
SCA: A Secure CNN Accelerator for Both Training
and Inference

Lei Zhao
University of Pittsburgh
Pittsburgh, PA, USA

lez21@pitt.edu

Youtao Zhang
University of Pittsburgh

Pittsburgh, PA, USA
zhangyt@cs.pitt.edu

Jun Yang
University of Pittsburgh

Pittsburgh, PA, USA
juy9@pitt.edu

Abstract—Convolutional neural networks (CNNs), while being
widely deployed to edge devices, face increasingly requirements
for IP protection, i.e., the protection of the models and their
weights. This becomes particularly challenging for those that
demand post-deployment training to enhance inference perfor-
mance. Existing schemes focus mainly on IP protection at the
inference phase, and lack the ability to extend to the training
phase. In this paper, we propose SCA, a secure CNN accelerator
that exploits stochastic computing to achieve IP protection at both
training and inference phases. We propose hybrid stochastic ad-
dition and weight remapping to further optimize space utilization
and design robustness. Our experimental results show that SCA
effectively prevents pirating the CNN IP from the authorized
devices. In addition, it achieves 4.8× and 34.2× speedups and
84.3% and 98.5% energy reductions over a non-secure baseline
and an inference-only secure baseline, respectively.

Index Terms—security, convolutional neural networks, accel-
erator, stochastic computing

I. INTRODUCTION

Convolutional neural networks (CNNs) are widely deployed
to edge devices for inference tasks in computer vision [1],
speech recognition [2] and many other domains. There are
increasingly requirements for IP (intellectual property) pro-
tection on CNNs [3]–[5], i.e., we need to protect the mod-
els and their weights. For example, an object recognition
system deployed in auto-driving cars may carry significant
financial interests. Recent works proposed to integrate device
dependent information as fingerprint in the CNN models,
which prevents them from functioning on pirated devices
[4], [5]). Other protection schemes include watermarking and
encryption based schemes. The former can only verify if a
CNN model is pirated from a particular provider while the
latter tends to introduce significant decryption latency and
energy consumption overheads.

Many CNN models demand post-deployment training, i.e.,
there is a need to train the deployed model to achieve improved
inference performance. It is usually not preferable to send the
edge devices to the manufacturer for further training There are
two reasons. (i) Post-deployment training may take advantage
of end users’ private data, which creates privacy concerns if
sending such data back to the device manufacturer. (ii) It is
often physically difficult to retrieve the devices and send to the
manufacturer. Unfortunately, existing IP protection schemes
focus mainly on the inference phase and lack the ability to

This work is supported by NSF CCF-1910413, NSF CCF-1718080, NSF
CCF-1617071 and NSF CCF-1725657.

extend to the training phase. For example, we need to know
the DRAM error mask in AEP [4] to train a device-dependent
model. While the error mask is known to the server, it is not
visible to the end devices, which prevents training the model
effectively on the edge devices. To summarize, it is a major
challenge to achieve post-deployment IP protection for end
devices that demand both training and inference.

In this paper, we propose SCA, a secure CNN accelerator
that exploits stochastic computing to achieve IP protection
at both training and inference phases. To the best of the
author’s knowledge, SCA is the first work that uses hardware
fingerprints for model protection in both training and inference
phases. We summarize our contributions as follows.

• We propose SCA to exploit the precision difference
between stochastic format and binary format represen-
tations as device dependent fingerprints, and integrate
the fingerprints in the CNN models such that the trained
model functions well only on the target devices.

• We propose to optimize the baseline SCA with weight
remapping and hybrid stochastic addition. Weight remap-
ping periodically uses different offsets in stochastic bit
stream conversion such that it effectively prevents the
model from learning unnecessary data representation fea-
tures to improve the robustness of security in training
phase. Hybrid stochastic addition explores the precision
loss property of MUX based additions to reduce memory
access and computational overheads to meet the tight
budget requirements in edge computing.

• We evaluate the proposed SCA scheme. Our experimental
results show that SCA effectively prevents pirating the
CNN IP from the authorized devices. In addition, it
achieves 4.8× and 34.2× speedups and 84.3% and 98.5%
energy reductions over a non-secure baseline and an
inference-only secure baseline, respectively.

II. BACKGROUND

A. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a stacked
structure of layers. The major computation in a CNN layer
is weighted sum of the product between input and model
weights: bj =

∑
i

ai ·wi,j . The weights (wi,j) are learned from

the training phase and the inputs (ai) are from the previous
layer.

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:31:29 UTC from IEEE Xplore. Restrictions apply.

A

B
C

P(A)=a, P(B)=b, P(C)=c

c=a x b

A

B
C

A

B
C

Z

P(A)=(a+1)/2, P(B)=(b+1)/2, P(C)=(c+1)/2

c=a x b

P(A)=a, P(B)=b, P(C)=c, P(Z)=0.5

c=(a + b)/2

AND

XNOR

MUX

(a)

(b)

(c) (d)

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

2
3

2
2

2
1

2
1

Full

adder

A
B
C Sum

Carry

FA FA

FA

FA

Fig. 1: Stochastic Computing Implementation.

CNN Training is an iterative process in which each iteration
consists of a forward phase and a backward phase. The
forward phase feeds input images sequentially through layers.
The output of previous layer is the input to the next. The
final layer computes a loss (Loss) between its output and
the ground truth of the input. The backward phase propagates
the loss layer by layer. The gradients of each layer’s weights
are also computed (∂Loss

∂W) during the backward phase. At
the end of backward phase, all the weights are updated
W =W − η ∂Loss

∂W , where η is the learning rate.

B. Stochastic Computing

Stochastic Computing (SC) represents a number by using a
random bit steam, in which the probability of the appearance
of 1s indicates the represented value. For example, the bit
stream X = 011001001 represents 0.4 because the proba-
bility P (X = 1) = 0.4. Since values are represented by
probabilities, the representation for a value is not unique.
A multiplication between two stochastic numbers can be
implemented using bit-wise AND operations, as shown in
Figure 1(a). However, only values in the range [0, 1] can be
encoded using the above method (called unipolar format). The
bipolar format can represent values in the range [−1, 1] by
scaling it in [0, 1]. For example, the value x = −0.4 ∈ [−1, 1]
is first scaled to y = (x + 1)/2 = 0.3 ∈ [0, 1], then
encoded into P (Y = 1) = 00101010. The multiplications for
bipolar stochastic numbers are implemented using XNOR
gates (Figure 1(b)). For both unipolar and bipolar formats,
additions are commonly calculated by multiplexers (MUXs),
as shown in Figure 1(c). A third bit stream Z is required.
P (Z = 1) is set to a constant 0.5 to give the same probability
to select a bit from either A or B. So, the result is a scaled
version of addition: P (C) = P (Z)P (A)+(1−P (Z))P (B) =
1
2 (P (A)+P (B)). However, since half of the information in the
input bit streams are lost, MUX based addition suffers accuracy
reduction. Another way to perform additions more accurately
is to use Approximate Parallel Counter (APC). APC counts
the number of 1s in input bit streams with some errors to
trade off logic gate counts. Figure 1(c) shows an example APC
converting a 16-bit stochastic number to 4-bit binary number.
Note that the output of APC is in binary format.

Sense Amp

R
o

w
 D

ec
o

d
e

r

eDRAM Cell

Capacitor
Transistor

Data
in/out

Word LineBit Line

columns

ro
w

s

Col Decoder

Subarray

Fig. 2: eDRAM organization.

C. eDRAM and eDRAM PUFs

Figure 2 illustrates the eDRAM structure. eDRAM cells
are organized as rectangular subarrays, consisting of rows
and columns. Each cell is composed of a capacitor and an
access transistor. A cell stores one bit data according to
the amount of charge in the capacitor. eDRAM cells suffer
from capacitor’s charge leakage over time and thus demand
periodical refreshes.

0 . 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0
- 6

- 5

- 4

- 3

- 2

- 1

0

Nor
ma

l dis
trib

utio
n s

cale
 (s)

R e t e n t i o n t i m e (m s)
Fig. 3: eDRAM cell retention time distribution [6].

Due to process variations, different eDRAM cells leak
charge at different speeds. Recent studies showed that the
bit error rates increase with reduced refresh frequency [6], as
shown in Figure 3. Because weak cells leak charge much faster
and the distribution of these weak cells are device dependent,
many prior works [5], [7] have exploited it to device physical
unclonable functions (PUFs) that map a set of input parameters
to unique, device-specific signatures that can be generated
repeatably and reliably.

III. DESIGN
A. Overview

A high level overview of the workflow is shown in Fig-
ure 4(a). It consists of two phases — design phase and
working phase. (i) In the design phase, machine learning
experts train the CNN model with the best efforts on the server
side, i.e. using binary format weights and inputs. The trained
weights are in cleartext, which are vulnerable to attacks.
We then deploy the model to the target device. Given the
target device, we first reduce its refresh frequency to generate
approximately 50% retention failures in some selected rows
of the on-chip eDRAM buffers. We record the used refresh
frequency and row addresses as the device’s fingerprint as
store this information in the SC conversion (SCC) unit shown
in 4(b). We then restore the default refresh frequency in all
subsequent operations. We next embed the fingerprint in the
CNN model such that the device (i.e., the accelerator) is ready
to be deployed. (ii) In the working phase, the user exploits
the accelerator to accomplish its inference task. In addition,

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:31:29 UTC from IEEE Xplore. Restrictions apply.

Weight

Buffer

Input

Buffer
Local

Inputs

Local

Weights

Output

Buffer
Local

Outputs

Controller

Activation

Pool

MAC
Unit

O
ff

-c
h

ip
 M

e
m

o
ry

Normal training
CNN model

Training data

Embed figureprint

Inference

Online training

Retention

distribution

Input data

Feedback

Server

SCA

D
e
s
ig

n
 p

h
as

e
W

o
rk

in
g

 p
h

a
s
e

(a) (b)

S
C

C
 U

n
it

(c)

APC

M
U

X

XNOR

XNOR

XNOR

...

APC

M
U

X

XNOR

XNOR

XNOR

...

+

+

+

...

optional

Fig. 4: An overview of the SCA workflow (a) and Architecture (b).

the user may collect new inputs in the field and the desired
inference results. Such data can be used to train the accelerator
for improved inference accuracy.

A high level overview of the SCA architecture is shown
in Figure 4(b). The fingerprint-embedded weights and the
input data are stored in binary format in off-chip memory
before execution. For inference and training, SCA first loads
the weights and the input into on-chip eDRAM buffers. To
exploit stochastic computing (SC), the SC conversion (SCC)
unit converts the buffered binary weights into stochastic format
using the previously selected eDRAM rows, and store them in
the Local Weights buffer. The MAC (multiply-accumulate) unit
performs stochastic multiply-accumulation operations, shown
in Figure 4(c). Finally, the results are written back to off-chip
memory through Local Output and on-chip eDRAM output
buffer. Whenever the weights and intermediate results between
layers are in eDRAM buffers or off-chip memory, they are in
binary format. In this way, the CNN model is kept safe during
the whole process.

Intuitively, since the fingerprint is embedded in the binary
weights, conducting CNN inference using the binary weights
on an error-free device leads to poor inference accuracy. The
converted stochastic format weights carry device dependent
fingerprint and thus produce accurate inference results only if
the selected eDRAM rows match those on the target device.

B. SC based Protection

Given device dependent SC conversion plays a key role in
protecting the CNN IP, we next elaborate its implementation
details.

1) Generating Device Dependent Bit Streams: Traditional
SC generators (converting binary numbers into stochastic bit
streams) use random number generators or linear feedback
shift registers to generate one bit per cycle. Given an N -bit
binary number needs to be converted to a 2N -bit stream to
achieve sufficient precision, existing SC circuit designs tend
to incur large area and performance overheads, e.g., the SC
generator takes as much as 90% of the total area in [13].

SC uses probability to represent values, i.e., it is the number
of 1s rather than their positions that determine the overall
computation accuracy. SC is intrinsically error tolerance as
having one more or fewer bit incurs little impact. Conse-
quently, instead of using RNGs or LFSRs, SCC leverages the
PUF capability of eDRAM rows to generate device dependent
random bit streams. As shown in Figure 5, when system starts

up, we first fully charge all the cells in some selected eDRAM
rows (referred to as victim rows in the rest of this paper)
(1). Then we drastically reduce refresh frequency to make
approximately half of the cells flip the stored value through
capacitor leakage (2). The reduced refresh frequency can
be determined according to Figure 3. During normal CNN
computing, SCA still uses the default refresh frequency (3).
The startup phase (1 - 3) only executes once. A victim row
can be used multiple times to generate different SC numbers.

...

...

...

Fully charge
cells

Retore refresh
frequency

Reduce Refresh
Frequency

256 bits

Conversion

❶

❷

❸

❹

S
ta

rt
u

p

P(R=1)≈0.5

0 0 0 0 0...0 0 0 0 0...00...000...0

Victim row R

If used as first operand If used as second operand

1 1 1 1 1...1 1 1 1 1...11...111...1

P(X=1) < 0.5

P(X=1) > 0.5

Convert to X

Fig. 5: Stochastic computing conversion.
When converting a binary number to stochastic format, a

portion of the bit stream is filled with 0s or 1s depending on
the converted value. As shown in Figure 5 4 , the victim row
R is generated through steps 1 to 3 , thus P (R = 1) ≈ 0.5. If
the probability of 1s in the target bit stream X is less than 0.5,
0s are filled into specific positions of the bit stream. Otherwise
1s are filled. The bits that are filled by 0s or 1s are similar
to [11]. That is, if the generated bit stream is used as the
first operand (e.g. weights), we fill consecutive 0s or 1s in the
middle of the bit stream. If the generated bit stream is used as
the second operand (e.g. input), 0s or 1s are scattered along
the bit stream. The number of bits filled are determined by a
look-up table.

2) Embedding Device Dependent Information in NN mod-
els: CNNs are intrinsically error-tolerant algorithms because
they are typically over-parameterized. We modify the conven-
tional training method to leverage this characteristic to embed
the device dependent information into CNN weights. In each
iteration of 2 in Figure 4(a), the binary format weights Wb

are first converted to stochastic format weights Wsc, which
then participate in the forward phase to calculate the loss.
In backward phase, gradients are calculated with respect to
the binary format weights, i.e. ∂Loss

∂Wb
, as well as the update,

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:31:29 UTC from IEEE Xplore. Restrictions apply.

i.e. Wb = Wb − η ∂Loss
∂Wb

. The basic principle is that CNN
training only finds local minima on the loss surface, if a weight
value is modified, other weights can change correspondingly
to mitigate the impact and forces the training to find other local
minima. This process is only performed for a few iterations
(10 to 20) on the accelerator.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Sto
ch

as
tic

co
mp

uti
ng

 va
lue

B i n a r y v a l u e (r e p r e s e n t e d v a l u e)

 I d e a l v i c t i m r o w
 V i c t i m r o w A
 V i c t i m r o w B

Fig. 6: Stochastic computing values using different victim
rows.

3) Model Protection: Because of process variation, rela-
tively weak cells in the victim rows tend to leak charge faster
during startup phase (as shown in Figure 5). As a result, the
distribution of 1s along each row is device dependent. As
a consequence, the converted stochastic value is also device
dependent and usually not exactly the same as the binary
value. Figure 6 shows the values converted from two different
randomly selected victim rows. The X and Y axes are the
binary value and converted stochastic value, respectively. We
can see that different victim rows have different precision to
represent the same value. Figure 6 also shows an example
of converting 0.6 from binary format to stochastic format
using these two victim rows. Assume the authorized device
has victim row A. The actual weight value that is used in the
CNN computing is 0.64. However, if an adversary extracts the
value from either off-chip memory or on-chip eDRAM buffers,
he/she can only get the binary value 0.6, which degrades the
CNN prediction accuracy. Even if the adversary also use the
same SC conversion method but on another device, because it
is very unlikely that any of its victim row has the same error
distribution as victim row A, the converted value may be 0.57
assuming victim row B is the selected row in the pirate device.
Table I compares the inference accuracy of these three cases.

TABLE I: Model Pretection
On Same Device No SC Computation On Another Device

MNIST-MLPS 99.73% 57.98% 60.25%

Previous works ([4], [5]), once loaded on-chip, the weights
are no longer under any protections since fingerprint informa-
tion is removed by memory errors. So the weights can not be
swapped out to off-chip memory if get updated in training.
In SCA, whenever being swapped off-chip, the weights are
converted back to binary format by APC, thus protected by
the precision difference between stochastic and binary format
value.

C. Robust Protection

Because CNNs are usually over-parameterized, in addition
to learning the classification task of the target problem the
model may also have the capability to learn the difference

patterns between stochastic and binary format values. As a
result, the binary format weight values (Wb) tends to be closer
to the converted stochastic format weight values (Wsc) when
sufficiently enough training iterations are applied. The lines
in Figure 7 show the accuracy and 2-norm distance between
values of these two formats with the training iteration pro-
ceeds on MNIST-MLPS. Eventually, the capability of model
protection introduced in Section III-B vanishes, as shown by
the red line in Figure 7.

0 2 0 4 0 6 0 8 0 1 0 0

0 . 9 0

0 . 9 2

0 . 9 4

0 . 9 6

0 . 9 8

1 . 0 0

 A c c u r a c y
 D i s t a n c e

E p o c h

A
cc
ur
ac
y

0 . 0 0 7

0 . 0 0 8

0 . 0 0 9

0 . 0 1 0

0 . 0 1 1

0 . 0 1 2

0 . 0 1 3

D
is
ta
nc
e

Fig. 7: Accuracy and distance between binary format weights
and SC format weights on MNIST-MLPS.

To prevent the vanishing of differences between stochastic
and binary values, we propose a remapping technique. For
each weight conversion, instead of inserting into the middle
of the bit stream, we use an offset to insert the consecutive
0s or 1s. The offset changes periodically overtime. However,
a sudden change on all the weight conversion offset will drop
the model accuracy. Therefore, we change a subset of weight
conversion offset each time. More specifically, in each epoch
we change one layer’s weight conversion offset at a time. For
example, in epoch one, we change the offset for the first layer’s
weight conversion while keep other layer’s weight conversion
offset unchanged. In epoch two, we only change the second
layer’s weight conversion offset, etc.
D. Space-Optimized Stochastic Computing

SC uses simple logic to perform computations, but it brings
a new problem of exponentially increased data representation
overhead which also aggravates the burden on memory band-
width. For example, the weight matrix size of AlexNet, a state-
of-the-art CNN, increases from 139MB in binary format to
238GB in stochastic format, which easily exceeds the capacity
of on-chip memories in most CNN accelerators. In this section,
we explore the optimizations on MAC operations to alleviate
this problem.

previous CNN accelerator designs using SC [11], [12] prefer
APC based adders to MUX based adders due to their higher
precision. The low precision of MUX based adders are caused
by the dropped information (e.g., the grey bits in Figure 8(a)
are dropped).

1001...101

0101...111

1100...100

0111...001

0111...101

(a)

1001...001 0100...011 0111...101 1101...111

DRAM

6
4

 b
it

s

6
4

 b
it

s

6
4

 b
it

s

6
4

 b
it

s

1001...111 0100...000 0111...000 1101...111

256 bits

(b)

APC

Concat.

G
ro

u
p
 a

dd
e
r

...

APC

Concat.

...

+

APC

Concat.

...

APC

Concat.

...

+

+

...

......

Adder tree

(c)

Fig. 8: Convention and proposed SC Addition.
We propose a hybrid addition implementation that partition

the summation inputs into groups. Inside each group, we

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:31:29 UTC from IEEE Xplore. Restrictions apply.

first use MUX based adders to get the sum, which is then
converted into binary format through an APC based adder.
The binary format outputs of all groups then go through an
adder tree to get the final sum. We tested different group sizes
and found using group size of 4 can keep CNN’s accuracy
drop with 2%. Since the MUXs drop some bits, which is a
waste of the previous computations (multiplications between
weights and inputs in CNN). We can use shorter bit streams
in multiplication, and use concatenation to substitute the MUX
based adders. In the example shown in Figure 8(b), we use bit
streams of 64 bits instead of 256 bits for group size of 4 to
save memory bandwidth and computation. Figure 8(c) shows
the entire MAC unit.

IV. METHODOLOGY

To evaluate SC’s impact on CNN accuracy, we developed a
custom CNN framework with C++ and CUDA and replaced
all the computations in CUDA kernels to SC bit-wise opera-
tions. We tested on three widely adopted image classification
datasets: MNIST [8], SVHN [9], and Cifar10 [10]. In addition
to CNN models for each dataset, we also include three
multilayer perceptrons of different sizes (MLP-S/M/L) in our
benchmarks. The details of the network structures are listed
in Table II.

TABLE II: Datasets and Networks

Benchmark Neural Network
MNIST-MLPS 250-10
MNIST-MLPM 500-250-10
MNIST-MLPL 1000-500-250-10
MNIST-CNN con5x20-pool2-500-10
SVHN-CNN conv5x32-pool2-conv5x64-pool2-256-

10
Cifar10-CNN conv4x32-pool2-conv5x32-pool2-

conv5x64-pool2-500-10

We used Design Compiler with 45nm FreePDK library
to synthesize the SC logic to get latency, area and power
parameters. SRAM and eDRAM parameters were extracted
from CACTI. We developed an in-house simulator to evaluate
SCA’s performance and energy consumption.

We compare SCA with two baselines. SC-CNN [14] is a
CNN accelerator implemented with stochastic computing with
no security support. AEP [4] uses memory errors as hardware
fingerprint to protect CNN weights, but no protection for
training phase, and its computation is based on conventional
binary arithmetic. We evaluate two schemes of SCA:

• SCA-1. This is our basic SCA implementation as elab-
orated in Section III-B.

• SCA-2. This implementation integrates the hybrid addi-
tion optimization.

We also investigate SCA’s protection robustness in Section
V-C;

V. RESULTS

A. Characteristics

Table III lists the characteristics of a SCA chip using 45nm
technology. A SCA chip can accomadate 2048 group adders.

Each group adder can multiply 4 stochastic numbers and sum
up to one binary output. The outputs of all the 2048 group
adders go through the adder tree to form the final summation.
SCA uses three eDRAMs as on-chip buffers for input, weights
and output, respectively. The converted stochastic numbers are
stored in three SRAM buffers for faster access.

TABLE III: SCA Characteristics

Units Number/Size Area Power
Group Adder

XNOR 256 6553.6um2 3.53nW
APC 1 3886.3um2 0.195uW
Total 1 10439.9um2 0.195uW

MAC
Group adder 2048 21.38mm2 400.5uW
Adder tree 1 1.71mm2 1.0328mW

Chip
MAC 1 23.1mm2 1.432mW

eDRAM Buffers 3×2MB 17.6mm2 1.328W
SRAM Buffers 3×16KB 0.204mm2 59.49mW
SC unit Total 1 13.65mm2 233mW

Other 1 3.97mm2 1.05W
Chip total 1 59mm2 2.68W

B. Protection On Weights

Table IV shows SCA’s protection effectiveness on inference.
The CNN models are trained using the method described in
Figure 4(a). The second column shows the inference accuracy
on the same device as used for training (i.e. authorized
devices). The third column shows the inference accuracy if
the CNN models are running on pirate devices which cannot
generate the same victim rows that are used in training. The
last column shows the inference accuracy if the CNN models
are used in conventional binary arithmetic based computing.
All the accuracy numbers are normalized to that when training
with binary format values.

From the last two columns of Table IV, we can see a
significant drop on all the benchmarks. No matter the pirate
devices use the same SC conversion method or use binary
arithmetic directly, the tested benchmarks can not generate
satisfiable inference accuracy, which renders the effectiveness
of SCA’s weight protection scheme. When the tested bench-
marks run on the same devices as used in training, only a
negligible inference accuracy loss (less than 1%) is observed
(first column in Table IV). This proves the fidelity of SCA’s
protection scheme.

TABLE IV: Inference Accuracy

Target Device Pirate Device No SC
MNIST-MLPS 99.73% 57.98% 60.25%
MNIST-MLPM 99.69% 21.57% 24.75%
MNIST-MLPL 99.99% 20.99% 26.38%
MNIST-CNN 99.07% 14.27% 81.82%
SVHN-CNN 99.84% 69.04% 60.9%

Cifar10-CNN 99.99% 41.86% 52.44%

C. Protection robustness in Training

Figure 9 shows the effectiveness of our remapping technique
for training. The solid black line shows the test accuracy
normalized to conventional binary arithmetic based CNN. The

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:31:29 UTC from IEEE Xplore. Restrictions apply.

dashed red line shows the distance between stochastic format
weights and binary format weights. The first few epochs,
where accuracy experiences an observable increase, shows
when the models are learning the classification tasks. At first
the distance is big due to the random initialization of weights.
The distance drops with the training going on due to the ex-
cessive learning capability of the model to also learn the value
differences between stochastic and binary formats. When the
models reach the highest accurary (convergence), the distance
stops decreasing thanks to the periodically changed remapping
technique for SC conversion. Because all the weights will use
a new conversion offset after some epochs, the model can not
find a constant difference pattern between the stochastic and
binary format values. Other benchmarks show similar trends
as MNIST-CNN.

0 5 0 1 0 0 1 5 0 2 0 0
0 . 9 4

0 . 9 5

0 . 9 6

0 . 9 7

0 . 9 8

0 . 9 9

1 . 0 0

 A c c u r a c y

 D i s t a n c e

E p o c h

A
c
c
u
ra
c
y

0 . 0 0 3 8

0 . 0 0 4 0

0 . 0 0 4 2

0 . 0 0 4 4

0 . 0 0 4 6
M N I S T - C N N

D
is
ta
n
c
e

Fig. 9: Protection robustness in training.

D. Performance

M N
I S
T -
M L
P S

M N
I S
T -
M L
P M

M N
I S
T -
M L
P L

M N
I S
T -
C N
N

S V
H N
- C
N N

C i
f a r
1 0
- C
N N

A v
e r
a g
e

0

1 0

2 0

3 0

4 0

5 0

6 0

S
p
e
e
d
u
p

 A E P S C - C N N

 S C A - 1 S C A - 2

Fig. 10: Speedup.
Figure 10 shows the speedups normalized to the AEP base-

line. AEP uses conventional binary arithmetic for computation.
The speedup of SC-CNN mainly comes from the faster SC
based multiplications. Although SC-CNN employs a counter
to replace the RNG for one of the multiplication operands, the
other operand still needs a RNG to make sure the bit stream
is randomized. On contrary, SCA-1 generates SC numbers for
both multiplication operands by simple memory read and table
lookup. So a larger speedup can be observed for benchmarks
that require more data conversion. For example, Cifar10 and
MNIST-MLPL have more weights than other benchmarks,
so they have higher speedups than other benchmarks. On
averagae, SCA-1 achieves 11.7× speedup over AEP. SCA-2
uses shorter bit streams (64 bits instead of 256 bits), so both
computation and memory access can be saved. Thus, SCA-
2 can achieve 34.2× speedup on average. Compared to SC-
CNN, SCA-2 achieves 4.8X speedup.

M N
I S
T -
M L
P S

M N
I S
T -
M L
P M

M N
I S
T -
M L
P L

M N
I S
T -
C N
N

S V
H N
- C
N N

C i
f a r
1 0
- C
N N

A v
e r
a g
e

0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

0 . 3 5

N
o
rm

a
li
z
e
d
 E
n
e
rg

y

 S C - C N N

 S C A - 1

 S C A - 2

Fig. 11: Normalized energy consumption.
E. Energy

Figure 11 shows the results normalized to AEP. SC-CNN
saves energy by replacing multipliers with simple gates. On
average, SC-CNN’s total energy consumption is 10.5% of
AEP. SCA-1 integrates SC conversion into the memory read
process. Because SC conversion is needed for both input and
weights whenever they are read from off-chip memory, SCA-
1 further reduces the energy consumption to 5.6% of AEP.
SCA-2 not only eliminates MUXs in addition operations, but
also reduces the memory bandwidth burden by using shorter
bit streams, thus SCA-2 only consumes 1.4% energy of AEP
and 15.7% energy of SC-CNN.

VI. CONCLUSION
In this paper, we proposed SCA, a SC based secure CNN

accelerator. SCA uses eDRAM refresh errors as hardware
fingerprint to generate bit streams for SC conversion. SCA
provides protection for both training and inference phases. To
prevent the stochastic format weights get closer to their binary
format values, we proposed a remapping technique to insert
0s or 1s to different part of the bit stream for SC conversion.
We also proposed a hybrid addition method to avoid memory
footprint explosion caused by long stochastic bit streams.

REFERENCES
[1] A. Krizhevsky, et al., “Imagenet classification with deep convolutional

neural networks,” in NIPS, 2012.
[2] G. Hinton, et al., “Deep neural networks for acoustic modeling in speech

recognition,” in IEEE Signal processing magazine, 2012.
[3] Y. Uchida, et al., “Embedding watermarks into deep neural networks,”

in ICMR, 2017.
[4] L. Zhao, et al., “AEP: An error-bearing neural network accelerator for

energy efficiency and model protection,” in ICCAD, 2017.
[5] W. Li, et al., “P3M: a PIM-based neural network model protection

scheme for deep learning accelerator,” in ASPDAC, 2019.
[6] A. Agrawal, et al., “Mosaic: Exploiting the spatial locality of process

variation to reduce refresh energy in on-chip eDRAM modules,” in
HPCA, 2014.

[7] T. Christensen, et al., “Implementing physically unclonable function
(PUF) utilizing EDRAM memory cell capacitance variation,” in US
Patent 8,300,450 B2, 2012.

[8] Y. LeCun, et al., “Gradient-based learning applied to document recog-
nition,” in Proceedings of the IEEE, 1998.

[9] Y. Netzer, et al., “Reading digits in natural images with unsupervised
feature learning,” in NIPS, 2011.

[10] A. Krizhevsky, et al., “Learning multiple layers of features from tiny
images,” in Citeseer, 2009.

[11] S. Li, et al., “SCOPE: A Stochastic Computing Engine for DRAM-Based
In-Situ Accelerator,” in MICRO, 2018.

[12] A. Ren, et al., “Sc-dcnn: Highly-scalable deep convolutional neural
network using stochastic computing,” in ASPLOS, 2017.

[13] W. Qian, et al., “An architecture for fault-tolerant computation with
stochastic logic,” in IEEE transactions on computers, 2010.

[14] H. Sim, et al., “A new stochastic computing multiplier with application
to deep convolutional neural networks,” in DAC, 2017.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:31:29 UTC from IEEE Xplore. Restrictions apply.

