Layer RBER Variation Aware Read Performance
Optimization for 3D Flash Memories

Shigiang Nie
Xi’an Jiaotong University
Xi’an, China
nsqiang @gmail.com

Youtao Zhang
University of Pittsburgh
Pittsburgh, USA
zhangyt@cs.pitt.edu

Abstract—3D NAND flash enables the construction of large
capacity Solid-State Drives (SSDs) for modern computer systems.
While effectively reducing per bit cost, 3D NAND flash exhibits
non-negligible process variations and thus RBER (raw bit error
rate) difference across layers, which leads to sub-optimal read
performance for applications with either small or large I/0
requests. In this paper, we propose LRR, Layer RBER variation
aware Read optimization schemes, to address the challenge.
LRR consists of two schemes — LRR subpage read scheduling
(SRS) and LRR fullpage allocation (FPA). SRS groups small
read requests from the layers with similar RBERs to reduce
the average read latency of subpage sized read requests. FPA
distributes the data of a large write to multiple layers, which
improves the read latency when reading from layers with large
RBERSs. Our experimental results show that our proposed scheme
LRR reduces 46% read latency on average over the state-of-the-
art.

Index Terms—3D NAND flash, read performance, unbalanced
bit error rate, parallel sub-page read operation

I. INTRODUCTION

3D NAND flash is one of the most promising technologies
to increase the package density and meet the increasing de-
mands for large capacity storage of modern computer systems.
While it effectively reduces per bit manufacturing cost, 3D
NAND flash exhibits many characteristics that are different
from planar flash. 3D NAND flash module often uses smaller
number of chips, resulting in reduced chip level parallelism.
3D NAND flash exhibits non-negligible process variations and
thus RBER (raw bit error rate) difference across layers. In
addition, 3D NAND flash often uses 16KB flash page while
the file system may still use 4KB logic page size. In this paper,
we use subpage and fullpage to refer to 4KB and 16KB pages,
respectively.

To address reduced parallelism and page size disparity
between logic and device pages, Kang et al. proposed to
merge subpage write requests to fullpage write requests in
the write buffer to reduce the number of NAND writes and
read-modify-write (RMW) operations for improving the write
performance [1]. Kim et al. utilized the subpage programming

This work is supported in part by the National Key Research and De-
velopment Program of China under Grant 2016YFB1000303, in part by the
National Science Foundation of China under Grant 61972311, in part by NSF
under Grant CCF-1718080, CCF-1910413, CCF-1725657 and CCF-1617071.
The work of S. Nie is supported by the Chinese Scholarship Council under
Grant 201806280273.

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

Weiguo Wu Jun Yang
Xi’an Jiaotong University University of Pittsburgh
Xi’an, China Pittsburgh, USA

wgwu@xjtu.edu.cn juy9@pitt.edu

(SP) technique to mitigate writing FTL metadata for prolonged
chip lifetime [2]. Kim ef al. proposed erase-free subpage
programming (ESP) to enable programming the same page
multiple times for small writes, which reduces the overhead
of garbage collection [3]. Liu et al. proposed SOML read,
which groups subpage sized read requests from different
layers to improve the operation parallelism and thus the read
performance [4].

Given current flash chips widely adopt LDPC ECC (Error
Correction Code) [5], larger RBER leads to more read retries
and thus significantly longer read latency. For example, recent
studies showed that, with the same retention time and P/E
cycles, a page from the most reliable layer may succeed in
one read retry while the one from the least reliable layer
may need six or seven retries. To address this issue, Du
et al. proposed multi-granularity LDPC to adapt to speed
difference of each layer for read performance improvement
[6]. Shim et al. proposed to utilize process similarity for both
read and write performance improvement by retrenching the
incremental step pulse programming and keeping track of the
read level.

Unfortunately, the layer-to-layer RBER variation remains a
major concern for 3D NAND flash. In particular, the requests
from modern applications exhibit a wide mix of small (sub-
page size) and large (fullpage or bigger sized) I/O requests.
Existing schemes lack the ability to improve both types of
requests. In this paper, we take proactive designs to improve
read performance for both types of requests. We summarize
our contributions as follows.

o We propose subpage read scheduling (SRS) scheme that
exploits layer RBER variation to improve the read per-
formance of small I/O requests. SRS groups small read
requests from the layers with similar RBERs to reduce
the average read latency of subpage sized read requests.

« We propose fullpage allocation (FPA) scheme that ex-
ploits layer RBER variation to improve the read perfor-
mance of large I/O requests. FPA distributes the subpages
of a fullpage write to different layers, which improves the
read latency when reading from layers with large RBERs.

o We evaluate the proposed schemes with widely adopted
workload traces. Our experimental results show that, on
average, our scheme reduces 46% read latency over the
state-of-the-art.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:36:44 UTC from IEEE Xplore. Restrictions apply.



Block decoder B |
Block 2,4, -+ 2n

Block decoder A
Block 0,1, -+ 2n+

Bit Line
o Contactly

SGD: select gate at the drain end
SGS: select gate at the source end
WL: WordLine

Logic full-page
Parallel Sub-page reads

Fig. 1. The structure of 3D NAND flash and parallel sub-page read circuit.

In the rest of the paper, Section II discusses the 3D
NAND flash background and motivates our design. Section
IIT presents the detailed scheme. Section IV describes the
experiment methodology and analyzes the results. Section V
concludes the paper.

1I. BACKGROUND AND MOTIVATION
In this section, we breifly discuss the 3D NAND flash

architecture and the parallel sub-page read operation. We then
motivate our designs with RBER variations across different
layers in 3D NAND flash.

A. 3D NAND flash Organization and SOML Read

3D NAND flash boosts storage capacity by stacking mem-
ory cells vertically. There are several cell types. In this paper,
we adopt Charge-Trap (CT) 3D NAND flash. As shown in
Figure 1, a 3D NAND flash chip consists of multiple layers
with each layer consists of multiple block segments, and each
block segment consists of multiple wordlines (WLs). One
wordline, also referred to as a page, is at least 16KB in 3D
NAND flash. The aligned block segments from all layers form
a block. A read operation reads one flash page, i.e., 16KB,
from one block. To simplify discussion, we use subpage and
fullpage to refer to 4KB and 16KB pages, respectively. A
fullpage consists of four subpages.

Given modern OSes widely adopt 4KB logic page size,
the I/O requests from the file system exhibit a mix of small
(4KB or 8KB) and large (16KB or bigger) requests. Liu et al.
found that the majority requests of many workloads are small
requests [4] while the widely used sever traces from Microsoft
[7] contain many large requests. Based on the observation
that reading 16KB flash pages to service small I/O requests is
unnecessary and tends to result in low throughput, Liu et al.
proposed SOML (single-operation-parallel-read) to enable the
parallel read of multiple subpages.

In Figure 1, each red box represents a page (fullpage) while
each blue box represent a subpage. Instead of reading one
fullpage, with simple hardware enhancement, SOML reads
four subpages from different blocks and/or from different
layers. Due to hardware constraints, the subpages forming
one SOML read should not share either the same bitlines or
the block decoders. SOML speeds up read performance by
providing subpage level parallelism.

B. RBER and LDPC ECC

3D NAND flash exhibits non-negligible layer-to-layer pro-
cessing variations. Figure 2(a) illustrates the normalized

RBERs (raw bit error rates) for a 48-layer flash chip [8]. From
the figure, the variations vary with P/E cycles and retention
time. For flash pages at 2K P/E cycles and one year retention,
the RBER of the worst layer is about 2 that of the best layer.

S

® 0k P/Es, no retention
2K P/Es, no retention

—LayerA _—Layer B Layer C

4/_/—/7

ion time (day)
0 5 10 15 20 25 30 35 40

2Kk P/Es, year retention

oo

o

Normalized RBER
s

©
Read level in LDPC

o = b ow o os

Fig. 2. Variation of RBER across layers and the LDPC read level of three
typical layers with increasing retention time[6, 8]

To ensure data reliability, FTL (Flash Translation Layer)
often allocates part of Out Of Band (OOB) space as ECC
area. Modern flash chips widely adopt LDPC ECC (error
correction code) to improve data reliability. The LDPC ECC
can be applied at different granularity, e.g., 16kB fullpage,
4KB subpage, or 2KB chunk. In this paper, we assume each
4KB subpage has an individual LDPC ECC (as it is widely
adopted in mainstream SSD chips [5]).

LDPC reads the flash page one or multiple times (up to
seven times) if there are errors in the page. Each read is
referred to as one retry. The more there are errors, the more
retries the read operation needs. Thus, reading pages from
layers with larger RBERs tends to suffer from more read retires
and thus longer read latency. Figure 2(b) illustrates a snapshot
of three layers (from [6]). While layer A can always finish read
operation in one retry, layers B and C need more retries. With
15-day retention time, layer C needs six retries while layer B
needs four. To simplify the discussion, the pages residing in
layers with small and large RBERs are referred to as strong
and weak pages, respectively.

In this paper, we focus on the large RBER variations and
propose optimization schemes to improve the read perfor-
mance for applications with either large or small I/O requests.

C. Motivation

We study the impact of layer RBER variation on read re-
quests from popular workloads. We have two key observations
as follows.

(1) RBER variation introduces intra-operation idleness.
Given reading flash pages with larger RBER needs more retries
and thus suffers from longer read latency, reading subpages
from different layers simultaneously cannot finish at the same
time. The subpage read that finishes early has to wait for the
others. For example, assume we have four subpage requests
A, B, C, and D. As shown in Figure 3, A and B are strong
subpages while C' and D are weak subpages. Assume SOML
can read two subpages simultaneously. If we group A and C,
then A shall finish early so that while A finishes, it has to wait
for C'. While waiting, no other requests can be scheduled to
start. Similarly, B shall wait if we schedule B and D together.

As a comparison, if we schedule A and B together, and
C and D together, the subpage reads within one SOML read

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:36:44 UTC from |IEEE Xplore. Restrictions apply.



Req. A e ] - Baseline-scheduling
Req, B E Tcompletion time:Treq.C+Treq.D

] Req. C
sy Req. D

m Optimization-scheduling
e Toompleu'on time:Treq_A +Treq_ D

Fig. 3. Layer RBER aware scheduling is beneficial.

can finish around the same time such that the intra-operation
wait time can be minimized, which improves the overall read
performance, as shown in Figure 3.

(2) RBER variation introduces large read latency deviations.
While different layers exhibit significant RBER difference,
existing FTL allocates the same ECC space to subpages at
different layers. For one subpage (4KB) that has an individual
LDPC ECC, the larger the ECC space is, the stronger capabil-
ity the ECC has. In particular, at a fixed RBER, the one that
has larger ECC space needs fewer read retries. For example,
each of two subpages has z errors, the one that has y-byte
ECC cannot correct it after one read retry while the other that
has z-byte (2>y) has stronger error correction capability and
thus can correct all the errors with one read retry. The former
has to go through more retries while the latter can finish the
operation. This observation advocates the allocation large ECC
space to protect weak pages. However, given OOB space is a
precious resource, it is not always preferable to allocate more
space as it restricts its use for other optimizations.

On the other hand, the strong pages accumulate few errors,
for example, Figure 2(b) shows that the page from the best
layer needs just one retry to finish the read operation, indicat-
ing the under-utilization of its allocated ECC space. A recent
study [9] shows that the required ECC sizes for different pages
can differ by 1.3x if providing the same correction capability.
Intuitively, it would be beneficial if we allocate a small portion
of the ECC space from strong subpages to weak subpages.
That is, if we have a strong subpage A and a weak subpage
B. We may shrink A’s ECC space such that B’s ECC spread in
the OOB space of both pages. Given B has larger ECC space,
it has stronger error correction capability and thus reduces the
number of read retries.

However, such an allocation tends to increase the number
of subpage reads and writes. In particular, reading and wrting
B needs to access the OOB space of both pages, which
may offset the benefits that we gain from the reduction
of read retries. The problem, referred to as read and write
amplification, has to be properly handled at runtime.

Previous studies on planar SSD have explored the RBER
difference across different bits in one MLC or TLC cell.
The bit interleaving scheme improve the read performance
at average via interleaving the data from each logic page
into the different types of the physical page, which amortizes
the RBERs at the page level[5, 10-12]. Unfortunately, it
introduces large read amplification; the overlong ECCs could
increase the lifetime and reliability as well as read performance
via expanding the capacity of ECC beyond the OOB. However,

TABLE I
STATISTICS OF WORKLOADS.

trace r/v&f avg. avg. size size size size
ratio | read write | <=4k | <=8k | <=16k | >16k
24HRS8 0.26 | 8578 | 12.41 | 0.20 0.42 0.16 0.23
BS78 0.90 | 4.53 35.27 | 0.96 0.01 0.01 0.02
casa2 0.00 | 5.42 4.00 1.00 0.00 0.00 0.00
HM_I 0.97 | 18.15 | 22.86 | 0.00 0.01 0.87 0.12
mds_1 093 | 60.09 | 13.84 | 0.10 0.01 0.01 0.89
stg_1 0.64 | 59.54 | 7.88 0.32 0.04 0.02 0.62
web_1 0.54 | 4590 | 9.22 0.48 0.05 0.03 0.45
webr9 0.00 | 4.00 4.00 1.00 0.00 0.00 0.00
webu8 0.11 | 5.31 4.00 0.99 0.00 0.00 0.00
USR_0 0.59 | 47.42 | 13.55 | 0.04 0.47 0.10 0.39
PROJ_1 091 | 43.43 | 2223 | 0.00 0.34 0.04 0.62
PROJ_3 0.90 | 15.03 | 30.14 | 0.00 0.81 0.04 0.16
HM_0 025 | 1l.61 | 11.21 | 0.25 0.55 0.07 0.12
RSRCH 0.10 | 15.70 | 12.70 | 0.05 0.65 0.13 0.17
PRN_0 0.11 | 26.55 | 13.93 | 0.32 0.42 0.04 0.21
STG_0 023 | 3356 | 12.69 | 0.11 0.55 0.10 0.24
WDEV_0 | 0.20 | 16.57 | 12.11 | 0.06 0.68 0.07 0.18
PRN_I 0.69 | 1832 | 13.78 | 0.00 0.64 0.16 0.20

it shrinks the available capacity of SSD[12-14].

In summary, the above observations suggest that we devise
novel techniques to exploit large layer RBER variations to
improve read performance on 3D NAND flash.

III. THE DESIGN

Given the default logic page size is 4KB in modern OSes,
the I/O requests from modern applications exhibit a wide
mix of different lengths. Table I characterizes the widely
adopted workloads from Microsoft research Cambridge and
OpenStor[7, 15]. From the table, while some applications show
dominant small I/O requests, many others have a large portion
of requests that are 16KB and above. Some applications have
majority 8KB I/O requests. Thus, it is important to optimize
the I/0 requests at different granularities.

An overview. In this paper, we propose the layer RBER
variation aware (LRR) scheme to optimize the read perfor-
mance on 3D NAND flash SSDs. It consists of the following
two designs to address the problems in the key observations.

o LRR subpage read scheduling (SRS). LRR-SRS improves
the read performance of small I/O requests. It groups
small read requests from the layers with similar RBERs
to reduce the average read latency of subpage sized read
requests.

e LRR fullpage allocation (FPA). LRR-FPA improves the
read performance of large I/O requests. It distributes the
subpages of a fullpage to different layers such that the
ECC space from strong subpages can be allocated to weak
subpages for improved error correction capability.

A. The LRR Subpage Read Scheduling Scheme

The LRR subpage read scheduling scheme is designed
to enhance SOML read [4] when scheduling subpage sized
read requests. SOML adopts a set of scheduling rules when
composing a SOML read with subpages from different layers,
e.g., no two subpages can share the same bitlines. LRR-SRS
optimizes the scheduling with a set of new rules.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:36:44 UTC from |IEEE Xplore. Restrictions apply.



Rule 1: Prioritize requests for subpages from layers with the
same/similar RBERs. Similar as that in SOML scheduling,
we place all I/O requests in one scheduling queue for each
channel. To compose a SOML read, we mark the old request
as the main request and satisfy its subpage demand first.
We then scan the scheduling queue to choose the subpage
requests that can be combined with the main request. In
choosing the other requests, we prioritize these that ask for
subpages from layers with same or similar expected RBERs.

For example, Figure 4 shows a set of subpage sized requests

A, B, C, and D. A is the oldest request. Assume B, C, and
D ask for the subpages that share the bitlines and thus they
cannot be scheduled simultaneously. While it is possible to
construct a SOML read from A and one of B, C, and D, we
prefer to choose B as A and B are from the same layer such
that they share the similar RBER. We would expect the two
subpages finish at about the same time.
Rule 2: Preemptive read retries. It takes a long latency to read
weak subpages as reading such subpages takes many read
retries. After each read retry, FTL sets the control register in
the flash chip [16] such that each cell is sensed with increased
sensing levels. For example, a flash read may use 1, 2, and
3 sensing voltages to differentiate the two neighboring states
saved in one flash cell. Given each read retry is controlled
individually, we can preempt one SOML read in the middle,
construct a new SOML read with the unfinished subpage
requests and new subpage requests, and schedule the new
SOML read with increased sensing levels.

We use the example #2 in Figure 4 to illustrate how it
works. Assume we need to schedule three I/O requests A,
B, and C. While A and B read two strong subpages (that
can finish in one read retry), C' reads a weak subpage (that
needs 3 read retries). Assume the subpages requested by A
and B conflict and thus cannot be scheduled simultaneously.
When we schedule A and C in the first SOML read, A can
finish in one read retry but C' cannot. Instead of finishing C
in three read retries, we preempt the SOML read, and return
the subpage that A requested. We then construct a new SOML
read with B and C, and schedule the new SOML read starting
with 2 sensing voltages to differentiate every two neighboring
states. We can then finish B in the next read retry.

Comparing to the LRR oblivious scheduling, we read B
with more than necessary sensing levels, and thus slow down
its sensing time. However, by combining B with C, we
eliminate the long queuing delay that B would otherwise have.
B. The LRR Fullpage Allocation Scheme

While LRR-SRS helps to improve the read performance of
subpage sized requests, many requests ask for two or more
subpages. As shown in Table I, for some applications, e.g.,
HM-1, all their I/O requests are large requests (i.e., 16KB
or more). Given the page size is 16KB in 3D NAND flash,
a natural page allocation strategy would allocate 16KB logic
data to a flash page (16KB). If such a page resides in a layer
with large RBER, the subsequent read requests to this page
tend to suffer from long read latency as it takes more read
retries.

Example 1 Baseline

Alarfar]arf 4|l [A7]
e
B|Bi1|Bi1|B1]B1]| % ci ] pd |
E time>
cleslalala|l Rule 1
= ]
-
g

D[ o+ ps]ps] p4] 81| c3 | b4 |

A.1 means the read level is 1 for request A, the same as B.2 C.3 and D.4.

Example 2 - Baseline
=
Alar]|ar|ar|ar] é A1 C|.3 Z]
g time
B[Bi|si|Bi1]51] =i Rule 2
cClololal|i| e
IS

Fig. 4. An example of LRR Subpage Read Scheduling Scheme.

Logic Page A | LI | L2 | L3 | L4 |
[ vserpaa | ECC || 13 —s
LI-P2 nema 2
Lip2 —|£
rigina =3
L2-P3 E
L2.p3 |
- =1
:
=
[ T 58] . |

Encode Page Layout

Fig. 5. An example of the LRR Fullpage Allocation Scheme.

To exploit layer RBER variation across different layers,
we propose LRR fullpage allocation scheme that works as
follows. Given 16KB user data in an I/O request, we split
the data to four subpages, and program the four subpages
(L1, L2, L3, L4) into four layers that have different RBERs.
Assume subpages P1, P2, P3, and P4 are from four layers with
increasing RBERs, i.e., P1 is the strongest subpage while P4 is
the weakest subpage, as shown in Fig.5. These four subpages
do not have hardware conflicts and thus can be scheduled in
one SOML read. Our proposed LRR-FPA scheme decides to
allocate L1 and L2 to P2 and P3, respectively; and L3 and L4
to P1 and P4, respectively. To achieve layer RBER variation
awareness, we shrink the ECC space of P1, and allocate the
saved space to increase the ECC capability of P4. That is,
P4 has a larger ECC space that has stronger error correction
capability. We leave the ECC space for P2 and P3 untouched.
The existing work shows that, two pages with 2.7 times RBER
difference (i.e., the RBER of both two pages are 0.0078 and
0.0028 respectively) achieve the same decoding efficiency by
sharing about 225-bits ECC space from the strong page to
the weak page (i.e., the default ECC is 512B per 4KB user
data), leading to reduced read latency at average [9]. This
ECC rearrangement is proposed as a proof-of-concept. We will
devise more strategies in the future studies.

When we have a large I/O request that need to fetch the
16KB data, we construct a SOML read and read all subpages.
Given P1 has small RBERs, e.g., it always needs one retry

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:36:44 UTC from |IEEE Xplore. Restrictions apply.



to finish the operation [6]; and P2 and P3’s ECC space is not
touched, we assume they can return L1, L2, and L3 in one read
retry. For P4, its RBER is high, a normal sized ECC would
need, e.g., three read retries. However, by expanding P4’s ECC
to P1 OOB, we achieve a stronger ECC and thus may finish
the reading also in one read retry. In this way, we strive to
achieve improved read performance for large I/O requests.

However, splitting a fullpage to four subpages may face two
issues as follows.

1) Addressing: One issue with LRR-FPA is that enforcing
addressing mapping at subpage level could lead to significant
increase of FTL mapping table. Given that the table is already
large for TeraByte SSDs, we exploit the following design to
minimize the size increase of the mapping table. We partition
the data from the user application to 16KB size pieces — each
16KB piece is referred to as a fullpage request; those whose
sizes are smaller than 16KB before or after partitioning are
referred to as small requests. We divide the flash blocks to
two groups — those that are for handling fullpage requests
and those for small requests. For small requests, we create the
mapping the same way as that in the baseline.

For fullpage requests, we allocate them to blocks reserved
for fullpage writes. For a 48-layer 3D NAND flash, we divide
the layers to four groups and have blocks reserved in all
groups. For discussion purpose, we assume layers 12-23 are
the strong layers and layers 36-47 are the weak layers; layers
0-11 and 24-35 are two other groups. The ECC of subpages on
layer 36-47 expands to subpages on layers 12-23, respectively.

When we write fullpages, the first fullpage chooses sub-
pages from layers 0, 12, 24, 36; while the second fullpage
chooses subpages from layers 1, 13, 25, 37. Similar as that we
discuss in the example, the logical four subpages L1, L2, L3,
L4 are written to layers 0, 24, 12, 36, respectively. The reason
that we write L3 instead of L1 to layer O is that, we observe
that the applications have a large number of read requests that
ask for 8KB data. Such requests can be naturally supported
by reading the strong and weak layers simultaneously.

2) Read Amplification and read performance degradation:
Another issue with LRR-FPA is that we may have an I/O
request that asks for one weak or strong subpage only. For
example, if we request L4, we would still need to read Pl
and P4 as part of P4’s ECC is saved in P1’'s OOB space.
This leads to read amplification; if we request L3, since we
shrink the P1’s ECC capacity, the read performance may
degrade sometimes for additional read-retries. However, the
impact on read performance can also be neglected according
to the experiment result in the experimentation section. That’s
because, assuming any one of these subpages could be read
equiprobably, only about 6% possibility that the L3 is selected
alone, leading to read performance degradation, while 94%
possibility that the SSD benefit from this design. We study
the workloads and summarize our findings in Figure 6. In
the experiment, we collect the read amplification if we adopt
LRR-FPA allocation scheme. Figure 6 presents the percentage
of reads that need to read one more page. From the figure,
we observe that, for most applications, the read amplification

0.25
0.2
0.15
0.1
0.05
vy - | B | =2 N N B | |

Fig. 6. The read amplification across these workloads.
is modest, i.e., less than 15%, while the read amplification of

other schemes range from 1 to 1.7[12].

TABLE II
SSD PARAMETERS.

48-layer 3D NAND chip parameters

(Channel, Chip, Die) 4, 8,8)
(Plane, Block, Page) (8,1888,1792)
(Page size, Cell density) (16KB, TLC)

Latency write 900us, Erase 10ms
Latency read(90us, 120us,180us)
Capacity per page 16KB

Smallest subpage read size | 4KB

Max parallel subpage reads | 4

IV. EXPERIMENTAL EVALUATION
A. Experimental Setting

To evaluate the effectiveness of the proposed scheme, we
implemented both the proposed scheme and SOML scheme
based on SSDsim, which has been validated against hardware
platform[17]. In our experiments, the configure parameters
of SSD are adopted from [4]. Table II provides the detailed
configuration of the 3D NAND flash-based SSD. We used the
enterprise servers traces from Microsoft research Cambridge
and OpenStor[7, 15] to evaluate the proposed scheme. These
workloads are widely used in previous studies. The details of
these workloads are given in Table 1.

In this section, we compare the following schemes.

e Baseline — We chose the state-of-the-art SOML
scheme as the baseline. It support parallel read of multiple
subpages from different layers.

e SRS — This scheme implements the LRR subpage read
scheduling scheme.

e SRS+FPA — This scheme implements the LRR fullpage
allocation scheme on top of SRS.

B. Performance Comparison )
Fig. 7 compares the performance among different schemes.

The results are normalized to baseline. From the figure #a,
SRS and SRS+FPA achieve large performance improvement
over the baseline, i.e., we achieved 10% to 73% improvements.
For workloads whose majority I/O requests are small requests,
SRS and SRS+FPA have similar improvements. For workloads
whose majority I/O requests are large ones, SRS+FPA does
better. For workloads whose majority read and write I/O
requests are small requests, e.g., PROJ_1 and USR_0, SRS
shows small or negative improvements over the baseline.
The negative results are due to complex request reordering

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:36:44 UTC from |IEEE Xplore. Restrictions apply.



1.5 1.5 5
= SOML = SRS SRS+FPA
= SOML = SRS = SRS+FPA| mSOML = SRS = SRS+FPA
1 1 3
0.5 ‘ 0.5 2 |
; ol ol
, . LI 0 AT 000N 00100 0
¥® 32 S 20U S OS> %~ o NP E S NS MU — O >R — — ¥® 32 S5 29S O 2% T
I':Z‘“Ezznézﬁ‘ocﬂmlm.og.o‘wl> TS5 82222220 o35 2 d42 mm‘“zzzmmzogﬂgmnss>
gm":mgmmgl—:%ggggg*f x%”::gmmgg$§§§§§g< §m°:mﬁﬂ-°~‘£5w5§§‘§“§<
. (A) Read latency (B) Write latency (C) Throughout
——=SOML ==—SRS SRS+FPA 12 n - n - - - 015 ®interval time *10 pinterval time *5 ® interval time *1
: minterval time *10 ™ interval time *5 interval time *1
6
w | h I il b | 08 o1 |
4 | I||| .‘ I| | 0.6
LI w"m'ﬂ; -lfl o F" i!, 0.4 || 0.05 |
AL Lol | Ll
a —— S 1[NNI CRTIN I N 0T 0 0,10 10 00, 10 00 81,10 00, 101 0, IR0 I
0 MW g~ QRO ~nS US> = — — MO FgN =R RO =M SUS O > o~ —
ER 227229529222 32¢E 7 Sz 55 55 E Z £ 4 2
S R T LA FE A PR A T R PR EE SRR EPEL
Rl 12} o %]
(D) USR_0 read latency distribution (E) The percentage of optimized fullpage (F) The write amplification

Fig. 7. Various comparisons between SOML, SRS and SRS+FPA.

algorithm. By adopting fullpage allocation optimization, we
achieve larger flexibility by mitigating the unbalance read
latency across different layers. Fig.7 #b compares the write
performance between the proposed scheme and the baseline.
Although the write performance does not benefit from the
proposed scheme directly, the write latency is also reduced
significantly. This is because, in SSDs, the writes typically
have lower priority than the reads. As a result, the writes need
to wait for the completion of the queued reads. Consequently,
shortening the overall read latency shortens the write latency
as well. Figure7 #c shows the throughout comparison among
these three schemes. SRS+FPA achieves higher throughout
than the baseline. Figure7 #d also shows that the read latency
distribution of SRS and SRS+FPA are much smaller than the

baseline for the first S000 read requests of USR_O.

C. Sensttlw Anal SIS L
Figure 7 shows the percentage of fullpage read optimization

comparison with different loads and the lifetime overhead
across several workloads. We change the interval time of
requests to explore how the loads impact on the proposed
scheme. In particular, we increase the interval time between
any neighboring requests by 10 times and 5 times. Compared
with the original one, the percentage of fullpage write requests,
which could utilize LRR-FPA, does not fluctuate significantly.
It shows the robust stability of the proposed scheme; then
we compare the write amplification overhead of the different
loads in terms of average page usage. It is observed that our
proposed scheme induces additional page usage. However,
since the number of generated page usage is minimal, the
impact on worsening reliability is also slight. The evaluated
results show that there are only 4% additional page usage on

average compared with the baseline.

. V. CONCLUSION .
In this paper, we propose two schemes that exploit layer

RBER variations to improve read performance for 3D NAND
flash. The two proposed schemes help to address the read
performance degradation from workloads with wide ranges of
different I/O requests. Our experimental results show that read

performance can be improved by 46% compared to the state-

of-the-art. REFERENCES

[1] M. Kang et al., “Subpage-aware solid state drive for improving
lifetime and performance,” TC, vol. 67, no. 10, 2018.

J.-H. Kim er al., “Subpage programming for extending the
lifetime of nand flash memory,” in DATE. 1EEE, 2015.

M. Kim et al., “Improving performance and lifetime of large-
page nand storages using erase-free subpage programming,” in
DAC. IEEE, 2017.

C.-Y. Liu ef al., “Soml read: Rethinking the read operation
granularity of 3d nand ssds,” in ASPLOS. ACM, 2019.

K. Zhao et al., “Ldpc-in-ssd: Making advanced error correction
codes work effectively in solid state drives,” in FAST, 2013.
Y. Du et al., “Adapting layer rbers variations of 3d flash
memories via multi-granularity progressive ldpc reading,” in
DAC. ACM, 2019.

N. Dushyanth et al., “Write off-loading: Practical power man-
agement for enterprise storage,” TOS, vol. 4, no. 3, 2008.

Y. Shim er al., “Exploiting process similarity of 3d flash
memory for high performance ssds,” in Micro. ACM, 2019.
C. Zambelli et al., “Characterization of tlc 3d-nand flash en-
durance through machine learning for ldpc code rate optimiza-
tion,” in IMW. 1EEE, 2017.

T. Nakamura et al., “AEP-LDPC ECC with error dispersion
coding for burst error reduction of 2d and 3d NAND flash
memories,” in /[MW. 1EEE, may 2017.

S. Nie et al., “DIR: Dynamic request interleaving for improving
the read performance of aged SSDs,” in NVMSA. IEEE, 2019.
Y. Zhou et al., “Score: A novel scheme to efficiently cache
overlong eccs in nand flash memory,” TACO, 2018.

S. Jung et al., “In-page management of error correction code
for mlc flash storages,” in MWSCAS. 1EEE, 2011.

S. Wang et al., “Lifetime adaptive ecc in nand flash page
management,” in DATE. 1EEE, 2017.

M. Kwon et al., “Tracetracker: Hardware/software co-evaluation

(2]
(3]

(4]
(5]
(6]

(7]
(8]
(9]

[10]

[11]
[12]
[13]
[14]

[15]

for large-scale i/o workload reconstruction,” in /ISWC. IEEE,
2017.

[16] Q. Li et al., “Improving ldpc performance via asymmetric
sensing level placement on flash memory,” in ASP-DAC. IEEE,
2017.

[17] Y. Hu et al., “Performance impact and interplay of SSD par-

allelism through advanced commands, allocation strategy and
data granularity,” in /CS. ACM Press, 2011.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:36:44 UTC from |IEEE Xplore. Restrictions apply.



