we
have mentioned, an additional piece of information needed
is a Lagrangian algebra L in the doubled MTC Z (Rep(VL )).
It is necessary that αL, and thus the SET order in Rep(VL ),
allows L to be symmetric. When the corresponding ρ is
trivial, it means that condensed anyons in L do not carry any
projective representations. For example, for a invariant under
G, �aā transform as linear representations of G, as expected.
Schematically let us write

g�aāg−1 = Ra(g)�ρ(a)ρ(a), (40)

where Ra(g) is a unitary transformation. Additional indices
are suppressed. Ra(g) can then be modified with phase factors:
Ra(g) → Ma,v (g)Ra(g). In other words, H1

ρ[G,A] provides a
torsor over distinct symmetry-enriched CFTs with the same
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αL. Clearly, this should be identified with the different charged
condensations classified in Sec. II B.

B. Absolute and relative ’t Hooft anomalies

First we consider ’t Hooft anomalies generally for global
symmetries in a RCFT.

On general grounds, we expect that the anomaly 3-cocycle
can be derived once the action of G on local scaling operators
in the CFT is known. We explain how such a computation can
be done in principle in Sec. IV B 1. However, while the proce-
dure is well-defined, the relation between the prescription and
local data is rather obscure.

In the following, we instead study the following question:
given a RCFT and a symmetry group G, consider the possible
’t Hooft anomalies that different symmetry-enriched RCFTs
may exhibit. We have shown that the full symmetry group
of the RCFT is an extension of Aut(V ) by A, and thus a G
action on local operators consists of two homomorphisms α :
G → Aut(V ) and [v] ∈ H1

ρ[G,A]. In principle, the anomaly
3-cocycle is a function of α and [v], and we define the
relative anomaly as ω(α, [v0 · v]) · ω(α, [v0])−1. We provide
an explicit formula to compute the “relative” ’t Hooft anomaly
that only uses algebraic data.

1. ’t Hooft anomaly from topological defect lines

We first review the general method to compute ’t Hooft
anomaly in a symmetry-enriched CFT in the language of
Euclidean quantum field theory, following Ref. [48]. Related
discussions can be found in Refs. [50–52].

In a quantum field theory, global symmetries are imple-
mented by invertible topological operators of codimension
1 (which may be viewed as the space-time trajectory of a
symmetry defect). In (1 + 1)d, they are invertible topological
defect lines (TDL) [48] supported on an oriented path that
commute with the stress tensor. A TDL can end on a point-
like defect operator. By the state-operator correspondence, for
each g ∈ G there is a Hilbert space Hg, namely the theory on
S1 with the boundary condition twisted by g.

TDLs may form junctions and more general networks.
Consider the simplest three-way junction of three TDLs la-
beled by g,h and gh. On a disk, such a configuration defines a
Hilbert space Hg,h

gh , isomorphic to the untwisted Hilbert space
in the identity sector. Let us label the ground state subspace
of the Hilbert space as V g,h

gh .3 The definition is illustrated
in Fig. 3. The discussion can be generalized to any k-way
junctions straightforwardly.

Now consider a four-way junction g,h,k, and ghk. For
the same reason, the junction defines a one-dimensional space
V g,h,k
ghk . There are two ways to draw the TDLs inside the disk,

which should lead to the same state space. Thus they can only

3Since TDLs commute with the stress tensor, the Hilbert space Hg,h
gh

still forms a representation of the left and right Virasoro algebras.
Following Ref. [48] we define the ground state space to be the space
of weight-(0,0) states. This choice of the weight-(0,0) state also fixes
the junction operator itself through state-operator correspondence.
Such a junction is defined as a topological junction in Ref. [48].

FIG. 3. (Top) Illustration of a three-way junction of TDLs
which define the space V g,h

gh . (Bottom) Definition of the 3-cocycle
ω(g,h, k).

differ by a phase factor ω(g,h,k), which is the anomaly 3-
cocycle [48]. See Fig. 3 for an illustration.

The procedure to extract ω outlined above may be viewed
as a special case of the Else-Nayak prescription of extracting
3-cocycles for a set of unitary operators that represent the
symmetry group [53] (see also Ref. [54]). Let us briefly
explain the relation. In the Else-Nayak prescription, global
symmetries are represented by (locality preserving) unitary
operators {U (g)}g∈G acting on a 1D lattice model. One first
considers the restriction of a global symmetry unitary U (g)
to an open region M of the lattice, denoted by UM (g).4 For
convenience, we take M to be the half line with one end point
e. If the low-energy theory is a CFT, the scaling limit of the
restricted unitary defines a symmetry defect operator in the
CFT (this is not unique, but does not affect final result). The
restricted operators in general obey the group multiplication
law only up to a local operator at e:

UM (g)UM (h) = �e(g,h)UM (gh). (41)

For CFT the local operator �e(g,h) corresponds to a state in
Hg,h

gh under the state-operator map.5 The associativity condi-
tion of �e is satisfied up to a phase, which is the 3-cocycle.
This is essentially the operator version of the CFT definition
as illustrated in Fig. 3.

2. Relative ’t Hooft anomaly

We define the relative ’t Hooft anomaly to be the difference
between the ’t Hooft anomalies of two symmetry-enriched
RCFTs, whose symmetry actions differ by [v] ∈ H1

ρ[G,A]

4The restriction UM is defined such that for any local operator O
supported inside M, we have UOU−1 = UMOU−1

M .
5In the CFT, a canonical choice for �e is made by demanding that

the junction is topological. This is convenient but not essential.
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(with the same α). In the language of TDL, it means that each
defect line is dressed by an additional invertible Verlinde line.

We now derive a formula for the relative anomaly using the
correspondence between symmetry-enriched (1 + 1)d CFT
and (2 + 1)d doubled SET phase. First we assume that the
theory has a diagonal partition function, so the CFT can
be labeled by the chiral algebra VL. Denote C = Rep(VL ).
As described in the previous section, the group homomor-
phism αL uniquely defines a (2 + 1)d SET phase, which
we denote by C×

G . Similarly, αR defines an SET phase with

the conjugate topological order, denoted by C×
G . Together

they form a double-layer SET phase. The two must have
opposite symmetry actions on anyons, in order to have a
diagonal, symmetry-preserving Lagrangian algebra Eq. (16).
Condensing the Lagrangian algebra results in an SPT phase.
Or equivalently, the bilayer SET phase should admit a fully
gapped, symmetric boundary to an SPT phase. In order to
derive the relative anomaly, without loss of generality we can
assume that the two SET phases are exactly conjugate to each
other. The SPT phase is given in Eq. (42), which is the formula
for the relative anomaly. We reproduce the formula here:

ω(g,h,k) = F v (g),gv (h),ghv (k)

·U−1
g (gv (h), ghv (k))ηghv (k)(g,h). (42)

While in general our formula only computes the relative
anomaly, in some cases one can identify nonanomalous CFTs
as a reference to get absolute anomalies.

The first case is when G commutes with the whole chiral
algebra, i.e., α = 1. As we have argued, the bulk SET phase
has trivial symmetry action, and when all primaries transform
trivially under G the theory is obviously nonanomalous (G
essentially does not act at all).

Alternatively, G may act nontrivially on the chiral algebra,
but the transformations of left and right chiral algebras are
conjugate to each other. In terms of α, it implies that αL and
αR are basically identical (with respect to the isomorphism
between VL and VR). In this case, the CFT can be constructed
by putting the corresponding chiral bulk SET phase on a strip,
or equivalently as the boundary of the doubled SET phase.

In these cases, there is a “canonical” symmetry-enriched
CFT which is nonanomalous. Thus the relative anomaly
computed from the reference theory becomes the absolute
anomaly.

We note that Ref. [55] computed relative ’t Hooft anomaly
in (2 + 1)d SET phases. There tri-junctions of symmetry de-
fect surfaces can be decorated by Abelian anyon line operators
to change the symmetry fractionalization class and possibly
the ’t Hooft anomaly. As mentioned in Sec. II B, our results
are closely related to the relabeling of symmetry defects by
fusing Abelian anyons in the (2 + 1)d theory.

V. EXAMPLES

In this section we study various examples. We first con-
sider global symmetries of SU(2)k CFTs and the closely
related unitary minimal models, including all nondiagonal
theories. One motivation is to illustrate how our approach to
symmetry-enriched CFTs works when the partition function
is nondiagonal (and not necessarily maximally extended). We

show that minimal models (including the nondiagonal ones)
are always nonanomalous, thus CFTs with nontrivial ’t Hooft
anomalies must have c � 1. We derive general constraints
on ’t Hooft anomaly when the global symmetry commutes
with the whole chiral algebra. We then classify symmetries in
diagonal WZW CFTs. Finally, we study Lieb-Schulz-Mattis
anomaly in translation-invariant spin chains.

A. Global symmetries of SU(2)k

In this section, we analyze global symmetries of SU(2)k
CFTs, in particular those with nondiagonal partition func-
tions. In the following, we denote chiral primaries of SU(2)k
theory by Vj , where j is the SU(2) spin j = 0, 1

2 , . . . , k
2 . The

corresponding characters are denoted by χ j (τ ).
Modular-invariant partition functions of SU(2)k CFTs are

completely classified, known as the ADE classification [56].
Besides the diagonal partition functions, there are six classes
of nondiagonal theories. In all cases, the chiral algebra con-
tains an su(2) Kac-Moody (sub)algebra, so there is at least
SO(3)L × SO(3)R symmetry. In a few cases the Kac-Moody
algebra is further enlarged (D4,E6 and E8 modular invariants).
We will pay attention to additional discrete global symmetries
that are not part of the continuous symmetry group.

(1) An series for all k: the global symmetry is
SU(2)L × SU(2)R/Z2 = SO(4). In particular, the Z2 cen-
ter symmetry generated by the Verlinde line Vk

2
is

anomalous/nonanomalous for odd/even k.
(2) D2n+2 series for k = 4n: This series arise from the

extension of the chiral algebra by the Vk
2

primary, which has

conformal weight k
4 . The partition function reads∑

m = 0
m ∈ Z

n−1

|χm + χ2n−m|2 + 2|χn|2. (43)

Since the Z2 center symmetry before extension is generated
by the Vk

2
Verlinde line, the symmetry is gone now as only

those that are neutral under the Vk
2

line are left. Thus the
continuous SO(4) symmetry is reduced to SO(3)L × SO(3)R.
Interestingly, the new CFT has an additional Z2 symmetry
swapping the two primary operators that split from the Vk

4

primary in SU(2)k . We remark that this symmetry does not
commute with the extended chiral algebra (acting as Vk

2
→

−Vk
2
). It is by construction nonanomalous, since orbifolding

the symmetry gives back SU(2)k .
(3) D2n+1 series for k = 4n − 2, with n � 2: This series

arises because of a topological symmetry Vj ↔ Vk
2 − j (notice

that it is not an actual symmetry of the CFT). The partition
function reads∑

m = 0
m ∈ Z

2n−1

|χm|2 +
∑

0 < j < n − 1
j ∈ Z + 1

2

(χ jχ
∗
2n−1− j + c.c.) + ∣∣χn− 1

2

∣∣2
.

(44)
The symmetry group is the same SO(4) as the diagonal
theories.

(4) E6 for k = 10: The chiral algebra is extended by the
chiral primary V3. The partition function reads

|χ0 + χ3|2 + ∣∣χ 3
2
+ χ 7

2

∣∣2 + |χ2 + χ5|2. (45)
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TABLE I. Global symmetries of SU(2)k CFTs. GL/R is short for
GL × GR.

SU(2) level ADE label Aut(V ) Center

k > 0 Ak+1 SO(3)L/R Z2

k = 4n, n > 1 D2n+2 SO(3)L/R × Z2

k = 4 D4 PSU(3)L/R � Z2 Z3

k = 4n − 2, n > 1 D2n+1 SO(3)L/R Z2

k = 10 E6 SO(5)L/R Z2

k = 16 E7 SO(3)L/R

k = 28 E8 (G2)L/R

Since V3 has conformal weight 1, we expect that the Kac-
Moody algebra is enlarged as additional spin-1 currents are
added. Indeed, this partition function is actually the same as
that of Spin(5)1.

(5) E7 for k = 16: the partition function is

|χ0 + χ8|2 + |χ2 + χ6|2 + |χ3 + χ5|2 + |χ4|2
+χ4(χ∗

1 + χ∗
7 ) + χ∗

4 (χ1 + χ7). (46)

The modular invariant can be understood in two steps. First,
since k is a multiple of 4 one can construct a D10 invariant, by
addingV8 to the chiral algebra. The resulting SO(3)16 CFT has
six primaries, which can be labeled using the corresponding
SU(2) spin in the parent theory: 0, 1, 2, 3, 4±. The partition
function at this point is

|χ0 + χ8|2 + |χ1 + χ7|2 + |χ2 + χ6|2 + |χ3 + χ5|2 + 2|χ4|2.
(47)

As we have discussed previously, SO(3)16 CFT has an addi-
tional Z2 symmetry that swaps 4+ with 4−.

Second, notice the corresponding MTC has a new topologi-
cal symmetry, swapping 4+ (or 4−) with 1, which can be used
to construct the modular invariant in Eq. (46). However, the
construction of the modular invariant apparently breaks the
symmetry between 4+ and 4−. Thus the global symmetry is
just SO(3)L × SO(3)R.

(6) E8 for k = 28: the chiral algebra is extended by multiple
chiral primaries. The partition function is

|χ0 + χ5 + χ9 + χ14|2 + |χ3 + χ6 + χ8 + χ11|2. (48)

For the MTC, there is a condensable algebra 0 + 5 + 9 + 14.
To understand this case, we perform the condensation in two
steps: first condense 14 to obtain SO(3)28, where a new Z2

symmetry that swaps 7± emerges. However, in the second step
5 (which is identified with 9) condenses, confining both 7±
and the new Z2 symmetry is no longer present. In fact, the
final theory is (G2)1 because the V5 has spin 1. The results
derived in this section are summarized in Table I and are in
agreement with Ref. [57].

B. Symmetries in minimal models

Now we study symmetries in minimal models, which are
the only unitary CFTs with c < 1. We label them as M(m +
1,m) where m � 3, with central charge c = 1 − 6

m(m+1) . Pri-
mary operators are labeled by two integers (r, s) where 1 �
r � m − 1, 1 � s � m, with the identification (r, s) ≡ (m −

r,m + 1 − s), and the conformal weight are

hr,s = [(m + 1)r − ms]2 − 1

4m(m + 1)
. (49)

More details about minimal models can be found in, e.g.,
Ref. [38].

First we consider diagonal theories. Since the chiral alge-
bra of the minimal models is just the Virasoro algebra, any
unitary symmetry must commute with the chiral algebra, i.e.,
they are central. As discussed in Sec. IV, central symmetries
correspond to simple currents in the chiral CFT. There is
only one simple current in the minimal model M(m + 1,m),
namely the (m − 1, 1) which necessarily has Z2 fusion rule.
Thus the only nontrivial symmetry acts on the primary (r, s)
by a sign (−1)(m+1)r+ms+1. This is of course expected from the
Ginzburg-Landau description as a Z2 multicritical point.

Now let us turn to nondiagonal theories, which have a well-
known ADE classification [56,58]. They can be understood
most easily in terms of the coset construction:

M(k + 3, k + 2) = SU(2)k × SU(2)1

SU(2)k+1
. (50)

In fact, nondiagonal partition functions of a minimal model
are labeled by a pair of ADE labels for the corresponding
SU(2) factors in Eq. (50), one of which must be from the
A series. Then the global symmetry of the minimal model
can be read off from that of the nondiagonal SU(2) modular
invariant, once the continuous part of the automorphism group
is modded out.

In the following, we work out the symmetries in the
(Am−1,Dm+3

2
) theory for m ≡ 1 (mod 4). Since hm−1,1 is an

integer the chiral primary (m − 1, 1) can be used to extend
the Virasoro algebra, resulting in the (Am−1,Dm+3

2
) partition

functions. A relevant fusion rule is (m − 1, 1) × (r, s) = (m −
r, s) ≡ (r,m + 1 − s). So under fusion, there is exactly fixed
point (1, m+1

2 ) for odd m and (m2 , 1) for even m. They “split”
into two primaries of the same dimension with respect to the
extended chiral algebra. The resulting theory has a new Z2

symmetry that swaps these two primaries.
For m = 5, the extension leads to additional simple cur-

rents enlarging the symmetry. This is because (1,3) has quan-
tum dimension 2 and h = 2/3. It splits into two simple cur-
rents, which form a Z3 group. Together with the Z2 symmetry
that swaps the two simple currents, they form an S3 symmetry
group. The resulting theory is the Z3 parafermion CFT, where
the simple currents are the parafermions. Physically it is
realized by the critical 3-state Potts models.

We note that Ref. [59] classified all nonanomalous symme-
tries based on modular invariance. Here we have essentially
reproduced their results without assuming that symmetries are
nonanomalous.

C. G commuting with the chiral algebra

Now we consider more general CFTs where G commutes
with the chiral algebra. In this case, the 3-cocycle is given by

ω(g,h,k) = F v (g),v (h),v (k). (51)

It turns out that a few quite general statements can be made
about 3-cocycles of this form.
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First of all, it is known that there always exists a gauge in
which the F symbols of Abelian anyons in a MTC take values
±1 [60]. Therefore the resulting 3-cocycle must be an order-2
element in H3[G, U(1)]. Without loss of generality, we may
assume that the symmetry group is Zk

2. Using the Künneth
formula one can easily find [61]

H3
[
Zk

2, U(1)
] = Z

k+(k2)+(k3)
2 . (52)

In fact, it is sufficient to consider k � 3, as for k > 3 the 3-
cocycles can be built from those of subgroups generated by
fewer than four Z2’s, which explains the combinatorial factors
in Eq. (52).

For k = 1, it is known that the ’t Hooft anomaly can be
realized by center symmetries of many WZW models [62].
We now show that for k > 1, in fact even for k = 2, not every
cohomology class in Eq. (52) can be realized by symmetries
commuting with the entire chiral algebra.

First consider k = 2. Denote Z2
2 = {1, g,h, gh}, then the

following three invariants completely characterize the coho-
mology classes: ω(g, g, g), ω(h,h,h), ω(gh, gh, gh). They
can take ±1 independently, which give all 23 = 8 classes.
However, given that v(g), v(h) are self-dual Abelian anyons,
and Fa,a,a = θ2

a for self-dual a, we find that

F v (gh),v (gh),v (gh) = θ2
v (gh) = θ2

v (g)θ
2
v (h)M

2
v (g),v (h). (53)

Notice that M2
v(g),v(h) = 1, we obtain the following constraint:

ω(g, g, g)ω(h,h,h)ω(gh, gh, gh) = 1. (54)

Therefore, out of the eight classes in H3[Z2
2, U(1)], only four

can be realized.
Now we go to k = 3. One can build 3-cocycles in sub-

groups of Z3
2, but there are so-called “type-III” cocycles that

can only be defined for the whole Z3
2 group [61]. Symmetries

with such 3-cocycles are relevant for the phase transition
between the nontrivial Z2 × Z2 SPT and the trivial phase in
(1 + 1)d [63]. The defining feature of the type-III cocycle
is the following: Denote the generators of the three Z2 sub-
groups by g,h,k. With respect to the first Z2 generator g,
the slant product of the cocycle igω is a nontrivial 2-cocycle
of the remaining Z2 × Z2 group, detected by the following
indicator:

igω(h,k)

igω(k,h)
= −1. (55)

We now show that 3-cocycles of the form Eq. (51) can not
be type-III. This essentially follows from the hexagon equa-
tions: let a, b, c be three Abelian anyons, then the hexagon
equation gives

FcabFabc

Facb
= RacRbc

Rab,c
. (56)

Now we can compute the invariant in Eq. (55):

igω(h,k) = ω(g,h,k)ω(h,k, g)

ω(h, g,k)

= F v (g),v (h),v (k)F v (h),v (k),v (g)

F v (h),v (g),v (k)

= Rv (h),v (g)Rv (k),v (g)

Rv (hk),v (g)
, (57)

and a similar expression for igω(k,h). Since hk = kh, we find
igω(h,k) = igω(k,h), contradicting the indicator in Eq. (55).

D. Projective symmetries without Kac-Moody algebra

Here we discuss two examples of symmetry-enriched
RCFTs without Kac-Moody algebras [64,65], where the chiral
primaries nevertheless transform projectively under the sym-
metry. Both of them are closely related to the famous Monster
CFT, which only has the identity chiral primary, but the chiral
algebra has the largest sporadic group, the Monster, as its
symmetry.

The first example is the so-called baby Monster CFT [66].
The chiral CFT has cL = 47

2 and three chiral primaries with
spins 0, 3

2 , 31
16 , so the corresponding MTC is just the Ising

MTC [or equivalently Spin(15)1]. In fact, it is “dual” to the
Ising CFT, in the sense that their characters can be com-
bined to give the character of the Monster CFT. The global
symmetry of the chiral algebra is the baby Monster group
(the second largest sporadic group), and the spin 31

16 chiral
primary operator transforms as a projective representation of
dimension 96256, see Refs. [65,67].

Another related example is a chiral CFT with c = 116
5 [68],

which is “dual” to the three-state Potts CFT. This theory has
the largest Fischer group Fi24 as the automorphism group of
the chiral algebra. The h = 4

3 chiral primary transforms as a
complex projective representation of Fi24 of dimension 783,
see Ref. [65].

E. Wess-Zumino-Witten CFTs

Let us review the basics of WZW CFTs. Let g be a simple
Lie algebra and k > 0 an integer. Primaries in a gk CFT are
labeled by Dynkin labels λ = [λ1, λ2, . . . , λr] where r is the
rank. They satisfy

0 �
r∑

i=1

a∨
i λi � k. (58)

Here, a∨
i are the comarks. The conformal weight of a primary

is then given by

hλ = (λ,λ + 2ρ)

2(k + h∨)
, (59)

where ρ = (1, 1, . . . , 1) is the Weyl vector and h∨ is the dual
Coxeter number.

We only consider diagonal WZW theories in this sec-
tion. Recall that the continuous symmetry of the gk chiral
algebra is

Inn(V ) = GL/Z (GL ) × GR/Z (GR). (60)

It is well-known that if the global symmetry group G maps
entirely into GL/Z (GL ), i.e., acting only on the left-moving
fields, there is possibly a chiral anomaly. In this case, though,
the naive local operator spectrum may not represent G faith-
fully. For example, if we identify G with GL/Z (GL ), only linear
irreps of G can occur in the spectrum. In other words, the
original Gk theory needs to be “truncated”, and the proper
way to do this is to extend the chiral algebra by simple
currents that canonically correspond to Z (G ) [69]. In the
MTC language, the corresponding Abelian anyons form a
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condensable algebra. This is possible only for k’s that satisfy
certain divisibility condition. For example, for G = SU(n), k
has to be a multiple of n (2n) for odd (even) n. The result can
be viewed as WZW theory for the nonsimply connected group
G/Z (G ).

Center symmetries

In this section we consider center symmetries in WZW
CFTs. We enumerate simple currents in all cases, and also
give the corresponding Abelian MTC, using the notation
in Ref. [70]. Most of the results were already derived in
Ref. [71], except for the D2n series.

An−1 series with n � 2, SU(n)k: the center is Zn. The
Dynkin labels for simple currents have one nonzero entry k
and all others 0. They can be generated from (0, 0, . . . , k)
by fusion, and the corresponding rep. is obtained from the
tensor product of k copies of the fundamental representation
(0, 0, . . . , 1). The spin of the primary is

h(0,0,...,k) = (n − 1)k

2n
. (61)

In the MTC, this Abelian subcategory is denoted Z(k(n−1)/2)
n .

For odd n, the F symbols are trivial so the center symmetry
is nonanomalous. For even n, let us denote the simple objects
by a = 0, 1, . . . , n − 1, corresponding to Dynkin label λ j =
δ j,r+1−a. Then the F symbols are Fabc = (−1)ka

b+c−[b+c]n
n . Thus

if k is even the center symmetry is also anomaly-free.
Bn series with n � 2, Spin(2n + 1)k: the center is Z2. The

only simple current (k, 0, . . . , 0) has spin k/2. The Abelian
subcategory is Z(k)

2 with trivial F symbols. Therefore the
center symmetry is anomaly-free.

Cn series, USp(2n)k:6 the center is Z2, with the only simple
current given by (0, 0, . . . , k), with the spin nk

4 . Thus the
center symmetry is anomaly-free for nk even.

Dn series with n � 4, Spin(2n)k: the center group is Z2 ×
Z2 for even n and Z4 for odd n. The nontrivial simple
currents are (0, 0, . . . , k), (0, 0, . . . , k, 0) and (k, 0, . . . , 0),
whose spins are given by

h(0,...,0,k) = h(0,...,k,0) = kn

8
, h(k,0,...,0) = k

2
. (62)

We remark that (0, . . . , 0, 1) and (0, . . . , 1, 0) are spinor
representations, and (1, 0, . . . , 0) is the vector representation.

(1) For n odd, the corresponding Abelian category is
Z(kn/2)

4 .
(2) For n even and k odd, the Abelian category is isomor-

phic to Spin(2nk)1. More specifically,

n ≡ 0 (mod 8), D(Z2),

n ≡ ±2 (mod 8), Z(kn/4)
2 × Z(kn/4)

2 ,

n ≡ 4 (mod 8), Spin(8)1. (63)

(3) For n even and k even, the Abelian category is Z
( kn

4 )
2 ×

Z
( kn

4 )
2 , with trivial F symbols.

6We use the convention USp(2) = SU(2).

TABLE II. WZW CFTs in which simple currents have trivial
braiding.

WZW model Condition Simple currents

SU(n)k n|k Z(0)
n

Spin(2n + 1)k Z(1)
2

Spin(2n)k n odd, 4|k Z
( kn2 )
4

Spin(2n)k n, k even Z
( kn4 )
2 × Z

( kn4 )
2

USp(2n)k nk even Z
( nk2 )
2

(E6)k 3|k Z(0)
3

(E7)k k even Z(k/2)
2

(E8)k 
=2, (F4)k, (G2)k Z1

(E8)2 Z(1)
2

E6: the center is Z3. The simple currents are (k, 0, . . . , 0)
and (0, . . . , k, 0), and both have spin 2k

3 . The Abelian subcat-

egory is Z(k)
3 .

E7: the center is Z2, and the Abelian subcategory is Z(k/2)
2 .

Therefore the center symmetry has a Z2 ’t Hooft anomaly for
odd k.

The other exceptional Lie groups, E8,F4,G2 have trivial
centers.

Some of the WZW CFTs either have no simple currents,
or the simple currents form an Abelian subcategory with
trivial F symbols and braiding. In these cases, the relative
anomalies always vanish, provided the symmetry does not act
as a nontrivial outer automorphism. We tabulate these theories
below in Table II.

F. Lieb-Schultz-Mattis anomaly

We now apply the anomaly formula to translation-invariant
1D spin chains which satisfy Lieb-Schultz-Mattis-type (LSM)
theorems [72]. It has been understood now that the LSM theo-
rems follow from mixed anomalies between lattice translation
and internal symmetry groups [73–76].

Consider an internal symmetry group G. Each site of the
spin chain transforms as a projective representation of G,
labeled by a class ν in H2[G, U(1)]. The spin chain also has
translation symmetry Z generated by a unit translation Tx. The
LSM anomaly can be understood by treating the translation Z
as an internal symmetry. Intuitively, inserting a unit translation
flux is the same as increasing the number of sites by one. Thus
the anomaly implies that a unit translation flux transforms
as the [ν] projective representation under G. Technically, the
2-cocycle [ν] can be extracted from the anomaly 3-cocycle
with the help of slant product:

[ν] = [
iTxω

]∣∣
G, (64)

where |G means restriction to G.
Suppose that the CFT is diagonal and symmetries do not

permute primaries (i.e ρ = 1). Using the definition of slant
product one finds

ν(g,h) � Mv (Tx ),w (g,h)Mv (h),b (g,Tx ). (65)
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Here � means equivalence as cohomology classes, and
b(h,k) = w(h,k) × w(k,h). One can show that b(·,Tx ) de-
fines a homomorphism from G to A.

Let us first consider the case where G is a continuous,
connected group, e.g., G = PSU(N ). In this case, b is always
trivial, so only the first factor Mv (Tx ),w (g,h) contributes. Ob-
serve that the relation now says v(Tx ) transforms under G
according to the projective class [ν], which agrees with the
heuristic argument since the Verlinde line corresponding to
v(Tx ) generates the translation symmetry.

Suppose G = PSU(N ) and since H2[PSU(N ), U(1)] =
ZN , we consider each site transforming as the mth class in ZN

(e.g.„ the symmetric rank-m tensor representation). The chiral
algebra of the CFT must contain an su(N ) Kac-Moody alge-
bra, so it is natural to consider SU(N )k CFT with Inn(V ) =
PSU(N ). We have found that the Abelian anyons in the chiral
MTC form a ZN group, whose jth element transforms as the
rank-k j tensor. The anomaly matching condition then requires
that there exists v(Tx ) = j such that

k j ≡ m (mod N ). (66)

The equation is solvable if and only if (k,N )|m. For example,
there are always solutions k = 1 or k = m. In fact, it was
known that SU(N )k is realized in a generalized Heisenberg
chain where each site transforms as the symmetric rank-k
tensor representation [77–81]. When m 
= 0, the “minimal”
theory is always k = 1, the SU(N )1 CFT, and v(Tx ) = [m].
Our results agree with those in Ref. [82], which were obtained
using different methods.

Essentially the same LSM anomaly exists if PSU(N ) is
broken down to the ZN × ZN subgroup. Denote elements
of the symmetry group additively as ZN × ZN × Z by a =
(a1, a2, a3) where a, b ∈ {0, 1, . . . ,N − 1} and a3 ∈ Z. The
anomaly 3-cocycle takes the following form:

ω(a,b, c) = e
2π ip
N a1b2c3 . (67)

Here, p ∈ Z/NZ.
Let us work this out explicitly for SU(N )k CFTs, whose

MTC has a Z(k(N−1)/2)
N Abelian subcategory. For simplicity,

we assume N is odd, so the F symbols are all 1. A sufficient
condition for anomaly matching is

kv(a)w(b, c) ≡ pa1b2c3 (mod N ). (68)

Set v(a) = xa1,w(b, c) = b2c3, then kx = pmod N , which
is solvable as long as (k,N )|p. From the projective repre-
sentation carried by the (0, 0, . . . , k), we can see that this
theory is the one obtained from breaking PSU(N ) down to
ZN × ZN . Essentially the same is true for even N . Notice that
all results so far stay formally the same even if the translation
symmetry group Z is further broken down to ZN . This is an
example of the type-III cocycle discussed in Sec. V C. We
remark that the cohomology class is invariant under arbitrary
permutations of the three ZN subgroups. For example, we may
set v(a) = a2,w(b, c) = b1c3, and the anomaly condition is
satisfied as well.

SU(N )1 can be viewed as a Luttinger liquid with (N − 1)
components, thus admitting marginal deformations by tuning
Luttinger parameters. We are not aware of any RCFTs with
c < N − 1 that can saturate this anomaly. It was recently

conjectured that any CFTs with the ZN × ZN LSM anomaly
must have a minimal central charge N − 1 [4,83]. This is
obviously true for the PSU(N ) case, as the chiral algebra must
contain a su(n) Kac-Moody algebra with a minimal central
charge N − 1, but it is much less obvious that the lower bound
still holds for G = ZN × ZN .

This analysis can be easily generalized to other Lie groups.
Suppose G = G/Z (G ) where G is a simple Lie group. Since
the CFT should have G symmetry, Gk are the most natural
candidates. Clearly G must be identified as the diagonal
subgroup of Inn(Gk ). Since the translation commutes with
G, it must be realized as a central symmetry, generated by
an invertible Verlinde line v(Tx ) in A � Z (G ). In fact, in
this case the relative anomaly becomes absolute (the “refer-
ence” theory is the one with trivial translation action). The
LSM anomaly requires that v(Tx ) carries the same projective
representation as the site Hilbert space, which can be easily
checked using the results in Sec. V E. In particular, according
to Table II there are two families of groups, G = SO(2n + 1)
or PSp(2n) ≡ USp(4n)/Z2, whose relative anomalies vanish
regardless of the value of k. Both families allow Z2-classified
projective representations [e.g.„ 2n-dimensional spinor repre-
sentations for Spin(2n + 1), and 4n-dimensional fundamental
representations for USp(4n)], and therefore the corresponding
spin chain can not have Gk as its low-energy theory without
breaking the symmetry, as observed in Ref. [84].

VI. DISCUSSIONS

In this paper, we have extensively analyzed symmetry
actions on local operators in a (1 + 1)d CFT. This is not
the entire story for symmetry-enriched CFTs, though, as
nonlocal operators, such as symmetry defect operators, are
also important. In fact, the ’t Hooft anomaly itself is a fun-
damental property of symmetry defect operators. In Ref. [85],
it was shown that for certain symmetry-enriched CFTs, given
the symmetry actions on local operators there are additional
phases distinguished by charges carried by symmetry defects,
which can lead to robust edge modes. Roughly speaking,
one may stack (1 + 1)d gapped SPT states onto the CFT
to “toggle” between these phases. Whether stacking an SPT
state leads to a distinct phase or not depends strongly on the
symmetry property of topological defect operators. We will
investigate these issues in future work.

In this work, we exclusively considered unitary symme-
tries. It is not clear whether our approach can be generalized
to antiunitary symmetry, as the “strip” picture naively breaks
time-reversal symmetry. Developing the theory of antiunitary
symmetry-enriched CFTs is an important direction for future
research. Another limitation of the work is that our results
only apply to bosonic systems. The classification of (2 + 1)d
fermionic SPT phases has been established recently [86,87].
On the CFT side, it is important to extend the results to
fermionic CFTs.

Recently noninvertible anomalies have also been studied
in (1 + 1)d CFTs [46–48,88–91]. As a special case, any CFT
with a global unitary symmetry G, anomalous or not, can be
coupled to a (2 + 1)d G gauge theory as an edge CFT, in
which case the operator content is very different from a true
(1 + 1)d theory. Many results in this work can be effortlessly
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translated to this context. For example, it easily follows from
the discussions in Sec. V B that edge CFTs of any twisted
Dijkgraaf-Witten gauge theory must have c � 1 [90] if the
gauge symmetry is not broken on the edge.
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APPENDIX A: REVIEW OF UNITARY MTCs

The topologically nontrivial quasiparticles of a (2 + 1)D
topologically ordered state are equivalently referred to as
anyons, topological charges, and quasiparticles. In the cat-
egory theory terminology, they correspond to isomorphism
classes of simple objects in a unitary MTC (UMTC).

A UMTC C contains splitting spaces V ab
c , and their dual

fusion spaces, V c
ab, where a, b, c ∈ C are the anyons. These

spaces have dimension dim V ab
c = dim V c

ab = Nc
ab, where Nc

ab
are referred to as the fusion rules. They are depicted graphi-
cally as

(dc/dadb)1/4
c

ba

μ = 〈a, b; c, μ| ∈ V c
ab, (A1)

(dc/dadb)1/4

c

ba

μ = |a, b; c, μ〉 ∈ V ab
c , (A2)

where μ = 1, . . . ,Nc
ab, da is the quantum dimension of a, and

the factors ( dc
dadb

)
1/4

are a normalization convention for the
diagrams.

We denote ā as the topological charge conjugate of a, for
which N1

aā = 1, i.e.,

a × ā = 1 + · · · (A3)

Here, 1 refers to the identity particle, i.e., the vacuum topolog-
ical sector, which physically describes all local, topologically
trivial excitations.

The F symbols are defined as the following basis transfor-
mation between the splitting spaces of four anyons:

a b c

e

d

α

β
=

∑
f ,μ,ν

[
Fabc
d

]
(e,α,β )( f ,μ,ν )

a b c

f

d

μ

ν

(A4)

To describe topological phases, these are required to be uni-
tary transformations.

The R symbols define the braiding properties of the anyons,
and are defined via the following diagram:

c

ba

μ =
∑

ν

[
Rab
c

]
μν

c

ba

ν (A5)

Under a basis transformation, �ab
c : V ab

c → V ab
c , the F and

R symbols change:

Fabc
d → F̃ abc

d = �ab
e �ec

d Fabc
d

[
�bc

f

]†[
�
a f
d

]†
,

Rab
c → R̃ab

c = �ba
c Rab

c

[
�ab
c

]†
. (A6)

These basis transformations are referred to as vertex ba-
sis gauge transformations. Physical quantities correspond to
gauge-invariant combinations of the data.

The topological twist θa = e2π iha , with ha the topological
spin, is defined via the diagram:

θa = θā =
∑
c,μ

dc
da

[
Raa
c

]
μμ

= 1

da a
(A7)

Finally, the modular, or topological, S matrix, is defined as

Sab = D−1
∑
c

Nc
āb

θc

θaθb
dc = 1

D a b , (A8)

where D = √∑
a d

2
a .

A quantity that we make extensive use of is the double
braid, which is a phase if either a or b is an Abelian anyon:

a b

= Mab

ba

(A9)

APPENDIX B: GLOBAL SYMMETRY IN A UMTC

1. Topological symmetry and braided autoequivalence

An important property of a UMTC C is the group of “topo-
logical symmetries,” which are related to “braided autoequiv-
alences” in the mathematical literature. They are associated
with the discrete symmetries of the emergent TQFT described
by C, irrespective of any microscopic global symmetries of
a quantum system in which the TQFT emerges as the long
wavelength description.

The topological symmetries consist of the invertible maps

ϕ : C → C. (B1)

The different ϕ, modulo equivalences known as natural iso-
morphisms, form a group, which we denote as Aut(C) [19].

The maps ϕ may permute the topological charges:

ϕ(a) = a′ ∈ C, (B2)

subject to the constraint that

Nc′
a′b′ = Nc

ab, Sa′b′ = Sab, θa′ = θa. (B3)

The maps ϕ have a corresponding action on the F and R
symbols of the theory, as well as on the fusion and splitting
spaces, which we discuss in the subsequent section.
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2. Global symmetry

Let us now suppose that we are interested in a system
with a global symmetry group G. For example, we may be
interested in a given microscopic Hamiltonian that has a
global symmetry group G, whose ground state preserves G,
and whose anyonic excitations are algebraically described by
C. The global symmetry acts on the topological quasiparticles
and the topological state space through the action of a group
homomorphism

[ρ] : G → Aut(C). (B4)

We use the notation [ρg] ∈ Aut(C) for a specific element g ∈
G. The square brackets indicate the equivalence class of sym-
metry maps related by natural isomorphisms (see Ref. [19]
for more details). ρg is thus a representative map of the
equivalence class [ρg]. We use the notation

ga ≡ ρg(a). (B5)

The map ρg has an action on the fusion/splitting spaces:

ρg : V c
ab → V

gc
ga gb. (B6)

In the following, we consider theories with one-dimensional
fusion/splitting spaces (i.e., Nc

ab = 0, 1), so we write this
explicitly as

ρg|a, b; c〉 = Ug( ga, gb; gc)| ga, gb; gc〉, (B7)

where Ug( ga, gb; gc) is a phase factor (in general it is an
Nc
ab × Nc

ab matrix).
The F and R symbols also transform under the map ρg.

Invariance under the map requires[
Fabc
d

]
e f

= Ug( ga, gb; ge)Ug( ge, gc; gd )
[
F

ga gb gc
gd

]
ge g f

×U−1
g ( gb, gc; g f )U−1

g ( ga, g f ; gd ).

Rab
c = Ug( gb, ga; gc)R

ga gb
gc Ug( ga, gb; gc)−1, (B8)

where we have suppressed the additional indices that appear
when Nc

ab > 1.
Now let us consider the action of a symmetry g ∈ G

on the full many-body state of the system. Let Rg be the
representation of g acting on the full Hilbert space of the
theory. We consider a state |{aj}nj=1〉 in the full Hilbert space
of the system, which consists of n anyons, a1, · · · an, at well-
separated locations, which collectively fuse to the identity
topological sector. Since the ground state is G-symmetric, we
expect that the symmetry action Rg on this state possesses a
property that we refer to as symmetry localization. This is the
property that the symmetry action Rg decomposes as

Rg|{a j}〉 ≈
n∏
j=1

U ( j)
g ρg|{a j}〉. (B9)

Here, U ( j)
g are unitary operators that have support in a region

(of length scale set by the correlation length) localized to
the anyon a j . They satisfy the group multiplication up to
projective phases:

gU ( j)
h U ( j)

g |{a j}〉 = ηa j (g,h)U ( j)
gh |{a j}〉. (B10)

Here, gO = RgOR−1
g .

The map ρg only depends on the global topological sector
of the system—that is, on the precise fusion tree that defines
the topological state—and not on any other details of the state,
in contrast to the local operators U ( j)

g . The ≈ means that the
equation is true up to corrections that are exponentially small
in the size of U ( j) and the distance between the anyons, in
units of the correlation length.

To write down the explicit form of ρg, let us specify a par-
ticular fusion tree. Suppose the intermediate fusion channels
are c1, c2, . . . , cn−1 such that

Nc1
a1,a2

> 0, Nc2
c1,a3

> 0, . . . , N0
cn−1,an > 0. (B11)

We now include the c j’s in the label of the state, so write
|{aj}; {c j}〉. Now ρg acting on topological state space is
given by

ρg|{a j}; {c j}〉 = Ug(ga1,
ga2; gc1)Ug(gc1,

ga3; gc2)

· · ·Ug(gcn−1,
gan; 0)|{ga j}; {gc j}〉. (B12)

Starting from Eq. (B9), one finds that U and η further
satisfy the following two consistency conditions [19]:

ηρ−1
g (a)(h,k)ηa(g,hk) = ηa(gh,k)ηa(g,h) (B13)

and

ηa(g,h)ηb(g,h)

ηc(g,h)
= Ugh(a, b; c)

Ug(a, b; c)Uh(ga, gb; gc)
(B14)

It was shown in Ref. [19] that U and η satisfying Eqs. (B8),
(B13), and (B14) together with ρ completely determine the
symmetry action on anyons.

APPENDIX C: DEFININGU AND η SYMBOLS IN A
CHIRAL CFT

We now explain how to define U and η symbols in terms
of the symmetry action on local operators in a chiral CFT,
generalizing the approach of Ref. [92]. In fact, our discussions
can be adopted with minor modifications to anyons in the (2 +
1)d bulk. More specifically, the goal is to justify Eqs. (B8) and
(B9), from which Eqs. (B13) and (B14) follow.

For convenience, put the theory on an infinite line
(−∞,∞). At the operator level, a chiral primary a is the end
point of a topological defect line Va (in fact, a Verlinde line).
We may also think of Va as a string operator which commutes
with the Hamiltonian except at the end points. Define Va(x) to
be the string operator running from −∞ to x. Define∣∣ax1 , bx2 , · · ·

〉 = Va(x1)Vb(x2) · · · |0〉. (C1)

It is important that we fix the operators Va(x) (or the anyonic
states |ax1 , bx2 , . . . 〉).

To create and manipulate anyonic states, we define a
splitting operator S(a, b; c) that transforms the state |cx1〉 to
|ax1 , bx2〉:

S(a, b; c)
∣∣cx1

〉 ∝ ∣∣ax1 , bx2

〉
. (C2)

We assume that this condition completely fixes S(a, b; c) up
to a phase factor. In an MTC, such a splitting operator is
abstracted as a vector in the splitting space V ab

c . The fact that
Eq. (C2) determines S up to a phase factor means that V ab

c is
one-dimensional, or Nc

ab = 1.
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We also need an operator that moves an anyon a from x1

to x2:

Ma
x2,x1

∣∣ax1

〉 ∝ ∣∣ax2

〉
. (C3)

With the splitting and moving operators, one can in prin-
ciple construct any physical states. In Ref. [92], microscopic
definitions of F and R symbols using the S and M operators
are given.

Let Rg be the unitary operator that implements g symmetry
on the Hilbert space, and ρg be the corresponding outer
automorphism of the chiral algebra. As Va can be defined in
terms of local operators, we must have

RgVa(x)R−1
g = Ua

g (x)Vga(x), (C4)

where Ua
g (x) is a local unitary operator at x. Eq. (C4) can be

replaced by

Rg|ax〉 = Ua
g (x)|gax〉. (C5)

The phase of Ua
g (x) is ambiguous and may be x-dependent as

well, but should not depend on other topological charges in
the systems as long as they are sufficiently far away.

Under the symmetry Rg, we must have

RgS(a, b; c)R−1
g = Ug(ga, gb; gc)Ua

g (x1)Ub
g (x2)

× S(ga, gb; gc)Uc
g (x1)†. (C6)

For the moving operator, under the symmetry one finds

RgM
a
x2,x1

R−1
g = Ua

g (x2)M
ga
x2x1

Ua
g (x1)†. (C7)

Naively one would include a phase factor for the “string” that
transports a from x to x′. However the “gauge” is essentially
fixed in Eq. (C5).

Having setting up the microscopic definitions of symmetry
action, one can now directly prove Eq. (B8) using the defini-
tions of F and R in Ref. [92].

Next, we show that the symmetry localization ansatz
Eq. (B9) indeed holds. Consider the state |{a j}; {c j}〉 with n
anyons a1, a2, . . . , an fusing to the identity, with intermediate
fusion channels c1, c2, . . . , cn−1. Suppose a j is located at
x j , with x1 < x2 < · · · < xn. Using the splitting and moving
operators, the state can be constructed explicitly as

|{a j}; {c j}〉
= S(a1, a2; c1)Ma3

x3,x2
S(c1, a3; c2)

· · ·Man−1
xn−1,x2

S(cn−2, an−1; cn−1)Man
xn,x2

S(cn−1, an; 0)|0〉
(C8)

Applying Rg, one finds

Rg|{a j}; {c j}〉 =
n∏
j=1

U
aj
g (x j )ρg|{a j}; {c j}〉, (C9)

with ρg given exactly by Eq. (B12), confirming the decompo-
sition in Eq. (B9).

In the following, we compute η and U using these defini-
tions in the chiral U(1)N CFT. For simplicity, assume that N
is even so the theory is bosonic. The Lagrangian reads

L = N

4π
∂tφ∂xφ − v

4π
(∂xφ)2. (C10)

φ satisfies the following commutation relation:

[φ(x), φ(y)] = iπ

N
sgn(y − x). (C11)

Local operators are generated by e±iNφ and derivatives of φ,
which form the U(1)N Kac-Moody algebra.

Chiral primaries/anyons are labeled by l = 0, 1, . . . ,N −
1. We write [l] to mean l mod N . Define chiral vertex
operators

Vl (x) = eilφ(x). (C12)

Following Ref. [92], define the splitting operator

S(l,m) = eim
∫ x2
x1

dy ∂yφei(l+m−[l+m])φ(x1 ). (C13)

Ref. [92] used this splitting operator to compute F and R
symbols of the U(1)N MTC. We work in the same gauge as
Ref. [92].

We are concerned with the charge-conjugation symmetry:

C : φ → −φ, (C14)

which is the only nontrivial outer automorphism of the chiral
algebra except for N = 2 where the chiral algebra becomes
SU(2)1. For N > 2, we have Aut(U(1)N ) = O(2).

It is easy to find that for l > 0,

C|lx〉 = e−iNφ(x)|[−l]x〉. (C15)

This is because [−l] = N − l . Thus Ul
C = e−iNφ for 0 < l <

N . We then immediately find

ηl (C,C) = 1. (C16)

Next we compute UC (l,m; [l + m]). Suppose l,m > 0, we
have

CS(l,m)C−1 = e−imφ(x2 )ei([l+m]−l )φ(x1 ). (C17)

We also need to compute

S′(l,m) = Ul
C (x1)Um

C (x2)S([−l], [−m])U [l+m]
C (x1)−1.

(C18)
Let us first consider l + m 
= N :

S′(l,m) = e−iNφ(x1 )e−imφ(x2 )ei(2N−l−[−l−m])φ(x1 )

= (−1)me−imφ(x2 )ei(N−l−[−l−m])φ(x1 ). (C19)

We remark that

N − l − [−l − m] = [l + m] − l. (C20)

Thus we obtain

UC (l,m) = (−1)m. (C21)

Next we consider l + m = N

CS(l,N − l )C−1 = e−i(N−l )φ(x2 )e−ilφ(x1 ) (C22)

and

S′(l,N − l ) = e−iNφ(x1 )e−i(N−l )φ(x2 )ei(N−l )φ(x1 )

= (−1)l e−i(N−l )φ(x2 )e−ilφ(x1 ). (C23)

Therefore UC (l,N − l ) = (−1)l , essentially the same answer
as in Eq. (C21). We remark that Ref. [92] performed an
additional gauge transformation to bring the F symbols to a
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standard form from the literature (e.g., Ref. [60]). With that
taken into account, we finally have

UC (l,m) = (−1)l ,m > 0. (C24)

and obviously UC (l, 0) = 1.
As an example, when N = 2, the only nontrivial chiral

primary is l = 1, eiφ , corresponding to the semion excitation
in the bulk. We find that

UC ([1], [1]) = −1, η[1](C,C) = 1. (C25)

This is gauge-equivalent to

UC ([1], [1]) = 1, η[1](C,C) = −1. (C26)

In other words, the semion has a half Z2 charge under C [19].
This is consistent with the orbifold being U(1)8.

APPENDIX D: ALGEBRAIC DESCRIPTION OF GAPPED
BOUNDARIES

We review the algebraic theory of gapped boundaries of a
two-dimensional topological phase [29–31,93,94]. It can be
formulated in three different but equivalent ways.

(1) In the first approach, a gapped boundary corresponds
to a Lagrangian algebra of the bulk MTC. Physically the La-
grangian algebra indicates which bulk anyons are condensed
on the boundary [27].

We can also study excitations on the boundary. These are
of course confined, and since the boundary is one-dimensional
it does not make sense to braid such confined excitations.
Thus only their fusion properties are of interest, and the
(equivalence classes of) boundary excitations form a unitary
fusion category (UFC), denoted by C. The key result in the
algebraic theory of gapped boundary is that the bulk is the
center of the boundary: the bulk MTC is the Drinfeld center,
more commonly known as quantum double to physicists, of
the boundary UFC, denoted by Z (C). Physically the Drinfeld
center is realized by the generalized string-net models [95].

(2) In the second approach, we use the Drinfeld center as
the starting point. A gapped boundary then corresponds to a
module category over the input UFC C [31,96,97]. We briefly
review the notion of module category below. In a string-net
construction, the module category defines string types on the
boundary (which can be different from the bulk string types),
as well as how bulk strings terminate on the boundary.

(3) Also starting from a Drinfeld center, a gapped boundary
corresponds to a Frobenius algebra A in the UFC C [32].

Let us focus on the case relevant for our purpose, namely
the input UFC is by itself a MTC B. The Drinfeld center
is particularly simple: Z (B) = B � B. Let us see how to
describe this gapped boundary in the formalisms introduced
above. (1) All “diagonal” anyons of the form (a, a) for a ∈ B
are condensed on the boundary. So the Lagrangian algebra is
L = ∑

a∈B(a, a). (2) The module category is still isomorphic
(set-wise) to B, with the module action obviously given by the
fusion in B. (3) The algebra in the UFC is A = 1, the identity
object.

We can generalize the algebraic descriptions to “nondiag-
onal” condensations as well. For ϕ ∈ Aut(B), there is a La-
grangian algebra L = ∑

a∈B(a, ϕ(a)). However, the module
and algebra have to be determined case by case.

1. Definition of condensable algebra

Here we review the algebraic description of gapped bound-
ary as a Lagrangian algebra object in the UMTC, following
Ref. [34]. The key is to include the local process of an-
nihilating a condensable anyon a on the boundary. Similar
to fusion/splitting spaces, we associate a vector space for
local operators that annihilate a, denoted as V a, with basis
vector |a; μ〉. We refer to V a as the boundary condensation
space. The dimension of this vector space is exactly the
“multiplicity” na of a in the Lagrangian algebra. Obviously
we must have n1 = 1.

Diagrammatically, the condensation process is represented
by an anyon line terminating on a wall representing the bound-
ary. We also attach a label at the termination point which
represents the state of the boundary condensation space. When
na = 1 it can be suppressed.

An important property of the algebra is the following “M
symbol”:

μ ν

ba =
∑
c,λ

[
Mab

c

]μν

λ

λ

c

ba

(D1)

Notice one important difference between the M moves and
the F and R moves of an anyon model: F and R symbols
always represent unitary transformations between different
basis states of the same state space. However, here the dimen-
sion nanb of the left figure does not have be equal to that of
the right, which is

∑
c N

c
abnc. It is shown in Ref. [34] that a

condensable algebra must satisfy

nanb �
∑
c

Nc
abnc. (D2)

Next we impose consistency conditions on the M symbols.
We can apply M moves to three anyon lines terminating a, b, c
on the boundary, but in different orders, which leads to a
variation of the pentagon equation:∑

e,σ

[
Mab

e

]μν

σ

[
Mec

d

]σλ

δ

[
Fabc
d

]
e f

=
∑
ψ

[
Maf

d

]μψ

δ

[
Mbc

f

]νλ

ψ
(D3)

In writing down this equation, we assume that the anyon
model has no fusion multiplicities, but the generalization is
obvious.

The M symbols also have gauge degrees of freedom,
originating from the basis transformation of the boundary
condensation space V a: |̃a; μ〉 = �a

μν |a; ν〉, where �a
μν is a

unitary transformation. The M symbol becomes
[
M̃ab

c

]μν

λ
=

∑
μ′,ν ′,λ′

�a
μμ′�

b
νν ′

[
Mab

c

]μ′ν ′

λ′ [�c]−1
λ′λ. (D4)

M symbols are affected by the gauge transformation of bulk
fusion space as well.

It is convenient to fix the gauge for the following symbols:[
M1a

a

]μ

ν
= [

Ma1
a

]μ

ν
= δμν. (D5)

Braiding puts further constraints on the M symbols. Since
the anyons condense on the boundary, it should not matter
in which order the anyon lines terminate on the boundary.
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Diagrammatically, we have

a b

ν μ

=

a b

μ ν

(D6)

which leads to the following:[
Mba

c

]νμ

λ
Rab
c = [

Mab
c

]μν

λ
. (D7)

There is a similar condition for the inverse braiding.
It was shown in Ref. [34] that these conditions are equiv-

alent to the mathematical definition of a commutative, con-
nected and separable Frobenius algebra A = ⊕

a naa in a
braided tensor category, with the algebra morphism A × A →
A precisely given by the M symbol.

2. Symmetry-preserving condensation

We now give a precise definition of anyon condensation
that preserves the global symmetry [17]. Denote by L the
Lagrangian algebra (the discussion applies to a general com-
mutative algebra as well). In the following, a, b, c, . . . denote
anyons in the condensate, unless otherwise specified. We
assume na = 1 whenever a belongs to the condensate, so we
omit the index for the boundary condensation space.

We draw diagrams where g defect lines terminate on the
boundary. Strictly speaking, the defect line should continue
into an SPT phase (unless the ’t Hooft anomaly described
in Sec. II B vanishes) and in principle should be described
by a theory of condensation in a G-crossed braided category.
However, we leave this for future work and proceed more
heuristically. Since the boundary is fully gapped and sym-
metric, we can posit that for each g there exists at least one
g-defect that can be absorbed without creating any additional
excitations on the boundary. Thus the M move is also defined
for these defects:

yhxg =
∑
zgh

[
M

xgyh
zgh

]
zgh

yhxg

(D8)

We introduce the following move:

a xg

= χa(g)
a xg

(D9)

Here, χa(g) is a phase factor. Physically, χa(g) encodes the
g action on the condensed anyon. When there is more than
one condensation channel, χ should be replaced by a unitary
transformation acting on the condensation space.

If we slide a vertex which splits a gh defect to g and h
defects over a boundary vertex, we find

ηa(g,h) = χa(gh)

χḡa(h)χa(g)
. (D10)

We can also consider fusion of condensable anyons on a
boundary. For a, b, c in the condensate, sliding a g line over

the diagrammatic equation that defines M symbol, one finds

M
ḡa,ḡb
ḡc Ug(a, b; c) = Mab

c

χa(g)χb(g)

χc(g)
. (D11)

We believe that these two conditions Eqs. (D10) and (D11)
are sufficient and necessary for the condensation to preserve
symmetry. Mathematically, χa(g) defines an algebra isomor-
phism for each g. The consistency conditions guarantee that
one has a G-equivariant algebra structure on L [17].

We first consider the case when ρ ≡ 1, then the equations
simplify:

ηa(g,h) = χa(gh)

χa(h)χa(g)
,

χa(g)χb(g) = χc(g), for Nc
ab > 0. (D12)

It then follows that one can write χa(g) = Ma,t(g) for t(g) ∈
AC . t is not uniquely determined, as one can freely change t
by an Abelian anyon in the condensate without affecting χa.
Therefore, t belongs to A′ = AC/AL where AL is the group
of condensed Abelian anyons. Since ηa(g,h) = Ma,w(g,h)

with w(g,h) ∈ A, for our purpose we can project w to A′ as
well, and the projection will be denoted by w′. The condition
is thatw′ is a trivial 2-cocycle in H2[G,A′], in agreement with
the result of Ref. [17].

Back to the general case, notice that these two equations
do not fix χ ’s uniquely: there is a freedom to change χ by
χa(g) → χa(g)φa(g) where

φa(g)φb(g) = φc(g), φḡa(h)φa(g) = φa(gh). (D13)

Again we can write φx(g) = Mx,t(g), and the two equations
reduce to t(g)gt(h) = t(gh). Notice that t(g) is defined up
to Abelian anyons in the Lagrangian algebra. Therefore, the
solutions are classified by H1

ρ[G,A′].
For a doubled SET phase C = B � B, and L =∑
a∈B(a, a), we have AC = A × A where A is the

group of Abelian anyons in B, and AL = A. Thus
A′ = A × A/A = A, as expected.

APPENDIX E: SYMMETRY-ENRICHED STRING-NET
MODELS

We review the generalized string-net models, which can
realize all (nonanomalous) symmetry-enriched quantum dou-
ble topological orders [98,99]. The input is a G-graded fusion
category CG:

CG =
⊕
g∈G

Cg. (E1)

Denote the simple objects by ag, bh, . . . etc. The G-grading
implies that

ag × bh =
∑

cgh∈Cgh

N
cgh
agbh

cgh. (E2)

Let us now specify the Hilbert space of the model. Each
edge of the graph is associated with a Hilbert space whose
orthonormal basis is labeled by simple objects in CG. To
account for the symmetry, we add a spin degree of freedom in
the center of each plaquette, whose basis states |g〉 are labeled
by the elements g of the symmetry group G. For each edge,
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we can then associate a group element ḡ1g2 (here ḡ denotes
the inverse of group element g). The labels on the edge must
belong to the Cḡ1g2 sector, otherwise they induce an energy
penalty:

ag1g2

g1 g2
. (E3)

Three strings meet at a vertex. Whether three string types a,
b and c are allowed to meet at a vertex or not is determined by
the fusion rule Nab

c , which is a non-negative integer. If Nab
c >

0, a, b and c can meet at a vertex without costing an energy

penalty:

a b

c

. (E4)

When Nab
c > 1, one has to include additional local degrees of

freedom at each vertex. We assume Nab
c only takes values in

{0, 1} to simplify the discussions.
The ground-state wave function is a superposition of

string-net states (i.e., string states on the lattice that satisfy
the branching rules). A defining feature of the string-net wave
function is that the amplitudes for different string-net states
satisfy a set of local relations. Most importantly:

Ψ

ag bh

egh

ck

dghk

=
fhk∈Chk

[F agbhck
dghk

]eghfhk
Ψ

ag bh

fhk

ck

dghk

(E5)

Here, F is the F symbol of the input UFC. We have left the
group labels in plaquettes implicit in the picture, as the move
only depends on the group labels on edges.

Following Refs. [98,99] one can write down a commuting
projector Hamiltonian for the ground-state wave function.
There are both edge and vertex projectors to enforce the G-
grading and fusion rules, accompanied by terms that fluctuate
both the spin on the plaquette together with the surrounding
string-net configuration. The resulting topological order is the
quantum double of the identity component C1, and the full G-
crossed braided fusion category describing the emergent SET
order can be extracted from the ground-state wave function
following Ref. [100].

APPENDIX F: STRING-NET MODELS WITH GAPPED
BOUNDARY

In this Appendix, we consider generalized string-net mod-
els with fully gapped boundary. We assume the boundary is
“smooth,” i.e., no dangling edges, and discuss the case without
G grading first. For now we denote the input UFC just by
C. It is important to realize that boundary edges can have
a different set of labels from those in the bulk, as long as
one consistently defines how the bulk strings terminate on the
boundary. More precisely, one has to specify the following
fusion rules between bulk and boundary edges:

a × α =
∑
β∈M

Ñβ
a,αβ. (F1)

Here, Greek letters α, β, . . . denote labels allowed on bound-
ary edges. They are said to form a (left) module category
M over the UFC C [31], with the module action given by
Eq. (F1).

In order to consistently define the wavefunction, the F
move needs to be extended to include boundary edges. A
boundary F move is depicted in Fig. 4. We denote the trans-
formation by m. The “pentagon” equation now reads∑

f

(Fabc
d )e f

(
ma f α

β

)
dγ

(
mbcα

γ

)
f δ = (

mecα
β

)
dλ

(
mabλ

β

)
eγ . (F2)

The m symbols are defined up to gauge transformations:

(
mabα

β

)
cγ → vbα

γ v
aγ
β

vcα
β

(
mabα

β

)
cγ . (F3)

We also assume that the m symbols are normalized:(
m1bα

β

)
b,β = 1,

(
ma1α

β

)
a,α = 1. (F4)

These definitions are completely parallel to the usual F sym-
bols.

Technically, what we have defined is a left module cate-
gory. Right module categories can be defined analogously.

For example, we may take the labels of M to be the same
as those of C, and the module action to be given by fusion
rules in C, m is then equal to F and the pentagon equation
is automatically satisfied. This module defines the canonical
“smooth” boundary for a string-net model.

a b

β

c

α

=
γ∈M

[mabα
β ]cγ

a b

β

γ

α

FIG. 4. The m move in a left C-module M. The dashed lines
represent boundary edges.
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Now we turn to the symmetry-enriched models. Mathe-
matically, this question was addressed in Ref. [101]. We will
however proceed with a more heuristic physical construction.
An immediate problem to resolve is how to make the G-
grading compatible with a gapped boundary. Naively, one
may imagine adding additional G spins directly outside the
boundary, but this construction of this sort either lead to exten-
sively degenerate boundary states or spontaneous symmetry
breaking [3]. Instead, we do not assign any G-graded structure
to the module category directly. Thus the module action reads

ag × α =
∑
β∈M

Ñβ
ag,αβ. (F5)

This means that M is in fact a module category over C0, the
identity component, which is then “upgraded” to a module
over the whole CG. Namely, both the module action and the m
moves must be extended to the whole G-graded category. If
this is not possible, the gapped boundary to vacuum labeled
by M breaks the symmetry. In some cases the symmetry can
be restored by considering M as a gapped boundary to an
appropriate SPT phase that matches the anomaly introduced
in Sec. II B. Physically, one may picture the strings with
nonzero g as representing domain wall configurations, and a
symmetric gapped boundary should allow domain walls and
certain symmetry defects to “condense.”

While we focus on the construction based on module cate-
gory, we remark that the dual algebra description allows one to
calculate these symmetry defects that condense at a symmetric
boundary in a straightforward manner. This phenomena was
noted in an example in Ref. [102]. We plan to expound on this
topic in future work.

Gapped boundaries in symmetry-enriched doubled
topological phases

We consider an MTC B, and its quantum double Z (B) =
B � B. We assume that the symmetry action is “diagonal”, in
other words the SET order in B is the conjugate of that in B. It
is then sufficient to specify the symmetry-action data ρ,U, η

in B. Our goal is to compute ω in terms of ρ,U, η and the
charges carried by the condensed anyons, parametrized by v.

The first task is to construct a suitable G-graded extension
BG of the fusion category B. We postulate that Bg are all
“copies” of B. In other words, we can write

Bg = {ag|a ∈ B}. (F6)

We consider the following fusion rules

ag × bh =
∑
c∈B

Nc
a,gb cgh. (F7)

Such a fusion rule is motivated by the semidirect product
for group extensions. We further postulate the following F
symbol:[

F
ag,bh,ck
dghk

]
egh, fhk

= [
Fa,gb,ghc
d

]
e,g f

× U−1
g (gb, ghc; g f )ηghc(g,h). (F8)

Using Eqs. (B8), (B13), and (B14), one can prove that the
F symbols indeed satisfy the pentagon equation. It remains to
show that the graded extension specified by Eqs. (F7) and (F8)

indeed gives the doubled SET phase, which we postpone for
now.

Let us study module categories over BG. The fact that
each Bg is a “copy” of B, at least where the fusion rules are
concerned, motivates the following form of module action:

xg × ã =
∑
b∈B0

Nb
x,ga b̃. (F9)

Here we use ˜ to denote boundary labels (since they are the
same set as the bulk ones). The module m symbol is just the
bulk F symbol: [

m
agbh c̃

d̃

]
egh, f̃

= [
F

agbhc0
dgh

]
egh, fh

. (F10)

It is easy to check that the m symbols given above do satisfy
the boundary pentagon equation. Therefore we have at least
constructed one symmetry-preserving module category over
BG, which shows the symmetry-enriched string-net model
does have a symmetric gapped boundary to vacuum.

Next we observe that the module action can be “twisted”
in the following way:

xg × ã =
∑
b∈B0

Nb×v(g)
x,ga b̃. (F11)

Here, v(g) ∈ A. Associativity of the module action requires

v(g) × gv(h) = v(gh). (F12)

Thus v defines a twisted homomorphism from G to A.
To check whether the twisted module action actually

defines a module category, we need to solve for the m
symbols. Consider the boundary pentagon equation for
[v(g)]g, [v(h)]h, [v(k)]k, 0̃. Note that [v(g)]g × 0̃ = 0̃. The
boundary pentagon equation reads

F [v(g)]g,[v(h)]h,[v(k)]k = m
v(gh)gh,v(k)k,0̃

0̃
m

v(g)g,v(h)h,0̃

0̃

m
v(g)g,v(hk)hk,0̃

0̃
mv(h)h,v(k)k,0̃

0̃

. (F13)

It means that F [v(g)]g,[v(h)]h,[v(k)]k must be a cohomologi-
cally trivial 3-cocycle in H3[G, U(1)]. Thus we interpret
F [v(g)]g,[v(h)]h,[v(k)]k as the 3-cocycle that defines the SPT
phase:

F [v(g)]g,[v(h)]h,[v(k)]k = F v(g),gv(h),ghv(k)

·U−1
g (gv(h), ghv(k))ηghv(k)(g,h).

(F14)

Physically, we believe that v(g) describe the charge as-
signment on condensed anyons. Intuitively, the twisted mod-
ule action Eq. (F11) means that when g domain walls end
on the boundary, additional v(g) anyon labels are attached.
This agrees with the physical picture of symmetry defects
dressed by v(g) anyons in order to “pass through” the gapped
boundary described in Sec. II B. In addition, for the special
case where ρ ≡ 1 and U, η all equal to 1, the above formula
Eq. (F14) agrees with Eq. (22). Therefore we identify v(g)
with v(g), and the Eq. (F14) is the formula for relative ’t Hooft
anomaly.

Now we study the SET order that emerges from the gener-
alized string-net construction defined by Eqs. (F7) and (F8).
It can be worked out following the procedure described in
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Ref. [100]. We now sketch the derivation for ρ ≡ 1. The idea
is to study the ground state space of the symmetry-enriched
string-net model on a cylinder, or equivalently an annulus,
with open boundary conditions. Since the string-net model
produces a fixed-point wave function, it is enough to consider
a basis of “minimal” configurations:

ag
bg

ag

c1

c1

,

where the top and bottom edges are identified. These figures
represent minimal string-net states with a g defect line through
the cylinder. Under concatenation these cylinders form the so-
called defect tube (dube) algebra. To identify the superselec-
tion sectors of the emergent symmetry-enriched topological
order, we compute the irreducible central idempotents of
the dube algebra. The states formed by these idempotents
correspond to minimally entangled states with g flux and also
definite topological charge through the cylinder.

A useful observation about the current graded UFC is
that the dube algebras are isomorphic in each g sector. This
implies that each defect sector is a “copy” of the anyons in the
identity sector. Let us consider this identity sector. A subset
of the irreducible central idempotents can be written down
explicitly:

aL =
1
D2

x,y

dxdy

da
(Rxa

y )∗
a1

y1

a1

x1

x1

. (F15)

These idempotents are obtained from the following diagram
[103–105]:

aL =
1
D2

x∈B
dx

a1

x1

, (F16)

where the crossing is resolved using the braiding in the MTC
B. To prove that aL bL = δabaL, one can use the graphical
calculus for braided fusion categories to simplify the dia-
grams. These idempotents can be identified with anyons in
the chiral half of the doubled topological order. Similarly, with
the opposite crossing in Eq. (F16) one defines aR, which is the
antichiral half.

Next we consider the symmetry action on anyons. To this
end, we consider the following sector that represents a g
domain wall:

a1
bg

a1

cg

cg

.

We find that the dube representation of a g symmetry
domain wall Bg

aL is given by

Bg
aL

=
x∈B

dx

D2 a1

xg

. (F17)

The crossing is again resolved using the diagrammatic rules
for braiding in the MTC B, ignoring the g label (i.e., xg is just
treated as x). It then obviously satisfies

Bg
aLaL = aLB

g
aL , (F18)

which again shows that no anyons are permuted.
Furthermore, expanding Bg

aL in the dube basis, a direct
computation yields

Bg
aLB

h
aL = η−1

a (g,h)Bgh
aL . (F19)

This identity shows that aL transforms as a projective repre-
sentation under G, with the factor set given by η−1

a .
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