
Layer RBER Variation Aware Read Performance
Optimization for 3D Flash Memories

Shiqiang Nie
Xi’an Jiaotong University

Xi’an, China

nsqiang@gmail.com

Youtao Zhang
University of Pittsburgh

Pittsburgh, USA

zhangyt@cs.pitt.edu

Weiguo Wu
Xi’an Jiaotong University

Xi’an, China

wgwu@xjtu.edu.cn

Jun Yang
University of Pittsburgh

Pittsburgh, USA

juy9@pitt.edu

Abstract—3D NAND flash enables the construction of large
capacity Solid-State Drives (SSDs) for modern computer systems.
While effectively reducing per bit cost, 3D NAND flash exhibits
non-negligible process variations and thus RBER (raw bit error
rate) difference across layers, which leads to sub-optimal read
performance for applications with either small or large I/O
requests. In this paper, we propose LRR, Layer RBER variation
aware Read optimization schemes, to address the challenge.
LRR consists of two schemes — LRR subpage read scheduling
(SRS) and LRR fullpage allocation (FPA). SRS groups small
read requests from the layers with similar RBERs to reduce
the average read latency of subpage sized read requests. FPA
distributes the data of a large write to multiple layers, which
improves the read latency when reading from layers with large
RBERs. Our experimental results show that our proposed scheme
LRR reduces 46% read latency on average over the state-of-the-
art.

Index Terms—3D NAND flash, read performance, unbalanced
bit error rate, parallel sub-page read operation

I. INTRODUCTION

3D NAND flash is one of the most promising technologies

to increase the package density and meet the increasing de-

mands for large capacity storage of modern computer systems.

While it effectively reduces per bit manufacturing cost, 3D

NAND flash exhibits many characteristics that are different

from planar flash. 3D NAND flash module often uses smaller

number of chips, resulting in reduced chip level parallelism.

3D NAND flash exhibits non-negligible process variations and

thus RBER (raw bit error rate) difference across layers. In

addition, 3D NAND flash often uses 16KB flash page while

the file system may still use 4KB logic page size. In this paper,

we use subpage and fullpage to refer to 4KB and 16KB pages,

respectively.

To address reduced parallelism and page size disparity

between logic and device pages, Kang et al. proposed to

merge subpage write requests to fullpage write requests in

the write buffer to reduce the number of NAND writes and

read-modify-write (RMW) operations for improving the write

performance [1]. Kim et al. utilized the subpage programming

This work is supported in part by the National Key Research and De-
velopment Program of China under Grant 2016YFB1000303, in part by the
National Science Foundation of China under Grant 61972311, in part by NSF
under Grant CCF-1718080, CCF-1910413, CCF-1725657 and CCF-1617071.
The work of S. Nie is supported by the Chinese Scholarship Council under
Grant 201806280273.

(SP) technique to mitigate writing FTL metadata for prolonged

chip lifetime [2]. Kim et al. proposed erase-free subpage

programming (ESP) to enable programming the same page

multiple times for small writes, which reduces the overhead

of garbage collection [3]. Liu et al. proposed SOML read,

which groups subpage sized read requests from different

layers to improve the operation parallelism and thus the read

performance [4].
Given current flash chips widely adopt LDPC ECC (Error

Correction Code) [5], larger RBER leads to more read retries

and thus significantly longer read latency. For example, recent

studies showed that, with the same retention time and P/E

cycles, a page from the most reliable layer may succeed in

one read retry while the one from the least reliable layer

may need six or seven retries. To address this issue, Du

et al. proposed multi-granularity LDPC to adapt to speed

difference of each layer for read performance improvement

[6]. Shim et al. proposed to utilize process similarity for both

read and write performance improvement by retrenching the

incremental step pulse programming and keeping track of the

read level.
Unfortunately, the layer-to-layer RBER variation remains a

major concern for 3D NAND flash. In particular, the requests

from modern applications exhibit a wide mix of small (sub-

page size) and large (fullpage or bigger sized) I/O requests.

Existing schemes lack the ability to improve both types of

requests. In this paper, we take proactive designs to improve

read performance for both types of requests. We summarize

our contributions as follows.

• We propose subpage read scheduling (SRS) scheme that

exploits layer RBER variation to improve the read per-

formance of small I/O requests. SRS groups small read

requests from the layers with similar RBERs to reduce

the average read latency of subpage sized read requests.

• We propose fullpage allocation (FPA) scheme that ex-

ploits layer RBER variation to improve the read perfor-

mance of large I/O requests. FPA distributes the subpages

of a fullpage write to different layers, which improves the

read latency when reading from layers with large RBERs.

• We evaluate the proposed schemes with widely adopted

workload traces. Our experimental results show that, on

average, our scheme reduces 46% read latency over the

state-of-the-art.

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:36:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The structure of 3D NAND flash and parallel sub-page read circuit.

In the rest of the paper, Section II discusses the 3D

NAND flash background and motivates our design. Section

III presents the detailed scheme. Section IV describes the

experiment methodology and analyzes the results. Section V

concludes the paper.

II. BACKGROUND AND MOTIVATION
In this section, we breifly discuss the 3D NAND flash

architecture and the parallel sub-page read operation. We then

motivate our designs with RBER variations across different

layers in 3D NAND flash.

A. 3D NAND flash Organization and SOML Read

3D NAND flash boosts storage capacity by stacking mem-

ory cells vertically. There are several cell types. In this paper,

we adopt Charge-Trap (CT) 3D NAND flash. As shown in

Figure 1, a 3D NAND flash chip consists of multiple layers

with each layer consists of multiple block segments, and each

block segment consists of multiple wordlines (WLs). One

wordline, also referred to as a page, is at least 16KB in 3D

NAND flash. The aligned block segments from all layers form

a block. A read operation reads one flash page, i.e., 16KB,

from one block. To simplify discussion, we use subpage and

fullpage to refer to 4KB and 16KB pages, respectively. A

fullpage consists of four subpages.

Given modern OSes widely adopt 4KB logic page size,

the I/O requests from the file system exhibit a mix of small

(4KB or 8KB) and large (16KB or bigger) requests. Liu et al.
found that the majority requests of many workloads are small

requests [4] while the widely used sever traces from Microsoft

[7] contain many large requests. Based on the observation

that reading 16KB flash pages to service small I/O requests is

unnecessary and tends to result in low throughput, Liu et al.
proposed SOML (single-operation-parallel-read) to enable the

parallel read of multiple subpages.

In Figure 1, each red box represents a page (fullpage) while

each blue box represent a subpage. Instead of reading one

fullpage, with simple hardware enhancement, SOML reads

four subpages from different blocks and/or from different

layers. Due to hardware constraints, the subpages forming

one SOML read should not share either the same bitlines or

the block decoders. SOML speeds up read performance by

providing subpage level parallelism.

B. RBER and LDPC ECC

3D NAND flash exhibits non-negligible layer-to-layer pro-

cessing variations. Figure 2(a) illustrates the normalized

RBERs (raw bit error rates) for a 48-layer flash chip [8]. From

the figure, the variations vary with P/E cycles and retention

time. For flash pages at 2K P/E cycles and one year retention,

the RBER of the worst layer is about 2× that of the best layer.

Fig. 2. Variation of RBER across layers and the LDPC read level of three
typical layers with increasing retention time[6, 8]

To ensure data reliability, FTL (Flash Translation Layer)

often allocates part of Out Of Band (OOB) space as ECC

area. Modern flash chips widely adopt LDPC ECC (error

correction code) to improve data reliability. The LDPC ECC

can be applied at different granularity, e.g., 16kB fullpage,

4KB subpage, or 2KB chunk. In this paper, we assume each

4KB subpage has an individual LDPC ECC (as it is widely

adopted in mainstream SSD chips [5]).

LDPC reads the flash page one or multiple times (up to

seven times) if there are errors in the page. Each read is

referred to as one retry. The more there are errors, the more

retries the read operation needs. Thus, reading pages from

layers with larger RBERs tends to suffer from more read retires

and thus longer read latency. Figure 2(b) illustrates a snapshot

of three layers (from [6]). While layer A can always finish read

operation in one retry, layers B and C need more retries. With

15-day retention time, layer C needs six retries while layer B

needs four. To simplify the discussion, the pages residing in

layers with small and large RBERs are referred to as strong
and weak pages, respectively.

In this paper, we focus on the large RBER variations and

propose optimization schemes to improve the read perfor-

mance for applications with either large or small I/O requests.

C. Motivation

We study the impact of layer RBER variation on read re-

quests from popular workloads. We have two key observations

as follows.

(1) RBER variation introduces intra-operation idleness.

Given reading flash pages with larger RBER needs more retries

and thus suffers from longer read latency, reading subpages

from different layers simultaneously cannot finish at the same

time. The subpage read that finishes early has to wait for the

others. For example, assume we have four subpage requests

A, B, C, and D. As shown in Figure 3, A and B are strong

subpages while C and D are weak subpages. Assume SOML

can read two subpages simultaneously. If we group A and C,

then A shall finish early so that while A finishes, it has to wait

for C. While waiting, no other requests can be scheduled to

start. Similarly, B shall wait if we schedule B and D together.

As a comparison, if we schedule A and B together, and

C and D together, the subpage reads within one SOML read

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:36:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Layer RBER aware scheduling is beneficial.

can finish around the same time such that the intra-operation

wait time can be minimized, which improves the overall read

performance, as shown in Figure 3.

(2) RBER variation introduces large read latency deviations.

While different layers exhibit significant RBER difference,

existing FTL allocates the same ECC space to subpages at

different layers. For one subpage (4KB) that has an individual

LDPC ECC, the larger the ECC space is, the stronger capabil-

ity the ECC has. In particular, at a fixed RBER, the one that

has larger ECC space needs fewer read retries. For example,

each of two subpages has x errors, the one that has y-byte

ECC cannot correct it after one read retry while the other that

has z-byte (z>y) has stronger error correction capability and

thus can correct all the errors with one read retry. The former

has to go through more retries while the latter can finish the

operation. This observation advocates the allocation large ECC

space to protect weak pages. However, given OOB space is a

precious resource, it is not always preferable to allocate more

space as it restricts its use for other optimizations.

On the other hand, the strong pages accumulate few errors,

for example, Figure 2(b) shows that the page from the best

layer needs just one retry to finish the read operation, indicat-

ing the under-utilization of its allocated ECC space. A recent

study [9] shows that the required ECC sizes for different pages

can differ by 1.3× if providing the same correction capability.

Intuitively, it would be beneficial if we allocate a small portion

of the ECC space from strong subpages to weak subpages.

That is, if we have a strong subpage A and a weak subpage

B. We may shrink A’s ECC space such that B’s ECC spread in

the OOB space of both pages. Given B has larger ECC space,

it has stronger error correction capability and thus reduces the

number of read retries.

However, such an allocation tends to increase the number

of subpage reads and writes. In particular, reading and wrting

B needs to access the OOB space of both pages, which

may offset the benefits that we gain from the reduction

of read retries. The problem, referred to as read and write

amplification, has to be properly handled at runtime.

Previous studies on planar SSD have explored the RBER

difference across different bits in one MLC or TLC cell.

The bit interleaving scheme improve the read performance

at average via interleaving the data from each logic page

into the different types of the physical page, which amortizes

the RBERs at the page level[5, 10–12]. Unfortunately, it

introduces large read amplification; the overlong ECCs could

increase the lifetime and reliability as well as read performance

via expanding the capacity of ECC beyond the OOB. However,

TABLE I
STATISTICS OF WORKLOADS.

trace
r/w
ratio

avg.
read

avg.
write

size
<=4k

size
<=8k

size
<=16k

size
>16k

24HRS8 0.26 85.78 12.41 0.20 0.42 0.16 0.23
BS78 0.90 4.53 35.27 0.96 0.01 0.01 0.02
casa2 0.00 5.42 4.00 1.00 0.00 0.00 0.00
HM 1 0.97 18.15 22.86 0.00 0.01 0.87 0.12
mds 1 0.93 60.09 13.84 0.10 0.01 0.01 0.89
stg 1 0.64 59.54 7.88 0.32 0.04 0.02 0.62
web 1 0.54 45.90 9.22 0.48 0.05 0.03 0.45
webr9 0.00 4.00 4.00 1.00 0.00 0.00 0.00
webu8 0.11 5.31 4.00 0.99 0.00 0.00 0.00
USR 0 0.59 47.42 13.55 0.04 0.47 0.10 0.39
PROJ 1 0.91 43.43 22.23 0.00 0.34 0.04 0.62
PROJ 3 0.90 15.03 30.14 0.00 0.81 0.04 0.16
HM 0 0.25 11.61 11.21 0.25 0.55 0.07 0.12
RSRCH 0.10 15.70 12.70 0.05 0.65 0.13 0.17
PRN 0 0.11 26.55 13.93 0.32 0.42 0.04 0.21
STG 0 0.23 33.56 12.69 0.11 0.55 0.10 0.24
WDEV 0 0.20 16.57 12.11 0.06 0.68 0.07 0.18
PRN 1 0.69 18.32 13.78 0.00 0.64 0.16 0.20

it shrinks the available capacity of SSD[12–14].

In summary, the above observations suggest that we devise

novel techniques to exploit large layer RBER variations to

improve read performance on 3D NAND flash.

III. THE DESIGN

Given the default logic page size is 4KB in modern OSes,

the I/O requests from modern applications exhibit a wide

mix of different lengths. Table I characterizes the widely

adopted workloads from Microsoft research Cambridge and

OpenStor[7, 15]. From the table, while some applications show

dominant small I/O requests, many others have a large portion

of requests that are 16KB and above. Some applications have

majority 8KB I/O requests. Thus, it is important to optimize

the I/O requests at different granularities.

An overview. In this paper, we propose the layer RBER

variation aware (LRR) scheme to optimize the read perfor-

mance on 3D NAND flash SSDs. It consists of the following

two designs to address the problems in the key observations.

• LRR subpage read scheduling (SRS). LRR-SRS improves

the read performance of small I/O requests. It groups

small read requests from the layers with similar RBERs

to reduce the average read latency of subpage sized read

requests.

• LRR fullpage allocation (FPA). LRR-FPA improves the

read performance of large I/O requests. It distributes the

subpages of a fullpage to different layers such that the

ECC space from strong subpages can be allocated to weak

subpages for improved error correction capability.

A. The LRR Subpage Read Scheduling Scheme

The LRR subpage read scheduling scheme is designed

to enhance SOML read [4] when scheduling subpage sized

read requests. SOML adopts a set of scheduling rules when

composing a SOML read with subpages from different layers,

e.g., no two subpages can share the same bitlines. LRR-SRS

optimizes the scheduling with a set of new rules.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:36:44 UTC from IEEE Xplore. Restrictions apply.

Rule 1: Prioritize requests for subpages from layers with the
same/similar RBERs. Similar as that in SOML scheduling,

we place all I/O requests in one scheduling queue for each

channel. To compose a SOML read, we mark the old request

as the main request and satisfy its subpage demand first.

We then scan the scheduling queue to choose the subpage

requests that can be combined with the main request. In

choosing the other requests, we prioritize these that ask for

subpages from layers with same or similar expected RBERs.
For example, Figure 4 shows a set of subpage sized requests

A, B, C, and D. A is the oldest request. Assume B, C, and

D ask for the subpages that share the bitlines and thus they

cannot be scheduled simultaneously. While it is possible to

construct a SOML read from A and one of B, C, and D, we

prefer to choose B as A and B are from the same layer such

that they share the similar RBER. We would expect the two

subpages finish at about the same time.
Rule 2: Preemptive read retries. It takes a long latency to read

weak subpages as reading such subpages takes many read

retries. After each read retry, FTL sets the control register in

the flash chip [16] such that each cell is sensed with increased

sensing levels. For example, a flash read may use 1, 2, and

3 sensing voltages to differentiate the two neighboring states

saved in one flash cell. Given each read retry is controlled

individually, we can preempt one SOML read in the middle,

construct a new SOML read with the unfinished subpage

requests and new subpage requests, and schedule the new

SOML read with increased sensing levels.
We use the example #2 in Figure 4 to illustrate how it

works. Assume we need to schedule three I/O requests A,

B, and C. While A and B read two strong subpages (that

can finish in one read retry), C reads a weak subpage (that

needs 3 read retries). Assume the subpages requested by A
and B conflict and thus cannot be scheduled simultaneously.

When we schedule A and C in the first SOML read, A can

finish in one read retry but C cannot. Instead of finishing C
in three read retries, we preempt the SOML read, and return

the subpage that A requested. We then construct a new SOML

read with B and C, and schedule the new SOML read starting

with 2 sensing voltages to differentiate every two neighboring

states. We can then finish B in the next read retry.
Comparing to the LRR oblivious scheduling, we read B

with more than necessary sensing levels, and thus slow down

its sensing time. However, by combining B with C, we

eliminate the long queuing delay that B would otherwise have.
B. The LRR Fullpage Allocation Scheme

While LRR-SRS helps to improve the read performance of

subpage sized requests, many requests ask for two or more

subpages. As shown in Table I, for some applications, e.g.,

HM-1, all their I/O requests are large requests (i.e., 16KB

or more). Given the page size is 16KB in 3D NAND flash,

a natural page allocation strategy would allocate 16KB logic

data to a flash page (16KB). If such a page resides in a layer

with large RBER, the subsequent read requests to this page

tend to suffer from long read latency as it takes more read

retries.

Fig. 4. An example of LRR Subpage Read Scheduling Scheme.

Fig. 5. An example of the LRR Fullpage Allocation Scheme.

To exploit layer RBER variation across different layers,

we propose LRR fullpage allocation scheme that works as

follows. Given 16KB user data in an I/O request, we split

the data to four subpages, and program the four subpages

(L1, L2, L3, L4) into four layers that have different RBERs.

Assume subpages P1, P2, P3, and P4 are from four layers with

increasing RBERs, i.e., P1 is the strongest subpage while P4 is

the weakest subpage, as shown in Fig.5. These four subpages

do not have hardware conflicts and thus can be scheduled in

one SOML read. Our proposed LRR-FPA scheme decides to

allocate L1 and L2 to P2 and P3, respectively; and L3 and L4

to P1 and P4, respectively. To achieve layer RBER variation

awareness, we shrink the ECC space of P1, and allocate the

saved space to increase the ECC capability of P4. That is,

P4 has a larger ECC space that has stronger error correction

capability. We leave the ECC space for P2 and P3 untouched.

The existing work shows that, two pages with 2.7 times RBER

difference (i.e., the RBER of both two pages are 0.0078 and

0.0028 respectively) achieve the same decoding efficiency by

sharing about 225-bits ECC space from the strong page to

the weak page (i.e., the default ECC is 512B per 4KB user

data), leading to reduced read latency at average [9]. This

ECC rearrangement is proposed as a proof-of-concept. We will

devise more strategies in the future studies.

When we have a large I/O request that need to fetch the

16KB data, we construct a SOML read and read all subpages.

Given P1 has small RBERs, e.g., it always needs one retry

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:36:44 UTC from IEEE Xplore. Restrictions apply.

to finish the operation [6]; and P2 and P3’s ECC space is not

touched, we assume they can return L1, L2, and L3 in one read

retry. For P4, its RBER is high, a normal sized ECC would

need, e.g., three read retries. However, by expanding P4’s ECC

to P1 OOB, we achieve a stronger ECC and thus may finish

the reading also in one read retry. In this way, we strive to

achieve improved read performance for large I/O requests.

However, splitting a fullpage to four subpages may face two

issues as follows.

1) Addressing: One issue with LRR-FPA is that enforcing

addressing mapping at subpage level could lead to significant

increase of FTL mapping table. Given that the table is already

large for TeraByte SSDs, we exploit the following design to

minimize the size increase of the mapping table. We partition

the data from the user application to 16KB size pieces — each

16KB piece is referred to as a fullpage request; those whose

sizes are smaller than 16KB before or after partitioning are

referred to as small requests. We divide the flash blocks to

two groups — those that are for handling fullpage requests

and those for small requests. For small requests, we create the

mapping the same way as that in the baseline.

For fullpage requests, we allocate them to blocks reserved

for fullpage writes. For a 48-layer 3D NAND flash, we divide

the layers to four groups and have blocks reserved in all

groups. For discussion purpose, we assume layers 12-23 are

the strong layers and layers 36-47 are the weak layers; layers

0-11 and 24-35 are two other groups. The ECC of subpages on

layer 36-47 expands to subpages on layers 12-23, respectively.

When we write fullpages, the first fullpage chooses sub-

pages from layers 0, 12, 24, 36; while the second fullpage

chooses subpages from layers 1, 13, 25, 37. Similar as that we

discuss in the example, the logical four subpages L1, L2, L3,

L4 are written to layers 0, 24, 12, 36, respectively. The reason

that we write L3 instead of L1 to layer 0 is that, we observe

that the applications have a large number of read requests that

ask for 8KB data. Such requests can be naturally supported

by reading the strong and weak layers simultaneously.

2) Read Amplification and read performance degradation:
Another issue with LRR-FPA is that we may have an I/O

request that asks for one weak or strong subpage only. For

example, if we request L4, we would still need to read P1

and P4 as part of P4’s ECC is saved in P1’s OOB space.

This leads to read amplification; if we request L3, since we

shrink the P1’s ECC capacity, the read performance may

degrade sometimes for additional read-retries. However, the

impact on read performance can also be neglected according

to the experiment result in the experimentation section. That’s

because, assuming any one of these subpages could be read

equiprobably, only about 6% possibility that the L3 is selected

alone, leading to read performance degradation, while 94%

possibility that the SSD benefit from this design. We study

the workloads and summarize our findings in Figure 6. In

the experiment, we collect the read amplification if we adopt

LRR-FPA allocation scheme. Figure 6 presents the percentage

of reads that need to read one more page. From the figure,

we observe that, for most applications, the read amplification

Fig. 6. The read amplification across these workloads.

is modest, i.e., less than 15%, while the read amplification of

other schemes range from 1 to 1.7[12].

TABLE II
SSD PARAMETERS.

48-layer 3D NAND chip parameters
(Channel, Chip, Die) (4, 8, 8)
(Plane, Block, Page) (8,1888,1792)
(Page size, Cell density) (16KB, TLC)
Latency write 900us, Erase 10ms
Latency read(90us,120us,180us)
Capacity per page 16KB
Smallest subpage read size 4KB
Max parallel subpage reads 4

IV. EXPERIMENTAL EVALUATION

A. Experimental Setting

To evaluate the effectiveness of the proposed scheme, we

implemented both the proposed scheme and SOML scheme

based on SSDsim, which has been validated against hardware

platform[17]. In our experiments, the configure parameters

of SSD are adopted from [4]. Table II provides the detailed

configuration of the 3D NAND flash-based SSD. We used the

enterprise servers traces from Microsoft research Cambridge

and OpenStor[7, 15] to evaluate the proposed scheme. These

workloads are widely used in previous studies. The details of

these workloads are given in Table I.

In this section, we compare the following schemes.

• Baseline — We chose the state-of-the-art SOML

scheme as the baseline. It support parallel read of multiple

subpages from different layers.

• SRS — This scheme implements the LRR subpage read

scheduling scheme.

• SRS+FPA — This scheme implements the LRR fullpage

allocation scheme on top of SRS.

B. Performance Comparison
Fig. 7 compares the performance among different schemes.

The results are normalized to baseline. From the figure #a,

SRS and SRS+FPA achieve large performance improvement

over the baseline, i.e., we achieved 10% to 73% improvements.

For workloads whose majority I/O requests are small requests,

SRS and SRS+FPA have similar improvements. For workloads

whose majority I/O requests are large ones, SRS+FPA does

better. For workloads whose majority read and write I/O

requests are small requests, e.g., PROJ 1 and USR 0, SRS
shows small or negative improvements over the baseline.

The negative results are due to complex request reordering

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:36:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Various comparisons between SOML, SRS and SRS+FPA.

algorithm. By adopting fullpage allocation optimization, we

achieve larger flexibility by mitigating the unbalance read

latency across different layers. Fig.7 #b compares the write

performance between the proposed scheme and the baseline.

Although the write performance does not benefit from the

proposed scheme directly, the write latency is also reduced

significantly. This is because, in SSDs, the writes typically

have lower priority than the reads. As a result, the writes need

to wait for the completion of the queued reads. Consequently,

shortening the overall read latency shortens the write latency

as well. Figure7 #c shows the throughout comparison among

these three schemes. SRS+FPA achieves higher throughout

than the baseline. Figure7 #d also shows that the read latency

distribution of SRS and SRS+FPA are much smaller than the

baseline for the first 5000 read requests of USR 0.
C. Sensitivity Analysis

Figure 7 shows the percentage of fullpage read optimization

comparison with different loads and the lifetime overhead

across several workloads. We change the interval time of

requests to explore how the loads impact on the proposed

scheme. In particular, we increase the interval time between

any neighboring requests by 10 times and 5 times. Compared

with the original one, the percentage of fullpage write requests,

which could utilize LRR-FPA, does not fluctuate significantly.

It shows the robust stability of the proposed scheme; then

we compare the write amplification overhead of the different

loads in terms of average page usage. It is observed that our

proposed scheme induces additional page usage. However,

since the number of generated page usage is minimal, the

impact on worsening reliability is also slight. The evaluated

results show that there are only 4% additional page usage on

average compared with the baseline.
V. CONCLUSION

In this paper, we propose two schemes that exploit layer

RBER variations to improve read performance for 3D NAND

flash. The two proposed schemes help to address the read

performance degradation from workloads with wide ranges of

different I/O requests. Our experimental results show that read

performance can be improved by 46% compared to the state-

of-the-art. REFERENCES

[1] M. Kang et al., “Subpage-aware solid state drive for improving
lifetime and performance,” TC, vol. 67, no. 10, 2018.

[2] J.-H. Kim et al., “Subpage programming for extending the
lifetime of nand flash memory,” in DATE. IEEE, 2015.

[3] M. Kim et al., “Improving performance and lifetime of large-
page nand storages using erase-free subpage programming,” in
DAC. IEEE, 2017.

[4] C.-Y. Liu et al., “Soml read: Rethinking the read operation
granularity of 3d nand ssds,” in ASPLOS. ACM, 2019.

[5] K. Zhao et al., “Ldpc-in-ssd: Making advanced error correction
codes work effectively in solid state drives,” in FAST, 2013.

[6] Y. Du et al., “Adapting layer rbers variations of 3d flash
memories via multi-granularity progressive ldpc reading,” in
DAC. ACM, 2019.

[7] N. Dushyanth et al., “Write off-loading: Practical power man-
agement for enterprise storage,” TOS, vol. 4, no. 3, 2008.

[8] Y. Shim et al., “Exploiting process similarity of 3d flash
memory for high performance ssds,” in Micro. ACM, 2019.

[9] C. Zambelli et al., “Characterization of tlc 3d-nand flash en-
durance through machine learning for ldpc code rate optimiza-
tion,” in IMW. IEEE, 2017.

[10] T. Nakamura et al., “AEP-LDPC ECC with error dispersion
coding for burst error reduction of 2d and 3d NAND flash
memories,” in IMW. IEEE, may 2017.

[11] S. Nie et al., “DIR: Dynamic request interleaving for improving
the read performance of aged SSDs,” in NVMSA. IEEE, 2019.

[12] Y. Zhou et al., “Score: A novel scheme to efficiently cache
overlong eccs in nand flash memory,” TACO, 2018.

[13] S. Jung et al., “In-page management of error correction code
for mlc flash storages,” in MWSCAS. IEEE, 2011.

[14] S. Wang et al., “Lifetime adaptive ecc in nand flash page
management,” in DATE. IEEE, 2017.

[15] M. Kwon et al., “Tracetracker: Hardware/software co-evaluation
for large-scale i/o workload reconstruction,” in IISWC. IEEE,
2017.

[16] Q. Li et al., “Improving ldpc performance via asymmetric
sensing level placement on flash memory,” in ASP-DAC. IEEE,
2017.

[17] Y. Hu et al., “Performance impact and interplay of SSD par-
allelism through advanced commands, allocation strategy and
data granularity,” in ICS. ACM Press, 2011.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:36:44 UTC from IEEE Xplore. Restrictions apply.

