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Abstract—Causality discovery mines cause-effect relationships
among different variables of a system and has been widely
used in many disciplines including climatology and neuroscience.
To discover causal relationships, many data-driven causality
discovery methods, e.g., Granger causality, PCMCI and Dynamic
Bayesian Network, have been proposed. Many of these causality
discovery approaches mine time series data and generate a
directed causality graph where each graph edge denotes a cause-
effect relationship between the two connected graph nodes. Our
benchmarking of different causality discovery approaches with
real-world climate data show these approaches often generate
quite different causality results with the same input dataset due to
their internal learning mechanism differences. Meanwhile, there
are ever-increasing available data in virtually every discipline,
which makes it more and more difficult to use existing causality
discovery algorithms to produce causality results within reason-
able time. To address these two challenges, this paper utilizes
data partitioning and ensemble techniques, and proposes a two-
phase hybrid causality ensemble framework. The framework
first conducts phase 1 data ensemble for partitioned data and
then conducts phase 2 algorithm ensemble from data ensemble
results. To achieve scalability, we further parallelize the ensem-
ble approaches via the Spark big data analytics engine. Our
experiments show that our proposed approaches achieve good
accuracy through ensemble and high scalability through data-
parallelization in distributed computing environments.

Index Terms—Causality discovery, Ensemble learning, Data
parallelism, Granger causality, Dynamic Bayesian Network

I. INTRODUCTION

Causality [21] is a fundamental research topic studying
cause-effect relationships among different components of a
system and causality study can help explain why the system
has certain behaviors. Causality learning/discovery has been
widely studied and applied in many disciplines including
climatology and neuroscience.

Many data-driven causality learning approaches have been
proposed, such as Granger causality [12], PCMCI [24], Dy-
namic Bayesian Network [19], and Convergent Cross Map-
ping [32]. These approaches often mine time series data of two
or more variables in a system and produce their predictions on
cause-effect relationship among these variables. For instance,
the work at [26] uses Granger causality to study cause-effect
relationships among multiple climate variables and shows
that sea surface temperature changes at pacific ocean near
equator, an indicator of the El Niño-Southern Oscillation

(ENSO) climate phenomenon [13] can cause abnormal surface
temperature, pressure and precipitation remotely.

One challenge with the variety of different causal discovery
approaches/algorithms is that these approaches often lead to
divergent causality conclusions from the same dataset, which
makes it difficult to explain and use data-driven causality
discovery results. There have been some studies comparing
different causality discovery methods [15], [33]. For example,
the experiments on comparing three causality discovery algo-
rithms show there are only 83% overlapping among the results
on average [15]. Yet there is still a lack of comprehensive
framework to effectively integrate these diverse algorithms.

The other challenge to be tackled by this paper is the
ever-increasing volume and dimension of available data for
causality discovery. For instance, total worldwide climate
data volume is projected to increase from 5 PB in 2010 to
350 PB in 2030 [20]. It is more and more difficult to use
existing causality discovery algorithms to handle the increas-
ing dimensionality and resolution of these climate datasets.
Meanwhile, data volume is just one factor for time complexity
of many causality discovery algorithms. As an example, a
popular Granger causality algorithm’s execution time grows
quadratically with the increase of either of the three factors:
data record number, variable number and time lag number [4].
Parallel causality discovery is crucial as a solution to reduce
computation time.

To address the above two challenges, this paper applies
data partitioning and ensemble techniques to achieve scalable
and accurate causality learning. Ensemble learning [23] is a
meta machine learning algorithm which combines multiple
base or individual learners in order to get better overall learn-
ing accuracy. In this paper, we propose a two-phase hybrid
causality ensemble learning framework by first partitioning
data into smaller sizes and conducting phase 1 data ensemble
for each data partition and then conducting phase 2 algorithm
ensemble from phase 1 ensemble results. The framework can
be easily parallelized through big data engines like Spark [1]
and is adaptable to different ensemble approaches. To the
best of our knowledge, this study is the first supporting both
scalable and ensemble learning for causality discovery. The
implementations of our work is open-sourced at [2].

The contributions of this paper are as follows.



• We propose a two-phase hybrid causality ensemble
framework by first conducting phase 1 data ensemble
for partitioned data and then conducting phase 2 algo-
rithm ensemble from phase 1 data ensemble results. The
framework can combine learning results from different
data partitions (namely data ensemble), and different
algorithms (namely algorithm ensemble).

• Based on the above framework, we propose an approach
for parallel causality ensemble learning via Spark [1] and
the MapReduce programming model [10].

• We did experiments to evaluate our proposed scalable
ensemble framework and approach, which shows that our
approach can achieve both perfect accuracy and almost
linear speedup.

The rest of the paper is organized as follows. The back-
ground is introduced in Section II. The two-phase hybrid
causality ensemble learning framework is explained in Section
III. Section IV contains the ensemble approach based on the
scalable causality ensemble framework. Section V describes
the parallelization of our implementation. The experiments and
evaluations are in Section VI, with related work discussion in
Section VII. Finally, Section VIII concludes our paper.

II. BACKGROUND

A. Ensemble Learning

Ensemble learning [23] is a meta machine learning algo-
rithm which uses multiple learning methods to obtain better
predictive performance than learning from any of the con-
stituent methods. Since 1990, ensemble learning methods have
become a major learning paradigm because of both empirical
good performances in real-world applications and theoretical
proof on its advantages [25]. Many state-of-art data mining
approaches/packages, e.g. random forest and XGBoost [8], are
based on ensemble learning.

Many ensemble learning algorithms have been proposed and
they mainly vary in the following three aspects: 1) what are
base/individual learners, 2) how each base learner learns from
input data, 3) how to combine results of base learners. For base
learner selection, if base learners used in an ensemble learning
belong to the same type, e.g. decision tree or neural network,
the ensemble algorithm is called homogeneous ensemble.
Otherwise, it is called heterogeneous ensemble. Regarding
how each base learner learns, there are three main approaches
and they mostly differ in how input data is fed to base learner.
The first approach, called stacking ensemble [31], uses the
same input data for all base learners. Bagging ensemble [6],
as the second approach, uses different sampling results from
the original input data for different base learners. The third
approach is boosting ensemble [11] which uses multiple base
learners iteratively and, in each iteration, assigns higher weight
to data whose learning accuracy was low in previous iterations.
On base learner combination, common methods are majority
voting and weighted majority voting [23].

B. Causality Discovery Methods

Existing causal relationships discovery methods can be
categorized into two types depending on the input datasets
types: 1) learning from multivariate independent and identi-
cally distributed (i.i.d.) data and 2) learning from multivariate
time-series data. The learning results from a multivariate
causality approach can be denoted as a directed graph where
each graph edge represents a cause-effect relationship condi-
tioned on all other variables in the graph. In this subsection,
we explain three multivariate causality discovery approaches
towards time-series input data, namely multivariate (graphical)
Granger causality [4], PCMCI [24] and dynamic Bayesian
network [19] and their algorithm details. Because they all
belong to the same casualty discovery category and their
learning results can be modeled as directed graphs, we could
conduct ensemble learning using these algorithms as base
learners which will be explained in later sections.

1) Multivariate Granger Causality: Granger causality, as
a predictive model in economics, was proposed in 1969 by
Nobel Laureate Clive W. Granger. By definition, in Granger
causality, one time series x Granger causes another time series
y, if and only if the regression for y based on past values of
both x and y is statistically significant than the regression of
y only based on past values of y itself. To demonstrate the
definition, let the lagged variable x be xt−i for i from 1 to
maximum lag P ; and similarly, the lagged y is represented by
yt−i. To test Granger causality, in first step, the following two
linear regressions functions are fitted as follows:

yt = a11 · yt−1 + a12 · yt−2 + ...+ a1P · yt−P + ε1 (1)

yt = a21 ·yt−1+...+a2P ·yt−P +b21 ·xt−1+...+b2P ·xt−P +ε2
(2)

Next, the accuracy of predicting yt using Equation (1) and
Equation (2) are compared to check which regression works
better. In most cases, statistical hypothesis test methods such
as F -test or Chi-squared (χ2) test are utilized to get a p-value
to determine statistical significance.

The above pairwise Granger causality is proven to work well
on discovery between each pair of variables. However, most
datasets in research contain more than two variables. When
the scientists intend to discover the causality among a subset
or the whole set of a multivariate dataset, pairwise Granger
causality ignores the causalities with other untested variables,
which could generate spurious causal relationships such as
confounding variable [22] and indirect causal relationship [18].

To address the limitations of the pairwise Granger causality
method, multivariate Granger causality discovery, a.k.a. graph-
ical Granger causality discovery, fits a vector autoregressive
model (VAR) to time series data [16], compared to linear
regression models in pairwise Granger causality. To demon-
strate multivariate Granger causality model, we denote XP

l=1

as lagged variables of time series variable x from time lag
1 to maximum lag P , and similarly Y P

l=1 from y, ZP
l=1 from



z. The joint VAR model for multivariate Granger causality is
shown as as follows:{

yt = A1 · Y P
l=1 +B1 ·XP

l=1 + ε1t
xt = C1 ·XP

l=1 +D1 · Y P
l=1 + ε2t

(3)

with the prediction error covariance matrix being:

CovMatrix =

[
var(ε1t) cov(ε1t, ε2t)

cov(ε2t, ε1t) var(ε2t)

]
(4)

Besides lagged variables XP
l=1 and Y P

l=1, when a new
variable z is taken into account, the new VAR model is:yt = A2 · Y P

l=1 +B2 · ZP
l=1 + C2 ·XP

l=1 + ε3t
zt = D2 · Y P

l=1 + E2 · ZP
l=1 + F2 ·XP

l=1 + ε4t
xt = G2 · Y P

l=1 +H2 · ZP
l=1 + I2 ·XP

l=1 + ε5t

(5)

Correspondingly, the prediction error covariance matrix of
VAR model in (5) is:

Σ =

 var(ε3t) cov(ε3t, ε4t) cov(ε3t, ε5t)
cov(ε4t, ε3t) var(ε4t) cov(ε4t, ε5t)
cov(ε5t, ε3t) cov(ε5t, ε4t) var(ε5t)

 (6)

The next step, similar to the pairwise Granger causality
testing, is to test whether introducing z can improve the
prediction of y and how significant the improvement is. From
the VAR model in Equation (3) of variable y and x, and
the VAR model in Equation (5) of variable y, z, and x, the
conditional Granger causality test from z to y conditioned on
x, denoted as (z → y|x), is:

F -test(var(ε1t), var(ε3t)) (7)

From F -test in Equation (7), a p-value can be used to
compare with a threshold to conclude whether z Granger
causes y conditioned on x.

2) PCMCI: PCMCI is a causal discovery method described
in [24] which identifies relevant variables for conditioning and
estimates causality graph from time series data. The method
makes use of a “time series graph” made of nodes representing
the state variables at different time-lags. If the time lag is
denoted by l, a causal link is notated xt−l −→ yt, and this link
exists if xt−l is not conditionally independent of yt given the
past of all variables. Assuming the causal structure does not
change over time, the same links are present at each time step.

The parents P(x) of a variable x are defined as the set of
all nodes with a link towards x. However, estimating these
parents directly by testing for conditional independence on
the whole past is problematic due to high-dimensionality and
because conditioning on irrelevant variables leads to biases.

PCMCI estimates causal links by a two-step procedure [24]:
1. Condition-selection: For every variable α, estimate a

superset of parents P̃(αt) with an iterative Markov discovery
algorithm [27] such as PC1 algorithm. The condition-selection
step reduces the dimensionality and avoids conditioning on
irrelevant variables.

2. Momentary conditional independence (MCI): To test
whether xt−l −→ yt with MCI, it evaluates:

xt−l ⊥ yt | P̃(yt), P̃(xt−l) (8)

Equation (8) checks momentary conditional independence
conditions between xt−l and yt, and checks whether or not
xt−l and yt are not conditionally independent given P̃(yt)
and P̃(xt−l).

3) Dynamic Bayesian Network: Bayesian network [5] is
one of many probabilistic graphical models which consists of
a directed acyclic graph (DAG) and conditional probability
distributions (CPDs) associated with each node in the model.
A Bayesian network can be used to make predictions and
decisions under uncertainty. A dynamic Bayesian network [19]
is similar to a Bayesian network but with a temporal extension,
making it an appropriate graphical model to use for temporal
datasets. The two main steps to creating a probabilistic graph-
ical model are structure learning and parameter learning.

In this paper, we adopt the approach in [33] for dynamic
Bayesian network learning. The approach first expands vari-
able set by adding new variables for each original variable
through time lagging. For instance, P new variables can be
created from original variable x: xt−i for i from 1 to maximum
lag P . With the expanded variable set, the K2 algorithm [9] is
used to search through all possible causality graph structures
and identify which structure has the highest possibility to pro-
duce the data. In this score-based structure learning approach,
Bayesian information criterion (BIC) scoring is used. Next,
after causality graph is generated for expanded variable set,
the causality graph is simplified by removing lagged variable
and combining the causality edges. For instance, two edges
xt−2 −→ yt−1 and xt−3 −→ yt are combined to one edge x −→ y
in the final graph.

Moreover, for the sake of computational time, the time
series data is partitioned into bins. Each bin defines a set of
sub ranges, then the data is assigned to each labeled bin. For
example, if the lowest value of the dataset is -5, and the highest
value is 5. With the total bin number 10, a value of 1.2351
can be placed in a bin labeled 7, whose range is [1, 2). This
approach increases the state counts of each variable and allows
for faster computation.

III. A TWO-PHASE HYBRID CAUSALITY ENSEMBLE
FRAMEWORK

To deal with both increasing volume of available input
data and increasing variety of available causality discovery
algorithms, we propose a two-phase hybrid causality ensemble
framework to achieve ensemble of both multiple causality dis-
covery algorithms as base learners and multiple data partitions
as base learner’s input data. Before diving into the details
of this two-phase ensemble framework, we first explain how
ensemble could be done with only data ensemble and algo-
rithm ensemble. We note most causality discovery algorithms
generate not only cause-effect relationships, but also time lag
and probability of each relationship. In this paper, we only
focus on structure causality ensemble, namely how multiple
directed graphs can be combined into one, and leave the time
lag and probability ensemble for future work.



A. Algorithm Ensemble for Causality Discovery

Algorithm ensemble approach deals with algorithm variety
by applying different causality discovery algorithms as base
learners with the same input data and later combining all
base learner results. Each causality discovery algorithm mines
the same time series dataset and produces its own directed
graph where nodes denote time series variables and each
directed edge denotes a cause-effect relationship between the
two connected variables. Because each base learner works on
the same input data, the nodes of result graphs are the same
for different base learners. But different base learners could
produce different causality edges. Then by applying a certain
base learner combination method, such as majority voting, we
can derive a new directed graph as ensemble result. The nodes
in the ensemble graph are the same with the results in each
base learner. For graph edges, we can iterate all possible edges
of the graph and decide whether this edge should be in the
ensemble graph by combining corresponding edges in base
learner graph result. If we use majority voting as combination
method, an edge will be in ensemble graph only if the edge
appears in more than half of base learner graphs.

By applying algorithm ensemble, the ensemble result is
often more accurate than utilizing only one single causality
discovery algorithm. However, when the size of input time
series dataset gets larger, the execution time of algorithm level
ensemble increases dramatically because every base learner
will take longer time to finish. Thus, a non-scalable algorithm
ensemble approach is not enough to meet the challenge of
dealing with the increasing data size.

B. Data Ensemble for Causality Discovery

Data ensemble approach deals with data volume challenge
by first partitioning data into smaller datasets, then using the
same causality discovery algorithm as base learners with data
partitions, and later combining all base learner results. Data
partitioning is often done horizontally, not vertically, so that
each data partition can still have all variables needed for
multivariate causality learning. Because input data are often
time series, data partitioning can be easily done by splitting
the overall time ranges into smaller time ranges. Similar to
algorithm ensemble, the nodes of resulting causality graph are
the same for different base learners and edges of the graphs
might be different. Then we can derive ensemble graph using
the same base learner combination method in the previous
subsection. The limitation of this approach is that it does not
deal with variety of causality learning algorithms.

C. Two-Phase Hybrid Data-Algorithm Ensemble for Causality
Discovery

To address the challenges of diverse causality discovery
results and increasing data size, we further integrate data
ensemble and algorithm ensemble into one framework as
illustrated in Figure 1, which conducts two-phase hybrid
ensemble. We implement this generic framework as data-
algorithm ensemble, which means it conducts data ensemble
first in phase 1 and then algorithm ensemble in phase 2.

Input Data

Phase 1 Ensemble
Result 1

Phase 1 Ensemble
Result 2

Phase 1 Ensemble
Result 3

Phase 1 Ensemble
Result M

...

Phase 1 Ensemble

Data Partition 1

Data Partition 2

Data Partition 3

Data Partition N

...

Data Partition

Phase 2 Ensemble

Phase 2 Ensemble Result

Fig. 1. Two-phase hybrid ensemble framework for causality discovery.

In the causality ensemble framework, the input data is first
partitioned into different data slices from 1 to N . Then, phase 1
causality computation is executed to get N phase 1 ensemble
result for each causality method. Next, all the phase 1 data
ensemble results are combined into one final output through
phase 2 algorithm ensemble.

IV. APPROACH OF TWO-PHASE HYBRID CAUSALITY
ENSEMBLE FRAMEWORK

Based on the two-phase hybrid causality ensemble frame-
work explained in previous section, the data-algorithm causal-
ity ensemble approach is developed as illustrated in Figure
2. This data-algorithm ensemble approach is designed to
effectively learn causal relationships from three data-driven
causality learning approaches: multivariate Granger causality
(MGC), PCMCI and dynamic Bayesian network (DBN ).

Input
data

Partition 1

MGC MGC result 1

Partition 2

MGC MGC result 2
Phase 1

ensemble:
 MGC result

...

Partition N

MGC MGC result N

Data 
partitioning

Phase 2
ensemble: 
final result
G=(V, E)

PCMCI PCMCI result 1

PCMCI PCMCI result 2
Phase 1

ensemble:
 PCMCI 

result

PCMCI PCMCI result N

DBN DBN result 1

DBN DBN result 2
Phase 1

ensemble:
 DBN result

DBN DBN result N

...

...

...

Fig. 2. Illustration of data-algorithm ensemble learning approach.

The data-algorithm ensemble approach (see Figure 2) de-
notes that data ensemble happens in phase 1, then algorithm
ensemble happens in phase 2. In this approach, the input
data is first partitioned into N slices. Then, each of the
causality discovery method (MGC, PCMCI and DBN ) is
executed on all the partitioned data to get one causality output
directed graph for each data slices. For example, MGC out-
puts MGC Result1, MGC Result2, ... MGC ResultN .



Different methods are executed in serial in the order of MGC,
PCMCI , DBN . The outputs from all partitioned data slices
corresponding to each causality method are collected for
phase 1 data ensemble. The phase 1 ensemble results are
computed by majority voting. In the following step, phase 1
ensemble results of each causality method (MGC Ensemble,
PCMCI Ensemble and DBN Ensemble) are combined
using ensemble methods again into get a phase 2 algorithm
ensemble causality result graph as final output.

Algorithm 1: Data-Algorithm Ensemble (Data-
Algorithm Ensemble)
Input: Different causality discovery methods:

Multivariate Granger causality: MGC, PCMCI:
PCMCI , Dynamic Bayesian Network: DBN ,

Time series data: D,
Number of data partitions: N
Output: A directed causality graph: G = (V,E)

1: Partition data D into N partitions as
{d} = d1, d2, ..., dN

2: Get EMGC = Data-Algorithm Phase 1(MGC, {d})
3: Get EPCMCI =
Data-Algorithm Phase 1(PCMCI, {d})

4: Get EDBN = Data-Algorithm Phase 1(DBN, {d})
5: ## Phase 2 edge ensemble:
6: for unique edges {ei} in EMGC , EPCMCI and EDBN

do
7: Count ei appearance in EMGC , EPCMCI and EDBN

as ni
8: if ni >= 2 then
9: Add ei to final graph G

10: end if
11: end for
12: Output G = (V,E)

The data-algorithm ensemble approach includes two algo-
rithms: Algorithm 1 (Data-Algorithm Ensemble) for the two-
phase hybrid ensemble approach, which regards to the full pro-
cess in Figure 2 and Algorithm 2 (Data-Algorithm Phase 1)
for phase 1 data ensemble corresponding to each phase 1
ensemble block in Figure 2.

The input of the Data-Algorithm Ensemble (Algorithm 1)
includes different causality discovery methods, which are
multivariate Granger causality (MGC), PCMCI (PCMCI)
and Dynamic Bayesian Network (DBN ), time series input
data D, and the number of data partitions N . The logic of
Algorithm 1 for the whole ensemble process is as follows.
In line 1, the input dataset D is first partitioned into N
slices by its timestamp as {d} = d1, d2, ..., dN where the
time interval of each slice is only 1/N of the original time
series. Then it calls Algorithm 2 (Data-Algorithm Phase 1)
to execute each causality discovery method to get phase 1
ensemble causality edge set EMGC , EPCMCI and EDBN

from all the data partitions in lines 2-4. Finally, in lines 6-
11, phase 2 ensemble result is computed by majority voting

on edge set of all causality mining methods, EMGC , EPCMCI

and EDBN , that if two or more causality ensemble edge sets
contain the same edge, this edge is added into final output
graph G = (V,E) with V denoting nodes and E as edges in
line 12.

Algorithm 2: Phase 1 Ensemble for Data-Algorithm
Ensemble (Data-Algorithm Phase 1)
Input: Causality discovery method: Causality,
Data partition set: {d}
Output: A set of directed edges in Graph

corresponding to causality discovery method:
Ecausality

1: for each data partition di in {d} do
2: Get causality edge set from causality computation:

Ei = Causality(di)
3: end for
4: ## Phase 1 edge ensemble:
5: for unique edges {ej} in all Ei do
6: Count ej appearance in all Ei as nj
7: if nj > N/2 then
8: Add ej to Ecausality

9: end if
10: end for
11: Output Ecausality

The phase 1 data ensemble in the data-algorithm ensemble
approach, namely Data-Algorithm Phase 1 is shown in Al-
gorithm 2. Its inputs include the specific causality discovery
method Causality, and the partitioned time-series dataset
{d}. In lines 1-3, the causality discovery method executes
for each data partition di in {d} to output a causality edge
set Ei from Causality(di). Since this causality edge set
contains edges from each partition, in lines 5-10, phase 1
ensemble method loops to check if the number of a given
edge ej appears in more than half of the partition edge set.
For instance, if there are 10 partitions, and a causality edge
(x1, x2) appears 6 times in all the partition edge set, it is added
to the phase 1 ensemble output Ecausality as in line 8 then be
output as in line 11.

V. PARALLEL TWO-PHASE HYBRID CAUSALITY
ENSEMBLE LEARNING VIA SPARK BIG DATA ENGINE

The above two-phase hybrid causality ensemble approach
is further implemented in parallel via Spark [1] to achieve
scalability to deal with big data in two aspects: 1) automatic
data partitioning and 2) parallel function mapping.

Regarding the data partitioning part in our parallel im-
plementation, the data is first load into Spark as resilient
distributed dataset (RDD); then it is automatically partitioned
by timestamp of each record, as in the phase 2 algorithm
ensemble of data-algorithm ensemble, in Algorithm 1 line 1.
More specifically, every data partition, as a chunk of the large
distributed dataset, is assigned an index i for phase 1 ensemble
in next step.



For parallel function mapping, the parallelization of data-
algorithm ensemble is implemented in its phase 1 data ensem-
ble, as in Algorithm 2 lines 1-3. With Spark RDD partitioning,
now each data partition di becomes an RDD partition. Next,
these RDD partitions are mapped to be transformed by the
causality discovery method Causality in parallel, then be
reduced as the edge set Ei for later phase 2 ensemble
computation.

VI. EXPERIMENTS

The experiments were conducted on top of the HPCF2018
cluster at the University of Maryland, Baltimore County [3],
where each computing node containing two 18-core CPUs and
384 GB memory. For our experiment environment, one cluster
contains one master node and several worker nodes. Moreover,
the Spark programs are managed by Slurm workload manager
in standalone cluster mode. For software, Python (version
3.6.8), Spark (version 2.4) are used. For Spark configurations,
each node contains one executor, each driver/executor’s mem-
ory is 200GB, and partition number is set as 48.

For test data, we created four synthetic datasets to evaluate
our proposed algorithms’ performance. One important reason
for synthetic dataset generation is to know causality ground
truth so we could evaluate learning result accuracy. Similar to
the synthetic dataset generation approach for Granger causality
and DBN evaluation in [33], we generated our synthetic
dataset based on linear and nonlinear causal dependency
Equation (9) and Equation (10), where εs are random noises.
The causality graph for the equation can be found at Figure 3
and Figure 4. The linear and nonlinear datasets with different
sizes (namely 1 million and 10 million for row numbers) were
generated using the same equations correspondingly.

x1(t) = 0.95 ·
√

2 · x1(t− 1)− 0.90 · x1(t− 2) + ε1
x2(t) = 0.5 · x2(t− 1) + ε2
x3(t) = −0.5 · x1(t− 1) + 0.25 ·

√
2 · x3(t− 1)

+ 0.25 ·
√

2 · x2(t− 1) + ε3
x4(t) = −0.95 · x4(t− 1)− 0.25 ·

√
2 · x3(t− 1) + ε4

x5(t) = 0.5 · x1(t− 1) + 0.95 · x2(t− 2)

− 0.25 ·
√

2 · x3(t− 1) + 0.5 · x5(t− 1) + ε5
(9)

x1(t) = 0.125 ·
√

2 · exp(−x1(t− 1)2/2) + ε1
x2(t) = 1.2 · exp(−x1(t− 1)2/2) + ε2
x3(t) = −1.05 · exp(−x1(t− 1)2/2)

+ 0.2 ·
√

2 exp(−x2(t− 2)2/2) + ε3
x4(t) = −1.15 · exp(−x1(t− 2)2/2)

+ 0.2 ·
√

2 · exp(−x4(t− 1)2/2)
+ 1.35 · exp(−x3(t− 1)2/2) + ε4

x5(t) = −1.15 · exp(−x2(t− 1)2/2) + ε5

(10)

A. Baseline Approaches and Parameter Setting

We employed seven baseline approaches in our experiments.
The first three were single causality discovery approaches:
Multivariate Granger causality (MGC), PCMCI and Dy-
namic Bayesian Network (DBN ). The next three were corre-
sponding data ensemble approaches for each of the three single

x1

x2

x3

x5

x4

Fig. 3. Linear synthetic data ground truth causal graph.

x1

x2

x3

x5

x4

Fig. 4. Nonlinear synthetic data ground truth causal graph.

causality discovery approaches following the way described
in Section III-B. The last one was an algorithm ensemble
approach by combining all the three single causality discovery
approaches following the way described in Section III-A.
For experiment parameter settings, we set the maximum time
lagging as 3 for synthetic data and the p-value threshold as
0.05 for both MGC and PCMCI tests. Besides, the total
bin number for DBN was set as 5 to reduce computation
time. In PCMCI method, we utilized its different conditional
independence tests for linear and nonlinear causality discovery.
For nonlinear conditional independence tests, as we had a large
dataset, RCOT test was applied.

B. Accuracy Evaluation

We employ Structural Hamming Distance (SHD) met-
ric [29] to compare accuracy of different approaches. SHD
is a common metric to measure the difference between two
directed graphs with the same node set. SHD value is defined
as the total step count of three types of actions needed to
transform from one direct graph to another direct graph: 1)
reversing an edge’s direction, 2) removing an extra edge, 3)
adding a missing edge. We calculate SHD between ground
truth graph and each learned graph. The lower SHD value
means the more similarity between the two graphs, so the
algorithm that generates the learned graph is more accurate.

We measured the accuracy of single causality discovery
method of MGC, PCMCI and DBN and the three data
ensemble baseline approaches and the algorithm ensemble
causality ensemble approach. The results were shown columns
2-8 of Table I. For linear datasets, we could see from the table
that both data ensemble and algorithm approach could achieve
the same or better accuracy than single causality discovery
approaches. For nonlinear datasets, data ensemble approaches
still performs better in accuracy; however, algorithm ensemble
could perform a little bit worse due to two algorithm making
the same wrong prediction on certain edges.

The accuracy of two-phase hybrid causality ensemble ap-
proach was shown in column 9 of Table I. Compared to



TABLE I
STRUCTURAL HAMMING DISTANCE (SHD) COMPARISON OF DIFFERENT

CAUSALITY DISCOVERY APPROACHES

MGC PCMCI DBN
Data-level
Ensemble
GC

Data-level
Ensemble
PCMCI

Data-level
Ensemble
DBN

Algorithm-
level
Ensemble

Two-phase
Data-
Algorithm
Ensemble

Linear 1M 1 1 4 1 1 4 0 0
Linear 10M 1 1 3 1 1 4 0 0
Nonlinear 1M 5 13 1 4 3 3 4 0
Nonlinear 10M 6 6 1 2 1 1 3 0

TABLE II
EXECUTION TIME TABLE: SERIAL BASELINE

EXPERIMENTS(H:MM:SS.SS)

Synthetic
Dataset MGC PCMCI DBN

Data-level
Ensemble
MGC

Data-level
Ensemble
PCMCI

Data-level
Ensemble
DBN

Algorithm
-level
Ensemble

1M Linear 0:00:08.16 0:07:23.28 0:27:14.83 0:01:49.78 0:06:35.17 0:28:40.29 0:31:59.37
10M Linear 0:01:21.88 1:31:06.78 5:58:52.31 0:18:52.88 0:54:17.20 3:45:56.39 6:45:01.24
1M Nonlinear 0:00:07.83 0:24:07.11 0:24:39.91 0:01:13.25 0:28:00.59 0:27:17.02 0:45:26.36
10M Nonlinear 0:01:24.59 4:33:06.51 5:15:30.22 0:18:15.43 3:57:54.57 2:56:27.57 8:47:18.09

algorithm/data ensemble baseline approaches, our two-phase
causality ensemble approach achieves perfect accuracy since
their SHD values are all zero. In linear experiments, compared
to data ensemble and algorithm ensemble baseline approaches,
our two-phase hybrid causality ensemble approach could get
the same or better results. In nonlinear experiments, two-phase
hybrid ensemble approach achieves better accuracy than both
data ensemble and algorithm ensemble. They both perform
better than all the baseline approaches in accuracy for all the
datasets.

C. Scalability Evaluation

We conducted scalability experiments for our proposed two-
phase hybrid causality ensemble approaches given different
sizes of datasets at a distributed computing environment men-
tioned above with 5, 7 and 9 compute nodes.

1) Execution Time: The execution times of all the baseline
algorithms are shown in Table II for linear and nonlinear,
1M and 10M dataset testing. The execution times for parallel
experiments are shown as in Table III and Table IV for 1M
and 10M records of linear dataset. For nonlinear dataset, the
execution times are recorded as in Table V and Table VI for
1M and 10M data correspondingly.

TABLE III
EXECUTION TIME: PARALLEL EXPERIMENTS ON 1M LINEAR DATA

Linear 1M
Data-level
Parallel Ensemble
MGC

Data-level
Parallel Ensemble
PCMCI

Data-level
Parallel Ensemble
DBN

Two-phase
Ensemble
Data-Algorithm

4 Worker Nodes 0m19.037s 10m51.091s 2m11.193s 3m55.372s
6 Worker Nodes 0m20.068s 8m57.787s 1m12.336s 2m54.335s
8 Worker Nodes 0m20.030s 6m46.573s 1m1.355s 2m4.477s

TABLE IV
EXECUTION TIME: PARALLEL EXPERIMENTS ON 10M LINEAR DATA

Linear 10M
Data-level
Parallel Ensemble
MGC

Data-level
Parallel Ensemble
PCMCI

Data-level
Parallel Ensemble
DBN

Two-phase
Ensemble
Data-Algorithm

4 Worker Nodes 2m02.216s 51m33.383s 10m46.239s 24m03.187s
6 Worker Nodes 1m46.703s 35m48.498s 7m55.188s 18m39.600s
8 Worker Nodes 1m35.964s 22m34.472s 6m46.441s 12m50.270s

TABLE V
EXECUTION TIME: PARALLEL EXPERIMENTS ON 1M NONLINEAR DATA

Nonlinear 1M
Data-level
Parallel Ensemble
MGC

Data-level
Parallel Ensemble
PCMCI

Data-level
Parallel Ensemble
DBN

Two-phase
Ensemble
Data-Algorithm

4 Worker Nodes 0m20.195s 13m3.590s 2m19.261s 7m25.565s
6 Worker Nodes 0m19.066s 11m5.580s 1m28.426s 5m31.534s
8 Worker Nodes 0m18.492s 8m1.691s 1m1.877s 4m13.503s

TABLE VI
EXECUTION TIME: PARALLEL EXPERIMENTS ON 10M NONLINEAR DATA

Nonlinear 10M
Data-level
Parallel Ensemble
MGC

Data-level
Parallel Ensemble
PCMCI

Data-level
Parallel Ensemble
DBN

Two-phase
Ensemble
Data-Algorithm

4 Worker Nodes 2m02.023s 39m37.026s 10m46.367s 24m15.382s
6 Worker Nodes 1m50.979s 28m45.792s 7m52.148s 18m1.137s
8 Worker Nodes 1m37.207s 25m41.998s 6m54.563s 16m0.709s

The Spark based parallel implementations of the three data-
ensemble baseline approaches use the same techniques in Sec-
tion V. We measured their execution times as in columns 2-4
of parallel experiments execution time tables. We also recorded
the execution times of data-algorithm ensemble showing in
column 5 of all execution time tables for parallel experiments.

We note Tables III, IV, V, VI show data-level parallel
ensemble PCMCI is slower than our two-phase ensemble.
By checking the execution logs, we found it is because
at the runtime the Spark session encountered idle time for
executors in the cluster, thus the computation time is fairly
long. However, we did not see the same behavior in the two-
phase ensemble experiments. The reason for this unexpected
result will be further investigated.

2) Speed Up: By comparing the execution times our par-
allel hybrid approaches in Tables III, IV, V, VI with the
execution times of our serial algorithm ensemble baseline
approach in Table II, we evaluated the speed ups of our parallel
hybrid ensemble approaches. The algorithm ensemble baseline
was executed on a single node. As shown in Figures 5 and
6, both achieved near linear speed up. Figure 5 shows the
speed ups of two-phase ensemble in comparison to algorithm
ensemble baseline for 10M row linear dataset. With 8 worker
nodes, the speed up is more than 32 times. Similarly, Fig-
ure 6 shows speed up of two-phase ensemble compared to
algorithm ensemble baseline for 10M nonlinear dataset. Its
speed up, when running with 8 worker nodes, reaches 17
times compared to the baseline. Our approaches can achieve
better than linear speedup because the time complexity of each
baseline algorithm is worse than O(n). For instance, Granger
causality algorithm’s execution time grows quadratically with
the increase of the data record number [4]. By splitting data
into N partitions, the execution time for each data partition is
less than 1/N of the baseline serial approach.

VII. RELATED WORK

There have been many studies on ensemble learning and
scalable/parallel machine learning. But we believe our work
is the first study dealing with both algorithm variety and data
volume for causality discovery. We also did not find many
studies directly on ensemble learning for causality. Because
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Fig. 5. Speed up of two-phase ensemble compared to algorithm ensemble
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Fig. 6. Speed up of two-phase ensemble compared to algorithm ensemble
baseline for 10M row nonlinear dataset.

causality graph can be categorized as a type of probabilistic
graphic model, we first discuss and compare with related work
on ensemble learning for probabilistic graphic models in the
first subsection. We further discuss and compare additional
big data parallel ensemble learning work beyond probabilistic
graphic models.

To achieve probabilistic graphical model ensemble, using
the three categories explained in Section II, existing ensemble
learning approaches can also be categorized into 1) algorithm
ensemble for work at [17], 2) data ensemble work at [14], [30],
and 3) hybrid ensemble for both data and algorithm at [28] and
[7]. In algorithm ensemble category, [17] supports parallel en-
semble learning of multiple classifiers on the same data. As a
data ensemble approach, [14] first splits the training data, then
trains Bayesian sub-networks in parallel, finally does boosting
as ensemble method on the trained sub-networks to get the
learning result. [30] is also a data ensemble approach for
Bayesian network learning from big datasets to achieve better
scalability and accuracy. As a hybrid ensemble approach, [28]
conducts two-phase (algorithm ensemble for each data parti-
tion and data ensemble for multiple data partitions) Bayesian
network ensemble learning. The main differences of this work

and [28] are: 1) this work first conducts data ensemble among
all data partitions and then algorithm ensemble for different
algorithms where [28] first conducts algorithm ensemble then
data ensemble; 2) our algorithm-level ensemble belongs to
heterogeneous ensemble because each learning algorithm uses
its own causality discovery models, while [28] belongs to
homogeneous ensemble with different learning algorithms
of the same Bayesian network model; 3) this paper targets
causality discovery instead of Bayesian network learning.

Besides the probabilistic graphic model related ensemble
studies in the previous subsection, most other big data parallel
ensemble learning algorithms are tree based where different
trees can be trained in parallel with a data subset, then results
from multiple trees are ensembled via majority voting (e.g.,
[7]) or tree boosting (e.g., XGBoost [8]). There are two main
approaches of data partitioning: horizontal data partitioning
based on rows and vertical data partitioning based on columns.
[7] contains horizontal data partitioning and parallel learning
among the data partitions. Input data is first partitioned verti-
cally to divide training data features to independent subsets.
Then each task loads the data from one feature subset to
train an independent tree and multiple trees can be trained
in parallel. For XGBoost [8], parallel training is done via hor-
izontally partitioned data and they differ in how different trees
are ensembled. As a comparison, parallelization in our hybrid
ensemble approaches is done via horizontal data partitioning
because all features are needed for each training and our data
has time dependency. Further, multiple learning algorithms
are employed in our data-algorithm ensemble while the above
related works only employ the same learning algorithm for
different data partitions.

VIII. CONCLUSIONS

Causality discovery is a fundamental research topic in many
disciplines and discovered cause-effect relationships can help
explain why a system has certain behavior or state. Nowadays,
data-driven causality discovery faces two challenges: 1) the
large volume of datasets to be learned from and 2) the variety
of causality discovery algorithms. To deal with these two
challenges, this paper proposes a two-phase hybrid ensemble
causality learning framework and an implementation approach
for scalable ensemble causality learning. Experiments show
our algorithms outperform baseline ones in terms of both
accuracy and execution time.

For future work, we will focus on the following aspects.
First, we will extend the work to further enable ensemble
of time lag and probability of causal edges. Second, we
will study how to best select from many available causality
learning algorithms, i.e., through diversity measurement, for
better ensemble result accuracy. Further, we plan to apply the
framework and algorithms to real-world climate applications
and evaluate their effectiveness through the applications.
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