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Abstract—Resistive memory (ReRAM) has emerged as a
promising nonvolatile memory technology that may replace
a significant portion of DRAM in future computer systems.
ReRAM has many advantages, such as high density, low standby
power, and good scalability. When adopting crossbar architec-
ture, ReRAM cell can achieve the smallest theoretical size in
fabrication, which is ideal for constructing dense memory with
large capacity. However, crossbar cell structure suffers from a
variety of reliability issues, which come from large voltage drops
on long wires. To ensure operation reliability, ReRAM writes con-
servatively use the worst-case access latency of all cells in ReRAM
arrays, which leads to significant performance degradation and
dynamic energy waste. In this article, we study the correlation
between the ReRAM cell switching latency and the number of
cells in low-resistance state (LRS) along bitlines, and propose
to dynamically speed up write operations based on bitline data
patterns, i.e., the number of LRS cells presented in bitlines. We
leverage the intrinsic in-memory processing capability of ReRAM
crossbar and propose a low-overhead runtime profiler that effec-
tively tracks the data patterns in different bitlines. To achieve
further write latency reduction, we employ data compression and
row address dependent memory data layout to reduce the num-
bers of LRS cells on bitlines. Moreover, we further present two
optimization techniques, i.e., selective profiling and fine-grained
profiling, to mitigate energy overhead brought by bitline data pat-
terns tracking. The experimental results show that, on average,
our design improves system performance by 20.5% and 14.2%,
and reduces memory dynamic energy by 20.3% and 12.6%, com-
pared to the baseline and the state-of-the-art crossbar design,
respectively.

Index Terms—Crossbar array, data pattern, resistive memory
(ReRAM), write performance.
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I. INTRODUCTION

DUE TO increasing demand for large capacity memory
in modern data-intensive applications, DRAM, the de

facto memory technology for constructing main memory, faces
severe high leakage power, short refreshing interval, low den-
sity and yield issues [2]. Recent studies have proposed to
construct future large capacity main memory using emerg-
ing nonvolatile memory (NVM) technologies, e.g., phase
change memory (PCM) [3]–[7], spin transfer torque mag-
netic RAM (STT-MRAM) [8]–[11], and resistive memory
(ReRAM) [12]–[23]. These memory technologies have good
scalability, high density, almost zero low leakage power as
well as nonvolatility characteristics.

Among different NVM technologies, ReRAM has become
one of the most promising candidates. ReRAM explores
the different resistance states of vertically stacked metal
and oxide layers to store information. Comparing to other
NVM technologies, ReRAM has better write performance than
PCM [24], [25] and better density and scalability than STT-
MRAM [9], [26], [27]. When adopting crossbar architecture,
ReRAM can achieve the smallest 4F2 planar cell size [13].

However, ReRAM crossbars suffer from large sneaky
currents [13], [17], [28]–[30]. When performing ReRAM
accesses, in particular, RESET operations, we cannot ignore
the leakage currents flowing through half-selected cells on the
selected wordline and bitlines. This is because crossbar arrays,
even after adopting diode selectors, cannot completely isolate
the to-be-written cells from other cells on the selected wordline
and bitlines. The large sneak currents not only reduce energy
efficiency but also cause large IR drop on long wires [31], lead-
ing to degraded performance and operation reliability. With
fast technology scaling, the IR drop issue tends to worsen
due to increased wire resistance and array sizes. To ensure
operation reliability, ReRAM write operations conservatively
use the worst-case access latency of all cells in ReRAM
arrays, which leads to significant performance degradation and
dynamic energy waste.

In this article, we focus on mitigating the performance
degradation from IR drop. We summarize our contributions
as follows.

1) We study the correlation between the RESET latency
of ReRAM row and the number of the cells in low-
resistance state (LRS) on selected bitlines. We propose
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Fig. 1. ReRAM basics. (a) Cell structure. (b) Three typical ReRAM array structures. (c) Sneak current issue in ReRAM crossbar array.

to dynamically speed up the RESET operations when
there are small numbers of LRS cells. We achieve
further performance improvement from exploiting data
compression and row address dependent data layout.

2) We propose a novel profiling technique to dynamically
track the number of LRS cells along different bitlines in
the crossbar. By leveraging the in-memory processing
capability of ReRAM crossbar, we periodically detect
the number of LRS cells in bitlines using current aggre-
gation, an operation having fast speed (comparable to
READ operation) and low hardware and performance
overheads.

3) We propose two profiling optimization techniques, i.e.,
selective profiling and fine-grained profiling, to mitigate
the energy overhead during profiling. They choose a sub-
set of mats or wordlines to profile so that fewer cells are
activated during a profiling operation.

4) We evaluate the proposed design and compare it to
the state-of-the-art. The experimental results reveal that,
our design improves system performance by 20.5%
and 14.2%, and reduces memory dynamic energy by
20.3% and 12.6%, compared to the baseline and the
state-of-the-art crossbar designs, respectively.

In the rest of this article, we introduce the ReRAM
basics and motivations in Section II. We elaborate the design
details in Section III. In Section IV, we present two profil-
ing optimization techniques, including selective profiling and
fine-grained profiling. We present the experimental setup in
Section V and discuss the evaluation results in Section VI. We
discuss additional related work in Section VII and conclude
this article in Section VIII.

II. BACKGROUND AND MOTIVATION

In this section, we discuss ReRAM basics and motivate our
design based on the observation of the strong correlation of
the RESET latency and the number of half-selected LRS cells.

A. ReRAM Basics

ReRAM is a promising NVM technology that stores data
using cell resistance. As shown in Fig. 1(a), an ReRAM

cell is composed of two metal layers on the top and bot-
tom, which are separated by metal oxide layer. Prior studies
have shown that a variety of metal oxide materials, such as
HfOx-based or TiOx-based materials, which have different
scalability, endurance, and energy consumption characteristics,
can be used to construct ReRAM cell arrays.

An ReRAM cell has two legal resistance states: an LRS
to represent logic “1” and a high-resistance state (HRS) to
represent logical “0.” To program an ReRAM cell (i.e., to
switch resistance state from one to the other), a proper voltage
with required pulse width and magnitude has to be applied
across the cell. The RESET operation switches the resistance
state from LRS to HRS while the SET operation switches from
HRS to LRS.

B. ReRAM Crossbar Structure

Fig. 1(b) presents three typical ReRAM array structures.
ReRAM array can be fabricated as a grid of 1T1R cells, which
is similar to conventional DRAM architecture where each cell
is accessed through a transistor. 1T1R cell array has large cell
size. ReRAM array can also be organized as a crossbar, which
achieves the smallest 4F2 planar cell size. ReRAM crossbar
has low fabrication cost and better scalability and thus is ideal
to be architected as DRAM replacement for building large
capacity memory

ReRAM crossbars, depending on if there is a diode access
selector, can be categorized as 0T1R or 1D1R structures.
Adopting selector helps to reduce sneak currents in the cross-
bar, which enables the fabrication of large cell arrays. In this
article, we choose 1D1R crossbar as our baseline.

C. Motivation

We next study the sneak currents in the crossbar, and
analyze its impact on ReRAM RESET latency.

For discussion purpose, we assume a cacheline has 64 B
and its 512 bits are saved in 64 mats (subarrays) with each
subarray containing 8 bits, the same as that in [13]. These
mats spread across eight chips in one rank. To perform a
RESET operation in an ReRAM crossbar, the write driver
selects one wordline and up to eight bitlines. The selected
wordline is applied with VRESET voltage while each selected

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:50:07 UTC from IEEE Xplore.  Restrictions apply. 



WEN et al.: EXPLOITING IN-MEMORY DATA PATTERNS FOR PERFORMANCE IMPROVEMENT ON CROSSBAR ReRAM 2349

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. (a)–(h) Variations of RESET latency and voltage drop at different LRS cell percentages in bitlines when accessing to different row address in ReRAM
array. The Row Address 0 is the farthest row from driver, and Row Address 511 is the nearest row to the driver.

bitline is set to 0 V. All other bitlines and wordlines are applied
with VRESET/2. Performing a SET operation is similar but uses
opposite current direction. During the write operation, the cells
in each subarray can be categorized into three types, as shown
in Fig. 1(c).

1) Selected Cells: They are the cells to be SET or RESET.
A selected cell stays on the selected wordline and one
of the selected bitlines as well. Ideally they are under
the maximal voltage stress, i.e., VRESET.

2) Half-Selected Cells: They are the cells on either the
selected wordline or the selected bitlines, but not both.
Ideally they are under half of the maximal voltage stress,
i.e., VRESET/2.

3) Not-Selected Cells: They are the rest of the cells in the
crossbar. Ideally they have no voltage stress.

A cacheline write operation consists of two phases: 1) a
RESET phase to write all 0 s and 2) a SET phase to write
all 1 s. We adopt DSGB to improve write performance [13]
and flip-n-write to only write modified cells [32]. Based on
our experiments as well as prior studies [13], [14], [17],
SET operation takes much shorter time than RESET oper-
ation, making it less sensitive to voltage stress degradation.
Therefore, we focus on long latency RESET operations in
this article.

1) IR Drop Issue: Studies have shown that ReRAM cross-
bar, even adopting diode selectors, has the currents flowing
through all cells—while the sneaky currents flowing through
not-selected cells are negligible, those flowing through half-
selected cells are not. The sneak currents introduce large
voltage drop along the wordline and bitlines, referred to as IR
drop in the crossbar. Large IR drop not only hurts the energy
efficiency but also degrades the performances and write relia-
bility. A recent study has shown that, due to IR drop, it takes
longer time to RESET the ReRAM rows that are far away
from the write driver [17].

With fast technology scaling, future ReRAM chips are
expected to build upon large ReRAM mats, i.e., crossbars.
Unfortunately, large crossbars have large wire resistance,
which worsens the IR drop issue.

2) Correlation Between RESET Latency and Number of
LRS Cells: The relationship between cell RESET switching
time and IR drop on the target cell can be modeled using 1,
as shown in recent studies [13], [33]

t × ekVd = C (1)

where t denotes the cell RESET switching time; Vd denotes the
voltage drop across the targeted cell; and C and k are the exper-
imental fittings constants extracted from prior studies. From
the equation, the cell switching time is highly sensitive, i.e.,
exponentially inverse correlation, to the voltage drop. A voltage
drop of 0.4 V results in 10× RESET latency increase [33].

During RESET operation, half-selected cells do not change
state and exhibit as resistive devices. Given the same voltage
stress, a half-selected cell in LRS would have larger sneak
current than the one in HRS.

Given one selected wordline and one selected bitline, we
study the correlation among IR drop, the number of LRS
cells, and RESET latency. Fig. 2 summarizes the correlation
for rows with different row addresses—Row 0 and Row 511
are the farthest and the closest rows to the write driver, respec-
tively. The y-axis shows the RESET latency (left) and IR drop
(right) while the x-axis shows the percentage of LRS cells
in the selected bitline.1 We focus on bitline LRS cells and
assume the worst-case for the wordline in this article. The
impact from wordline tends to be smaller due to the adoption
of DSGB [13] and each subarray saving 8 bits from one cache-
line. We study the RESET latency in this article, a similar
observation for READ was reported in [34]. In the experi-
ments, we adopted the Verilog-A model from [36] to build and
simulate a 512 × 512 Mat circuit model in HSPICE. Table I
summarizes the ReRAM crossbar model parameters.

From the figure, given a row, e.g., row 0, the more LRS
cells there are in the bitline, the larger IR drop the sneak
current brings, and the longer time the RESET operation

1Note that the term of in-memory data patterns used in this article refers
to the percentage of LRS cells along bitlines, i.e., it is to characterize low
architectural level data layout, similar to that in prior work [34], [35].
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Fig. 3. Overview of the proposed architecture.

TABLE I
RERAM MODEL PARAMETERS

takes. Another observation is, the impact diminishes as the
row becomes closer to the write driver. For row 511, the
RESET latency is small and indistinguishable for the cases
with different percentages of LRS cells.

Prior studies [34] have revealed that, with a larger per-
centage of LRS cells on bitlines, the bitline discharging
time (developing time) increases during the read operation.
However, ReRAM read and SET operations are much faster
than ReRAM RESET operations—ReRAM read and SET are
18 ns and 10 ns, respectively, as shown in Table IV, while
RESET ranges from 56.4 ns to 202.4 ns. In this article, we
focus on optimizing ReRAM RESET operations. While the
proposed schemes are applicable to optimizing read and SET
operations, further study is necessary to evaluate the trade-
off between limited performance improvement and increased
hardware complexity.

III. DESIGN DETAILS

In this section, we present an overview of our scheme,
elaborate the details of our low-overhead runtime profiler and
then propose our compression-based optimization for further
performance improvement. Finally, we illustrate the profiling
scheme with an example and estimate the overhead.

A. Overview

Fig. 3 presents an overview of our proposed scheme. We
assume that each cacheline has 64 B or 512 bits. These bits are
saved in 64 mats spreading across 8 chips and each mat saves
8 bits from the cacheline, the same as previous work [13]. The

eight corresponding bitlines saving these 8 bits form a group.
Two cachelines are mapped to use the same 8-bitline group,
e..g. a0 and a1 use the first group, if their device addresses
are separated by K, here K is a multiple of 64 depending
on the number of mats, and line address interleaving. The
cachelines that share the first 8-bitline group are a0+i×K
(0≤i<512), which are referred to as the bitline-sharing-set
in the following discussion.

Worst-Case Bitline Flag: We attach a 3-bit flag W-Flag to
each bitline-sharing-set. The flag records the worst-case bitline
of all 512 bitlines shared by this set. In practice, we first find
the worst-case bitline of each 8-bitline group in one mat, and
then find the worst-case from 64 mats. Since one mat has 512
rows, the number of LRS cells on one bitline varies from 0 to
512. Instead of recording the accurate number, we divide the
range [0..511] into 8 subranges such that a 3-bit flag W-Flag
can denote its subrange, e.g., “000” denotes subrange [0..63]
and “010” denotes subrange [128..191].

In the next section, we exploit a runtime profiler that peri-
odically detects the worst-case bitline in each mat as well as
the worst-case for the whole bitline-sharing-set.

Tracking the Worst-Case: We attach a 6-bit counter W-Cnt
to each bitline-sharing-set. The counter is cleared each time
when the worst-case flag is updated, that is, either after
profiling update or due to W-Cnt overflow (as follows).

At runtime, we increment the counter for each memory
write that falls in the bitline-sharing-set. This is based on
the most conservative assumption that the write always intro-
duce one more LRS cell on the worst-case bitline among all
512 bitlines shared by bitline-sharing-set. A counter overflow
event increments W-Flag if W-Flag does not saturates. The
counter is then cleared. We will elaborate the use of W-Flag
and W-Cnt in following sections.

RESET Latency Optimization: To RESET a memory line,
we fetch its W-Flag and physical address to determine the
appropriate tWR time for the RESET operation. By look-
ing up a pretested RESET latency table stored in-memory
controller, we can avoid always using the most conser-
vative timing for each write. For example, if row 0’s
W-Flag is 010, we may use a tWR timing of 154.6 ns

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 11,2021 at 17:50:07 UTC from IEEE Xplore.  Restrictions apply. 



WEN et al.: EXPLOITING IN-MEMORY DATA PATTERNS FOR PERFORMANCE IMPROVEMENT ON CROSSBAR ReRAM 2351

instead of 202.4 ns in the baseline design. The quan-
titative values of tWR timing come from our HSPICE
circuit simulations, which will be discussed in a later
section.

We next elaborate the design details and illustrate the overall
workflow with examples.

B. Low-Overhead Runtime Profiling

We first describe our runtime profiling mechanism that faith-
fully tracks the number of LRS cells in each bitline. Clearly,
reading all memory lines from the mat for detection would
introduce prohibitive overhead. In this article, we leverage the
current aggregation feature of ReRAM crossbar array [37],
which has been widely exploited for accelerating in-memory
computation [38]–[41]. Most existing memory profiling tech-
nique are for offline test. For example, March test [42] was
proposed for checking memory data integrity. The test can-
not be adopted at runtime as it can be as slow as 0.4 ms per
row [42]–[44], which is much longer than regular ReRAM
read or write operation latency.

Fig. 3 illustrates how the proposed profiling scheme works.
When there is a need to profile, the memory controller sends
out a profiling command with a 18-bit digital ID number
(which is enough to guarantee a unique ID for each bitline-
sharing-set in an 8 GB memory system) for determining the
bitline-sharing-set in 64 mats. For each mat, all (512) word-
lines and the eight bitlines that belong to the bitline-sharing-set
are activated for performing profiling operation. This is similar
to dot-product operation in [38].

As shown in the figure, all wordlines are applied with
Vread; the selected eight bitlines are applied with 0 V; and all
other bitlines are applied with Vread to depress sneaky cur-
rents. The currents flow through the eight bitlines are highly
correlated to the number of LRS cells. The more LRS cells, the
larger current will be applied to ADC and comparator circuits
that are shared by all 64 8-bit read/write groups. We adopt
the analog to digital conversion circuitry developed for accel-
erating in-memory computation. The bitline profiling currents
are first sent to analogy transmission muxes, which select the
appropriate bitline-sharing-set to profile. The currents are then
fed to sample-and-hold (S/H) logic and the ADC unit. After
the analogy to digital conversion, the largest current (corre-
sponds to the worst-case bitline in this mat) is represented as
a 3-bit digital value.

We divide the range [0..511] into eight subranges with equal
size (except the last one which has one more value). As shown
in Fig. 4, we set up the mapping from bitline currents to
subranges before profiling. To account for runtime voltage
fluctuation and cell process variations, we allocate 0.1 mA
guard band for each subrange. That is, subrange “011” corre-
sponds to LRS cell percentage range [37.5%..50%), the bitline
profiling current is 1.03 mA if there are 255 LRS cells in one
bitline. For high reliability, we tag a bitline as 011 as if the
profiling current is 0.93 mA, that is, a line may be tagged to
have more LRS cells than it actually has.

The W-Cnt tracks the write to the bitline-sharing-set after
profiling. By default, the memory controller profiles the set

Fig. 4. Profiling current versus LRS cell percentage in 512 × 512 ReRAM
crossbar array.

TABLE II
TWR (NS) FOR RESET OPERATION

again after 64 writes so that we use 6-bit value to represent
W-Cnt. When W-Cnt overflows, we may either reprofile the
bitlines or increment W-Flag directly (before it overflows).
Given ReRAM writes not always introduce more LRS cells
to the worst-case bitline, it is beneficial to periodically profile
the set.

C. Determine the RESET Timing

At runtime, we use the physical address and W-Flag to
determine the appropriate tWR timing for the RESET oper-
ation. The reason that we also use the row address is that,
similar as that in [17], row RESET latency also depends on its
row index in one mat, i.e., the distance to the write drivers—
given the same percentage of LRS cells along the bitlines,
row 0 and 511 have the largest and smallest RESET laten-
cies, respectively. Therefore, we split the 512 rows in one mat
to eight address subranges, and use the worst-case RESET of
this subgroup to write cachelines in each range, as shown in
Fig. 5(a).

Table II summarizes the write timing (tWR) of RESET
operation with different LRS cells along bitlines and different
row address category. The table is kept in the memory con-
troller, which is used in scheduling write operations to ReRAM
memory. The quantitative values of RESET operation timing
are from our simulations of a 512 × 512 Mat circuit model in
HSPICE with parameters shown in Table I.

An Example: We next use the example in Fig. 5(b) to illus-
trate how our proposed online profiling works and how to
determine the timing of RESET operations based on W-Flag
and W-Cnt.

1) Online Profiling Operation: A profiling operation is
always triggered by a W-Cnt overflow. The default profiling
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(b)(a)

Fig. 5. (a) Rows with different addresses are mapped to eight groups with different worst-case RESET latencies. (b) Example of how our proposed online
profiling works and how to determine the RESET timing.

frequency is after every 64 writes to the same 6-bit W-Cnt
flag). For the example in Fig. 5(b), W-Cnt of bitline-sharing-
set with an ID 0x004ff overflows, which sends a profiling
command to all 64 corresponding mats (❶), each of which
contains 8 bitlines. It then performs the dot-product fashion
profiling within each mat (❷) and produces a 3-bit counter that
maps the aggregated bitline current to an LRS cell subrange.
Each subrange indicates the worst-case LRS cell percentage
of the corresponding mat (❸). W-Flag of bitline-sharing-set
0x004ff is then updated with the maximum (the very worst-
case) of all 64 subrange values (❹). At last, W-Cnt is reset
to zero, which completes one online profiling operation.

2) Write Operation With Optimal RESET Timing: With the
proposed profiling scheme, the timing of RESET operations
is determined by looking up an optimal RESET timing
table at runtime. For the example in Fig. 5(b), a RESET
operation to logic cacheline a7 is being served. Based
on its physical address, we first identify the row address
group number (❺) and bitline-sharing-set ID (❻) (0x004cd
in this case), and fetch an up-to-date W-Flag (❼). We
then find the optimal RESET timing in Table II (❽) and
increment W-Cnt. For the cells that needs to be RESET
and fall in bitline-sharing-set 0x004cd across 64 mats
(a7 < 0:7 > · · ·a7 < 224:231 > · · ·a7 < 504:511 >),

the RESET operations can finish within the optimal RESET
timing (❾).

D. Reduce Bitline LRS Cells

Based on the observation that RESET latency depends on
the number of LRS cells along bitlines, it is important to
reduce the number of LRS cells in the crossbar. A simple
optimization is to save the cacheline in compressed format [46]
and fill in unused cells with 0 s, i.e., reset them to HRS.

(a) (b)

Fig. 6. Reducing LRS cells through data compress. (a) Logic view. (b) Shift
in each mat.

However, we observed a direct application of data compres-
sion exhibits little help—the RESET latency is hardly changed.
This is because the RESET latency depends on the worst
case of all 512 bitlines. Assume every cacheline in a bitline-
sharing-set can be compressed to its half size and thus uses
256 cells. If every cacheline uses the first 256 bitlines, we
would have zero LRS in the other 256 bitlines. Unfortunately,
it is of little help because the worst-case bitline may stay in
the first 256 bitlines.

We therefore propose a row-address biased data layout to
distribute extra 0s evenly to all bitlines. Given one bitline-
sharing-set a0+i×K (0≤i<512) where a0 is the cache-
line address that is mapped to the first row. When saving a
compressed cacheline in, e.g., row i, we shift the row start-
ing address to the right by i bits and then fill in the unused
cells in the row with 0 s, as shown in Fig. 6.

E. Overhead Analysis

Profiling Overhead: The overhead comes mainly from run-
time profiling. After every 64 writes to one bitline-sharing-set,
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TABLE III
COMPARING THE PROFILING OVERHEAD IN ONE BANK

the memory controller sends out one profiling command,
which activates 64 mats. In each mat, all rows and eight
bitlines are activated.

Table III summarizes the overheads for each ReRAM
memory bank. We evaluated the power consumption and area
by HSPICE simulation and NVSim [47] at 32 nm. A profiling
operation consumes about 3.7× read energy. For either read or
profiling, a huge portion of the power is consumed by internal
I/O and row/column decoders, thus the energy consumption is
not linear to the number of opened rows.

We followed recent studies [39], [45] to estimate the power
and area overheads of adopting ADC and sampling and hold-
ing circuits. We used eight ADC units in each bank. An ADC
has 1.28 GS/s sampling speed and introduces 50 ns profil-
ing latency. In the experimental section, we will study the
performance and power efficiency with different numbers of
ADC units.

A profiling command return 3 bits from each activated mat.
As a comparison, a read operation returns 8 bits from each mat.
Therefore, the profiling results are returned to the memory
controller through data bus, without introducing additional
overhead other than a regular read.

Counters Storage and RESET Adjustment: We attach one
3-bit W-Flag and 6-bit W-Cnt to each bitline-sharing-set. A
bitline-sharing-set contains 512 64 B memory lines, or 32 KB
data. For an 8-GB memory system, we need about 288 KB
storage to hold all flags. In this article, we keep all flags in
the memory controller for simplicity. In our future work, we
will keep a small buffer hold a subset of flag while keeping
the rest in the L2 cache. The RESET operation can be issued
in parallel to the table lookup. Due to long RESET latency,
the table lookup result can be returned at a later time to the
memory controller to determine when to terminate RESET
operation. We expect negligible performance overhead.

IV. PROFILING OPTIMIZATION

Even though online profiling helps to optimize RESET
latency and thus improve write performance, it introduces
non-negligible profiling overhead, including performance over-
head and energy consumption overhead. While the former is
small as we shall show in the experiments, the latter is much
larger due to the large energy consumption from ADC units.
We focus on optimizing profiling energy consumption in this
section.

Fig. 7. Dynamic energy distribution when adopting the proposed profiling
technique.

A. Profiling Energy Overhead Analysis

To better illustrate the profiling energy overhead, we com-
pare the dynamic energy dissipation of ReRAM memory on
read, write and profiling operations, respectively, for a wide
range of benchmarks,2 and summarize the results in Fig. 7.
From the figure, we observe that the profiling energy consumes
an average of 13.4% of total dynamic energy, a nontrivial
portion of memory energy dissipation. Thus, it is important
to optimize online profiling to reduce the profiling energy
overhead.

We next propose two optimization schemes to mitigate the
overhead by reducing the number of cells to be activated at
profiling.

B. Selective Profiling

Fig. 8 presents the basic idea of selective profiling. When
performing the Nth round profiling for a bitline-sharing-set at
runtime, we find out that the worst-case LRS-cell-per-bitline
number is 384 out of 512 cells, as shown by the red bar in
Fig. 8(a). However, it occurs only in one mat while the worst-
case numbers from other mats are much smaller. In the figure,
the green bars represent the numbers that are smaller than
256. For the mats corresponding to the green bars, the worst
scenario during the next profiling interval occurs when every
write operation increments the number of LRS cells in those
mats. Given the default profiling frequency is every 64 writes,
the worst scenario may introduce at most 64 more LRS cells,
i.e., the worst LRS-cell-per-bitline numbers for these mats
would still be smaller than 384 by the end of the next profiling
interval. Since the red bar is already 384 at the beginning of
the next profiling interval, it is safe to assume the worst-case
for the green bar mats and skip profiling them in the next pro-
filing interval. However, for the mats corresponding to the red
bar and the gray bars in the figure, we still need to perform
the N + 1th round profiling.

To implement the proposed selective profiling scheme, we
group every two consecutive profiling rounds together and
make the ith round profiling a regular profiling (i.e., the same
as that in the baseline profiling) while the (i+1)th round pro-
filing a selective profiling (i.e., it is applied only to a subset
of mats). The regular profiling and selective profiling rounds
are performed alternately. In particular, after collecting the
3-bit flags from all 64 mats during a regular profiling, the

2The experiment and simulation methodologies are discussed in Section V
in detail.
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(a) (b)

Fig. 8. Scheme of proposed selective profiling. (a) Full profiling: all mats need profiling. (b) Selective profiling: only mats in gray need profiling.

Fig. 9. Scheme of proposed fine-grained profiling.

memory controller constructs a 64-bit profiling mask
with each bit representing whether the corresponding mat
needs to perform selective profiling for the next round. The
bits are initialized as 1s and updated based on the differ-
ence between its 3-bit flag and W-Flag, the worst-case of
all mats. Assume the 3-bit flag from mat j is W-Flagj. If
W-Flagj+2 ≤ W-Flag, i.e., the worst LRS-cell-per-bitline
number from one mat is at least 128 smaller than the worst
LRS-cell-per-bitline number of all mats, we set the corre-
sponding bit of the mat in the profiling mask to 0;
otherwise, the profiling mask bit is kept as 1. For the
next selective profiling round, we do not profile the mats
whose profiling mask bits are 0 s.

Given selective profiling only skips the profiling operations
on a subset of mats, it does not degrade write performance
and reliability. Its benefits come from twofolds: 1) it helps to
save the energy consumption on the ADC/S+H circuits and the
multirow read operations on ReRAM arrays and 2) it shortens
the ADC latency at the sampling stage. This is because we
need to process fewer samples from mats for analogy-to-digital
conversion. In Section V-C, we study the performance and
energy efficiency improvements in our experiments.

C. Fine-Grained Profiling

We next propose to reduce the profiling overhead as shown
in Fig. 9. As aforementioned, we apply the VREAD volt-
age to all wordlines in order to profile the ratio of LRS
cells along the bitlines within the bitline-sharing-set. These

simultaneous read operations contribute to the active energy
consumption of profiling overhead. Intuitively, by reducing
the number of wordlines that are opened to read, the pro-
filing overhead can be mitigated. Based on this observation,
we split one 512×512 ReRAM mat into two 256×512 sub-
mats. In Fig. 9, they are labeled as “A” and “B,” respectively.
Each submat consists of four row address groups. We profile
each submat independently and use two sets of W-Flag (2-
bit W-Flag-A and W-Flag-B) and W-Cnt (6-bit W-Cnt-A
and W-Cnt-B) counters to track the profiling results and to
determine the RESET timing. By keeping the same profil-
ing frequency, i.e., each submat needs to be reprofiled after
accumulating 64 writes, we keep the same total number of
profiling operations. The profiling procedure, including detect-
ing runtime bitline data patterns and tracking the worst-case
flag within one bitline-sharing-set, is similar to the base-
line profiling. The only difference is that we profile the
bitline data patterns for each submat separately. For the pro-
filing, a 2-bit value is enough to denote W-Flag-A and
W-Flag-B the with the same accuracy as the baseline profil-
ing as the number bitline LRS cells ranges from 0 to 256 in
each submat.

Determining the RESET timing is slightly different in the
fine-grained profiling design. As shown in Fig. 9, we need to
combine the two LRS ratio numbers (from submats A and B,
respectively) to determine the optimal timing. Since we adopt
conservative estimation, the combination may lead to over-
estimation, which slightly degrades the choice of the optimal
timing.

Comparing to the baseline profiling, the fine-grained profil-
ing scheme exhibits many advantages.

1) It activates a smaller number of wordlines and thus
reduces the dynamic energy consumption. This article
shows that, when activating 256 wordlines during pro-
filing, the fine-grained profiling consumes 63% energy
of the one that activates all 512 wordlines (Table III).

2) Instead of having 3-bit W-Flag values transferred
across the memory interface, we return 2-bit W-Flag-A
and W-Flag-B values, which may potentially save the
memory bandwidth.
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TABLE IV
SYSTEM CONFIGURATION

TABLE V
BENCHMARKS CHARACTERIZATION

3) The fine-grained profiling potentially enables the finer
tuning of RESET latencies.

V. EXPERIMENTAL SETUP

In this section, we first present the modeling and simula-
tion methodologies for evaluating the energy and performance
of ReRAM crossbars. Second, we present and characterize
all workloads used for evaluations based on their memory
access intensity. Finally, we briefly summarize all schemes
for experimental evaluations.

A. Modeling and Simulation Methodologies

To evaluate the effectiveness of our proposed design, in
addition to the HSPICE modeling and simulation as intro-
duced in Section II-C and Section III-E, we used an in-
house simulator to simulate the proposed ReRAM access
scheme and compare it to the conventional and state-of-the-
art designs. Table IV summarizes the configuration for the
baseline system. We plugged the numbers from HSPICE and
NVSim [47] simulations into our architectural simulator to
obtain the performance and memory energy efficiency results.
We used Pintool to generate memory access traces from
SPEC2006 [48], PARSEC [49], and BioBench [50] benchmark
suites.

B. Workload Characterization

Table V characterizes all benchmarks used in the exper-
iments. We carefully chose a subset of benchmarks with
different memory access WPKI and RPKI in order to study the
effectiveness of our design. The benchmarks are categorized

to three types: high, medium, and low, respectively, according
to their memory access intensity.

C. Schemes for Evaluations

In this article, we implemented and compared five differ-
ent schemes, including the conventional and state-of-the-art
ReRAM designs as follows.

1) BL: This scheme is conventional ReRAM crossbar
design. The baseline adopts DSGB voltage driver for
latency reduction.

2) RA: This scheme is the state-of-the-art design [17]
that adopts row address awareness technique to reduce
RESET latency.

3) LRS: This scheme is the naive design that only adopts
data pattern profiling technique.

4) CMP: This scheme is built on top of LRS. It adopts data
compression and shifts the rows starting bits based on
its row addressed within each mat.

5) PROF: This scheme is built on top of CMP and includes
all enhancements in this article. In particular, it adopts
a 2-D tWR timing table (as shown in Table II) in
determining RESET latency.

We also evaluated the effectiveness of following three
schemes with profiling optimization techniques.

1) SEL_PROF: This scheme is built on top of PROF and
adopts the selective profiling scheme to save energy.

2) FINE_PROF: This scheme is built on top of PROF and
adopts the fine-grained profiling scheme.

3) SEL_FINE_PROF: This scheme adopts both profiling
optimizations to mitigate profiling overhead.

In system performance evaluation, we also compared the
proposed profiling techniques with IDEAL_PROF, the scheme
that assumes zero performance overhead.

VI. EVALUATION RESULTS AND ANALYSIS

In this section, we evaluate the performance and energy
efficiency for the proposed profiling scheme, and also quanti-
tatively show the effectiveness of two optimization techniques
in reducing the profiling overhead.

A. Memory Access Latency

Fig. 10 compares the average memory write latency across
different schemes, with the results normalized to BL. On aver-
age, by applying the proposed techniques step by step, we
observed the significant write latency reductions by 19.8%,
37.2%, and 63% for LRS, CMP, and PROF, respectively.
Compared to RA, the proposed scheme PROF shows 53.5%
more reduction. In summary, it is effective to reduce RESET
latency by exploiting the number of LRS cells along bitlines.

Since the selective profiling does not change the
RESET latency, SEL_PROF has the same write latency as
that in PROF. Since the fine-grained profiling technique
may over-estimate the RESET latency, FINE_PROF and
SEL_FINE_PROF exhibit 7.1% write latency degradation
over PROF. They still achieve 60.3% write latency reduction
over BL.
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Fig. 10. Comparison of memory write latency.

Fig. 11. Comparison of memory read latency.

The reduction of RESET latency leads to the reduction of
memory read latency. Fig. 11 summarizes the memory read
latencies in different schemes. The results are normalized to
BL. Similar to the write latency, the memory read latency is
reduced by 6.7%, 19.6%, and 38.2% for LRS, CMP, and PROF,
respectively. Our proposed PROF scheme shows a 27.6% more
reduction over RA.

When there are fewer mats profiled with selective pro-
filing, the average profiling latency is shortened and hence
the memory access latency on critical path is also reduced.
The write latency of SEL_PROF is reduced by up to 39.2%
from the baseline. With the fine-grained profiling techniques,
FINE_PROF and SEL_FINE_PROF perform slightly worse
than PROF. They achieve 36.1% and 37.4% read latency
reduction, respectively, over BL.

B. System Performance

We compared the performance when adopting different
schemes and summarized the CPI (cycles-per-instruction)
results in Fig. 12. The results are normalized to BL. From
the figure, the proposed profiling schemes achieve larger
performance improvements on write intensive benchmarks,
e.g., ferret and fasta_dna. On average, PROF outper-
forms BL by 32.4%, 16.5%, and 5.2% on high, medium,
and low memory intensity benchmarks, respectively. This
is because the proposed technique focuses on improving
write performance, which is sensitive to the intensity of
write requests. On average, PROF achieves 20.5% and 14.2%
performance improvements over BL and RA, respectively.
Due to shortened profiling operation latency, SEL_PROF
improves the overall performance by 1% over PROF,
21.2% performance improvement over BL. FINE_PROF and
SEL_FINE_PROF improve CPI by 18.8% and 19.5%, respec-
tively, over BL.

To illustrate the effectiveness and performance overhead
of the profiling techniques, we also compared the proposed

Fig. 12. Performance comparison. The benchmarks are categorized into high,
medium, and low memory intensity types based on RPKI and WPKI.

Fig. 13. Number of profiling operations performed with optimized techniques
on mats (normalized to PROF).

Fig. 14. Profiling energy with optimized techniques (normalized to PROF).

designs with IDEAL_PROF, the scheme adopting ideal pro-
filing, i.e., we assume the profiling operation has zero latency
and does not incur any performance overhead. The experimen-
tal results showed that, on average, IDEAL_PROF achieves
2% better performance than PROF, and 1.1% better than
SEL_PROF. For the group of high memory intensive bench-
marks, the average improvement is 3.3% over PROF.

From the results, the profiling introduces small performance
overhead. Further optimizations, e.g., hiding the profiling
latency by issuing profiling commands only during memory
bank idle time, are applicable but tend to achieve limited
performance improvement with increased hardware cost.

C. Effectiveness of Profiling Optimization

We next conducted experiments to study the effectiveness of
our proposed profiling optimization techniques. We reported
the normalized number of profiling operations in Fig. 13 and
the normalized profiling energy consumption in Fig. 14.

Fig. 13 compares the number of profiling operations
under different optimizations. The results are normalized to
PROF. On average, SEL_PROF, i.e., the one adopting selec-
tive profiling, reduces 40.6% of profiling operations, while
SEL_FINE_PROF, i.e., the one adopting both optimizations,
reduces the number of profiling operations by 46.3%.
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Fig. 15. Comparison of dynamic energy and EDP.

Fig. 14 compares the profiling energy with different opti-
mizations. The experimental results show that both opti-
mizations are effective in reducing dynamic energy caused
by profiling. By adopting the selective profiling technique,
SEL_PROF mitigates the energy consumption by reduc-
ing the number of profiling operations, while FINE_PROF
reduces the profiling energy from reading fewer wordlines.
From the figure, SEL_PROF saves the profiling energy by
40.6% while FINE_PROF consumes 93.4% of the profiling
energy in PROF. The scheme SEL_FINE_PROF combines
two optimizations and saves 49.9% of the profiling energy in
PROF.

D. Memory Energy Efficiency

We next compared the dynamic memory energy consump-
tion and energy-delay product (EDP) for all schemes. The
results are normalized to BL and summarized in Fig. 15.
The dynamic energy consumption has three major sources:
read, write (including SET and RESET) energy, and profil-
ing overheads from our proposed schemes. While the PROF
greatly improves RESET performance, it has no impact on
read and SET operations. In addition, our proposed schemes
introduce profiling overheads. For example, LRS consumes
3.9% more dynamic energy due to the profiling overhead.
However, SEL_PROF, FINE_PROF, and SEL_FINE_PROF
with proposed optimization techniques can reduce the profiling
energy effectively as aforementioned.

In summary, PROF achieves 15.7% and 7.6% dynamic
energy reduction over BL and RA, respectively, while
SEL_PROF, FINE_PROF, and SEL_FINE_PROF with
optimization techniques further reduce the profiling over-
head and achieve 20.2%, 15.4%, and 20.3% dynamic
energy reduction over BL, though the fine-grained profiling
marginally increases write energy. SEL_PROF, FINE_PROF,
and SEL_FINE_PROF also reduce more dynamic energy
than RA by 12.5%, 7.2%, and 12.6%, respectively. The
EDP results show that our proposed design can effectively
improve the energy efficiency—PROF achieves 31.9% and
19.5% EDP improvements over BL and RA, respectively, while
SEL_PROF, FINE_PROF, and SEL_FINE_PROF, respec-
tively, achieve 35.9%, 30.5%, and 35.0% EDP improvements
over BL. In addition, the schemes SEL_PROF, FINE_PROF,

and SEL_FINE_PROF also outperform RA in EDP improve-
ments by 24.2%, 17.8%, and 23.2%, respectively.

E. Sensitivity Study

In this section, we finally compared the performance and
energy efficiency results for all proposed schemes with differ-
ent number of ADC units used in each bank as well as varied
ReRAM mat sizes, which are summarized in Fig. 16.

Sensitivity to Number of ADC Units: For the given 512×512
ReRAM crossbar, increasing the number of ADC units can
help reducing the profiling overhead. When doubling the
number of ADC units from 8 to 16, we summarized the
performance improvement and energy reduction results for
scheme PROF in Fig. 16(a). From the figure, while we dou-
ble the profiling area and power consumption overhead, the
performance improvements are trivial—only 1.1% improve-
ment was observed. Similarly, SEL_PROF, FINE_PROF, and
SEL_FINE_PROF cannot significantly benefit from more
ADC units.

Sensitivity to Mat Sizes: Fig. 16(b) reveals the sensitivity
study results when we use different ReRAM crossbar mat
sizes—we compare 256 × 256 and 512 × 512.

For 256 × 256 ReRAM mat, the proposed scheme PROF
achieves smaller improvements due to smaller IR drop in
the array—it has 14.9% performance improvement and 4.6%
memory dynamic energy reduction over BL. For the default
512×512 ReRAM mat, the improvements are much larger. In
the figure, the proposed scheme PROF is slightly worse (only
1.6%) than RA for 256×256 mat size. This is because the pro-
filing latency and power consumption are independent of mat
size, which has a larger impact on smaller mats. The schemes
SEL_PROF, FINE_PROF, and SEL_FINE_PROF with pro-
filing optimization techniques for 256 × 256 mat size reduce
dynamic energy roughly to the same extent that they do for
512 × 512 ReRAM mat. In summary, we expect our proposed
design can achieve larger improvements in future ReRAM
arrays that have increasing mat size due to fast technology
scaling.

VII. RELATED WORK

In this section, we first introduce prior studies on improving
performance of RESET operation in ReRAM crossbars, and
then present related work on intrinsic current accumulation
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(a) (b)

Fig. 16. Sensitivity of performance and memory dynamic energy consumption when using (a) different numbers of ADC units; and (b) different ReRAM
mat sizes.

feature of ReRAM crossbars. Finally, we also report previous
works on analyzing stored data pattern in ReRAM crossbars.

A. Performance of RESET Operation

Since the RESET operation is one of the major performance
bottlenecks for ReRAM crossbars, there have been many
studies on reducing the RESET latency [13], [14], [17],
[20], [51]. Xu et al. [13] proposed the double sided ground
biasing (DSGB), multiphase write operations, as well as
a compression-based encoding approach to reduce RESET
latency. Based on the observation that RESET latency cor-
relates to the physical distance between selected row and the
write drivers, Zhang et al. [17] proposed to divide a cross-
bar array into several logical regions with different access
latency, in order to exploit the discrepancy of RESET latency.
Wang et al. [51] presented the write latency depends on worst-
case data pattern in ReRAM crossbars, and proposed a voltage
bias scheme to optimize write performance. Zhang et al. [20]
proposed an ReRAM crossbar design with the double-sided
write driver to reduce RESET latency.

B. Current Accumulation Feature of ReRAM Crossbars

Recent studies exploited the natural current accumulation
feature of ReRAM crossbar architecture to implement dot-
product analogy calculations [38]–[41], [52]–[63]. In this
article, we leverage this feature to profile and track the number
of LRS cells along each bitline.

C. Data Patterns in ReRAM Crossbars

Chang et al. [34] presented a similar observation for read
operation. Mustafa and Waser [64] and Shin et al. [65]
reported that the detection margin for read operations depends
on data pattern in ReRAM arrays. Deng et al. [66] discussed
the worst-case data patterns for read and write operations in an
ReRAM crossbar array. Tang et al. [67] analyzed the impact
of data pattern on the sensing current in ReRAM crossbars.
Xu et al. [13] demonstrated that the RESET latency signifi-
cantly increases as the number of reset bits (switched from 1
to 0) increases in an ReRAM crossbar, and then exploited the
data pattern to reduce RESET latency. Liang and Wong [35]

analyzed the voltage drop and data patterns in ReRAM
crossbar arrays without selectors.

VIII. CONCLUSION

In this article, based on the observation that the RESET
latency strongly correlates to the number of cells in LRSs
along bit lines, we propose a novel profiling-based ReRAM
design, which can exploit the discrepancy of RESET latency.
We leverage the in-memory processing capability of ReRAM
to implement a low-overhead runtime profiler. By dynamically
detecting the number of LRS cells, we dynamically adjust
RESET timing and achieve significant performance and energy
consumption improvements. In addition, in order to mitigate
the profiling overhead, two optimization techniques—selective
profiling and fine-grained profiling, are presented. They both
effectively achieve significant profiling energy reduction by
reducing the number of profiling operations and halving the
number of being read wordlines during a profiling operation,
respectively. The experimental results show that, on average,
our design improves system performance by 20.5% and 14.2%,
and reduces memory dynamic energy by 15.7% and 7.6%,
compared to the baseline and the state-of-the-art crossbar
design. With all proposed optimization techniques, our design
can further reduce dynamic energy by up to 20.3% and 12.6%
compared to the baseline crossbar design and state-of-the-art
ReRAM crossbar design, respectively.
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