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Abstract—The demand for multitasking GPUs increases
whenever the GPU may be shared by multiple applications, either
spatially or temporally. This requires that GPUs can be pre-
empted and switch context to a new application while already
executing one. Unlike CPUs, context switching in GPUs is pro-
hibitively expensive due to the large context states to swap out.
There have been a number of efforts on reducing the overhead
of preemption, through reducing the context sizes or overlapping
context switching with execution. All those techniques are reac-
tive approaches, meaning that context switching occurs when the
preemption request arrives. In this paper, we propose a dynamic
and proactive mechanism to reduce the latency of preemption.
We observe that kernel execution is almost always preceded by
known commands in both CUDA and OpenCL implementations.
Hence, a preemption can be anticipated before the actual request
arrives. We study such lead time and develop a prediction scheme
to perform an early state saving. When the actual preemption is
invoked, an incremental update relative to the previous saved
state is performed, much like the conventional checkpointing
mechanism. Our design can also choose to drain or checkpointing
dynamically and accurately according to the feature of kernels in
the runtime. This design effectively reduces the stall time of the
preempting kernel due to context switching by 58.6 %. Moreover,
through careful handling of the saved state, we can also reduce
the overall size of saved state by an average of 23.3%, compared
with a full context switching.

Index Terms—Checkpointing, context switch, GPU, preemp-
tion, runtime selection.
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I. INTRODUCTION

UE TO their massive parallel processing capability,

GPUs are now seen in various domains, such as high-
performance computing, machine learning, and scientific com-
puting [1]-[6]. These types of computing are now often
provided as services in data centers or clouds, so that GPUs
can be provided as shared infrastructure to users. Multitasking
has become essential for GPUs to support concurrent services
and requests. Some preliminary hardware features for multi-
tasking are already in-place, such as the Hyper-Q provided by
Nvidia’s Kepler architecture [7], and the command processor
supported by AMD [8]-[10]. While this was a step in the right
direction, much is still needed to be done for true multitasking
support [11], [12].

Context switching, a technique used in CPUs to support
concurrency [13], has been proposed for GPUs for mul-
titasking as well [11], [14]. CPU processes are relatively
lightweight, allowing for a fast context switch and efficient
time-multiplexing of tasks. However, a CUDA context is
massive compared to the CPU [15]. For example, on the
GTX980 GPU [16], the context size can be as large as 256KB
for registers and 96KB shared memory per streaming mul-
tiprocessor (SM); the total context size can be 5664KB for
the whole GPU (with 16 SMs). Saving such large context
takes significant memory bandwidth and severely degrades
performance [17], [18].

There have been several attempts to reduce the overhead
of context switching for GPUs. The earliest technique lets
context switching occur on a subset of SMs so the remain-
ing SMs can continue execution [19]. The switching SMs are
completely stalled to perform just context swapping, and the
burden on memory bandwidth remains high. Later, a partial
context switching technique allows thread blocks (TBs) in an
SM to continue execution while swapping a particular TB [20],
which maximally overlaps memory accesses, due to context
switching, and kernel execution. This technique was further
enhanced to allow a mix of draining (execute to completion),
flushing (drop execution if idempotent), and switching TBs
within each SM (depending on the deadline of the preemp-
tion) [21]. In parallel with those efforts, a lightweight context
switch scheme was designed for reducing the amount of con-
text that has to be saved off-chip [18]. All those prior works
perform preemption via a reactive approach, meaning that all
operations are activated upon the arrival of the preemption
request. As a result, the preemption latency remains a threat
to performance if the preempted kernel is not flushed.
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In this paper, we propose a dynamic and proactive pre-
emption mechanism, PEP, to reduce preemption latency and
overhead. Through observing the kernel launch process, we
find that the actual execution of a kernel on a GPU is always
preceded by the kernel launch action, and the time from when
a kernel is launched from CPU to the time the kernel starts
to execute on the GPU is in the order of tens of microsec-
onds. Leveraging such lead time and known operation pattern,
we can anticipate the arrival of a preemption request and
proactively prepare for context switching. When the preempt-
ing kernel arrives, the remaining work for completing the
context switching is minimized. Hence, the effective preemp-
tion time is short. The preparation we perform for context
switching utilizes the concept of checkpointing [22], [23].
The first base checkpoint is performed when a preemption
is predicted to occur. Then an incremental checkpoint is per-
formed when the preempting kernel arrives at the GPU. Saving
the incremental checkpoint takes much less time than sav-
ing the full-size context of a preempted kernel, reducing the
effective wait time of the preempting kernel. On average, the
total amount of state saved is no more than the full context.
We also observe that the context allocated is not completely
active during the TB’s lifetime. Therefore, we set dirty bits
for registers to indicate whether the register is active or not.
Only active registers must be saved, thus reducing the over-
all size of saved context significantly. Moreover, we design
a dynamic runtime selection algorithm for preemption deci-
sions. Short kernels can be preempted by draining, while long
kernels can be preempted by checkpointing (context switch-
ing). This algorithm can achieve both low latency and small
overhead.

Our contributions can be summarized as follows.

1) We study the kernel launch process, and observe that the

event of preemption can be predicted.

2) We introduce a proactive preemption mechanism to
reduce the stall time for the preempting kernel due to
context switching. With proactive checkpointing, when
preemption finally occurs, only a small subset of dirty
context must be saved.

3) We use a simple dirty data-saving technique to reduce
context size, which reduces the unnecessary context
saving.

4) We develop a more precise estimation on TB draining
time and context switch time, and design a dynamic run-
time selection algorithm for preemption decisions. We
can preempt both short and long kernels with low latency
and small overhead.

We evaluate PEP and compare with previous best-
effort preemption work Chimera [21] on several types
of benchmarks [24]-[27]. Our experimental results show
that we can reduce the average preemption latency from
8.9 to 3.6 us, compared with previous best-effort pre-
emption work, Chimera [21]. We also reduce the total
state that needs to be saved by 16.1% compared to
saving the full context size, using only simple con-
text size reduction techniques. The total overhead, aver-
age switch time per TB, of PEP is 6.3% lower than
Chimera.

1|_global__ void axa(double a, double xx) {
2| int i = blockIdx.xxblockDim.x+threadIdx.x;
3 x[1] = a»x[1] + a;

4/}

5

6| void main () {

7] int N = 1048576;

8| double *x, =*d_x;

9 x = (doublex)malloc (Nxsizeof (double));
10/ for (int i = 0; 1 < N; i++) |
11 x[1] = 3.0;
12 }
13] cudaMalloc (&d_x, Nxsizeof (double));
14 cudaMemcpy (d_x, x, Nxsizeof (double),

cudaMemcpyHostToDevice) ;

15| axa<<<N/256, 256>>> (3.0, d_x);

16| cudaMemcpy (x, d_x, Nxsizeof (double),
cudaMemcpyDeviceToHost) ;

17 std::cout<<"Output:"<<x<<std::endl;
18| cudaFree (d_x);

19 free (x);

20| }

Fi

=

g. 1. Simple CUDA program.

II. BACKGROUND AND MOTIVATION

In this section, we provide a brief description of the baseline
GPU architecture, including the execution model. The baseline
models a Nvidia discrete GPU architecture. Hence, we will use
Nvidia/CUDA terminology throughout this paper. However,
the ideas also apply to GPUs from other vendors [28]-[31].
We also discuss checkpointing, which plays a key role in our
method.

A. Baseline Architecture

1) GPU Program Execution: Typical GPU programs con-
tain two parts of code: 1) host code that runs on the CPU
and 2) device code (kernels) that runs on the GPU. Kernels
are executed in a single instruction, multiple threads (SIMT)
fashion. A kernel is executed by running multiple threads in
parallel on the GPU. Threads are grouped into TBs by the
programmer.
Nvidia’s CUDA programming model for GPUs is exposed
to the programmer through CUDA C, an extension to the C
language, and runtime libraries. Fig. 1 is a sample CUDA
code. The typical sequence of operations for a CUDA C
program includes the following.
1) Declare and allocate
(lines 8-13).

2) Migrate data from the host to the device (line 14).

3) Launch the kernel(s). Here, the programmer launched
N/256 TBs, each containing 256 threads (line 15).

4) Migrate results from the device to the host (line 16).

5) Release the memory space (lines 18 and 19).

TBs are considered independent from each other and are
dispatched to SMs separately. The number of TBs that may
execute concurrently is limited by the device’s resources (reg-
isters, shared memory, and thread number), which is known at
compile time. Most prior proposed preemption schemes work

host and device memory
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at the TB granularity level, using the resource information to
make preemption decisions.

2) GPU Architecture: Fig. 2 is the baseline GPU archi-
tecture, which we will refer to throughout this paper. A GPU
program receives operation commands from the host CPU dur-
ing execution. The user-space runtime engine transforms API
calls to control data operations and kernel launches [32]. The
GPU device driver sends these operation commands to the
queues in the stream manager. The stream manager manages
multiple streams using software queues; all commands in the
same stream execute serially. Typically, the CPU first declares
and allocates its memory and then invokes cudaMalloc to allo-
cate the global memory on the GPU. Then, a cudaMemcpy
(HtD) call moves the data from the host to the device. Once all
data is transferred, the stream manager can launch the kernel
by passing kernel information (such as dimension configu-
rations and entry PC address) to the kernel management unit
(KMU). When all the information is ready, the kernel requests
SM resources. If there are not enough resources, the kernel
waits in the kernel pending pool. If the waiting kernel has
higher priority than executing kernels, it may preempt execut-
ing TBs in an SM to obtain resources. Otherwise, it waits for
previous kernels to finish.

Once the kernel is ready for execution, it is transferred to
the kernel distributor unit. Its TBs are then dispatched to SMs
by the CTA Scheduler. The maximum number of TBs that can
be executed on an SM depends on resource constraints, includ-
ing the number of resident TBs, threads, registers and shared
memory space. During the execution of a kernel in the SM,
TBs are split into warps which are groups of 32 threads. An
SM has one or more warp schedulers that choose which warp
to issue. Each warp scheduler controls 32 stream processors
(SPs) in GTX980 GPU architecture [16]; each SP computes a
single thread. The scheduler switches among warps if a current
warp is stalled by a memory access or other long operations.
There is no overhead for switching among warps in an SM,
as all warps’ contexts are already in the registers and shared
memory. As a result, the GPU can hide the delay of stalled
warps, improving overall performance.

B. Prior Preemption Methods

When preemption occurs, each SM can operate indepen-
dently, meaning that some may be preempted while others
may continue to execute. Preempted SMs need to save their
context to the global memory. An SM’s context is its exe-
cution state, which includes the SIMT stack, registers and
shared memory. The SIMT stack stores the thread execution
information, such as the program counters and active masks
(used for branch divergence). Compared with the size of the
registers and shared memory, the SIMT stack size is negligible,
so we ignore it for the remainder of this paper. A TB owns its
portion of SM’s resources while it is active; it remains active
until all its threads complete. However, during its own execu-
tion, there may arrive a new kernel that has a strict deadline to
meet. The new kernel may not be able to wait for the current
kernel to finish, as that may violate the deadline. Therefore,
we need to preempt some active TBs to make room for the
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Fig. 2. Baseline GPU architecture.

new kernel’s TBs. However, as the context of TBs are typ-
ically large, saving them to the global memory incurs high
overhead, so the preemption latency is prohibitively long. As
shown in Table I, the preemption latency (Avg Switch Time)
can be over 20 pus. This latency could pose threat to meeting
the deadline of the incoming kernel.

To achieve a lower preemption latency,
Park et al. [21] proposed one technique that simply
flushes a TB. In this method, the SM drops the TB’s context
without saving it and directly executes new TBs from the
higher priority kernel. After that kernel is finished, the SM
re-executes the dropped TB from the beginning. Flushing has
almost no preemption latency. However, not all kernels can
be flushed at any point in execution. Flushing requires the
kernel to be idempotent, meaning the kernel will generate the
same result independent of how many times it is executed,
i.e., there are no atomic operations nor global memory
writes before the point of flushing. Most applications are not
idempotent (only 30% in Rodinia) [24]. Idempotence may be
relaxed, but requires much bookkeeping overhead. In either
case, flushing may have high overhead, which is proportional
to the number of instructions that are re-executed.

To achieve low preemption overhead, SM draining was
proposed, where the executing TB will run till completion
before new TB from the incoming kernel starts [19], [21]. This
method does not require any context saving so the preemption
overhead is minimized. However, the preemption latency can
be very high because the executing kernel may be of long
latency. This could lead to deadline violation for the incom-
ing kernel. Table I includes the execution time of a TB for
various kernels we measured. As we can see, some TBs (e.g.,
Kmeans) have an execution time of nearly 1 ms. Therefore,
SM draining is best suited for short-latency TBs.

Lin et al. [18] proposed a lightweight context switching to
reduce context size that need to go off-chip. Those techniques
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TABLE I
BENCHMARKS TIME COMPARISON

Avg Avg TB Avg .
Benchmarks Source Kernel Launch | Execution | Switch Context Size | TB num
. . . Per TB Per SM
Time Time Time
. cuda_cutoff
CUTCP(CP) Parboil[25] _potential 5.8us 516.2us 10.1us | 16.5KB 8
. performStream
LBM Parboil[25] Collide_kernel 21.8us 31.7us 209us | 18KB 14
MRI-Q(MRI) Parboil[25] ComputeQ_GPU 10.4us 865.2us 11.6us 18KB 8
STENCIL(ST) Parboil[25] bloc“cz()lzr-sgb”d 4.5us 413us 42ps | 12.5KB 4
STREAM ) Kernel_
CLUSTER(SC) Parboil[25] compute_cost 6.7us 605.6us 8.3us 24KB 4
GEMM(GM) Darknet[27] | matrixMulCUDA 23.4us 193.61s 179us | 28KB 8
BLACK Nvidia
SCHOLES(BS) SDK[26] BlackScholarGPU | 3.4us 387.5us 16.7us | 12.5KB 16
KMEANS(KS) Rodinia[24] | invert_mapping 29.7us 984.7 s 9us 10KB 8
PATHFINDER(PF) Rodinia[24] | dynproc_kernel 11.3us 24.2us 11.6us 18KB 8
SRAD_VI(SRADI) | Rodinia[24] | extract 5.2us 1.8us 4us 12KB 4
SRAD_V2(SRAD2) | Rodinia srad_cuda 15us 11.5us 16.4us | 25KB 8
SRAD_VI(SRAD3) | Rodinia[24] | srad 5.2us 7.9us 7.8us 24KB 4
HOTSPOT(HS) Rodinia calculate_temp 33.3us 4.5us 7.7us 38KB 3
LUD Rodinia[24] | lud_internal 4.4us 5.3us 10.5us | 16KB 8
.. bpnn_
BACKPROP(BP) Rodinia[24] layerforward 16.7us 4.7us 2us 12KB 1
BACKPROP(BP2) | Rodinia[24] | PPRn-adiust 167us | 1.5us 12us | 22KB 1
_weights
include in-place context switching, which saves context in | —=—Switch Time Drain Time
unused registers and shared memory, dead register removal, '§6 ]
which reduces the context size, and register value compres- g 5 @
sion. We also leverage the in-place context switching in PEP. ' 4 =
. - . . . . @
However, incorporating the liveness information requires a 23 o
. . . . . S o
liveness bit for each register per instructions, which implies £ 2 £
a large liveness table stored in hardware. To reduce this '; 1 ';
large overhead, preemption is allowed only at certain points 8 0 0 s
of a kernel to reduce the storage requirement for liveness 2 2 4 6 8 10 2
information. Further, the register value compression algorithm # TBs Switching
also introduces additional hardware overhead [33].
Fig. 3. Switch time and drain time for LBM (9 TBs per SM).

C. Checkpointing in GPUs

Checkpointing is to save the state of a running pro-
cess so that it may be resumed later in the event of
faults. Checkpointing in GPUs has been implemented in soft-
ware [34], [35]. Even though checkpoints allow a process to
resume, they are not directly suitable for preemption as their
purpose for checkpointing is for fault tolerance. The device
running a process may fail, so it is necessary to save its state
on another device. This is a long latency operation, but the
overhead is acceptable compared to the work lost in case of a
fault. For preemption, our goal is a reasonable response time
for the preempting kernel as it may need to meet a close dead-
line. Thus, we save our context to the device’s global memory.
Checkpointing is used to shorten the latency of a future con-
text switch. To introduce checkpointing into preemption, it is
important to limit the number of checkpoints, as another goal
of ours is to reduce the overhead in preemption.

D. Motivation

Chimera [21] uses a selection algorithm to choose the
preemption methods for different TBs during a preemption

request; the selection is based on the tradeoffs of the three
methods. Chimera estimates each technique’s preemption
latency and overhead to choose the most effective preemp-
tion method. Consequently, different TBs in the SM may be
preempted with different preemption techniques.

However, we observe that draining and switching compete
for the global memory bandwidth. For example, in Fig. 3,
the memory intensive application LBM has such a conflict.
LBM has nine TBs per SM; we show all ten possible com-
binations of switching and draining. If all TBs are switched
one by one, there is no competition. In the case, where one
TB is switched and all others are drained, both the drain time
and the switch time are longer than the situation in which
eight TBs are switched and one TB is drained. This is because
the one switching TB competes with the other eight draining
TBs. Therefore, we find that bandwidth competition causes
Chimera’s estimation to be inaccurate. In the case, where one
TB is drained, there is not bandwidth competition because TBs
switch one at a time. Also, the draining TB has no competition
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for execution units. Thus, the IPC may be affected by the
number of TBs draining.

We also observe that the decision making between switching
and draining can usually be the same for all TBs. Table I
shows that the range of TB execution times is much larger
than the range of switch times. There may be a wide gap
between the drain time and the switch time for long kernels.
Hence, the best way for preempting short kernels is to drain all
executing TBs, which can meet the deadline with almost zero
overhead. However, we must context switch for long kernels
if they are not idempotent.

The total context size of current GPU [36] is 352KB per
SM (256KB for registers and 96KB for shared memory). To
transfer this context to global memory, it takes at least 15 us,
assuming the bandwidth is fully utilized. As all previous tech-
niques are reactive, they must take at least this amount of time
to switch. To further reduce the preemption time for context
switching, we need not only to reduce the context size but also
preempt with a proactive technique.

Checkpointing is a proactive mechanism widely used in
fault tolerance; it saves the state of the running process
periodically. Similarly, we can also save the context of the
running TBs for preemption. To implement proactive preemp-
tion, we introduce PEP, our checkpoint method. We can save
a checkpoint context before preemption, and when the actual
preemption is invoked, we perform an incremental update rel-
ative to the checkpoint, which shortens the actual preemption
latency.

III. DESIGN

In this section, we first give an overview of our proac-
tive preemption design. Then we demonstrate the feasibility of
predicting kernel launch time and estimating preemption time.
Finally, we propose the designs of our checkpoint method and
runtime selection algorithm.

A. Overview

Our method is based on the observation that context switch-
ing may be used at any time during a TB’s execution phase,
as long as the latency and overhead are acceptable. To reduce
the latency and overhead, we will reduce the context size. To
reduce the preemption latency, we can context switch earlier.
We also use draining in appropriate cases, as there is almost
no overhead.

To reduce the context size, we use a dirty bit to indicate
whether a register is active or not. Thus, we never save context
that is unused or has been released. We also leverage in-place
context saving proposed by Lin et al. [18], which allows con-
text to be saved in idle local memory. In this method, no data
transfer to global memory through the interconnect network is
required.

For proactive context switching, we use checkpointing. Our
algorithm can decide to save the context at a checkpoint to the
global memory, prior to preemption. Then, we continue exe-
cution until the preemption occurs. At this moment, we only
need to save an incremental update to the base checkpoint. If
a TB finishes execution after the base checkpoint but before

a preemption request, we just release this base context. This
method achieves much lower overhead than a full context save.

To do checkpointing for preemption, we must limit the num-
ber of checkpoints; if we checkpoint too often, the overhead
may be unacceptable. Moreover, if a TB finishes before pre-
emption but after some checkpoints, the previous checkpoints
are wasteful and contribute to overhead. For these reasons, it
is necessary to predict which TBs will still be executing at the
preemption time point. Then, we can only save checkpoints for
those TBs. We observe that the CUDA API call cudaLaunch
is always the last software operation before a new kernel is
launched. After this call, a kernel launch command is sent
to the stream manager. If the command is at the head of the
stream queue, the kernel information will be passed to the
KMU and start requesting SM resources. Hence, we find that
the kernel launch time can be predicted.

Our checkpointing method is suitable for long kernels. For
those short kernels, we still perform draining instead of context
switching. To utilize both preemption techniques, we estimate
both draining and switching times to select the preemption
method during runtime.

B. Prediction and Estimation

The prediction of kernel launch time and estimation of
draining and switching time are key components of PEP.
Through our studies on a collection of various applications, we
find that there are three timings that are critical to the success
of our prediction scheme: 1) kernel launch time; 2) context
switch time; and 3) TB execution time. Kernel launch time
is what we use to predict when the preemption will actually
need to occur. Context switch time and TB execution time
are used to determine if checkpointing or draining need to
be performed. Table I shows our measurements for the three
timings.

1) Prediction: From Table I we have two important obser-
vations. The first important observation we make is that the
kernel launch time and the context switch time (close to the
latency of checkpointing) are on the same order of magni-
tude. This implies that if we start checkpointing at the time
of prediction, then when preemption request actually occurred,
we would have just finished saving necessary context. The sec-
ond observation is that both those timings have much smaller
variation than the TB execution time. For long-running TBs,
the inaccuracy in prediction would not make a difference
nor impact the decision on checkpointing or draining. For
short-running TBs, the decision is most likely draining, so
misprediction would not have much impact on the final over-
head or latency either. We will elaborate those timings in this
section.

As already mentioned, we must be able to predict when
preemption occurs in order not to wastefully checkpoint. A
CUDA application typically has five steps, which can be
marked by five CUDA API calls: 1) cudaMalloc; 2) cud-
aMemcpy (H2D); 3) cudaLaunch; 4) cudaMemcpy (D2H); and
5) cudaFree. The cudalLaunch call triggers the kernel launch
action. It passes kernel information to the GPU, including TB
organization information (grid and block dimensions) and the
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amount of shared memory allocated. We tested on a large
number of applications and observed that the kernel launch
time is typically in the order of tens of microseconds. Table I
shows that, for the set of applications we examined, the kernel
launch time ranges from 3.3 to 33.3 us. This is the time from
when cudaLaunch is called to the time that kernel information
arrives to the KMU, assuming no queuing in the stream man-
ager. The high kernel launching time includes the software
API call and copying the kernel code itself as well as copying
the arguments to the pending kernel pool in the GPU [37].
Hence, the overhead can vary quite a bit.

In addition, the average switch time per TB is from 1 to
20 ws, which depends on the context size per TB. From Table I
we know that the kernel launch time and the switch time are
in the same order of magnitude. Approximately, the length of
context switch time can be similar to the kernel launch time.
This means that when the first base checkpoint is finished, the
preemption probably has occurred. In this case, we can release
resources immediately and make room for new kernels. Our
design does not require a very precise prediction for kernel
launch time. This is because if checkpoint finishes before the
actual preemption request arrives, the SM can continue exe-
cuting the TB until the preemption starts and save the dirty
context only.

We also find that the average TB execution time ranges from
1.5 s to more than 900 us from Table 1. The execution time
varies a lot depending on the length of the kernel. Short ker-
nels’ TBs will be drained, which costs almost no overhead and
does not affect meeting the deadline, as the draining time is
short. Only long kernels’ TBs will be more likely to perform
context switch. As those long TB execution time can be as
long as hundreds of microseconds, it is easy for us to roughly
predict whether the TB will be preempted or not at the time
cudalLaunch is called. We can set a certain kernel launch time,
such as 20 us for prediction purpose. When a cudalaunch is
called by the GPU driver, we compare the predicted kernel
launch time with the remaining TB execution time for each
TB. If predicted kernel launch time is smaller than the remain-
ing TB execution time, then we can start checkpointing right
away. Otherwise, we will drain the TB. Note that the varia-
tion of the kernel launch time is relatively small, compared
with TB execution time. Hence, even if the true kernel launch
time is away from 20 wus, it is unlikely to cause a different
preemption decision.

In reality, the kernel launch may be delayed due to queuing
time in the stream manager; for example, a preceding long
memory copy operation may not yet be finished. However,
this delay is not problematic for our algorithm. In the case,
where the average TB execution time is much larger than
launch time, such as for CUTCP, the delay is not likely to
be large enough for the TB to finish execution, so our check-
point scheme is not wasteful. In the case, where the average
TB execution time is similar to the launch time, we will choose
to drain, so the delay definitely does not affect checkpointing
overhead.

Our prediction scheme will ensure that the number of
checkpointing performed is no more than two. The base
checkpointing is triggered by the cudaLaunch call and the

B Chimera Est. @Eval. 50% Drain &50% Switch OEval. All Drain

Normalized Drain Time

CP HT LBM

Fig. 4. Drain time estimated by Chimera.

incremental checkpointing is triggered by the preemption
request. Therefore, the checkpoint overhead can be limited.

2) Estimation: We must estimate the context switch time
and the drain time in order to select the preemption method,
either checkpointing or draining. We also need the estima-
tion to predict if the preemption occurs within the current
TB or not. Chimera [21] uses time estimation to compare the
throughput overheads between different preemption methods.
Chimera estimates the drain time for a TB as the product of
the remaining instructions and the previous CPI of the TB;
the context switch time is the context size of the TB divided
by the global memory bandwidth shared by the SM. However,
the TB-based estimation is inaccurate in some cases; further,
it is inestimable when context switching overlaps draining. As
shown in Fig. 4, when half of TBs are draining and others are
switching at the same time, the estimations are quite off. This
is because fewer draining TBs means fewer conflicts on SPs
and more conflicts on the bandwidth of the global memory
with switching TBs.

Although Chimera’s estimation for draining all TBs is much
better, there is still significant inaccuracy in certain cases.
For example, applications like LBM and Kmeans (KS) have
multiple phases; their CPI is time-varying. In Fig. 4, KS has
very low CPI at the beginning, but its CPI increases during
execution. Thus, the estimation time is far off from the evaluated
time. In addition, the switch time estimation only considers a
single TB by itself when making the preemption decision. For
example, if three similar TBs are switched, the context size is
three times as high; thus the actual total switch time can be
three times larger than Chimera’s per TB estimation.

From Table I, there is a wide gap between TB execu-
tion time and TB switch time. In most applications, we will
choose to drain all TBs or switch all TBs. Hence, the drain
time and context switch time are estimable; we do not need
to worry about switching/draining interference. To avoid the
impact from the CPI time-variance, we profile previous TBs
in the runtime. As the instructions are the same between dif-
ferent TBs in the same kernel, the TB execution time is stable.
Thus, we can use average TB execution time (profiled) minus
the already executed time to obtain the remaining TB execu-
tion time. However, if there is no profiled TB execution time
available when we need to estimate, we can use Chimera’s esti-
mation. To estimate context switching time, we always use the
worst case estimation, which estimates the time for switching
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all the TBs in an SM. As the context switch time has a small
range compared to execution time, we are safe but not too
conservative in using the worst case estimate.

C. Context Reduction

Traditional context switching saves all allocated context to
global memory. However, the active context at a particular
point in time is always smaller than its allocated size, allow-
ing us to save less. We track the active context using dirty bits.
However, TBs mainly have two sources of context: 1) registers
and 2) shared memory, which have different lifetimes. Shared
memory is private per TB. As it is managed by the program-
mer, we consider its lifetime to be the whole lifetime of the
TB. On the other hand, registers are allocated per thread, and
threads are executed in a warp group. Thus, a register’s lifetime
is per warp. When a warp is finished, all registers allocated
for these threads are released. To track register use, we set a
dirty bit once a register is written to in the writeback stage,
and we unset if we checkpoint, or whenever the warp finishes.
We can similarly track shared memory writes.

Fig. 5 shows dirty register size for applications, normalized
by allocated size. We collect the dirty register percentage for
different execution progress points. Our initial collection is
at 25% execution. Dirtyl and Dirty2 are the percentage of
dirty registers at 50% and 75% of the TB execution progress,
relative to the initial collection. For the kernels with a large
number of warp instructions (MRI through PF), Dirtyl and
Dirty2 are reduced by 38.2% and 48%, on average, from the
initial state. In general, Dirty2 has less dirty registers than
the Dirtyl because many warps are finished at the 75% point;
these warps’ registers have been released. We find that this
dirty analysis is enough; we do not use a compiler liveness
analysis nor register value compression in this paper.

We also leverage in-place context saving [18] at the incre-
mental checkpoint. In-place context switching can be used
because the new kernel can use free space in the SM that
the old kernel did not use. This further reduces the actual
preemption time.

D. Proactive Preemption Design

1) Checkpoint Saving: Checkpointing will only be used for
long running preempted kernels, as their drain times are too

long. When a kernel is running on the SMs, if cudaLaunch is
called by the GPU driver, we know that a new kernel will be
transferred to the GPU within several to tens of microseconds.
At this moment, the GPU driver sends a signal to activate the
microprogrammed trap routine [38]. It is implemented by com-
mand queues and the memory-mapped register [39]. Current
GPUs may expose registers that can be poked by developers
to force preemption, but not by end users. When a preempting
kernel launch is detected, a base checkpointing command will
be written to the command queue which will further modify
the memory-mapped register to start the base checkpointing in
each SM [40]. We measure the signal transferring time in the
NVIDIA GTX 1060 GPU. This latency is around 1.3 us and
fairly constant across different applications. The signal triggers
a base checkpoint saving. We pause fetching new instruc-
tions, and drain the pipeline. Otherwise, the state of checkpoint
context will be inconsistent. If the current kernel is compute-
intensive, this process may only take tens of cycles. If it is
memory-intensive, we must wait for the memory request to
return. Thus, pipeline draining time can be hundreds of cycles
per SM. The context of the base checkpoint is dirty registers
and shared memory corresponding to the initial state.

When the checkpointing is done, all the dirty bits are
cleaned. Then, the GPU checks whether the new kernel is
transferred to the KMU or not. If it is in the pending kernel
pool, it can start execution once it obtains SM resources. Then,
the current kernel can be preempted immediately, as the cur-
rent execution state has been saved. Otherwise, the current
kernel will continue executing until the actual preemption
request arrives. When the actual preemption request arrives,
we only need to save the incremental update. The incremen-
tal checkpoint is the dirty context corresponding to the base
checkpoint, which is much smaller and takes much less time.
Since the dirty context of the incremental checkpoint is those
context which is modified after the base checkpoint, no redun-
dant data is saved. As above, the base checkpoint saving occurs
when the cudaLaunch for new high priority kernel is called.
Thus, the new kernel will be launched soon; therefore, the
incremental update will almost surely be small. Further, with
in-place context saving, the amount needed to be saved can
be reduced even more.

Restoration of the preempted kernel is similar to conven-
tional checkpointing. If we have two checkpoints’ states to
restore, we must restore one by one. However, at this time,
the SM will be idle; thus, the full bandwidth can be used for
the context restore.

2) Runtime Selection: As we know from the Table I, exe-
cution time, context size, and launch time can vary among
kernels. Hence, when cudalLaunch triggers our proactive pre-
emption mechanism, there are several possibilities. Fig. 6
shows the possibilities.

1) Two Checkpoints: Most often case. The kernel launch
time is longer than the base checkpoint saving time.
When the actual preemption starts, we save an incre-
mental checkpoint relative to the base.

2) Single Checkpoint: This is the same as a traditional con-
text switch, but it starts earlier. It occurs when the kernel
launch time is shorter than checkpoint saving time.
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Fig. 6. PEP Possibilities (K1: the preempted kernel, K2: the preempting

kernel, Chk-1: the base checkpoint, and Chk-2: the incremental checkpoint).

3) Drain: The preempted kernel is short. Its TB execution
time is shorter than preempting kernel launch time, pos-
sibly finishing before the deadline. In this case, we drain
all TBs, achieving very little overhead.

4) Drain Then Single Checkpoint: The preempted kernel
is the same as in case 2). If TB is nearly finished, the
preemption will not occur within the TB. Hence, we will
first drain the TB, then a new TB will be dispatched to
the SM. The new TB will start execution for a fixed
number of instructions before saving the checkpoint. In
this paper, we set the number of instructions to be 1000.

5) Drain Then Two Checkpoints: The preempted kernel is
the same as in case 1). The TB is nearly finished when
cudalLaunch is called, which is similar to case 4).

We design a dynamic runtime selection mechanism to han-
dle all possibilities. Fig. 7 illustrates our runtime selection.
When cudalaunch is called for the preempting kernel, we
compare the predicted kernel launch time with the current TB’s
remaining execution time, which is estimated. If the predicted
preemption will occur within the TB, proactive preemption
starts. If the TB’s estimated drain time is longer than the
switch time, we define this kernel as long. Cases 1) and 2)
operate on long kernels, collecting active context and saving
a base checkpoint to global memory. For the other cases, the
kernel’s predicted preemption will not occur within the TB’s
lifetime, so we drain, and a new TB from the current kernel is
dispatched. Then, we have to do the prediction and estimation
again. If the new TB can drain in time, and then preemption
is ready, we have case 3). Otherwise, we are in case 4), which
is just case 2) again, or case 5), which is just case 1) again.

E. Hardware Overhead

In order to implement PEP, the GPU needs to be extended
with new control logic to mainly implement the following:
1) prediction and estimation units, which involve counters for
profiling and comparators for making decision; 2) dirty bits,
one bit for each register, totaling 8 KB per SM for the GTX980

cudalaunch() is
called

Will predicted
preemption happen
within the TB?

s est. drain time
smaller than
est. switch time?

Drain

Has preemption
happened?

Get active context; Save
checkpoint-1

Get dirty context relative
to checkpoint-1;
Execute Until preemption;
save checkpoint-2

*—I

Wait until all TBs Finish;
Dispatch TBs from
new kernel to SMs

Has preemption
happened?

Fig. 7. Runtime selection.

TABLE II
GPGPU-S1iM CONFIGURATION PARAMETERS

[ Configurations | Nvidia Geforce GTX980 |
Num. of SMs 16
SIMD Width 32
SIMT Core Clock 1216MHz
Memory Clock 7GHz

Memory Controller | 4
Schedule Scheme 4 warp schedulers with LRR

Registers 256KB
Shared memory 96KB
TB Limit 32

GPU [16]; and 3) profiler counters, which are used for col-
lecting TB execution times. Overall, the majority of overhead
is largely in the dirty bit storage.

IV. EXPERIMENTS
A. Methodology

We implement PEP, and for comparison, Chimera, on the
latest version of GPGPU-Sim [41]. The system configuration
is summarized in Table II. The configuration of 256KB reg-
isters and 96KB shared memory reflects the large context in
recent GPU architectures. By default, GPGPU-Sim simulates
PTX instruction, which is a pseudo-assembly instruction set
with unlimited registers. It does not execute directly on the
hardware; SASS is the native instruction set run by the hard-
ware. Therefore, we simulate PTXPlus, which is a one-to-one
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Fig. 8. Preemption technique distribution.

mapping from SASS. This is necessary to accurately model
dirty registers.

For comparison, we implement Chimera and PEP with dif-
ferent variations: vanilla Chimera, Chimera with dirty context
saving, vanilla PEP and PEP with the in-place context sav-
ing. We test using a wide range of kernels from GPGPU
applications from Nvidia Computing SDK [26], Parboil [25],
Rodinia [24], and Darknet [27]. For Chimera, we vary the
deadline. We observed that the average context switch time
is always smaller than 20.9 us, so we set deadlines of 5, 10,
and 15 us. For PEP, we vary the preempting kernel launch
times, the predicted kernel launch time, and current progress
percentage at preemption. The PEP parameters are explained
later. We then compare the preemption latency, context size,
and preemption overhead of these different designs.

Because GPGPU-Sim does not model the timing from the
cudalLaunch API call to the kernel’s actual launch time, we
design our own experimental method. We profile kernel launch
times with Nvidia’s profiler [42]; launch times range from 3 to
33 ps in Table I. We then set the preempting kernel launch
time as 5, 15, 25, or 35 us. We also set the predicted kernel
launch time as 20 or 30 us. Moreover, as preemption can hap-
pen at any time during the execution of preempted kernels, in
order to make our evaluation more comprehensive, we vary
when the cudaLaunch occurs for the preempting kernel. For
experimental purposes, we invoke it at 25%, 50%, and 75%
of the average TB execution progress of the preempted kernel.
Hence, each application runs 24 times, exhausting all possibil-
ities. The results shown in the following sections are averages
over a particular parameter.

B. Selection Distribution

In Fig. 8, we collect the runtime selections of all TBs for
each application. TBs which do two checkpoints are only from
the six applications with average TB execution time longer
than 100 s (see Table I). On the contrary, applications whose
TBs all choose to drain are from short kernels with short aver-
age TB execution time. For LBM, the average TB execution
time is 30.1 us, while the average switch time is 20.9 us;
the drain time and switch time are comparable. This closeness
is what allows for the variation of choice between draining
or checkpoint, varying over the percent progress parameter.
Similarly for pathfinder (PF), the base checkpoint saving time
is similar to the preempting kernel launch time. This closeness
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Fig. 10. Normalized preemption time.

allows for the variation of choice between a single checkpoint
or two checkpoints, varying over the percent progress param-
eter. In the case of single checkpoint, we save overhead and
shorten latency by avoiding the second checkpoint.

Since there is a large gap between the average drain time
and average switch for most kernels, we usually choose a sin-
gle preemption method for all their TBs. Choosing a single
method means there is no bandwidth competition between
draining and switching TBs. Hence, our estimates on latencies
do not suffer from interference of memory contention.

C. Preemption Latency

Fig. 9 shows the preemption latency, which is measured
from time of the arrival of kernel at KMU to the last TB’s
context is saved. This is also the actual waiting time for the
preempting kernel in the kernel pending pool. We observe that
the last seven kernels which drain all TBs per SM achieve low
latency. These applications also have short TB execution time.
Although Chimera suffers from inaccurate time estimation, it
still chooses the same preemption techniques as PEP; this is
due to the wide gap between the drain time and the switch
time, which does not require high accuracy. Accordingly, all
four designs have the same latency for draining; the aver-
age drain time is 3.4 us. However, PEP and PEP+In-place
reduce the total average preemption latency from 8.9 us in
Chimera to 4.5 and 3.6 us, respectively. A shorter preemption
latency allows kernels to meet a stricter deadline, increasing
its usefulness for multitasking.

Fig. 10 shows normalized worst case preemption latency.
The first nine applications do not choose to drain all TBs. Two
main factors affect their preemption latency: 1) the pipeline
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draining time and 2) the total context size; however, the context
size is the key factor. Compared with Chimera, Chimera with
dirty context saving reduces the preemption latency by 31.8%,
as it reduces the saved context size. Compared with Chimera,
PEP reduces the average preemption latency by 58.5%; it
reduces by 70.3% if we leverage in-place saving. For KS, PEP
with in-place saving has zero preemption latency, because the
dirty context size for incremental checkpoint is very small; it
can completely be saved in place.

D. Context Size Reduction

For our experimental context, we only consider registers
and shared memory. Properly used shared memory should be
accessed frequently, because programmers use it in order not
to pay the global memory latency cost. Therefore, the shared
memory may become too dirty, causing unacceptable over-
head. Thus, we only use dirty bits for registers; we always
save the whole allocated shared memory. In our results, “con-
text size” refers to only the context which must be saved to
global memory.

Fig. 11 compares the context size among designs. Saving
only dirty context, Chimera can reduce the average context size
by 6KB per TB, which is 34.4% of its average total context
size. Since PEP may save checkpoint states twice, the average
total context size for PEP will be larger than Chimera-+dirty;
however, it is almost the same as original Chimera. However,
PEP can further reduce the context size by 16.2% with in-place
saving.

Figs. 12 and 13 show the context size details for both PEP
and PEP with in-place saving, respectively. For applications
that choose to context switch all the TBs, the total context size
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is the sum of the base checkpoint and the incremental check-
point. The result shows that the context size of the incremental
checkpoint is only 56.1% of the base checkpoint, on average.
The in-place saving can further reduce the context size for the
incremental checkpoint. The result in Fig. 13 shows that the
context size in the incremental checkpoint averages 3.34KB
per TB, which is only 29.4% of the average context size in
the base checkpoint. We can see that two checkpoints reduce
the context size significantly.

E. Sensitivity Analysis

In this section, we measured the sensitivity of scalability
and bandwidth. We vary the number of SMs but maintain
the same number of memory partitions and the same band-
width to analyze the impact on the preemption latency of
the checkpointing scheme. Fig. 14 shows that the preemption
latency increases almost linearly with the increasing number of
SMs due to increase memory traffic. Since the context inside
each SMs are the same, more SMs lead to high contention in
memory bandwidth. As shown in Fig. 14, the average preemp-
tion latency of 32 SMs is 2.58 times longer than the average
preemption latency of 16 SMs, which means the checkpoint-
ing scheme is sensitive to the memory bandwidth. Hence, this
result further proves the decision in that instead of overlap-
ping the execution and the context switching, all bandwidth
should be provided for the context switching to accelerate the
preemption.
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F. Impact of Preemption Overhead

The overhead for preemption is the idle time of execution
units caused by preemption. This is shown in Fig. 15. When
the SM is switching context, switching TBs must stop fetching
instructions and stop execution. SPs idle for both context swap
out and context restore. The only difference between swap
out and restoration times is that we drain the pipeline before
swapping out. Hence, we only compare the average context
saving latencies per TB as overhead.

Fig. 15 shows that the base checkpoint reduces the average
overhead by 37.9% from Chimera. The overhead of the base
checkpoint is similar to Chimera with dirty context saving.
With two checkpoints, the overhead of our PEP is still 6.3%
lower than Chimera. When using the in-place context saving
to reduce the context size of the incremental checkpoint, the
overhead of PEP can be further reduced by 16.4% on average.
Some applications do have higher overhead when compared
with Chimera. In these cases, the register reuse rate is high,
so the dirty context size is larger. Also, with two checkpoints,
more time is needed to drain the SM pipeline. However, a the
context size and the context switch overhead are positively
correlated, some applications, like LBM and ST save more
than 50% of overhead, due to a small dirty context size.

V. RELATED WORK

The main focus of GPU preemption research is reduc-
ing the preemption latency and overhead; it is prohibitive
to use CPU methods naively as the context size for GPUs
is much larger. In addition to traditional context switch-
ing, Tanasic et al. [19] proposed SM draining, which
works for preempted kernels which are relatively short.
Park et al. [21] proposed the SM flushing. It can achieve
zero preemption latency for idempotent preempted kernels.
Furthermore, their work combines context switching, SM-
draining and SM-flushing to work collaboratively based on
the progress of TBs. Wang et al. [20] designed a fine-grain
dynamic sharing mechanism, SMK. Their design enables a
fine-grain context switch mechanism on per TB basis to
achieve low turnaround time.

To focus on context size reduction, iGPU [43] has the
insight that context can be saved and restored at the bound-
aries between idempotent code regions. They leverage liveness
analysis to identify recovery points; these points have a small
set of live registers. Lin et al. [18] proposed three techniques
to implement lightweight context switching, including in-place
context saving, liveness analysis, and context compression.
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Checkpointing is typically used for fault toler-
ance [44], [45]. Traditional checkpointing software, such as
BLCR [46], supports checkpointing the CPU state by using
a custom Linux kernel. This does not work for off chip
GPUs because a driver manages GPU memory; thus, BCLR
cannot restore its state. CheCUDA [34] was the first attempt
to solve this issue for Nvidia GPUs. It is implemented as an
add-on for BCLR; it works by sidestepping BCLR. It requires
recompilation of applications. NVCR [35] improves upon
this, supporting the larger class of applications which use the
runtime API. Furthermore, it replaces 1ibcuda.so; thus,
it can be used without recompilation. Additionally, virtual-
ization is another technique used to checkpoint applications;
vCUDA [47] is the first to do such work.

Our checkpointing is not real checkpointing. Actually, it
is context saving which behaves similarly to the checkpoint-
ing. We utilize the procedure of checkpointing for reducing
context size saved during preemption. Unlike any checkpoint-
ing which is performed periodically, PEP only checkpoints at
most two times (base checkpointing and incremental check-
pointing). The base checkpointing is triggered by the system
call of preempting kernel launching which belongs to software,
while the incremental checkpointing is triggered by the actual
preemption signal, which is a hardware signal. State-of-the-art
checkpointing needs both context saving and fault recovery
units to guarantee reliability, while our PEP checkpointing is
more lightweight design as there is not faulty recovery unit
involved.

All previous preemption mechanisms are reactive, mean-
ing the mechanism will not start until the preempting kernel
is launched and requests resources. Thus, the algorithm must
wait for the SM to context switch or drain TBs. By leverag-
ing the kernel launch process, PEP is a proactive technique.
By utilizing checkpoint, PEP can obtain a lower latency then
other methods, still with acceptable overhead.

VI. CONCLUSION

In this paper, we proposed PEP, a dynamic and proactive
preemption mechanism on GPUs. With only a rough prediction
of preempting kernel launch time, we can successfully antici-
pate preemption before the actual request arrives. We borrow
checkpointing from fault tolerance, which allows us to shorten
preemption latency. Further, checkpointing can tolerate imper-
fect predictions. To predict preemption, we leverage the kernel
launch process done by the GPU driver. The driver triggers a
base checkpointing when it receives a kernel launch command
from the CPU. This allows us to later only save an incre-
mental checkpoint as soon as the actual preemption request
arrives. Further, SMs can execute between two checkpoints
as usual. We also support SM draining for short kernels, and
we further borrow in-place context saving to achieve low pre-
emption overhead. For our proactive checkpoint mechanism,
we achieve 58.6% average preemption latency reduction and
23.3% average context switch overhead reduction. The average
preemption latency is also reduced to 3.6 us, which allows for
stricter deadlines, thus increasing multitasking support.
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