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Aging Capacitor Supported Cache Management
Scheme for Solid-State Drives

Congming Gao ', Liang Shi

Abstract—Solid-state drives (SSDs) have been widely adopted
in embedded systems, data centers, and cloud storage due to its
well-identified advantages. Inside SSD, random access memory
(RAM) is adopted as the built-in cache for achieving better
performance. However, due to the volatility characteristic of
RAM, data loss may happen when sudden power interrupts.
In order to solve this issue, a capacitor has been equipped inside
emerging SSDs as an interim power supplier. But due to the
capacitor aging issue, which will result in capacitance decreases
over time, there still may exist data loss when power interruption
occurs. Once the remaining capacitance drops to the threshold
value where all dirty pages in the cache can not be written back
to flash memory, data loss happens. To solve the above issue, an
efficient cache management scheme for capacitor equipped SSDs
is proposed in this article. The basic idea of this scheme is to
bound the number of dirty pages in a cache within the capability
of the equipped capacitor. The proposed scheme includes three
steps: 1) a periodical dirty page budget detection (DPBD) scheme
is proposed to acquire the maximal number of dirty pages that
can be written back within current capability of equipped capac-
itor; 2) a smart dirty page synchronizing scheme is proposed
during normal run time to bound the number of dirty pages
in the cache; and 3) when power supply interrupts, an efficient
writing back method is applied to further reduce the capacitance
consumption of capacitor. The simulation results show that the
proposed scheme achieves encouraging improvement on lifetime
and performance while power interruption induced data loss is
avoided.

Index Terms—Capacitor, data loss, lifetime, performance,
solid-state drives (SSDs).
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I. INTRODUCTION

OLID-STATE drives (SSDs) have been widely used in

embedded systems, data centers, and cloud storage due to
its well-identified advantages, such as shock resistant, high
random access performance, low power consumption, and
lightweight form factors. In order to further improve the
performance of flash-based SSDs, static or dynamic random
access memory (RAM), which has tiny access latency, is
equipped inside SSD to temporarily store the data. However,
due to the volatility characteristic of RAM, there is a risk
of data loss when sudden power supply interruption happens,
leading to the degradation of the robustness of SSDs [38].
To avoid such a data loss issue, capacitor is equipped within
emerging SSD as interim power supplier [3]. However, one of
the key issues for the capacitor is the aging problem, which
may reduce the existing capacitance of the capacitor, especially
for the impact of temperature [5]. Once the remaining capac-
itance of the capacitor drops to a threshold value where rest
capacitance can not write all dirty pages back to flash memory,
data loss happens. To avoid such a problem, the most straight-
forward way is to strictly bound the maximal number of
dirty pages in the cache. Currently, although there are several
capacitance detection methods, which can accurately get the
remaining capacitance of capacitor, they are too complicated
to be implemented inside SSDs [17]. In this article, we pro-
pose to indirectly detect the current capacitance of capacitor so
that the capacitor aging (or low-capacitance capacitor) induced
data loss issue can be avoided with minimized performance
and lifetime impact.

In this article, a cache management scheme is proposed,
of which the basic idea is to bound the maximal number of
dirty pages in the cache. There are several challenges for this
scheme. First, the maximal number of dirty pages that can be
written back to SSDs by existing capacitance is unknown to
the cache manager. Second, dirty pages in the cache should be
carefully synchronized back to flash memory to avoid intro-
ducing server write amplification or performance degradation
for SSDs. To solve the above challenges, the proposed scheme
is realized in the following steps. First, a periodical dirty
page budget detection (DPBD) scheme is proposed, which is
activated to constantly synchronize pages back to SSD until
the capacitance exhausts. Second, with the dirty page bud-
get, a smart dirty page synchronizing scheme is proposed. In
the last step, a capacitance-saving writing method (CSW) is
proposed, which is designed to write all dirty pages back to
flash memory with less capacitance consumption. To evaluate
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the effectiveness of the proposed scheme, a set of analysis and
experiments are carried out on an SSD simulator [18]. The
experimental results show that the proposed scheme achieves
significant improvement on performance and lifetime with
negligible overhead when data integrity is enhanced. The
major contributions of this article are as follows.

1) Proposed a DPBD, which acquires the maximal number
of dirty pages within the capability of a capacitor with
negligible overhead.

2) Proposed a smart dirty page synchronizing scheme,
which can avoid the negative impact on the performance
and lifetime of SSDs while the capacitor aging-induced
data loss problem is avoided.

3) Proposed a capacitance-saving method, which is
designed for 2-D and 3-D flash memories.

4) Implemented the proposed work in an SSD simula-
tor to evaluate the effectiveness of the proposed cache
management scheme.

The rest of this article is organized as follows. Section II
presents the background and related works. Section III presents
the motivation of this article. In Section IV, efficient cache
management is presented. The experiments are presented in
Section V. Finally, Section VI summarizes this article.

II. BACKGROUND AND RELATED WORKS
A. Capacitor Equipped Solid-State Drives

SSD is constructed with several flash chips, which
can be exploited for performance improvement of
SSDs [18], [15], [14]. Inside the SSD controller, there
exist several controller components. First, for DRAM cache,
it is designed to temporarily store data for providing better
requests access performance based on its faster access speed.
For the flash translation layer (FTL), it is in charge of
address translation from a logical address to physical address,
determines and records the physical locations of data. For
the capacitor, it is equipped inside SSD as an interim power
supply, which is activated to provide a stable power supply
for guaranting data integrity.

Apart from controller components, NAND flash memo-
ries contain different types of technologies (2-D and 3-D
NAND flash memories). Compared with traditional 2-D NAND
flash memory and 3-D NAND flash memory adopts “vertical
channel,” which builds a charge trap cell with a cylindrical
channel [34]. This physical characteristic of vertical channel
results in that pages resided in smaller opening can be written
with faster speed than pages in larger opening [25]. For 2-D
NAND flash memory, in this article, multilevel cell (MLC) 2-D
NAND flash memory is taken into consideration, which con-
tains two types of pages: 1) the least significant bit (LSB) and
2) the most significant bit (MSB) pages, of which the program
latency is larger than LSB page [33].

B. Characteristics of Equipped Capacitor

One of the key characteristics of a capacitor is the aging
issue, which will make capacitance gradually decrease over
time. The reason is that the capacitor aging is visible by the
increase of resistance value and the decrease of capacitance
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value. Normally, the industry suggests that once there is a sig-
nificant capacitance reduction, the capacitor should be ended
its life. In this article, the maximal loss of capacitance is set
as 30% according to [S].

Currently, two types of capacitors, namely, super-
capacitor [9] and Tantalum capacitor [21], have been widely
adopted in advanced SSDs. For super-capacitor, its lifetime
is quite sensitive to temperature. Based on the Arrhenius law
lifetime model [5], the lifetime of super-capacitor is reduced
by half when the temperature is increased by 10 °C [2]. This
phenomenon has been verified in [16], which shows that the
capacitance degradation of super-capacitors under 60 °C can
be as high as 30% within five years. For the Tantalum capac-
itor, although it can operate with a larger temperature range
(e.g., —40 °C to 105 °C) [3], the capacitance will be sig-
nificantly decreased as well when the temperature falls out
of the range. Based on the above discussion of the aging
issue of capacitors, one can see that capacitor aging-induced
capacitance decrease still is a key problem in SSDs.

C. Related Works

To solve the capacitor aging issue in SSDs, using emerging
nonvolatile memory is adopted as one of the effective meth-
ods. Guo et al. [16] and Kim and Kang [23] proposed to equip
emerging nonvolatile memory as cache to store dirty pages so
that fewer dirty pages need to be written back with the sup-
port of equipped capacitor. However, there still exists an order
of magnitude latency difference between nonvolatile memory
and RAM. Another possible method is to write dirty pages
back to SSDs as soon as possible. Huang et al. [19] proposed
a smartbackup strategy, which aims to exploit the parallelism
and LSB page for providing faster program speed [7]. Since
this article does not build the relationship between the number
of dirty pages in cache and the remaining capacitance of capac-
itor, once resided capacitor is highly aged and the number of
dirty pages exceeds the capability of remaining capacitance,
data loss still occurs.

III. MOTIVATION
A. Capacitor Aging May Induce Data Loss

Based on the work presented in [11], the maximum energy
of capacitor, Ec,p, can be calculated as follows:

I
Eeap = 5 X Ceap X (chap _ Vr%ﬂn) X m (1)

where C,p indicates current capacitance of capacitor. Viap
is the charging voltage of the capacitor. Vi, is the mini-
mum voltage for activating internal circuity normally. m is
the energy conversion efficiency, of which the value is set
to 0.9 in [11]. In (1), the maximum energy supplied by a
capacitor is proportional to Ccap. In addition, based on the
work in [16], the maximum number of dirty pages within the
capability of a capacitor can be calculated according to the
following equation:

Ngirty X Page_Size
BWssp

2)

Ecap = Puwriting X
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where Puyriting, Page_Size, and BWgssp represent the power
cost of each write operation, the size of dirty page, and the
maximum write bandwidth of SSD, respectively. Ngiry repre-
sents the number of dirty pages that are going to be written
to flash memory. Based on (1) and (2), we can find that
the maximum number of dirty pages within the capability of
a capacitor is proportional to the existing capacitance of a
capacitor.

However, the capacitance will decrease with capacitor
aging, which is highly related with the temperature [5]. For
both, super-capacitor and Tantalum capacitor used in [1], the
relationship between lifetime and temperature can be described
by the law of Arrhenius [5] If SSDs are operated in an
extreme environment (high temperature for super-capacitor or
low temperature for tantalum capacitor), the capacitance of the
capacitor will decrease sharply.

B. Dirty Page Synchronization Induced Impact

The straightforward method to avoid the capacitor aging-
induced data loss is to bound the number of dirty pages in
the cache, which can be easily realized by the following two
methods. First, punctual synchronization (PS). PS is to syn-
chronize dirty pages back to SSD once the number of dirty
pages reaches the capability of the capacitor [22]. Second,
greedy synchronization (GS) is proposed which synchronizes
dirty pages during idle time of SSDs to avoid the performance
impact from the above method.

To understand the impact on performance and lifetime
of SSDs, we select WDEV_0, one of MSR Cambridge
traces [30], as an example and implement three schemes in
SSDsim simulator [18]. In the experiment, we assume the
existing capacitance only can write 90% cache capacity of
dirty pages. More details are presented at Section V. We eval-
uate the normalized access latency and write amplification.
The results show that, first, PS has smaller write amplifica-
tion, but introduces a high write access latency. Second, GS
has much better access performance. Since most dirty pages
can be synchronized back to flash memory in idle time, incom-
ing read and write requests can be directly inserted into the
cache while most pages are clean and can be evicted without
writing them back to flash memory. Otherwise, if the current
cache is full and incoming requests are missing, the required
data of incoming requests only can be inserted into the cache
when dirty pages have been evicted. But GS also induces a
high write amplification.

From the observations, we can find that although synchro-
nization can avoid data loss issues, the timing of synchronizing
dirty pages should be carefully selected to reduce the impact
on both performance and lifetime.

IV. EFFICIENT CACHE MANAGEMENT SCHEME

There are three modules added in SSD controller: 1) DPBD;
2) smart synchronizing activation (SSA); and 3) CSW.

A. Dirty Page Budget Detection Module

The basic idea of DPBD is to acquire the dirty page budget
by periodically synchronizing dirty pages in the cache back
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Fig. 1. Process of synchronizing pages from cache to flash memory.

to SSDs via interim power suppliers. During this process, a
page counter is used to record the number of synchronized
pages until the capacitor is exhausted. If all dirty pages have
been synchronized back to flash memory before capacitance
is exhausted, clean pages should be synchronized as well. As
shown in Fig. 1, dirty pages and clean pages are separated
by adding a bit vector first, which is used to indicate dirty
and clean pages. Then, dirty pages are synchronized first, and
then clean pages are synchronized if necessary. During this
process, if there are host requests arriving, they are supposed
to be processed in parallel with the DBPD module by directly
writing write requests to flash memory at the cost of additional
capacitance consumption. Also, the value of the dirty page
budget counter is increased.

However, if the capacitor is rapidly worn out due to some
factors (e.g., strikingly changed temperature), the last detected
dirty page budget may exceed the capability of the current
capacitor, which only can synchronize a fewer numbers of
dirty pages compared with the last detected budget. To avoid
this case, the DPBD module should be activated more frequent
so that the detected dirty page budget value can be updated in
time.

The above process has two additional issues before it
becomes practical: 1) the detection period between two con-
tinuous DPBD processes should be carefully determined
and 2) the dirty page budget redundancy should be well
determined.

First, in this article, we propose a conservative method to
determine the detection period, which is designed according
to the previous work [6]. Brouji et al. [6] presented that, after
reaching 100000 charge/discharge cycles, the capacitance of
the capacitor will significantly decrease with power cycling. In
order to remove the impact from charge/discharge cycles, the
detection period is set to 20 days at least in the DPBD module,
which is set based on the worst-case presented in [6]. In addi-
tion, for supporting the control from users, the DPBD module
also can be proactively activated by the command from the
host side [3], avoiding data loss in a high-reliability require-
ment environment. If temperature strikingly drops during two
consecutive DBPDs, activating the DPBD module by user can
help to detect a new dirty page budget in time so that the data
loss problem can be avoided.

Normally, the detection is activated during idle time to min-
imize the impact on incoming requests. If idle time can not
be found immediately, the following method can be used.

1) For the periodically activated DBPD module, we pro-

pose to detect idle time one more day after 20 days.
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If there is still no idle time, DPBD module is activated
immediately with the highest priority.

2) For proactively activated DBPD module, we believe that
DPBD is more significant than host I/O requests from
the view of users. Hence, the DPBD module is activated
immediately.

Second, in order to minimize the impact of capacitance
degradation during two continual DPBD processes, a redun-
dant space from the acquired number of pages to the dirty page
budget is added. In this article, there are five budgets, includ-
ing 100%, 90%, 80%, 70%, and 0%. In the meanwhile, we
set the redundancy conservatively by maintaining at least 10%
redundancy for the detected dirty page budget. For example,
assuming that the detected budget is 105%, then the budget is
set to 90% with 15% of budget used as budget redundancy. If
the data integrity requirement is not such strict, the redundancy
also can be set at a finer granularity.

After each DBPD, the capacitor should be recharged again.
At this time, we propose to directly write all dirty pages to
flash memory without caching during the capacitor recharging
process. According to [16] and [36], the worst recharging time
cost will not exceed 10 s. In this article, the time cost of the
recharging process is set to 10 s.

Overhead Analysis: The overhead in the DPBD module
mainly comes from three aspects.

1) For write amplification, the DPBD process may generate
additional write operations. However, the DPBD process
is activated every 20 days. So, the generated additional
write operations are negligible compared with total write
requests within 20 days.

2) For time cost, according to [19], the time cost of writing
128-MB data back to SSD only needs less than 30 s. In
this article, the maximum time cost of DPBD module
is less than 30 s for SSD with 128-MB cache, which is
negligible as well compared with 20 days. In order to
further reduce the time cost, DPBD is suggested to be
activated during idle time.

3) For capacitor cycling cost, in [6], the relationship
between the number of cycles and capacitance is pro-
portional. On average, each cycle only reduces 0.001%
capacitance to the rated capacitance, which is negligible.

B. Smart Synchronizing Activation Module

In this section, a smart synchronizing scheme is proposed
to improve both the performance and lifetime of SSDs, which
is activated in two cases.

Idle Time Synchronization: In order to avoid arbitrarily
synchronizing dirty pages from the cache, two new synchro-
nization conditions are proposed. The first one is to set a
budget threshold, which is used to maintain a budget redun-
dancy so as to prevent frequently synchronizing dirty pages.
Once the number of dirty pages reaches the threshold, dirty
pages should be synchronized. The second one is that cold
dirty pages are synchronized back to SSDs in advance dur-
ing idle time for minimizing the impact on performance.
Therefore, based on the above approaches, the immature syn-
chronization can be minimized and the number of dirty pages
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Fig. 2. Two new synchronization timings. (a) Budget threshold. (b) Coldness
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can also be reduced. Fig. 2 shows an example for the above
two thresholds. Fig. 2(a) presents the first case. Assuming the
dirty page budget is 8, the current number of dirty pages
is 6, and the budget threshold is 6. When the number of
current dirty pages reaches budget threshold, page 9 should
be synchronized back. Fig. 2(b) presents the second case. In
this case, assuming the coldness threshold is 8, which indi-
cates that pages after the 8th page are identified as cold
pages (in the red frame). In this figure, page 8 identified
as the cold page is synchronized back although the cur-
rent number of dirty pages has not reached the threshold.
Note that in this article, budget and coldness thresholds are
set with 5% of dirty page budget and capacity of cache,
respectively.

Busy Time Synchronization: During busy time, we propose
to evict pages based on LRU policy if the number of dirty
pages does not approach the budget. Otherwise, dirty pages
are synchronized with a higher priority compared with clean
pages. However, during the process of synchronization, if an
update request arrives while its original data is being synchro-
nized back to flash memory, this page in the cache would
be marked as dirty first. But when the synchronization pro-
cess completes, this page is going to be marked as clean
again. That is, the updated content of this page will loss
while this page has been synchronized and marked as the
clean page. To avoid this situation, write protection is used
to write protect on this page before synchronizing it back
to flash memory so that the data consistency can be guar-
anteed. Under this setting, the arrived update requests has to
wait until the completion of the synchronization process. As
a result, the performance will be reduced for these blocked
update request due to the write protection. But the evalu-
ated results show that the maximal percentage of blocked
update requests is 0.0987% and the maximal value of normal-
ized average write latency is 0.8981. That is, the performance
impact resulted from write protection is negligible in this
article.
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C. Capacitance-Saving Writing Method

In this section, a CSW is proposed, which can write dirty
pages with less energy cost. To maintain SSD’s normal opera-
tion, the energy cost can be divided into two parts: maintaining
the normal operations of components inside the controller,
transferring and writing dirty pages to flash memory. The total
energy cost calculation can be divided into two parts, which
are presented as follows:

Etotal = Econtroller + Eprogram (3)
Econtroller = Unor X Inor X Total “4)
Eprogram = Uy X I X Tprogram )]

where Ei represents the total energy cost of whole SSD
device. Econtroller and Eprogram indicate the energy cost of main-
taining normal operations of components inside controller and
the energy cost of writing dirty pages back to flash memory.
Unor and Ior represent the required voltage and current to
maintain normal operations of controller. U, and I, repre-
sent the required voltage and current for regular program
operation. Tioral and Tprogram indicate the total time costs of
synchronization process and writing all dirty pages to flash
pages, respectively. To minimize the energy cost, there are
two approaches being used to achieve a minimal writing time
cost. First, CSW exploits the parallelism through distributing
dirty pages to all parallel units dynamically, which can reduce
Tiota1 by overlapping the time cost of multiple program oper-
ations. Second, dirty pages are suggested to be written into
pages with faster program latency so as to reduce Tprogram-
Since 2-D and 3-D flash memories have been widely used in
SSD devices in recent years, the proposed CSW is designed
for 2-D and 3-D NAND flash memories, respectively.

1) Writing Policy of CSW: In this section, in order to
fully exploit the parallelism of SSDs, the priority order of
four-level parallelism should be: 1) channel level parallelism;
2) die level parallelism; 3) plane level parallelism; and 4) chip
level parallelism [18]. However, for plane level parallelism,
it is not considered in the proposed CSW. The reason is
that plane level parallelism should be supported by advanced
command [18], [32], which has strict limitations for write
operations, especially for the intraplane access locations.

Within each die, the space of free blocks is selected as the
destination of evicted dirty pages. In order to quantitatively
analyze the required number of flash pages per block in free
page space, an equation is presented

Num_ReqPage = [Size_Dirty Page - (Num_Channel
X Num_Chip x Num_Die
x min{Num_FreeBlk;|0 < i<Num_Plane
x Default_Num_BIlk} x Size_Page)]
(6)

where Num_ReqPage indicates the number of required
pages for storing dirty pages synchronized from the cache,
Size_DirtyPage indicates the size of total evicted dirty pages,
Num_Channel, Num_Chip, Num_Die, and Num_Plane rep-
resent the number of channel, chips per channel, dies per
chip, and planes per die, respectively. Num_FreeBlk; shows
the number of free blocks in die i and Default Num_Blk
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represents the default number of free blocks per plane
and Size_Page means the size of each flash page.
While the first three levels parallelism is exploited, total
Num_Channel x Num_Chip x Num_Die dies can be pro-
cessed in parallel. Since the number of existing free blocks
in different dies may be different, the minimal number of
free blocks in all dies is determined as the number of blocks
which can be used to store synchronized dirty pages for each
die. Based on this setting, in each parallel round, all dies in
the SSD can be used to process dirty page generated write
requests simultaneously. However, if the calculated value of
Num_ReqPage is larger than the default number of pages per
block, more dirty pages are going to be written to more free
blocks after running out of all parallel round dedicated free
blocks.

In this article, the threshold of triggering GC is set as 5%
and plane level GC is adopted, which is activated while the
number of free pages in a plane is lower than the thresh-
old [18], [31], [37]. Assuming that the size of SSD is 128 GB
and there exist 7% OPS space. Then, totally, more than 5-GB
space can be used in CSW design, which is large enough
for storing all data evicted from the cache while the size of
the cache is set as 1% of the SSD capacity (e.g., 128 MB
for a 128-GB SSD) [24]. In addition, for the internal activ-
ities, such as GC, when sudden power supply interrupts, all
internal activities are going to be stopped for avoiding consum-
ing additional power of equipped capacitor. During the process
of writing dirty pages back to SSDs, the mapping information,
from logical page number to physical page number, is written
into the out-of-band (OOB) space of each page for reducing
the additional time cost of writing mapping information back
to SSDs [19]. When the power supply recovers, the mapping
information can be rebuilt through scanning the SSD devices.

2) 2-D NAND Flash Memory-Based CSW: For 2-D NAND
flash memory, CSW proposes to write dirty pages back to
free LSB pages greedily due to the program latency difference
between LSB and MSB pages. However, if the required space
of dirty pages exceeds free LSB space, free MSB pages should
be used for storing more dirty pages. To follow the sequential
programming constraint of flash memory, the number of MLCs
programmed as SLCs should be determined first. For default,
the threshold of triggering GC is set as 5% and OPS space
is set as 7% [13]. Assuming that the size of SSD is 128 GB.
Then, more than 2.5-GB LSB page space can be used to store
dirty pages from cache for MLC SSD.

Based on (6), the number of required flash pages per block,
Num_ReqPage, can be used to determine whether MSB pages
should be used during the CSW process. If Num_ReqPage
is smaller than the half-page number in a block, dirty pages
can only be written to LSB pages via skipping MSB pages.
Otherwise, some dirty pages are suggested to be written back
to MSB pages. But the timing when dirty pages are written
to MSB pages should be calculated in advance. The following
equation is presented to show the timing when Num_ReqPage
is larger than half page number in a block:

Num_OnlyLSB = Num_Page — 2 x (Num_ReqPage
— (Num_Page - 2)) @)
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where Num_OnlyL.SB indicates the number of LSB pages
per block being written ahead. Num_Page presents the default
number of flash pages in a block. Based on this equation, dirty
pages will be written back to Num_OnlyLSB flash cells first,
where only LSBs are programmed. Then, the rest of the flash
cells will be programmed as MLC for writing LSB and MSB
pages one by one. For the technology using MLC as SLC, it
has been widely studied in previous works [20], [26], [27]. In
order to avoid calculation energy cost, (2) and (7) should be
calculated during runtime when the power is supplied by the
host side.

3) 3-D NAND Flash Memory-Based CSW: Differing from
2-D NAND flash memory, 3-D NAND flash memory adopts ver-
tical channel architecture, which builds a charge trap cell with
a cylindrical channel. For each channel, it is mapped as one
block in SSD. Within each channel, the cells residing on differ-
ent layers are mapped as flash pages, having various program
latencies. The pages in the bottom of vertical channel has the
smallest program latency so that dirty pages are suggested to
be written back to these flash pages greedily.

Similar to CSW on 2-D NAND flash memory, free space
in 3-D NAND flash memory is used to store dirty pages as
well. Since the total space of free space is limited, dirty pages
may be programmed to multiple pages in each flash block.
As shown in Fig. 3, assuming that there are two blocks in
free space for each chip and three pages per block. Within
the block, Page0 has the lowest program latency and the pro-
gram latency of Page2 is set as the highest one. In this case,
if there are 13 pages evicted from cache, these dirty pages
are going to be written into free space in round-robin policy.
In the first round, four dirty pages are programmed to pages
with the lowest program latency in the first block. After that,
the other four dirty pages are programmed to another block
in the second round. When all flash pages with the lowest
program latency have been used, dirty pages are going to be
programmed back to the next page in the block. In the third
round, four dirty pages are programmed to Pagels of these four
blocks. Finally, the last dirty page is programmed to Pagel of
the second block in Chip 0. In the worst case where all used
space has been filled with data, similar to 2-D NAND flash
memory, the free space is large enough for CSW to store all
dirty pages on 3-D NAND flash memory.

V. EXPERIMENT
A. Experimental Setup

1) Simulated SSD Device: In this article, we use a trace-
driven simulator, SSDsim [18], to evaluate the proposed
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TABLE I
PARAMETER SETTINGS FOR THE SIMULATED SSD
[ Parameters [ Value | Parameters [ Value ]
Number of Channels 4 T+ (in Page) 75 us
Chips per Channel 4 T, _msp (in MSB Page) | 2600 us
Dies per Chip 4 Tp_rsp (in LSB Page) 1300 us
Planes per Die 4 Te (in Block) 3.8 ms
Blocks per Plane 2048 Tiransfer (in Byte) 10 ns
Pages per Block 64 OPS Space 7%
Page Size 4 KB GC Threshold 5%

framework. For the experiment, a 128-GB 2-D SSD and a
128-GB 3-D SSD are simulated, both of which are config-
ured with four channels with each channel equipped with four
chips. Each flash page size is set to 4 KB. The cache capacity
is set to 128 MB. In the controller, default management mech-
anisms are implemented for excellent performance, including
page mapping-based FTL [4], static wear leveling scheme [8],
dynamic data allocation scheme [18], and greedy-based GC
scheme [4], [18]. To simulate an aged SSD device, simulated
SSD is warmed up before running each workload for trig-
gering GCs easily. The warming process contains two steps:
1) each plane of the SSD is randomly filled with data from
93% to 95% to trigger GC immediately, of which 80% are
valid and 2) the evaluated workload is preprocessed in the
SSD to validate read data [12]. The detailed settings of the
SSD are listed in Table I, where a typical flash memory is
simulated [28]. The evaluated workloads include a set of MSR
Cambridge traces [30], two Financial traces [35], and one per-
sonal computer traces collected via DiskMon [29]. In addition,
for the program latency difference of 3-D SSD, it is set as
2x [10] while the minimal program latency is set as 1300
us. Apart from that, other parameters are the same as values
listed in Table I. In order to simulate sudden power supply
interruption, each workload is paused after running half way,
making the simulated SSD in a stable state. After that, the
power supply of the controller is switched from the host side
to the equipped capacitor and the CSW module is triggered to
synchronize dirty pages back to flash memory.

2) Evaluated Schemes: In the first experiment part, four
schemes, including baseline, PS, GS, and the proposed smart
dirty page synchronizing scheme, are evaluated. Each scheme
except for baseline contains three cases, 90%, 80%, and
70%, which represent different dirty page budget values. All
schemes are evaluated on 2-D and 3-D NAND flash memo-
ries, respectively. Note that, if the dirty page budget is 100%,
the traditional cache management is adopted because current
capacitance can write all cached data back to SSDs. If a dirty
page budget is smaller than 70%, we set the budget to 0%. In
this case, all schemes synchronize dirty pages back to SSDs
immediately when dirty pages arrive at the cache. Therefore,
when the dirty page budget is set as 0%, all four schemes
will achieve the same results so this case is not taken into
consideration in this part.

B. Results and Analysis

1) Results of SSA (Latency Analysis for 2-D SSDs): Fig. 4
presents the write latency evaluations of four schemes, where
dirty page budgets are set as 90%, 80%, and 70%, respectively.
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Fig. 4. Normalized write latencies of the four schemes.
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Fig. 7. Normalized read latencies of four schemes.
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Fig. 6. Normalized write amplifications of the four schemes.

In this figure, we can find that PS commonly introduces a
high write latency, and GS achieves the minimal write latency.
Take the scheme with 70% dirty page budget as an exam-
ple. On average, compared with baseline, PS increases write
latency by 70.1%, the write latency of GS is reduced by
97.9% and the write latency of the proposed scheme is reduced
by 19.7%.

In Fig. 5, the number of host write requests blocked by
synchronization processes of PS is normalized to baseline.
We can find that the results in Fig. 5 has a matching pat-
tern with the normalized write latency of PS presented in
Fig. 4. That is, the poor write performance of PS mainly
comes from the synchronization induced conflict on host
requests. In addition, for GS, since dirty pages can be syn-
chronized back to flash memory in idle time, the cache
space can be freed to service incoming I/O requests with-
out evicting dirty pages. In Fig. 5, for GS, there are fewer
incoming requests being blocked by synchronized dirty pages.
For the proposed scheme, there are a few number of write
requests being blocked by synchronized dirty pages compared
with PS. Therefore, the proposed scheme can achieve better
write performance. But the proposed scheme is still far away
from the achieved write latency of GS due to its selective
synchronization.

Since GS is designed to synchronize dirty pages in idle time,
more write operations are generated so that the write ampli-
fication will be severe. Fig. 6 presents the normalized write
amplification. In this figure, we find that PS achieves simi-
lar write amplification to baseline when the budget is set to
90%. But GS has the largest write amplification, of which the
worst case is up to five times compared with baseline. Different
from these two schemes, the proposed scheme achieves bet-
ter than GS. The reason is that the number of synchronizing
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Fig. 8. Maximal number of dirty pages in the cache.
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Fig. 9. Normalized write latencies of the four schemes on 3-D SSD.

dirty page induced write operations is significantly reduced
through smartly activating synchronization. But there also exist
some exceptions, such as DM, of which three schemes achieve
closely results to the baseline as well. The reason comes from
that there exist bursts of accessing requests so that less idle
time can be used to synchronize dirty pages.

Fig. 7 presents the normalized read latency. In this fig-
ure, several observations can be found from the results: first,
in most cases, PS achieves the worst read performance and
GS achieves the best read performance among evaluated
three schemes. This is because PS may synchronize dirty
pages when read requests arrive, causing worse read/write
interference [15]. But for GS, it can reduce the impact of
read/write interference through synchronizing dirty pages in
idle time. For the proposed scheme, since it also synchro-
nizes some dirty pages in idle time, the impact of read/write
interference can be reduced as well. Second, when the budget
is smaller, the read latency is larger in most cases. This is
because more read requests may be blocked by synchronized
write operations due to the frequent synchronization opera-
tions. Similar results also can be found in Fig. 7, where PS
achieves the worst read performance, GS achieves the best read
performance and proposed scheme can achieve the tradeoff
between PS and GS.

Apart from the above results, the maximal numbers of dirty
pages in the cache are collected and presented in Fig. 8 as well.
In this figure, PS, GS, and the proposed scheme are confirmed
that the number of dirty pages in the cache is smaller than the
defined budget.

Latency Analysis for 3-D SSDs: Figs. 9 and 10 show the
write and read latencies of evaluated schemes on a 3-D SSD.
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Since the program speeds of flash pages in a block are differ-
ent for 3-D SSD, the program latency is set to be proportional
to page’s location [10]. As shown in Figs. 9 and 10, the results
have the same trend with the normalized write and read laten-
cies evaluated on 2-D SSD. On the one hand, the achieved
performance improvement of the proposed scheme on 3-D
SSD is significant compared with PS. On the other hand, com-
pared with GS, although the performance is poorer, the write
amplification is highly reduced. The reasons are the same as
presented in the latency analysis on 2-D SSD.

2) Results of CSW Method: In this section, we evaluate the
total writing time cost to show the efficiency of the proposed
CSW on 2-D and 3-D SSDs, respectively. In Fig. 11, base-
line and the proposed CSW are evaluated with different dirty
page budget on 2-D SSD. The total writing time cost of all
schemes is evaluated with 90% dirty page budget. As shown
in Fig. 11(a), the total writing time cost is averagely reduced
by 67.1% compared with baseline with three different dirty
page budgets. This is because that all dirty pages are evenly
written to LSB pages so that the time-consuming MSB page
write operations are eliminated. In addition, we also find that
the smaller the dirty page budget, the less the total writing
time cost. This has resulted from that fewer dirty pages are
written back to SSDs.

In Fig. 11(b), the total writing time cost is evaluated on
3-D SSDs, which has a similar trend with results presented in
Fig. 11(a). First, compared with baseline, the total writing time
cost of the proposed CSW can be averagely reduced by 64.9%
by reason of writing dirty pages to flash pages with smaller
program latency. Second, the total writing time cost is reduced
when a dirty page budget decreases. This has resulted from the
same reason presented in the above. Based on the evaluated
results and (5), the energy costs on writing dirty pages back
to flash memory are reduced by 67.1% and 64.9% on 2-D and
3-D SSDs, respectively.

Similarly, the operation time cost of the SSD controller
is also evaluated, which indicates the interval of writing
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all dirty pages back to flash memory. Based on the results
presented in Fig. 12(a) and (b), one can see that there
are 66.9% and 65.1% time cost reduction on 2-D and 3-D
SSDs averagely. Therefore, according to (4), the energy cost,
which is used to maintain the normal operations of the
SSD controller, can be reduced by 66.9% and 65.1% as
well.

Based on the reduction of energy cost, we can see that, if
the existing capacitance is further reduced and cannot write all
dirty pages from the cache to flash memory in traditional case
(without CSW), CSW may still work due to less capacitance
requirement. Therefore, CSW is able to reduce the possibility
of data loss.

VI. CONCLUSION

In this article, we take capacitor aging issue into con-
sideration for capacitor equipped SSDs. First, a DPBD
scheme is proposed. Then, a smart synchronizing scheme
is proposed. Finally, a CSW is proposed to write dirty
pages with less capacitance consumption when sudden
power supply interrupts. The experiments show that the
proposed scheme improves both performance and lifetime
while the capacitor aging-induced data loss issue is being
avoided.
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