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Abstract
Maintaining and updating shortest paths information in a graph is
a fundamental problem with many applications. As computations
on dense graphs can be prohibitively expensive, and it is prefer-
able to perform the computations on a sparse skeleton of the given
graph that roughly preserves the shortest paths information. Span-
ners and emulators serve this purpose. Unfortunately, very little is
known about dynamically maintaining sparse spanners and emula-
tors as the graph is modified by a sequence of edge insertions and
deletions. This paper develops fast dynamic algorithms for spanner
and emulator maintenance and provides evidence from fine-grained
complexity that these algorithms are tight. For unweighted undi-
rected m-edge n-node graphs we obtain the following results.

Under the popular OMv conjecture, there can be no decremen-
tal or incremental algorithm that maintains an n1+o(1) edge (purely
additive) +nδ-emulator for any δ < 1/2 with arbitrary polyno-
mial preprocessing time and total update timem1+o(1). Also, under
the Combinatorial k-Clique hypothesis, any fully dynamic combi-
natorial algorithm that maintains an n1+o(1) edge (1 + ε, no(1))-
spanner or emulator for small εmust either have preprocessing time
mn1−o(1) or amortized update time m1−o(1). Both of our condi-
tional lower bounds are tight.

As the above fully dynamic lower bound only applies to com-
binatorial algorithms, we also develop an algebraic spanner algo-
rithm that improves over them1−o(1) update time for dense graphs.
For any constant ε ∈ (0, 1], there is a fully dynamic algorithm with
worst-case update time O(n1.529) that whp maintains an n1+o(1)

edge (1 + ε, no(1))-spanner.
Our new algebraic techniques allow us to also obtain a new

fully dynamic algorithm for All-Pairs Shortest Paths (APSP) that
can perform both edge updates and can report shortest paths in
worst-case time O(n1.9), which are correct whp. This is the
first path-reporting fully dynamic APSP algorithm with a truly
subquadratic query time that beats O(n2.5) update time. It works
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against an oblivious adversary.
Finally, we give two applications of our new dynamic span-

ner algorithms: (1) a fully dynamic (1 + ε)-approximate APSP al-
gorithm with update time O(n1.529) that can report approximate
shortest paths in n1+o(1) time per query; previous subquadratic up-
date/query algorithms could only report the distance, but not ob-
tain the paths; (2) a fully dynamic algorithm for near-2-approximate
Steiner tree maintenance with both terminal and edge updates.

1 Introduction
Computing shortest paths in a graph is a fundamental prob-
lem with many applications. However, as on dense graphs
the running time can be prohibitively expensive, it is prefer-
able to perform the computation on a sparser representation
of the given graph that approximately preserves the short-
est paths distances. Such representations are called span-
ners and emulators. Given an undirected, unweighted graph
G = (V,E), a subgraph H of G is defined to be an (α, β)-
spanner if for every pair of vertices x, y ∈ V , we have that

distG(x, y) ≤ distH(x, y) ≤ α · distG(x, y) + β.

A graph H = (V,E′) is defined to be an (α, β)-emulator
if it fulfills the above constraint, is possibly edge-weighted,
but not necessarily a subgraph of G. Thus every spanner
is also an emulator but not vice versa. When evaluating
the quality of a spanner or emulator H three parameters are
of interest: the multiplicative approximation α, the additive
approximation β and the sparsity of H that is the number of
edges in H .

Spanners and emulators have a variety of applications,
ranging from efficient routing to parallel and distributed al-
gorithms to efficient distance oracles, i.e. data structures that
answer shortest-path queries. Thus, there exists a large body
of work on computing spanners (see below). As real-world
graphs are often dynamic, it raises the question whether
spanners and emulators can be maintained efficiently when
the graph is modified by edge updates. Unfortunately, very
little is known about this question. In this article, we are con-
cerned with the design of efficient algorithms to dynamically
maintain an (1 + ε, β)-spanner on an undirected unweighted
graph that is undergoing edge insertions and deletions.

If the update sequence is restricted to consist exclusively
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of insertions, we say that the graph is incremental and if it
only consists of edge deletions we say that it is decremental.
If the graph is either incremental or decremental, we also
say it is partially dynamic and otherwise we say it is fully
dynamic.

Apart from giving new decremental and fully dynamic
deterministic and randomized algorithms that maintain span-
ners and emulators we also provide evidence from fine-
grained complexity that these algorithms are tight. We then
use our new algorithms and techniques to give novel fully dy-
namic approximate and exact all-pairs shortest paths (APSP)
algorithms that can report the corresponding shortest path,
addressing an open question raised by [80]. We further pro-
vide applications for other problems such as the maintenance
of an approximate Steiner tree of a graph.

Prior Work. In this section, we discuss work that is
directly related to the results in our paper. We use Õ-
notation to suppress logarithmic factors, let n and m be the
maximum number of vertices and edges respectively in any
version of the graph under consideration. Unless otherwise
specified, all graphs are undirected and unweighted. To ease
the discussion, we assume for the rest of the section that ε is
a constant.

Spanners and Emulators. Spanners and static algo-
rithms to construct them have been studied in great detail for
multiplicative approximation [12, 68, 10, 36, 13, 18, 70] cul-
minating in near-optimal algorithms to construct (2k−1, 0)-
spanners of sparsity Õ(n1+1/k). There has also been an ex-
tensive line of research on purely additive spanners [9, 8,
38, 28, 16, 30] where (1, 2), (1, 4) and (1, 6)-spanners are
known of sparsity Õ(n3/2), Õ(n7/5) and Õ(n4/3). While
algorithms for fast constructions have been studied (e.g.
[84, 61, 62]), no near-optimal algorithm for the construction
of any of the above additive spanners is known. For exam-
ple, the fastest algorithm for constructing a O(1)-additive
spanner with O(n4/3) edges is O(n2). Further, Abboud and
Bodwin [2] proved that any purely additive spanner of spar-
sity Õ(n4/3−ε), for any constant ε > 0, has at least polyno-
mial in n additive error. Constructions by Bodwin and Vas-
silevska Williams [26, 27] are known giving sparsity Õ(n)
and additive error Õ(n3/7+ε). Following [2], Huang and Pet-
tie [56] constructed a family of graphs such that any Õ(n)-
sized spanner for an n-node graph in the family must have
Ω(n1/13) additive stretch.

Mixed-error (α, β)-spanners were studied in [44, 16, 79,
69, 40, 19]. Most of these results focus on the setting of near-
additive spanners, that is (α, β)-spanners where α = 1 + ε
for some arbitrarily small constant ε > 0. The goal of this
setting is to obtain extremely sparse spanners Õ(n). The
best results obtain (1 + ε, no(1))-spanners with Õ(n) edges.
Abboud et al. [3] further developed a fine-grained hierarchy
to give lower bounds for trade-offs between ε, additive error
and the sparsity of emulators. These lower bounds also apply

to the setting of (α, β)-emulators.
Finally, we point out that a related notion to emulators

are hopsets: given a graph G, we say that a graph H is a
(α, β, h)-hopset if for every two vertices x, y ∈ V , there is
a path πx,y from x to y in the graph G ∪ H consisting of
at most h edges, such that distG(x, y) ≤ w(πx,y) ≤ (1 +
ε)distG(x, y) + β where w(πx,y) denotes the weight of the
path πx,y . There is a lot of recent work on hopsets, especially
(1+ ε, β, h)-hopsets, for which there are efficient algorithms
[42, 57, 41] with β = 0 and h = no(1). The hopset literature
builds heavily on previous clustering techniques from near-
additive spanners. An excellent survey that highlights this
connection was recently given by Elkin and Neiman [43].

Spanners and Emulators in Dynamic Graphs. Span-
ners have also been extensively studied in the dynamic graph
setting, where near-optimal algorithms for multiplicative
spanners in fully dynamic graphs exist [11, 39, 17, 14, 25, 23,
47, 20]. For hopsets, the dynamic graph literature has been
mainly concerned with maintaining (1 + ε, no(1), no(1))-
hopsets in partially dynamic graphs [54, 21, 49] where they
were used to derive fast algorithms for the partially dynamic
Single-Source Shortest Paths problem. As was observed
in [51] (Lemma 4.2) combining [72] with [79] leads to a
(1 + ε, 2(1 + 2/ε)k−2)-approximate decremental emulator
with total time O((1 + 2/ε)k−2mn1/k). To our knowledge,
additive and near-additive spanners have not been studied in
the dynamic graph literature. Also, there are no known con-
ditional lower bounds for dynamic algorithms for maintain-
ing a spanner.

Fully Dynamic Shortest Paths with Worst-Case
Update Time. Closely related to maintaining a span-
ner/emulator is the problem of maintaining shortest paths.
There are three problems of focal interest:

(1) The s-t Shortest Path (st-SP) problem asks for the
shortest path between two fixed vertices s, t ∈ V .

(2) The Single-Source Shortest Paths (SSSP) problem
asks for the shortest path tree from a fixed vertex.

(3) The All-Pairs Shortest Paths (APSP) problem asks
for the shortest path between every vertex pair.

For each of these three problems, there is the distance
reporting and the path reporting variant, where the former
requires to only return the length of the shortest path, while
the latter needs to return the actual shortest path. There is an
enormous line of research on these three problems in various
settings. Since our fully dynamic algorithms have worst-case
guarantees on update time, we focus this discussion on prior
work on fully dynamic algorithms with worst-case update
time.

For the st-SP problem and the SSSP problem the lower
bounds in [4, 55] suggest that the essentially best solution
to these problems is to rerun Dijkstra’s algorithm after every
update (even when the updates are not required to be worst-
case). However, these conditional lower bounds are based
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on the BMM conjecture and therefore hold only for “com-
binatorial” algorithms. Indeed, Sankowski [74] has shown
that a worst-case update time ofO(n1.932) and query time of
O(n1.288) to obtain the distance between a pair of vertices
is possible and therefore has given the first subquadratic al-
gorithm for the distance-reporting version of the st-SP prob-
lem. Recently, this result was further improved to worst-
case update time Õ(n1.863) and query time Õ(n0.45) in [80]
where distance reporting queries are only required to return
a (1 + ε)-approximate distance estimate. Rebalancing their
trade-off terms, the authors also obtain an algorithm that
maintains (1 + ε)-approximate SSSP with worst-case update
time Õ(n1.823) and (1+ ε)-approximate APSP in worst-case
update time Õ(n2).

A major drawback of both approaches is that they can-
not answer path reporting queries. The algorithm with fastest
worst-case update time that can return actual (approximate)
shortest-paths for st-SP and SSSP remains to rerun Dijk-
stra’s algorithm and for the APSP problem to use a com-
binatorial data structure where the currently best worst-case
update is Õ(n2+2/3) for weighted graphs and Õ(n2.5) time
for unweighted graphs (see [77, 6, 50]).

For approximate distance oracles with amortized
running time, Abraham et al. [7] achieved an 2O(k)-
approximation with O(

√
mn1/k) amortized update

time for constant k, and Forster et al. [48] gave an
(O(log n))3k−2-approximation with O(k log2 n) query time
and m1/k+o(1)(O(log n))4i−3 update time for any k ≥ 2,
being the first to break the

√
m update time barrier.

Partially Dynamic Shortest Paths. The classic ES-
tree data structure [46] initiated the field with a determin-
istic total time O(mn) algorithm for partially dynamic exact
SSSP. In the setting where a (1 + ε)-multiplicative approxi-
mation is allowed, Bernstein and Roditty [24] gave the first
improvement over the ES-tree for an approximation algo-
rithm with an algorithm for decremental (1+ε)-approximate
SSSP with total time n22O(

√
log(n)). Subsequently, Hen-

zinger et al. gave an algorithm [54] with total update time
m1+o(1). These algorithms are all randomized and against
an oblivious adversary.

Bernstein and Chechik gave the first deterministic par-
tially dynamic (1 + ε)-approximate SSSP algorithm that
improves upon the ES-tree data structure; it runs in total
time Õ(n2) [21] and does not report paths, only distances.
Chuzhoy and Khanna [34] gave an algorithm with total time
n2+o(1) that works against an adaptive adversary and re-
turns paths with n1+o(1) query time. Chuzhoy and Saranu-
rak [35] recently further improved the running time of the
path query to |P |no(1) for an approximate shortest path P .
Further, Bernstein and Chechik recently gave an algorithm
with total update time Õ(mn3/4) [22], which was then im-
proved to O(mn0.5+o(1)) by Probst Gutenberg and Wulff-
Nilsen [49]. Neither of these data structures can answer path

queries which was recently addressed in [20].
For decremental APSP, Henzinger et al. [54] presented

an approximation algorithm with stretch ((2+ε)k−1) and to-
tal update time m1+1/k+o(1) for any positive integer k. They
also gave an algorithm with stretch (2 + ε) or (1 + ε, 2) with
total update time Õ(n2.5) in [52] which was recently deran-
domized by Chuzhoy and Saranurak [35]. Finally Henzinger
et al. [52] presented a (1 + ε)-approximate deterministic al-
gorithm with Õ(mn/ε) update time which derandomized the
construction by Roditty and Zwick [72] with matching run-
ning time. Later on, Chechik [31] presented a (2 + ε)k − 1-
approximate algorithm with update time mn1/k+o(1) for any
positive integer k and constant ε, whose total update time
matches the preprocessing time of static distance oracles
[78] with corresponding stretch. Recently, Chen et al. [32]
gave an incremental (2k − 1)-approximate algorithm with
O(m1/2n1/k) worst-case time per operation. We point out
that there is an extensive line of work on the decremental
APSP problem [60, 15, 37, 71, 77, 24, 72, 5, 54, 52, 53, 6,
31, 45] that is beyond the scope of this overview.

From the lower bounds side, Roditty and Zwick [71]
showed that any incremental or decremental algorithm for
SSSP in weighted graphs with preprocessing time p(n),
query time q(n) and update time u(n) must satisfy p(n) +
n · u(n) + n2 · q(n) ≥ n3−o(1) unless APSP has a truly
subcubic time algorithm. Similarly, for unweighted graphs,
they showed that any combinatorial incremental or decre-
mental algorithm must satisfy that equation unless Boolean
matrix multiplication (BMM) has a truly subcubic time com-
binatorial algorithm. Abboud and Vassilevska Williams [4]
extended these lower bounds to also hold for st-SP, where
now the algorithms must satisfy p(n) + n · (u(n) + q(n)) ≥
n3−o(1), for weighted graphs under the APSP conjecture,
and for unweighted graphs under the combinatorial BMM
conjecture.

Hypotheses for Fine-Grained Complexity Our condi-
tional lower bounds rely on two popular hypotheses: the On-
line Boolean Matrix-Vector Multiplication (OMv) conjec-
ture and the Combinatorial k-Clique hypothesis. In the OMv
problem we are given an n × n matrix M that can be pre-
processed. Then, an online sequence of vectors v1, . . . , vn is
presented and the goal is to compute eachMvi before seeing
the next vector vi+1. The OMv conjecture was first defined
in [55], and has been used many times since.

CONJECTURE 1.1. (OMV) For any constant ε > 0, there is
noO(n3−ε)-time algorithm that solves OMv with error prob-
ability at most 1/3 in the word-RAM model withO(log n) bit
words.

The Combinatorial k-Clique hypothesis is defined as
follows and has been used a number of times (e.g. [66, 1,
29]).
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HYPOTHESIS 1.1. (COMBINATORIAL k-CLIQUE) For any
constant ε > 0, for an n-node graph there is no O(nk−ε)
time combinatorial algorithm for k-clique detection with
error probability at most 1/3 in the word-RAM model with
O(log n) bit words.

For the special case of k-Clique detection where k = 3
(i.e. triangle detection), we also consider non-combinatorial
algorithms. Triangle detection can easily be solved us-
ing matrix multiplication but it is a big open question
whether triangle detection admits a O(mω−ε) time algo-
rithm, where ω < 2.373 is the matrix multiplication expo-
nent (e.g. [82], [83] Open Problem 4.3(c), and [76] Open
Problem 8.1). It is generally believed that such an algorithm
does not exist, and our reductions from k-Clique also imply
hardness under this hypothesis.

Our results. We present novel algorithms and condi-
tional lower bounds for (α, β)-spanners and emulators as
well as faster fully dynamic APSP algorithms. We prove the
following for undirected unweighted graphs.

1. Conditional lower bounds for partially dynamic span-
ners/emulators. Under the OMv conjecture, there can be
no decremental or incremental algorithm that maintains a
(1, no(1))-emulator (and thus spanner) with O(m1−ε) edges
for any constant ε > 0 with arbitrary polynomial preprocess-
ing time and total update time O(mn1−ε). The same result
also holds for all sparsities m for combinatorial algorithms
under the Combinatorial k-Clique hypothesis.

For completeness, we also present algorithms that are
tight with our conditional lower bounds. Note that mixed ad-
ditive/multiplicative error is necessary for these algorithms
since there can be no (O(1), 0)-spanner or emulator with
n1+o(1) edges (e.g. [67]). Our algorithms rely heavily on
prior work. Using techniques similar to [31], for any con-
stant ε ∈ (0, 1], we maintain whp against an oblivious
adversary a partially dynamic n1+o(1) edge (1 + ε, no(1))-
spanner in total update time m1+o(1) time. Using techniques
from [49], we also give a deterministic partially dynamic al-
gorithm that maintains a (1+ε, nα+o(1))-emulator of a graph
in total time O(mn1−α+o(1)) for any α > 0. Using a result
in [20], we can further turn the above algorithm into a ran-
domized algorithm that maintains a (1+ε, nα+o(1))-spanner
in expected total time O(mn1−α+o(1)) for any α > 0 and
that works against an adaptive adversary.

2. Conditional lower bounds for combinatorial fully dy-
namic spanners. Under the Combinatorial k-Clique hy-
pothesis, for a graph of any sparsity m, for any constant
ε > 0, there can be no fully dynamic combinatorial al-
gorithm that maintains an O(m1−ε)-edge (1 + α, no(1))-
emulator for small α with preprocessing time mn1−ε and
amortized update time m1−ε. This conditional lower bound
also extends to incremental and decremental algorithms but
only for worst-case update times.

For completeness, we also present an algorithm that
is tight with our conditional lower bound. This algorithm
follows from rerunning a known static algorithm after every
update. For any constant ε ∈ (0, 1], we give a deterministic
fully dynamic algorithm with preprocessing time m1+o(1)

and worst-case update time m1+o(1) time that maintains an
n1+o(1) edge (1 + ε, no(1))-spanner.

3. Algebraic fully dynamic spanner algorithms. The above
fully dynamic lower bound only applies to combinatorial
algorithms, and we show that this is inherent; we develop
an algebraic spanner algorithm that beats our combinatorial
lower bound. For any constant ε ∈ (0, 1], there is a
fully dynamic algorithm with preprocessing time Õ(n2) in
an initially empty graph and O(n2.373) in an initially non-
empty graph and worst-case update time O(n1.529) that whp
maintains an n1+o(1)-edge (1 + ε, no(1))-spanner and works
against an oblivious adversary. 1

The construction from our above lower bound from the
Combinatorial k-Clique hypothesis with k = 3 (i.e. trian-
gle detection) also gives a conditional lower bound for non-
combinatorial algorithms. Unless there is a breakthrough
in non-combinatorial algorithms for triangle detection algo-
rithms, there can be no fully dynamic algorithm that main-
tains an O(nω−1−ε)-edge (1 + α, no(1))-emulator for con-
stant α < 2/3 with preprocessing time O(nω−ε) and amor-
tized update time O(nω−1−ε), where ω < 2.373 is the ma-
trix multiplication exponent. Thus O(n1.372) update time
and O(n2.372) preprocessing time is not possible with cur-
rent techniques.

We also give a conditional lower bound from the OMv
conjecture that precludes algorithms for emulators with more
edges and higher preprocessing time than the above lower
bound from triangle detection, but at the cost of a lower
update time. Under the OMv conjecture, for any constant
ε > 0, there can be no fully dynamic algorithm that
maintains an O(m1−ε)-edge (1 + α, no(1))-emulator for
constant α < 2/3 with arbitrary polynomial preprocessing
time and amortized update time O(n1−ε).

Both of these conditional lower bound also extend to
incremental and decremental algorithms but only for worst-
case update times.

4. Fully dynamic exact path-reporting APSP. To achieve
the above results we develop the first fully dynamic APSP
data structure that supports distance queries, path reporting
queries, and edge updates in subquadratic time per opera-
tion. It uses algebraic techniques, is randomized, and works
against an oblivious adversary. Specifically we show the fol-
lowing result, where ω(a, b, c) is the exponent for multiply-

1Both the bound on the time per update as well as the correctness hold
with high probability. If we rebuild the data structure from scratch every
polynomially many updates, we can instead achieve an expected amortized
time bound of O(n1.529) per update.
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ing an na×nb matrix by an nb×nc, and κ∗ is the solution to
ω(1, 1, κ) = 1+2κ. With the current bounds for rectangular
matrix multiplication, κ∗ ≈ 0.529.

THEOREM 1.1. Let κ be such that 0 < κ ≤ κ∗, and letD be
a distance parameter between 1 and n. There is a random-
ized fully dynamic data structure that can maintain an un-
weighted directed graph G = (V,E) supporting the follow-
ing operations with preprocessing time Õ(n2) in an empty
initial graph and Õ(Dnω) in an non-empty initial graph: (a)
edge updates in worst-case time Õ(Dnω(1,1,κ)−κ) time; (b)
[distance reporting]: on query i, j ∈ V , return dist(i, j) if
dist(i, j) ≤ D, or answer that dist(i, j) > D otherwise, in
worst-case Õ(Dnκ) time, where the answer is correct whp;
(c) [path reporting]: on query i, j ∈ V , if dist(i, j) ≤ D,
return a shortest path from i to j, in Õ(D2nκ) time, where
the answer is correct whp.

We believe that this result is of independent interest.
Based on it we build a fully dynamic exact APSP data

structure that with preprocessing time Õ(n2) on an initially
empty graph achieves worst-case time O(n1.9) per edge
update, O(n1.529) per distance query and O(n1.9) per path
reporting query. This is a significant improvement over the
O(n2.5) worst-case update time of [6, 50] and closer to the
O(n2) time bound which is achieved by the data structure
of [37] which can only support distance reporting queries,
but no path reporting queries.

The algorithms in Theorem 1.1 are all Monte Carlo–
they are correct with high probability and always run in the
desired running time. If they could be made into Las Vegas
algorithms (ones that are always correct but have expected
running time), our applications of Theorem 1.1, such as our
algebraic spanners, would also be Las Vegas, which is a more
desirable guarantee.However, there are significant hurdles to
overcome in order to make Theorem 1.1 Las Vegas. Like
Sankowski’s original data structure [73], Theorem 1.1 heav-
ily relies on the use of polynomial identity testing (PIT),
namely on the fact that PIT is in co-RP and hence has a
fast Monte Carlo algorithm. To obtain a Las Vegas algo-
rithm using a similar approach, one would need a ZPP algo-
rithm for PIT. However, obtaining such an algorithm seems
extremely difficult, and in fact Impagliazzo and Kabanets
[58, 59] showed that such an algorithm would imply strong
circuit lower bounds. Thus although the rest of our tech-
niques can be made Las Vegas, making Theorem 1.1 Las
Vegas as well is far from possible with current techniques.

5. Applications. We present two applications of our above
results: fully dynamic approximate path-reporting APSP,
and fully dynamic Steiner tree. Using the above theorem and
the above algebraic spanner, we give the first subquadratic
fully dynamic (1 + ε)-approximate APSP algorithm. It
needs Õ(n2) preprocessing time on an empty graph and

achieves worst-case time n1+κ
∗+o(1) = O(n1.529) for up-

dates, n1+o(1) for approximate distance reporting and ap-
proximate shortest path reporting, whp against an oblivious
adversary. Note that all previous subquadratic update/query
algorithms could only report distances, not paths.

Our second application of our above results is a fully dy-
namic algorithm for (2 + ε)-approximate Steiner tree, which
can be used, for example, for routing in dynamic networks.
Specifically we give the first subquadratic algorithm that
maintains a (2+ε)-approximate Steiner tree for a set S of ter-
minals with both terminal and edge updates. Specifically, it
has preprocessing time Õ(n2) on an empty initial graph and
nω+o(1) on a non-empty initial graph, and worst-case time
n1+κ

∗+o(1) + |S|2 · n1+o(1) per edge update, |S|n1+o(1) per
node addition to S, and |S|no(1) per node removal from S,
giving subquadratic update time when |S| ≤ n1/2−o(1) whp
against an oblivious adversary. By increasing the processing
time to O(n2.621) using the data-structure of [80], the time
for edge updates can be made O(n1.843 + |S|2 · n0.45 + |S| ·
n1+o(1)), allowing for more leverage over the size of the ter-
minal set S. The only prior work in general graphs maintains
a (6 + ε)-approximate Steiner Tree under changes to S only
(no edge updates) and has preprocessing time Õ(m

√
n) and

update time Õ(
√
n) [63].

Organization In Section 2 we give a technical
overview of a selection of our results. Section 3 is the pre-
liminaries.

In Section 4, we present our conditional lower bounds
based on the OMV conjecture. Results in this articles based
on the k-cycle conjecture are deferred to the full version of
the article.

In Section 5, we present our algebraic spanner algo-
rithm, which uses our data structure for dynamic APSP with
path reporting data structure from Theorem 1.1. Details re-
garding the dynamic APSP data structure are again deferred
to the full version of this paper due to space constraints. We
also present our combinatorial dynamic spanner and emula-
tor algorithms only in the full version of the paper.

In Section 6 we present two additional applications of
the data structure from Theorem 1.1: our dynamic algorithm
for approximate APSP with path reporting and our dynamic
Steiner tree algorithm.

2 Technical overview
Conditional lower bounds. We first outline our OMv-

based constructions. Instead of reducing from the OMv
problem, we reduce from the related OuMv problem, which
is defined as follows. We are given an n × n matrix M that
can be preprocessed. Then, an online sequence of vector
pairs (u1, v1), . . . , (un, vn) is presented and the goal is to
compute each (ui)ᵀMvi before seeing the next pair. A
reduction from OMv to OuMv is known [55].

For both our fully dynamic and incremental/decremental
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lower bounds from OMv we begin with the same basic
gadget. Given the matrix M from the OuMv instance, we
construct a bipartite graph A,B where A = {a1, . . . an},
B = {b1, . . . bn}, and the edge (ai, bj) is present if and only
if Mi,j = 1.

The fully dynamic construction is shown in Figure 1.
We begin by taking a number c of disjoint copiesG1, . . . , Gc
of the basic gadget and an additional set of c + 1 isolated
vertices w0, . . . wc. Each basic gadget will introduce error to
the approximation, so larger c means that we are showing
a lower bound for algorithms with higher approximation
factors but faster running times.

After constructing this initial graph, we start n dynamic
phases. In phase i, we are given the vectors ui and vi of the
OuMv instance. For each 1 ≤ j ≤ c and each k with uik = 1,
insert an edge between wj−1 and ak ∈ Gj . Similarly, for
each 1 ≤ j ≤ c and each k with vik = 1, insert an edge
between wj and bk ∈ Gj . We remove these edges after the
phase is over.

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

w0 w1

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

w2

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

w3

. . .

G1 G2 G3

Edge (w0, ak)

iff ui
k = 1

Edge

iff vik = 1

(bk, w1)

Figure 1: The construction for fully dynamic algorithms.
The red edges are dynamically added in phase i.

At the end of each phase, we run Breadth-First Search
(BFS) on the dynamic emulator to estimate the distance
between w0 and wc, which we claim provides the answer
to this phase of the OuMv instance. In particular, note that
for any i the distance between wi and wi+1 is 3 if and only
if (ui)ᵀMvi = 1, and otherwise this distance is at least 5.
Also, since the emulator has O(n2−ε) edges, the resulting
algorithm would solve OuMv in O(n3−ε) time.

The incremental construction is similar, however we
cannot remove edges at the end of each phase. To get around
this, we replace eachwi with a path and insert edges incident
to a different vertex in the path at each phase. The resulting
construction is shown in Figure 2.

z1 z2 z3 y3z4

z5

y4y5
=

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

G0

z1 z2 z3 y1y2y3z4

z5

y4y5
=

. . .z1 z2

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

G1

y1y2

P0 P1 P2

Figure 2: The construction for incremental algorithms. The
red edges are dynamically added in phase 1 and the blue
edges are dynamically added in phase 2.

The decremental construction is roughly the reverse of

the incremental construction.
For the k-clique-based constructions, we instead reduce

from the k-cycle problem (a reduction from k-clique to k-
cycle is known [66]). The k-cycle constructions for both the
fully and partially dynamic settings follow a similar structure
to the OuMv constructions but use a different basic gadget.
The basic gadget is built by using color coding and taking a
layered version of the graph where each color is a layer and
only edges between vertices of adjacent colors are present.

Algebraic Fully Dynamic Spanner Algorithm. Let
us next present an algorithm to maintain a (1 + ε, no(1))-
spanner on a fully dynamic graph with worst-case update
time O(n1.529).

Let k =
√

log n. We sample sets V = A0 ⊇ A1, · · · ⊇
Ak ⊇ Ak+1 = ∅ where Ai for i ∈ [1, k + 1] is obtained
by sampling each vertex in V with probability n−i/k log n
(and to make the sets nesting add it to all Aj where j ≤
i, we assume that Ak+1 is empty which can be achieved
by resampling a constant number of times in expectation).
Given these sets, we say that each a ∈ A` \ A`+1 is active
if for no j > ` there exists a vertex a′ ∈ Aj \ Aj+1 with
distG̃(a, a′) .

(
1
ε

)j
. Using this definition of activeness, we

can show by a simple hitting set argument that each active
vertex a ∈ A` \ A`+1 has in its ball to radius ∼

(
1
ε

)`+1
at

most Õ(n(`+1)/k) vertices w.h.p..
Given this set-up, a natural way to construct a spanner

H , would be to find for each level ` ∈ [0, k], the active
vertices in A` \A`+1 and to include their shortest path trees
truncated at radius∼

(
1
ε

)`+1
. For the number of edges ofH ,

it is not hard to see that each for each ` ∈ [0, k), there are at
most Õ(n1−`/k) vertices that are active in A` \ A`+1. Each
of these vertices contributes a single edge for each vertex in
its truncated ball (except for itself), and as discussed above
we have that each ball is of size at most Õ(n(`+1)/k). Thus,
we have that H has at most Õ(n1+1/k) = n1+o(1) edges.

For the stretch factor, observe that for any vertices s, t ∈
V , with shortest path πs,t, we have that for s ∈ A` \ A`+1

for some level `, if s is active, we can simply travel along the
πs,t to some vertex s′ that is closer to t (since the truncated
shortest path tree of s is included in H) and then expose the
shortest path πs′,t inductively. Or, we have that there is a
vertex a′ ∈ Aj \ Aj+1 at distance .

(
1
ε

)j
to vertex s (with

j > `. Choosing a′ to be the vertex that is at this distance to
a with the largest possible j, we will be able to argue that a′

is active. Thus, we can travel from s to a′ to a vertex s′ on
πs,t at distance roughly

(
1
ε

)j+1
along the shortest path tree

at a′ truncated at depth ∼
(
1
ε

)j+1
that was included in H .

It is not hard to see that the error induced for visiting a′ can
be subsumed in a multiplicative (1 + O(ε))-approximation.
However, this only works if s and t are at distance &

(
1
ε

)j+1
,

otherwise it induces an additive error of no(1). This explains
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why we obtain a (1 + ε, no(1))-approximation.
Unfortunately, while this set-up of H is sensible, con-

sider the example of the complete graph. Then, there would
be a vertex a ∈ Ak \ Ak+1 (which is active since Ak+1 is
empty) where visiting the truncated ball at a would take time
Õ(n2), which is by far too expensive for our algorithm.

Too overcome this issue, instead of inserting truncated
shortest path trees to H , we only insert for any active vertex
a ∈ A` \ A`+1, the shortest paths to other vertices in
A` \ A`+1 in the truncated shortest path tree of a. We then
fix a threshold γ ≈ b0.529 · kc, and can use the algebraic
data structure from Theorem 1.1 to maintain the distances
of vertices in Aγ (and thereby Aγ+1, Aγ+2, . . . , Ak, Ak+1)
without explicitly maintaining the balls of the active vertices.
For active vertices in some set A` \ A`+1 for ` < γ,
we can compute the balls explicitly after every update.
This is because each such ball only contains Õ(n(`+1)/k)
vertices, and therefore the induced graph can contain at most
Õ(n2(`+1)/k) edges, which implies that we overall, spend at
most time Õ(n1−`/k) · n2(`+1)/k = Õ(n1+(`+2)/k) time for
computing all such balls. We refer the reader to section 5 for
a proper analysis of the running time.

Finally, we point out that so farH only contains shortest
paths between active vertices in the same set A` \ A`+1 (if
they are reasonably close). However, to have a path between
vertices on different levels, we also add a O(log n) spanner
G̃ of G to H . Such a spanner is simple to maintain, for
example [47] shows how to maintain such a spanner with
Õ(n) edges and Õ(1) amortized update time.

The idea of the approximation proof then becomes the
following for some path πs,t: Let i be the largest index such
that an active vertex a ∈ Ai is at distance at most ∼ ε−i to
s. Let w be the farthest vertex from s on πs,t such that (1)
the distance from s to w is at most ∼ ε−(i+1), and (2) w has
distance at most ∼ ε−i to an active vertex a′ ∈ Ai. Such a
vertex w exists since we could have w = s and a′ = a. It is
then apparent that the distance between a and a′ is . ε−(i+1)

and since a′ is active, we can ensure that the shortest path
from a to a′ is in H . Further, we can use the paths in the
spanner G̃ (which belongs to H) to get from s to a and from
a′ tow; since these two distances are small, it suffices to have
an O(log n) multiplicative error for them. Now, observe that
this induces additive error along the path segment from s to
w of Õ(ε−i) (by the triangle inequality). We either have that
a and a′ are roughly at distance ∼ ε−(i+1) (which suffices
to subsume the additive error in the multiplicative error), or
we have that for the next path segment of length ∼ ε−(i+1),
no vertex is close to any active vertex in Ai. Thus, when
we repeat the whole argument for the next path segment, we
get that vertices on lower levels are active, which means that
they induce less additive error. This allows us to subsume
the additive error from higher levels into multiplicative error
for a series of segments of lower levels.

We refer the reader to Section 5 for the full details of the
algorithm.

Fully dynamic APSP with path reporting. Our data-
structure of theorem 1.1 is an augmentation of Sankowski’s
[73] data structure to support fast successor queries. Es-
sentially, Sankowski showed how to reduce the problem of
maintaining the short distances in a dynamic unweighted
graph to the dynamic matrix inverse problem, by represent-
ing the path lengths as degrees of the adjoint of a polynomial
matrix. He then showed how to efficiently maintain the
inverse of a matrix subject to entry updates, allowing for
fast distance queries. We extend his techniques to maintain
products of matrices and the inverse, and show how to use
these products to extract successor information similarly to
Seidel’s path reporting algorithm for static APSP [75]. Let
us begin here by sketching Sankowski’s data-structure [73]
and then present the high level of our augmentation.

Short Distances to Dynamic Matrix Inverse. [73] showed
how to encode path lengths of an unweighed graph in the
adjoint of a matrix, that is, given a adjacency matrix Aij
with a random integer entry if (i, j) ∈ E, then the lowest
degree non-zero term of the polynomial adj(I − uA)ij
over the variable u is the distance dij whp. In this manner
maintaining adj(I − uA)ij mod uD+1, for some distance
parameter D, allows us to query a distance i → j correctly
whp if dij ≤ D. Note that adjM = detM × M−1, s.t. it
suffices just to maintain det M and M−1 mod uD+1.

Dynamic Matrix Inverse. We now detail the algebraic tools
developed by Sankowski [73] to maintain the inverse of a
matrix M dynamically and over a ring. The main idea is to
maintain explicitly (i.e. all n2 entries) two matrices T,N ,
s.t. we maintain the invariant

(2.1) M−1 = T (I +N)

where, initially, T = M−1 and N = 0, and as later shown
each single entry update to M corresponds to a single row
update to N (and no modifications to T !). After m updates,
N has at most m non-zero rows, and we can exploit this
sparsity of N to quickly compute its row-updates in O(mn),
and every m = nκ updates we reset T ← T + TN ,
N ← 0, in O(nω(1,1,κ)−κ) time on average. In this manner,
we guarantee that N is always sparse, and updates take
amortized time

(2.2) O(nω(1,1,κ)−κ + n1+κ)

for some parameter κ ∈ (0, 1) which we can later optimize
over. Entry queries (i, j) are now straightforward, as it
suffices to compute the dot product

(2.3) M−1ij = eTi T (I +N)ej = Tij + (eTi T ) · (Nej)
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which can be done in O(nκ) time since a given column of
N has at most O(nκ) non-zero entries. It is then shown that
we can maintain these matrices over a ring mod uD+1 by
introducing a multiplicative factor of Õ(D) to the runtimes
described above, s.t. now if M = I − uA we can query any
distance d ≤ D in the graph in time Õ(Dnκ).

Successor Queries to Product Maintenance. There are two
main ingredients to our augmentation the data-structure of
[73]. The first is to reduce the successor query of a pair (i, j)
of an unknown number of distinct successors to that of a
single successor, using a known sparsification trick used first
in Seidel’s algorithm for static, undirected and unweighted
APSP [75]. This only introduces a log2 n multiplicative
factor to the runtime and we defer the formal argument to
the full version. The second ingredient is to show how to
find a single successor by finding a witness of the product
(A·adj(I−uA))ij . The key new insight is that if the distance
1 < dij ≤ D, then adj(I − uA)ij has minimum degree
dij , and thereby the product (A·adj(I − uA))ij must have
minimum degree dij − 1. This is since there must exist a
unique witness s (the single successor!) s.t. Ais is non-zero,
corresponding to an edge, and adj(I − uA)sj has minimum
degree dsj = dij − 1, corresponding to the length of the
shortest path from s to j.

We can find this single witness by computing its
bitwise description, that is, defining O(log n) versions of
the adjacency matrix A, A(l) for l ∈ [O(log n)], where we
null the pth column of A(l) if the lth bit of p is 0. As there is
only a single witness s, the minimum degree of the product
(A(l)·adj(I − uA))ij is dsj = dij − 1 only if the column of
s is selected, that is, the lth bit sl = 1. In this manner, if we
query the O(log n) products (A(l)·adj(I− uA))ij , the 1-bits
sl = 1 are exactly the products l s.t. the minimum degree is
correct. This allows us to extract the successor description in
a polylog number of queries to products (E·adj(I − uA))ij
for given matrices E.

Product Maintenance. The last detail in our successor
query augmentation is to show how to maintain products
(E·adj(I − uA)), where we can modify entries of E and A,
and query entries i, j of the result. Note again that it suffices
to maintain (E·(I−uA)−1), as opposed to the adjoint, just by
multiplying by the determinant. We do so by following the
inverse maintenance algorithm and explicitly maintaining
the matrices T,N and V ≡ ET , s.t. we maintain the
invariant

(2.4) EM−1 = ET (I +N) = V (I +N)

We address updates to E and to A completely differently.
Updates to A follow the original lazy construction, where
we simply perform a row-update to N , and every nκ updates
we ”reset” V ← V (I + N), T ← T (I + N), N ←

0. We note that correctness follows by associativity, s.t.
although matrices V and T are dense we can still exploit
the sparsity of N to compute their updates independently in
time O(Dn1+κ +Dnω(1,1,κ)−κ) on average. Entry-Updates
to E, E ← E + eij , are much simpler. We once again use
associativity to compute the row update V ← V + eijT

in Õ(Dn) time. Finally, to query an entry of the product
(EM−1)ij , we follow analogously to [73] and compute the
dot product

(2.5) (EM−1)ij = eTi V (I+N)ej = Vij + (eTi V ) · (Nej)

and since V and N are maintained explicitly, this takes time
Õ(Dnκ), the exact same as the distance queries. Overall,
this allows for Õ(Dnκ) time successor queries, and by
iterating, short path queries of length≤ D in time Õ(D2nκ).

3 Preliminaries
We let G = (V,E) denote an undirected unweighted dy-
namic input graph, where n = |V | and m = |E|. For
any graph H , and two vertices a, b ∈ V (H), we denote
by distH(a, b) the distance between the two vertices in G
and let πa,b,H denote a corresponding shortest path between
a and b. If the graph H , especially when we use the in-
put graph G, is clear from the context, we simply use πa,b.
We define BH(s, r) in the graph H , to be the ball rooted at
s with radius r, i.e. the set of vertices BH(s, r) = {w ∈
V (H)|distH(s, w) ≤ r}. Throughout the article, we often
use the data structure stated below that is sometimes referred
to as the Even-Shiloach (ES) tree.

LEMMA 3.1. (C.F. [46]) For any vertex s ∈ V , radius r,
there is a deterministic data structure on a partially dynamic
graph G that reports for every w ∈ B(s, r), the distance
dist(s, w). In fact, the data structure maintains explicitly
the shortest path tree in G[B(s, r)]. The total update time of
the data structure is O(mr) time where m is the maximum
number of edges ever in G[B(s, r)].

Let ω be the infimum over all reals such that n × n
matrices can be multiplied in O(nω+ε) time for all ε > 0.
It is known that ω ∈ [2, 2.373) [81, 64]. More generally,
let ω(a, b, c) be the infimum over all reals such that an
na × nb matrix can be multiplied by an nb × nc matrix in
O(nω(a,b,c)+ε) time for all ε > 0. A notable result is that for
b ≤ 0.313, ω(1, b, 1) = 2 [65].

4 Conditional lower bounds
We present conditional lower bounds for amortized algo-
rithms in the fully dynamic, incremental, and decremental
settings. Our constructions for amortized algorithms in the
fully dynamic setting also imply lower bounds for the incre-
mental and decremental settings, but only for worst-case up-
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date times. We present separate constructions for the amor-
tized incremental and decremental settings.

We first describe why our fully dynamic conditional
lower bounds also apply to the incremental and decremental
settings for worst-case update times. This is due to the nature
of our reductions: all of our reductions produce an initial
graph on which we perform update stages that only insert
or only delete (we can choose which) a batch of edges, ask
a query and undo the changes just made, returning to the
initial graph. An incremental (resp. decremental) algorithm
can be used for this type of dynamic graph by performing
the insertions (resp. deletions) and then rolling back the data
structure to the initial graph and repeating.

4.1 Conditional lower bounds from the OMv conjecture

4.1.1 Statement of results We prove conditional lower
bounds from the OMv conjecture for dynamic emulator
maintenance in the fully dynamic, incremental, and decre-
mental settings. We prove the following theorem for the fully
dynamic setting, which also extends to the incremental and
decremental settings but only for worst-case update times.

THEOREM 4.1. Under the OMv conjecture, for an n-vertex
fully dynamic graph with at most m edges at all times, for
every constant ε > 0, there is no algorithm for maintaining a
(1 +α, β)-emulator for any α ∈ [0, 2/3) and integer β ≥ 0,
withO(m1−ε( 2−3α

β )) edges, polynomial preprocessing time,
and amortized update time O(n1−ε( 2−3α

β )2) such that over
a polynomial number of edge updates the error probability is
at most 1/3 in the word-RAM model withO(log n) bit words.

The same result holds for incremental and decremental
algorithms, but for worst-case update time.

In particular, for the natural setting where α is constant
and β = no(1) we have the following corollary:

COROLLARY 4.1. Under the OMv conjecture, for an n-
vertex fully dynamic graph with at most m edges at all
times, for every constant ε > 0, there is no algorithm for
maintaining a (1 + α, no(1))-emulator for any constant α ∈
[0, 2/3) with O(m1−ε) edges, polynomial preprocessing
time, and amortized update time O(n1−ε) such that over a
polynomial number of edge updates the error probability is
at most 1/3 in the word-RAM model withO(log n) bit words.

The same result holds for incremental and decremental
algorithms, but for worst-case update time.

For the incremental and decremental settings, we prove
the following theorem.

THEOREM 4.2. Under the OMv conjecture, for an n-vertex
incremental or decremental graph with m edge insertions or
deletions, for every constant ε > 0, there is no algorithm for

maintaining a β-additive emulator for any integer β ≥ 0,
withO(m1−ε/β) edges, polynomial preprocessing time, and
total update time O(mn1−ε/β2) with error probability at
most 1/3 in the word-RAM model with O(log n) bit words.

In particular, for the natural setting where β = no(1) we
have the following corollary:

COROLLARY 4.2. Under the OMv conjecture, for an n-
vertex incremental or decremental graph with m edge in-
sertions or deletions, for every constant ε > 0, there is
no algorithm for maintaining a no(1)-additive emulator with
O(m1−ε) edges, polynomial preprocessing time, and total
update time O(mn1−ε) with error probability at most 1/3 in
the word-RAM model with O(log n) bit words.

4.1.2 Preliminaries Our reductions are from the Online
Vector-Matrix-Vector Multiplication problem (OuMv). A
reduction from OMv to OuMv is known:

THEOREM 4.3. (OUMV: THEOREM 2.7 FROM [55]) The
OMv conjecture implies that for any constant ε > 0, there is
no algorithm for OuMv with with polynomial preprocessing
time and computation time O(n3−ε) with error probability
at most 1/3 in the word-RAM model with O(log n) bit
words.

Given an instance of OuMv, we introduce a basic gadget
that we will use in all of our constructions.

The basic gadget Let M be the n × n input matrix
for the OuMv instance. We construct a gadget as shown in
Figure 3. The gadget consists of a bipartite graphA,B where
A = {a1, . . . an}, B = {b1, . . . bn}, and the edge (ai, bj) is
present if and only if Mi,j = 1.

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

Figure 3: The basic gadget for reductions from OMv.

4.1.3 Reduction for fully dynamic algorithms In this
section we prove Theorem 4.1.

Construction Let c = d β
2−3αe + 1 and take c disjoint

copies G1, . . . , Gc of the basic gadget (from Figure 3). Let
w0, . . . wc be an additional set of c+ 1 isolated vertices.

Now, we start n dynamic phases. In phase i, we are
given the vectors ui and vi of the OuMv instance. For each
1 ≤ j ≤ c and each k with uik = 1, insert an edge between
wj−1 and ak ∈ Gj . Similarly, for each 1 ≤ j ≤ c and each
k with vik = 1, insert an edge between wj and bk ∈ Gj . See
Figure 4.
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Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

w0 w1

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

w2

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

w3

. . .

G1 G2 G3

Edge (w0, ak)

iff ui
k = 1

Edge

iff vik = 1

(bk, w1)

Figure 4: The construction for fully dynamic algorithms.
The red edges are dynamically added in phase i.

Throughout all of the edge updates, we maintain our
dynamic emulator. At the end of each phase, we run a single
source shortest paths computation via Breadth-First Search
(BFS) on the emulator to estimate the distance between w0

and wc.
If the estimated distance between w0 and wc is less than

5c, we return 1 for this phase of the OuMv instance, and
otherwise we return 0.

Following the end of each phase, we remove all of the
edges added during that phase.

Correctness First we will show that if uiMvi = 1 then
our algorithm returns 1 for the ith phase. If uiMvi = 1 then
there exists j, k such that uij = Mj,k = vik = 1. Thus,
the basic gadget contains the edge (aj , bk). Also, for all
1 ≤ ` ≤ c, in the ith phase we add an edge between w`−1
and aj ∈ G` and an edge between w` and bk ∈ G`. Thus,
there is a path of length 3 from w`−1 to w` through aj and
bk. Therefore, dist(w0, wc) ≤ 3c. Thus, the estimate of
dist(w0, wc) returned by our (α+ 1, β)-emulator is at most
3c(α+ 1) + β, which is less than 5c since c > β

2−3α . Thus,
our algorithm returns 1 for the ith phase.

Now we will show that if our algorithm returns 1 in the
ith phase then uiMvi = 1. If our algorithm returns 1, then
the estimate of dist(w0, wc) returned by our (1 + α, β)-
emulator is less than 5c, so the true distance dist(w0, wc)
is also less than 5c.

First, we observe that the layered structure of the graph
ensures that every path between w0 and wc must contain
every w` in chronological order. That is, every shortest path
between w0 and wc must contain as a subpath a shortest
path from w`−1 to w` for all 1 ≤ ` ≤ c. Then since
the graph is c identical copies of a gadget, we have that
dist(w0, wc) = c · dist(w0, w1).

Since dist(w0, wc) < 5c, we know that
dist(w0, w1) < 5. Furthermore, since the graph is
bipartite and w0 and w1 are on opposite sides of the
bipartition, dist(w0, w1) must be odd so dist(w0, w1) ≤ 3.
Observe that the only possible paths of length 3 between
w`−1 and w` contain a vertex aj ∈ G` followed by a vertex
bk ∈ G`. If such a path exists in the ith phase, then the basic
construction ensures that Mj,k = 1 and the dynamic phase
ensures that uij = 1 and vik = 1. Thus, uiMvi = 1.

Running time Let n′ be the number of vertices in the
dynamic graph and let m′ be the maximum number of edges
ever in the dynamic graph. We first calculate n′ and m′.
Each basic gadget contains 2n vertices and at most n2 edges.
Thus, c copies of the basic gadget contain 2cn vertices and
cn2 edges. There are also an additional c + 1 vertices w`.
During each of the n phases we add at most 2nc edges. Thus,
the total number of vertices is n′ = O(nc) and the total
number of edge updates over the entire sequence is O(cn2),
so m′ = O(cn2).

Suppose that the emulator has O(m′1−ε(2 − 3α)/β)
edges for ε > 0 and has polynomial preprocessing time and
amortized update time O(n′1−ε((2− 3α)/β)2).

Then, our dynamic emulator algorithm has amortized
update time O(n′1−ε( 2−3α

β )2) = O((nc)1−ε( 2−3α
β )2).

Since there are O(cn2) edge updates, the total update time
of the dynamic emulator algorithm is O(n3−ε) since c =
d β
2−3αe+ 1.

Additionally, n times during the algorithm, we run a
single call of BFS on the emulator. The number of edges in
the emulator is O(m′1−ε( 2−3α

β )) = O((cn2)1−ε( 2−3α
β )) =

O(n2−ε) since c = d β
2−3αe + 1. Thus, running BFS takes

total time O(n3−ε).
Putting everything together, our dynamic emulator algo-

rithm implies an algorithm for OuMv with polynomial pre-
processing time and computation time O(n3−ε) for ε > 0,
contadicting the OMv conjecture.

4.1.4 Reduction for incremental and decremental algo-
rithms. In this section we prove Theorem 4.2.

Construction The construction will be similar to the
fully dynamic construction, but with different interactions
between consecutive copies of the basic gadget. We first
describe the incremental construction.

Starting with an empty graph, we perform edge inser-
tions to construct the following graph. Take β + 1 disjoint
copies G1, . . . , Gβ+1 of the basic gadget (from Figure 3).
Then, add β + 2 paths P0, . . . , Pβ+1 each on 2n − 1 new
vertices. Call the vertices of each path z1, z2, . . . , zn =
yn, yn−1, . . . , y1. In other words, the middle node of each
path has two names, zn and yn.

Now, we start n phases. In phase i, we are given the
vectors ui and vi of the OuMv instance. For each 1 ≤ j ≤
β + 1 and each k with uik = 1, insert an edge between
yi ∈ Pj−1 and ak ∈ Gj . Similarly, for each 1 ≤ j ≤ β + 1
and each k with vik = 1, insert an edge between zi ∈ Pj and
bk ∈ Gj . See Figure 5.

Throughout all of the edge updates, we maintain our
incremental emulator. At the end of each phase, we run a
single call of BFS on the emulator to estimate the distance
between z1 ∈ P0 and y1 ∈ Pβ+1.

If the estimated distance between z1 ∈ P0 and y1 ∈
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z1 z2 z3 y3z4

z5

y4y5
=

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

G0

z1 z2 z3 y1y2y3z4

z5

y4y5
=

. . .z1 z2

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

G1

y1y2

P0 P1 P2

Figure 5: The construction for incremental algorithms. The
red edges are dynamically added in phase 1 and the blue
edges are dynamically added in phase 2.

Pβ+1 at the end of phase i is less than
4(β+1)+(β+2)(2n−2i)+2(i−1), we return 1 for phase
i of the OuMv instance, and otherwise we return 0.

Now, we describe the decremental construction, which
is similar to the incremental construction. The initial graph
consists of G1, . . . , Gβ+1 and P0, . . . , Pβ+1 from the incre-
mental construction, as well as an edge for all 1 ≤ ` ≤ β+1
from zi ∈ P` to every vertex in B ⊆ G`, and an edge for all
1 ≤ ` ≤ β + 1 from yi ∈ P`−1 to every vertex in A ⊆ G`.

Now, we start n dynamic phases. In phase i, we are
given the vectors ui and vi of the OuMv instance. For each
1 ≤ j ≤ β + 1, and each k with uik = 0, delete the edge
between yn−i+1 ∈ Pj−1 and ak ∈ Gj . Similarly, for each
1 ≤ j ≤ β + 1 and each k with vik = 0, delete the edge
between zn−i+1 ∈ Pj and bk ∈ Gj .

Throughout all of the edge updates, we maintain our
decremental emulator. At the end of each phase, we run a
single call to BFS on the emulator to estimate the distance
between z1 ∈ P0 and y1 ∈ Pβ+1.

Following the end of each phase i, for each 1 ≤ j ≤
β + 1, we delete all edges between yn−i+1 ∈ Pj−1 and
A ⊆ Gj and all edges between zn−i+1 ∈ Pj and B ⊆ Gj .

If the estimated distance between z1 ∈ P0 and y1 ∈
Pβ+1 at the end of phase i is less than
4(β+1)+(β+2)(2n−2(n−i+1))+2((n−i+1)−1), we
return 1 for phase i of the OuMv instance, and otherwise we
return 0. Note that this threshold is exactly the threshold
from the incremental algorithm but with i replaced with
n− i+ 1.

Correctness The following argument is written for the
incremental setting but the same argument applies for the
decremental setting.

First we will show that if uiMvi = 1 then our algorithm
returns 1 for the ith phase. If uiMvi = 1 then there exists
j, k such that uij = Mj,k = vik = 1. Thus, the basic gadget
contains the edge (aj , bk). Also, for all 1 ≤ ` ≤ β+1, in the
ith phase we add an edge between yi ∈ P`−1 and aj ∈ G`
and an edge between zi ∈ P` and bk ∈ G`.

Thus, for all 1 ≤ ` ≤ β + 1, there is a path of
length 3 from yi ∈ P`−1 to zi ∈ P` through aj ∈ G`
and bk ∈ G`. Also, for each 0 ≤ ` ≤ β + 2, there
is a path along P` from zi ∈ P` to yi ∈ P` of length

(2n − 2) − 2(i − 1) = 2n − 2i. Finally, there is a path
of length i− 1 from z1 ∈ P0 to zi ∈ P0 and a path of length
i − 1 from yi ∈ Pβ+2 to y1 ∈ Pβ+2. Concatentating all
of these paths, we have that dist(z1 ∈ P0, y1 ∈ Pβ+1) ≤
3(β + 1) + (β + 2)(2n− 2i) + 2(i− 1). Thus, the estimate
of dist(z1 ∈ P0, y1 ∈ Pβ+1) returned by our β-additive
emulator is at most 4(β+1)−1+(β+2)(2n−2i)+2(i−1).
Thus, our algorithm returns 1 for the ith phase.

Now we will show that if our algorithm returns 1 in the
ith phase then uiMvi = 1. If our algorithm returns 1, then
the estimate of dist(z1 ∈ P0, y1 ∈ Pβ+1) returned by our
β-additive emulator is less than 4(β+1)+(β+2)(2n−2i)+
2(i − 1), so the true distance dist(z1 ∈ P0, y1 ∈ Pβ+1) is
also less than 4(β + 1) + (β + 2)(2n− 2i) + 2(i− 1).

First, we observe that the layered structure of the graph
ensures that every path between z1 ∈ P0 and y1 ∈ Pβ+1

contains each zi and yi in order from P0 to Pβ+1. That
is, every shortest path between z1 ∈ P0 and y1 ∈ Pβ+1

is composed of precisely following subpaths:

• A shortest path from z1 ∈ P0 to zi ∈ P0. The only
simple path connecting these vertices is of length i− 1.

• A shortest path from yi ∈ Pβ+1 to y1 ∈ Pβ+1. The
only simple path connecting these vertices is of length
i− 1.

• A shortest path from zi ∈ P` to yi ∈ P` for all
1 ≤ ` ≤ β + 2. The only simple path connecting these
vertices is of length (2n− 2)− 2(i− 1) = 2n− 2i.

• A shortest path from yi ∈ P`−1 to zi ∈ P` for all
1 ≤ ` ≤ β + 1. Since the graph is a series of identical
copies of a gadget, we know that dist(yi ∈ P`−1, zi ∈
P`) is the same for all `. Furthermore, we know the
length of each of the previous three types of subpaths
and we know that dist(z1 ∈ P0, y1 ∈ Pβ+1) <
4(β+ 1) + (β+ 2)(2n−2i) + 2(i−1), so we conclude
that each dist(yi ∈ P`−1, zi ∈ P`) < 4.

Due to the layering of the graph, for all 1 ≤ ` ≤ β + 1
the shortest path between yi ∈ P`−1 and zi ∈ P` must
contain vertices aj ∈ G` and bk ∈ G` for some j, k. Since
dist(yi ∈ P`−1, zi ∈ P`) < 4, there are no other vertices on
this shortest path. The basic construction ensures that since
the edge (aj , bk) exists, we have Mj,k = 1, and the dynamic
phase ensures that since the edge (yi ∈ P`−1, aj ∈ G`)
exists, we have uij = 1 and since the edge (bk ∈ G`, zi ∈ P`)
exists, we have vik = 1. Thus, uiMvi = 1.

Running time Let n′ be the number of vertices in the
dynamic graph and let m′ be number of edge insertions or
deletions. We first calculate n′ and m′. Each basic gadget
contains 2n vertices and at most n2 edges. Thus, β + 1
copies of the basic gadget contain 2(β + 1)n vertices and
(β + 1)n2 edges. Additionally, we have (β + 2) paths on
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(2n−1) vertices each, for a total of (2n−1)(β+2) additional
vertices. During each of the n phases there are at most
2n(β + 1) edge updates. Thus, the total number of vertices
is n′ = O(βn) and the total number of edges updates is
m′ = O(βn2).

Now assume that our incremental or decremental emu-
lator hasO(m′1−ε/β) edges, polynomial preprocessing time
and total update time O(m′n′1−ε/β2).

Then the total update time of the emulator is
O(m′n′1−ε/β2) = O(βn2(βn)1−ε/β2) = O(n3−ε).

Additionally, n times during the algorithm, we run BFS
on the emulator. The number of edges in the emulator is
O(m′1−ε/β) = O((βn2)1−ε/β) = O(n2−ε). Thus, running
the BFS calls takes total time O(n3−ε).

Putting everything together, our incremental or decre-
mental emulator algorithm implies an algorithm for OuMv
with polynomial preprocessing time and computation time
O(n3−ε) for ε > 0, contradicting the OMv conjecture.

5 Algebraic fully dynamic spanner algorithm
The goal of this section is to prove the following theorem.

THEOREM 5.1. For any constant 0 < ε ≤ 1, given an
undirected, unweighted fully dynamic graph, there is an
algorithm to maintain a (1+ε, no(1))-spanner of size n1+o(1)

with preprocessing time Õ(nω) (or Õ(n2) if the input graph
is empty) and worst update time n1+κ

∗+o(1) = O(n1.529)
with high probability against an oblivious adversary.

Internal Data Structures. In order to obtain this result,
we use two internal data structures. We first use a data struc-
ture A that maintains the distance matrix and corresponding
shortest paths in a graph G, restricted to a set of sources S,
as stated below.

THEOREM 5.2. (SUCCESSOR QUERIES AND SHORT PATHS)
For any parameters κ ∈ (0, 1), D < n, and an unweighted
graph G = (V,E) subject to edge insertions and deletions,
there is a dynamic, randomized data-structure PDκ that
supports the following operations:

• Ins/Delete(e) Inserts/Deletes edge e ∈ E in worst case
time O

(
Dnω(1,1,κ)−κ +Dn1+κ).

• Short Distance/Successor Query(i, j) Returns the dis-
tance d ≤ D and a successor on any short, shortest
i → j path in worst case time O(Dnκ) and is correct
whp.

• Short Path Queries(i, j) Returns a shortest i → j path
of length d ≤ D by repeatedly finding successors in
worst case O(dDnκ) time, and is correct whp.

with pre-processing time O(Dn2) on empty graphs and
O(Dnω) otherwise.

The algorithm is randomized and uses fast matrix mul-
tiplication internally. It is an augmented version of Theo-
rem 1.1 where we defer the proof to the full version of the
paper. We inted to use this data structure simply by querying
the data structure of Theorem 5.2 for every pairwise distance
in S.

COROLLARY 5.1. Let κ be such that 0 < κ ≤ κ∗ < 0.529
and let D be a distance parameter in [1, nκ]. Suppose
we are given a set of vertices S. Then the data structure
from Theorem 5.2 can maintain for any arbitrarily small
δ > 0, for all pairs of nodes s, t ∈ S, a shortest path
between s and t as long as dist(s, t) ≤ D (and can check if
dist(s, t) > D), with high probability against an oblivious
adversary, with initialization time Õ(Dnω) (for a nonempty
initial graph) or Õ(n2) (for an empty initial graph) and
worst-case update time Õ(Dnω(1,1,κ)−κ + |S|2D2nκ).

If the depth threshold D = no(1), the size of the subset
|S| = O(

√
n) and we pick the parameter κ = κ∗ ≈ .529

to minimize the update time, which becomes n1+κ
∗+o(1) =

O(n1.529).

Further, we use an algorithm B to maintain a spanner of
G with high multiplicative error efficiently.

THEOREM 5.3. (SEE [47], THEOREM 1.4) Given an un-
weighted, undirected fully dynamic graph, there exists an
algorithm B that maintains a spanner with multiplicative
stretch log n and expected size O(n log n) that has expected
update time O(log3 n) against an oblivious adversary.

The Algorithm. Equipped with these two powerful
data structures, let us state the algorithm that gives Theorem
5.1. Let k =

√
log n, let ε′ = ε

20(k+1) , and let b =
(

logn
ε′

)
.

We sample sets V = A0 ⊇ A1, · · · ⊇ Ak ⊇ Ak+1 = ∅
where Ai for i ∈ [1, k] is obtained by sampling each vertex
in V with probability n−i/k log n (and to make the sets
nesting add it to all Aj where j ≤ i). We maintain two
data structures dynamically during the sequence of edge
insertions and deletions:

1. For γ = bκ ·kc, we runA on graph G with fixed source
set Aγ and depth threshold 1

8 lognb
k+1.

2. Further, we run B on G and let G̃ be the log n-
approximate spanner.

Let ci,j =
∑j
y=i+1 b

y . Initially, and after an edge update
we construct the spanner H from scratch as follows: We say
that a ∈ A` \ A`+1 is active if for no j > ` there exists a
vertex a′ ∈ Aj \Aj+1 with distG̃(a, a′) ≤ c`,j/4. Note that
we are using distances in G̃ and not in G for this definition.
Note that all vertices in Ak are active at all times. In order
to determine which vertices are active, we run the following
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process. We begin by labeling all vertices as active. We then
run for each i from k down to 0, a BFS algorithm on the
spanner G̃ to depth bi from every vertex in Ai \ Ai+1 that
is still labelled active. We then deactivate each vertex v in
V \ Ai for which we found a vertex a ∈ Ai \ Ai+1 that is
close enough to establish that v cannot be active. We then
construct our spanner H which is initially empty by adding
edges from two sources:

1. We add all edges from G̃ to H .

2. For any two vertices a, a′ ∈ Ai \ Ai+1 that are active,
we add the shortest path πa,a′,G to H if distG(a, a′) ≤

1
8 lognb

i+1, that is, if their distance in G is small. To
compute these paths πa,a′,G, we distinguish two cases.
If i ≥ γ, then we pose a path reporting query to A. For
i < γ, we run from every such active vertex a BFS on
G to depth 1

8 lognb
i+1.

As we will show, the approximation factor of the span-
ner always holds and the sparsity holds with high probabil-
ity. If the spanner becomes too dense, we reinitialize the
algorithm.

Spanner Approximation. In the following, we prove
that H indeed forms a (1 + ε, no(1)) spanner. The basic
idea behind the proof is the following: let s and t be two
vertices and we want to analyze distH(s, t) in comparison
to distG(s, t). There are basically two cases: If s is “close”
to an active vertex a in Ai \ Ai+1, i.e. at distance at most
di for some di, and there is a vertex v that is at distance
∼ 4di log n/ε from s on the path from s to t, such that v is
“close” to an active vertex a′ in Ai \ Ai+1, then we can use
the spanner G̃ to get from s to a and from a′ to t and have
that the shortest path between a and a′ is in H by part (2)
of its construction. It is not hard to see that this detour only
implies a (1 + ε)-multiplicative error. Otherwise, we do not
have a vertex within distance ∼ 4di log n/ε that is close to
any active vertex in Ai \Ai+1. We can then repeat the same
argument for level i − 1 along the path segment from s of
length ∼ 4di log n/ε and we are ensured that we eventually
reach a level where vertices are active and where we get a
good approximation. This allows us to subsume the additive
error from higher levels into multiplicative error for a series
of segments of lower levels.

To formalize this concept, fix a value i ∈ [1, k] and
let us say a vertex a is ≥ i-far if (1) a ∈ A` \ A`+1 for
some ` ∈ [0, i − 1] and (2) for no j ≥ i there is a vertex
a′ ∈ Aj \ Aj+1 with distG̃(a, a′) ≤ bj − 1

2c`,i. Observe
that the distance requirement is formulated with regard to
the multiplicative spanner G̃. Note that as Ak+1 = ∅, every
vertex is trivially ≥(k + 1)-far.

LEMMA 5.1. For any ` ∈ [0, k − 1] every vertex a ∈
A` \A`+1 that is ≥(`+ 1)-far is active.

Proof. Let a be≥(`+1)-far. It follows that for no j ≥ `+1
there exists a vertex a′ ∈ Aj \ Aj+1 with distG̃(a, a′) ≤
bj − 1

2c`,`+1. Note that bj − 1
2c`,`+1 = bj − 1

2b
`+1 ≥ 1

2b
j ≥

1
4 (bj+1 − 1)/(b − 1) ≥ 1

4c`,j , where the second inequality
holds since b − 1 ≥ b/2. Thus, for no j > i, there exists an
vertex a′ ∈ Aj \ Aj+1 with distG̃(a, a′) ≤ 1

4c`,j , so a is
active.

Equipped with this notion, we can prove the following
lemma. It immediately implies that H is a (1 + ε, no(1))-
spanner since every vertex is ≥(k + 1)-far.

LEMMA 5.2. For any shortest s-t path πs,t in G where
every vertex v ∈ πs,t \ {s, t} is ≥ i-far for some 0 < i ≤
k + 1, we have

distH(s, t) ≤ (1 + 20iε′)distG(s, t) + bi

≤ (1 + ε)distG(s, t) + no(1).

Proof. As ε ≤ 1 it follows that ε′ ≤ 1/20. Let us prove the
claim by induction on i.

Base case i = 1: Let v1 be the vertex right after s and
let v2 be the vertex right before t on πs,t,G. As every
vertex v on πs,t,G \ {s, t} is ≥ 1-far, it follows by the
definition of ≥ 1-far that v belongs to A0 \ A1. That is,
all vertices on πv1,v2,G belong to A0 \ A1. Furthermore,
by Lemma 5.1 it follows that each such vertex v is active.
Thus the shortest path from v to all vertices in A0 \ A1

at distance at most 1
8 lognb ≥ 1 are included in H and,

in particular, all edges of πG(v1, v2) belong to H . As H
contains G̃, distH(s, v1) ≤ log n and distH(v2, t) ≤ log n.
Finally, distG(v1, v2) ≤ distG(s, t) + 2. Thus it follows
that distH(s, t) ≤ distG(v1, v2) + 2 logn ≤ distG(s, t) +
2 log n + 2 ≤ distG(s, t) + (log n)/ε′, where the last
inequality holds since ε′ ≤ 1/20.

Inductive step i 7→ i+ 1, for i ≥ 1: As every vertex v in
πs,t,G \{s, t} is≥(i+ 1)-far, every such vertex must belong
to A` \A`+1 for some ` ≤ i.

Let the set C consist of the vertices on πs,t that are
≥(i+1)-far but not≥ i-far. In other words, a vertex v ∈ πs,t
is in C if and only if there is a vertex a ∈ Ai \ Ai+1, with
distG̃(v, a) ≤ bi − 1

2c`,i (possibly a = v). (Note that C
might be empty.) We prove the following claim for vertices
in C.

CLAIM 5.1. For any vertex v ∈ C, there exists a vertex
a ∈ Ai \ Ai+1 at distance at most 1

4b
i in G̃, such that a

is active.

Proof. Let ` be such that v ∈ A` \ A`+1. If ` = i, then v is
active by Lemma 5.1 and, thus, the claim follows. If ` < i,
then let a ∈ Ai \ Ai+1 be the vertex closest to v among all
vertices in Ai \Ai+1. As v is ≥(i+ 1)-far, we know that

1. distG̃(v, a) ≤ bi − 1
2c`,i, and
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2. for no j ≥ i + 1 there exists a vertex a′ ∈ Aj \ Aj+1

with distG̃(v, a′) ≤ bj − 1
2c`,i+1.

Recall that b ≥ 5, which implies that b − 1 ≥ 2b/3.
Suppose for contradiction that a is not active. If a is not
active there must exist a vertex a′ ∈ Ap \ Ap+1 with p > i
such that distG̃(a, a′) ≤ ci,p/4. But this implies that

distG̃(v, a′) ≤ distG̃(v, a) + distG̃(a, a′)

≤ bi − 1

2
c`,i +

1

4
ci,p

= bi +
1

2
bi+1 +

1

4

bp+1 − bi+1

b− 1
− 1

2
c`,i+1

≤ bi +
1

2
bi+1 +

3

8

bp+1 − bi+1

b
− 1

2
c`,i+1

≤ 5

8
bi +

7

8
bp − 1

2
c`,i+1 ≤ bp −

1

2
c`,i+1.

This gives a contradiction to the assumption that v is ≥
(i+ 1)-far.

To prove the lemma we partition πs,t
by constructing a sequence of vertices t0 =
s, s1, t1, s2, t2, . . . , sh−1, th−1, sh = t iteratively as
follows: for each sg with g ≥ 1, let sg be the first vertex
on the path πs,t(tg−1, t] that is in C or if there is no such
vertex, we set sg = t and h = g and end the sequence. If
the sequence does not end with sg , let tg with g ≥ 1 be the
farthest vertex from sg on π[sg, t] ∩ BG(sg,

1
10 lognb

i+1)
that is in C. Note that such a vertex always exists since
sg ∈ π[sg, t] ∩ BG(sg,

1
10 lognb

i+1) ∩ C. (If sg is the only
such vertex then tg = sg .)

Clearly, the path πs,t is partitioned by the path segments
πs,t[tg−1, sg] for 1 ≤ g ≤ h and the segments πs,t[sg, tg]
for 1 ≤ g < h. Observe that for the former kind of
segments, we have that the internal path vertices of a piece
πs,t[tg−1, sg], i.e. the vertices in πs,t(tg−1, sg), are not in C
by definition. Thus, we have that all such vertices are ≥ i-far
(since by assumption every vertex on πs,t is ≥ i + 1-far and
every vertex in C is not ≥ i-far but none of the vertices on
πs,t(tg−1, sg) are in C). By the sub-path property of shortest
paths it holds that πs,t(tg−1, sg) is a shortest path between
tg−1 and sg . Hence, we can invoke the induction hypothesis
on πs,t(tg−1, sg), with leads to the following statement

(5.6) distH(tg−1, sg) ≤ (1 + 20iε′)distG(tg−1, sg) + bi.

For the path segments of the form πs,t[sg, tg], Claim 5.1
shows that there exist vertices a and a′ at distance at most
1
4b
i in G̃ from sg and tg respectively that are in Ai \ Ai+1

and are active. Then since

distG(a, a′) ≤ distG̃(a, sg) + distG(sg, tg) + distG̃(tg, a
′)

≤ 1

4
bi +

1

10 log n
bi+1 +

1

4
bi

≤ 1

8 log n
· bi+1,

we have that the shortest path πa,a′ from a to a′ is in H , i.e.,
that distH(a, a′) = distG(a, a′). By applying the triangle
inequality to G and the fact that distG(x, y) ≤ distG̃(x, y)

(which follows from the fact that G̃ is a spanner of G) it
follows that

distH(a, a′) = distG(a, a′) ≤ distG(a, sg)

+ distG(sg, tg) + distG(tg, a
′)

≤ 1

2
bi + distG(sg, tg).

Since G̃ ⊆ H , it holds that distH(sg, a) ≤ distG̃(sg, a) ≤
1
4b
i. The same holds for distH(a′, tg). We, thus, have that

distH(sg, tg) ≤ distH(sg, a) + distH(a, a′)

+ distH(a′, tg) ≤ bi + distG(sg, tg).

Finally, let us prove that we did not partition the path
into many segments: we claim that

h ≤
⌈

10 log n · distG(s, t)

bi+1

⌉
which can be seen from carefully studying the requirements
to pick given sg the next tg and sg+1, which stipulate that
each sg and sg+1 are at distance at least 1

10 lognb
i+1.

We now combine our insights and the fact that ε′ ≤
1/20, and take the sum over the path segments. This gives

distH(s, t) =
h∑
g=1

distH(tg−1, sg) +
h−1∑
g=1

distH(sg, tg)

≤
h∑
g=1

(
(1 + 20iε′)distG(tg−1, sg) + bi

)
+
h−1∑
g=1

(
bi + distG(sg, tg)

)
≤

h∑
g=1

(1 + 20iε′)distG(tg−1, sg)

+
h−1∑
g=1

distG(sg, tg) + h
(
bi + bi

)
≤ (1 + ε)distG(s, t) + no(1)

as required.
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Sparsity. In order to prove sparsity, let us establish
the following key claim. The claim is in fact slightly
more powerful than necessary, however, this power will be
exploited when bounding the running time.

CLAIM 5.2. For any vertex v, and for any i ≤ k there are
at most O(n1/k log n) active vertices in Ai \Ai+1 in

BG̃

(
v,

1

8
bi+1

)
with high probability. Further, if a vertex v ∈ Ai \ Ai+1

is active, we have |BG̃
(
v, 18b

i+1
)
| ≤ n(i+1)/k with high

probability.

Proof. Let us observe that for any vertex v ∈ V , if∣∣BG̃(v, 18b
i+1)

∣∣ ≥ n(i+1)/k there exists at least one vertex
a in Ai+1 that hits BG̃(v, 18b

i+1) with high probability.
We now claim that if there is such a vertex a, no vertex

a′ in BG̃(v, 18b
j+1) ∩ Aj is active for any j ≤ i. To see this

let us assume for the sake of contradiction that there exists
such a vertex a′. Now, let us first consider the case that the
vertex a is active. Then, the distance between a and vertex a′

is distG̃(a, v) + distG̃(v, a′) ≤ 1
8b
i+1 + 1

8b
i+1 = 1

4b
i+1 ≤

1
4cj,i+1 which implies that a must have deactivated a′ and
therefore leads to a contradiction.

Now, let us consider the case, where a is not active.
Then, there exists a vertex a′′ ∈ A` \ A`+1 that is active
and with ` > i + 1 such that distG̃(a, a′′) ≤ 1

4ci+1,`. Such
a vertex exists by definition if a is not active so we have that
a′′ is well-defined.

But then we have by the triangle inequality that

distG̃(a′, a′′) ≤ distG̃(a′, v) + distG̃(v, a) + distG̃(a, a′′)

≤ 1

8
bj+1 +

1

8
bi+1 +

1

4
ci+1,` ≤

1

4
cj,`

where we use in the last inequality that cj,` =
∑`
y=j+1 b

y =∑i+1
y=j+1 b

y +
∑`
y=i+2 b

y =
∑i+1
y=j+1 b

y + ci+1,` and since
i ≥ j we have that

∑i+1
y=j+1 b

y ≥ bi+1. This implies that a′

cannot be active since a′′ is close enough to a′ to deactivate
it during the algorithm. This again leads to a contradiction
and thereby completes the proof of our claim that a′ is not
active.

Finally, we conclude that we have for any vertex v and
level i, that either

∣∣BG̃(v, 18b
i+1)

∣∣ < n(i+1)/k in which
case we have by a straightforward application of a Chernoff
bound that with high probability at most O(n1/k log n) of
these vertices are sampled into Ai. Thus, there can also be
only O(n1/k log n) active vertices from Ai in the ball.

Otherwise
∣∣BG̃(v, 18b

i+1)
∣∣ ≥ n(i+1)/k, so by the above

claim we have that some vertex a in Ai+1 hits the ball
BG̃(v, 18b

i+1) which results in all vertices in the ball that are
inAj \Aj+1 to be deactivated for any j ≤ i, and in particular
for i. This proves the first part of the claim.

For the second part of the claim, observe that the
contrapositive of the above claim with a′ = v implies
that there exists no active vertex a′′ in Ai+1 in the ball
BG̃(v, 14ci,i+1) ⊆ BG̃(v, 18b

i+1), since ci,i+1 = bi+1.
Further, by the contrapositive of our initial observation, we
have that then |B(v, 18b

i+1)| < n(i+1)/k.

A special case of the claim is that each vertex a ∈
Ai \Ai+1 has Õ(n1/k) active vertices in its ballB(a, 18b

i+1)
that are in Ai \ Ai+1. Thus, if a is active itself this gives
an upper bound on the number of paths that are included in
H due to a (if a is not active no paths are added). Since the
maximum such path length at any level is 1

8b
k+1, we have

that there are only Õ(n1+1/kbk+1) = n1+o(1) edges in H
due to paths. The spanner G̃ that is additionally added to H
contains only Õ(n) edges which is subsumed in the previous
bound.

Running Time. To bound the running time, observe
that in order to determine which vertices are active, we run
for each i ≤ k, a BFS to depth 1

8b
i+1 from every active

vertex in Ai \ Ai+1 on G̃. By Claim 5.2, each vertex v ∈ V
is only explored by Õ(n1/k) active vertices on each level.
There are only

√
log n levels, so each vertex v ∈ V is only

explored by Õ(n1/k) active vertices in total. Thus, every
edge incident to each vertex v in G̃ is only explored Õ(n1/k)
times. Since G̃ has only Õ(n) edges, and since each BFS
runs linearly in the number of edges explored, we can bound
the total running time by Õ(n1+1/k), for each i, and thus
also for all values i.

After determining which vertices are active, it remains
to bound the time to compute the paths between any two
active vertices a, a′ ∈ Ai \ Ai+1 for some i. For i ≥ γ,
we can simply check the distances between any pair of such
vertices (even the ones that are non-active) by looking up
their shortest paths in A and inserting them into H if the
criterion is satisfied. We will calculate the running time of
A at the end. For any active vertex a ∈ Ai \ Ai+1, where
i < γ, we further run a BFS on G to depth 1

8 lognb
i+1. We

observe that since G̃ is a log n-spanner of G, we have for
every v ∈ V that

BG̃(v,
1

8 log n
bi+1) ⊆ BG(v,

1

8
bi+1).

By Claim 5.2 we have again that each vertex v is only
explored Õ(n1/k) times during these executions of BFS.
Using the second fact of Claim 5.2, we further have that
each BFS from an active vertex a ∈ Ai \ Ai+1 only
explores at most n(i+1)/k vertices. But this in turn implies
that each vertex v that is strictly contained in such a ball
BG(a, 1

8 lognb
i+1) has degree bounded by n(i+1)/k. Since

we explore only for i < γ, we therefore have that each
explored vertex has degree at most nγ/k ≤ nκ. Putting
everything together, during all BFS explorations, we scan
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every vertex at most Õ(n1/k) times while the number of
edges present at the vertex is at most nκ and since we have
n vertices, the total time required for all explorations can be
bounded by O(n · n1/k · nκ) = n1+κ+o(1).

Finally, we have to account for the data structures
used. While the running time of B is subsumed in our
previous bound, we have that A has worst-case update time
Õ(nδ(nω(1,1,κ)−κ + (n1−γ/k)2nκ)) for any constant κ ≤
κ∗ and δ > 0 by Corollary 5.1 since |S| = n1−γ/k =
n1−κ+o(1). Setting κ = κ∗ and δ = 0.01, the size
|S| = o(

√
n) and thus we obtain worst-case update time

O(n1+κ
∗+o(1)) = O(n1.529).

6 Applications
Let ε > 0 be an arbitrarily small constant. In this section we
give two applications of the data structures developed in the
previous sections, namely fully dynamic (1+ε)-approximate
all-pairs shortest paths with path reporting and (2 + ε)-
approximate fully dynamic Steiner tree. Both algorithms are
the first algorithms that take sub-quadratic worst-case time
for these problems.

6.1 Fully dynamic approximate all-pairs shortest paths
with path reporting In this subsection we give a fully
dynamic data structure that reports (1 + ε)-approximate all-
pairs shortest paths in sub-quadratic worst-case time. Note
that all previous such data structure were only able to report
the distance, i.e. the length of the paths, but not the actual
paths.

THEOREM 6.1. Let ε > 0 be an arbitrarily small constant.
There exists an algorithm that maintains (1+ε)-approximate
all-pairs shortest-path in worst-case time n1+κ

∗+o(1) =
O(n1.529) per edge update, in worst-case time n1+o(1) per
path reporting query and per distance reporting query with
high probability against an oblivious adversary. The prepro-
cessing time is nω+o(1) if the initial graph is non-empty and
Õ(n2) if the initial graph is empty.

Proof. We maintain the following data structure:
(1) We maintain the fully dynamic path reporting data

structure given in the statement of Theorem 5.2 on G with
D = 2no(1)/ε and κ = κ∗ < 0.529.

(2) We maintain for G the fully dynamic (1 +
ε/2, no(1))-spanner from Theorem 5.1.

To answer a distance reporting query we first ask a
distance query with parameter D in (1). This gives us the
exact answer if the distance is less than D. Otherwise we
run a static shortest path algorithm on the spanner that we
maintain in (2). As the spanner has at most n1+o(1) edges
this takes time n1+o(1). Note that, by the choice of D, the
shortest path on the spanner gives a (1 + ε)-approximation
of the shortest path in G as (1 + ε/2)dist(s, t) + no(1) ≤
(1 + ε)dist(s, t) for dist(s, t) ≥ D = 2no(1)/ε. Thus

a distance query returns a (1 + ε)-approximate answer and
takes time nκ+o(1)/ε+ n1+o(1) = n1+o(1).

To answer a path reporting query between two nodes
s and t we first ask a distance query with parameter D in
(1). If the distance is less than D, we ask a path reporting
query in (1) in time O(D2nκ

∗
) = o(n). Otherwise, we

execute a static shortest path algorithm on the spanner that
we maintain in (2). Thus a path reporting query returns a
(1 + ε)-approximate shortest path and takes time n1+o(1)

time.

If we increase the preprocessing time to O(n2.621), and
the update time to O(n1.843), we can reduce the cost of a
distance reporting query even further.

COROLLARY 6.1. Let ε > 0 be an arbitrarily small
constant. There exists an algorithm that maintains
(1 + ε)-approximate all-pairs shortest-path in worst-case
time O(n1.843+o(1)) per edge update, in worst-case time
O(n1+o(1)) per path reporting query, and in worst-case time
O(n.45) per distance reporting query with high probability
against an oblivious adversary. The preprocessing time is
nω+o(1) if the initial graph is non-empty and Õ(n2) if the
initial graph is empty.

Proof. Additionally maintain a fully dynamic (1 + ε)-
approximate APSP data structure from [80], which takes
worst-case time O(n1.843) per edge update and worst-case
time O(n0.45) per distance query. It speeds up the distance
reporting queries and, in combination with theorem 6.1,
leads to the result.

6.2 Steiner trees with terminal vertex and edge updates
In this section we give a further application of the data
structure of the previous section. Assume we are given
an (unweighted) graph G = (V,E) with a dynamically
changing edge set and a dynamically changing terminal set
S ⊆ V. A Steiner tree TS for a vertex set S is a tree that (1)
is a subgraph of G, (2) spans S, and (3) has the minimum
number of edges. A β-approximate Steiner tree is a tree
which fullfils conditions (1) and (2), and the weight of the
tree is at most a factor β larger than the weight of the edges
of a minimum Steiner tree.

A 2-approximate Steiner tree can be found as follows:
Construct a weighted graph G̃ that consists of a clique on
the vertices of S such that each edge (u, v) has length
distG(u, v), i.e., the length of the shortest path between u
and v in G. Find an MST T̃S in G̃. Its weight w(T̃S) gives
a 2-approximation of the value OPT of the optimal Steiner
tree, i.e. OPT ≤ w(T̃S) ≤ 2OPT. The reason is as follows:
Consider an Eulerian tour E(TS) of the optimal Steiner tree
TS in G. It traverses every edge twice and, thus, has length
2OPT . Now replace the subpath between two consecutive
terminal vertices u and v of E(TS) by an edge. Note that the
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length of this subpath is at least distG(u, v) and that there
is an edge (u, v) in G̃ with length distG(u, v). Thus E(TS)
induces a cycle in G̃ whose length is at most 2OPT . As
the minimum spanning tree T̃S in G̃ has a weight that is at
most the length of this cycle, its weight is at most 2OPT.
Note that if the weights in G̃ are between distG(u, v) and
(1 + ε/2)distG(u, v) for some arbitrarily small ε > 0, then
the weight of T̃S is at most (2 + ε)OPT. To construct the
corresponding approximate Steiner tree replace each edge
in T̃S by a shortest path in G between its endpoints and
compute a tree T̃ ′S in the resulting graph. The weight of T̃ ′S
is at most the weight of T̃S .

We consider the following dynamic changes to the
input: (i) edge insertions and deletions and (ii) additions
and removals from S. In the fully dynamic unweighted
Steiner tree problem the goal is to maintain a Steiner tree
after each modification to the input. In the β-approximate
fully dynamic unweighted Steiner tree problem the goal
is to maintain an β-approximate Steiner tree after each
modification of the input. Note that we want to maintain an
actual tree, not just the value of the β-approximate Steiner
tree. We show the following result.

THEOREM 6.2. Let ε > 0 be an arbitrarily small constant.
There exists an algorithm that solves the (2+ε)-approximate
fully dynamic unweighted Steiner tree problem with high
probability against an oblivious adversary, in worst-case
time O(n1.529 + s2 · n1+o(1)) per edge update and in worst-
case time sn1+o(1) per vertex addition to or removal from
S, where s is the current size of S. The preprocessing time
is nω+o(1) if the initial graph is non-empty and Õ(n2) if the
initial graph is empty.

Proof. By our discussion before the theorem it suffices to
maintain the graph G̃ whose edge weights are a (1 + ε/2)-
approximation of the length of their endpoints in G and a
minimum spanning tree in G̃. To build the actual Steiner tree,
we need to replace then each edge in this spanning tree into
the corresponding shortest path in G.

For convenience, we denote by A(ε, n), the additive er-
ror of a (1+ ε, no(1))-spanner as maintained in Theorem 5.1,
i.e. Theorem 5.1 maintains a (1 + ε, A(ε, n))-spanner. From
this, it is also easy to see that A(ε, n) = no(1) for any con-
stant ε > 0.

Now, we describe the data structures to maintain the
necessary information for updating our Steiner tree approxi-
mation:

(1) We maintain the fully dynamic path reporting data
structure given in the statement of Theorem 5.2 on G with
D = 4A(ε/4, n)/ε and κ = κ∗ < 0.529.

(2) We maintain the fully dynamic (1+ε/4, A(ε/4, n))-
spanner from theorem 5.1.

(3) We maintain a |S| × |S| array that contain the (1 +
ε/4)- approximate all-pairs shortest path lengths between

any pair of terminals.
(4) We maintain the graph G̃ and a fully dynamic

minimum spanning tree data structure from G̃ that takes
no(1) deterministic worst-case update time [33].

To answer a distance query we first ask a distance query
with parameter D in (1). This gives us the exact answer if
the distance is less thanD. Otherwise we run a static shortest
path algorithm on the spanner that we maintain in (2). As the
spanner has at most n1+o(1) edges this takes time n1+o(1).
Note that, by the choice of D, the shortest path on the
spanner gives a (1 + ε/2)-approximation of the shortest path
inG as (1+ε/4)dist(s, t)+A(ε/4, n) ≤ (1+ε/2)dist(s, t)
for dist(s, t) ≥ D = 4A(ε/4, n)/ε. Thus a distance
query returns a (1+ε/2)-approximate answer and takes time
nκ
∗+o(1)/ε+ n1+o(1) = n1+o(1).

To answer a path reporting query between two nodes s
and t we first ask a distance query with parameter D in (1).
If the distance is less than D, we ask a path reporting query
in (1). Otherwise, we execute a static shortest path algorithm
on the spanner that we maintain in (2). Thus a path reporting
query returns a (1+ε/2)-approximate shortest path and takes
time n1+o(1) + nκ

∗+o(1)/ε = n1+o(1) time.
After each update to either E or S we update data

structures (1) - (4) as described below. Then we build the
approximate Steiner Tree T̃ ′S (in G) from T̃S as described
above, executing s − 1 path reporting queries. This takes
time s · n1+o(1), which as we will see is subsumed by the
runtime of updating (4).

We are left with describing how we update (1) - (4).
Each edge update leads to the corresponding update in (1)
and (2). Then we recompute G̃ from scratch using O(s2)
distance queries and compute its minimum spanning tree
as well as the dynamic MST data structure from scratch.
Afterwards we build T̃ ′S as described above. This takes total
time n1+κ

∗+o(1) + s2 · n1+o(1).
If a vertex v is added to S, we compute the distance

in the spanner from v to all nodes in S, add an edge from
v to every vertex in S with the corresponding length to G̃,
and update its dynamic MST data structure. This takes time
sn1+o(1). Afterwards we build T̃ ′S as described above.

If a vertex is removed from S, we remove its incident
edges from G̃ and its dynamic MST data structure. This
takes time sn1+o(1). Afterwards we build T̃ ′S as described
above.

At the cost of increasing the preprocessing time to
O(n2.621) we can additionally maintain a fully dynamic
(1+ε/2)-approximate APSP data structure from [80], which
takes worst-case time O(n1.843) per edge update and worst-
case time O(n0.45) per distance query. It speeds up the
distance query and leads to the following result.

THEOREM 6.3. Let ε > 0 be an arbitrarily small constant.
There exists an algorithm that solves the (2+ε)-approximate
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fully dynamic unweighted Steiner tree problem with high
probability against an oblivious adversary in worst-case
timeO(n1.843+o(1)+s2 ·n0.45+s·n1+o(1)) per edge update,
in worst-case time sn1+o(1) per vertex addition to or removal
from S, where s is the current size of S. The preprocessing
time is O(n2.621).
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