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Abstract—Understanding the structure of minor-free
metrics, namely shortest path metrics obtained over a
weighted graph excluding a fixed minor, has been an
important research direction since the fundamental work
of Robertson and Seymour. A fundamental idea that
helps both to understand the structural properties of
these metrics and lead to strong algorithmic results is to
construct a “small-complexity” graph that approximately
preserves distances between pairs of points of the metric.
We show the two following structural results for minor-
free metrics:

1) Construction of a light subset spanner. Given a
subset of vertices called terminals, and ε, in polyno-
mial time we construct a subgraph that preserves
all pairwise distances between terminals up to a
multiplicative 1 + ε factor, of total weight at most
Oε(1) times the weight of the minimal Steiner tree
spanning the terminals.

2) Construction of a stochastic metric embedding into
low treewidth graphs with expected additive dis-
tortion εD. Namely, given a minor-free graph G =
(V,E,w) of diameter D, and parameter ε, we con-
struct a distribution D over dominating metric em-
beddings into treewidth-Oε(logn) graphs such that
∀u, v ∈ V , Ef∼D[dH(f(u), f(v))] ≤ dG(u, v) + εD.

Our results have the following algorithmic consequences:
(1) the first efficient approximation scheme for subset
TSP in minor-free metrics; (2) the first approximation
scheme for bounded-capacity vehicle routing in minor-
free metrics; (3) the first efficient approximation scheme
for bounded-capacity vehicle routing on bounded genus
metrics. En route to the latter result, we design the first
FPT approximation scheme for bounded-capacity vehicle
routing on bounded-treewidth graphs (parameterized by
the treewidth).

Keywords-travelling salesperson problem; minor-free
graphs; vehicle routing; metric embedding; spanners;

I. INTRODUCTION

Fundamental routing problems such as the Travel-

ing Salesman Problem (TSP) and the Vehicle Rout-

ing Problem have been widely studied since the 50s.

Given a metric space, the goal is to find a minimum-

weight collection of tours (only one for TSP) so as

to meet a prescribed demand at some points of the

metric space. The research on these problems, from both

practical and theoretical perspectives, has been part of

the agenda of the operations research and algorithm-

design communities for many decades.Both problems

have been the source of inspiration for many algorithmic

breakthroughs and remain good examples of the limits

of the power of our algorithmic methods.

Since both problems are APX-hard in general graphs

[1, 2], it has been a natural and successful research

direction to focus on structured metric spaces. Ini-

tially, researchers focused on achieving polynomial-

time approximation schemes (PTASs) for TSP in planar

graphs [3, 4] and Euclidean metrics [5, 6]. Two themes

emerged in the ensuing research: speed-ups and gener-

alization.

In the area of speed-ups, a long line of research on

Euclidean TSP improved the running time nO(1/ε) of

the initial algorithm by Arora to linear time [7]. In

a parallel research thread, Klein [8, 9] gave the first

efficient PTAS1 for TSP in weighted planar graphs, a

linear-time algorithm.

In the area of generalization, a key question was

whether these results applied to more general (and more

abstract) families of metrics. One such generalization

of Euclidean metrics is metrics of bounded doubling

dimension. Talwar [10] gave a quasi-polynomial-time

approximation scheme (QPTAS) for this problem which

was then improved to an EPTAS [11]. In minor-free

metrics, an important generalization of planar metrics,

Grigni [12] gave a QPTAS for TSP which was recently

improved to EPTAS by Borradaile et al. [13].

1A PTAS is an efficient PTAS (an EPTAS) if its running time is
bounded by a polynomial nc whose degree c does not depend on ε
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When the metric is that of a planar/minor-free graph,

the problem of visiting every vertex is not as natural as

that of visiting a given subset of vertices (the Steiner
TSP or subset TSP) since the latter cannot be reduced

to the former without destroying the graph structure.

The latter problem turns out to be much harder than

TSP in minor-free graphs, and in fact no approximation

scheme was known until the recent PTAS for subset

TSP by Le [14]. This immediately raises the question:

Question 1. Is there an EPTAS for subset TSP in minor-
free graphs?

The purpose of this line of work is to understand what

are the most general metrics for which we can obtain

approximation schemes for routing problems, and when

it is the case how fast can the approximation schemes be

made. Toward this goal, minor-free metrics have been a

testbed of choice for generalizing the algorithmic tech-

niques designed for planar or bounded-genus graphs.

Indeed, while minor-free metrics offer very structured

decompositions, as shown by the celebrated work of

Robertson and Seymour [15], Klein et al. [16], and

Abraham et al. [17] (see also [18, 19]), they do not

exhibit a strong topological structure. Hence, various

strong results for planar metrics, such as the efficient

approximation schemes for Steiner Tree [20] or Subset

TSP [21], are not known to exist in minor-free metrics.

Space Lightness TSP runtime Reference
(RO(1), ∥ ⋅ ∥2) ε−O(1) 2ε

−O(1) ⋅ Õ(n) [22, 23]

Doubling O(1) ε−O(1) 2ε
−O(1) ⋅ Õ(n) [11, 24]

Planar O(1/ε) 2O(1/ε
2) ⋅O(n) [25, 8]

KO(1) free Õ(1/ε3) 2Õ(1/ε
4) ⋅ nO(1) [26, 13]

A common ingredient to designing efficient PTAS for

TSP is the notion of light spanner: a weighted subgraph

H over the points of the original graph/metric space G
that preserves all pairwise distances up to some 1 + ε
multiplicative factor (i.e. ∀u, v ∈ V (G), dH(u, v) ≤
(1 + ε) ⋅ dG(u, v)). The lightness of the spanner H
is the ratio between the total weight of H and that

of the Minimum Spanning Tree (MST) of G. While

significant progress has been made on understanding the

structure of spanners (see the table), it is not the case for

subset spanners. A subset spanner H w.r.t. a prescribed

subset K of vertices, called terminals, is a subgraph

that preserves distances between terminals up to a

1 + ε multiplicative factor (i.e. ∀u, v ∈ K, dH(u, v) ≤
(1 + ε) ⋅ dG(u, v)). The lightness of H is the ratio

between the weight of H and the weight of a minimum

Steiner tree2 w.r.t. K. While for light spanners the

2A Steiner tree is a connected subgraph containing all the terminals
K. A minimum Steiner tree is a minimum-weight such subgraph;
because cycles do no help in achieving connectivity, we can require
that the subgraph be a tree.

simple greedy algorithm is “existentially optimal” [27],

in almost all settings, no such “universal” algorithm

is known for constructing light subset spanners. In

planar graphs, Klein [21] constructed the first light

subset spanner. Borradaile et al. [28] generalized Klein’s

construction to bounded-genus graphs. Unfortunately,

generalizing these two results to minor-free metrics

remained a major challenge since both approaches relied

on topological arguments. Recently, Le [14] gave the

first polynomial-time algorithm for computing a subset

spanner with lightness poly(1
ε
) ⋅ log ∣K ∣ in Kr-minor-

free graphs. However, the following question remains

a fundamental open problem, often mentioned in the

literature [26, 28, 13, 14].

Question 2. Does a subset spanner of lightness
poly(1

ε
) exist in minor-free graphs?

A related routing problem is the vehicle routing prob-

lem. Given a capacity Q and a graph with weights and a

special vertex called the depot, and given an assignment

of nonnegative demands to vertices, the goal is to find

a minimum-weight collection of tours that start and end

at the depot such that each vertex with nonzero demand

is assigned to a tour that visits it, and the total demand

assigned to each tour is at most Q. This is a classic

routing problem, introduced in the late 50s by Dantzig

and Ramser [29]. While major progress has been made

on TSP during the 90s and 00s for planar and Euclidean

metrics, the current understanding of vehicle routing is

much less satisfactory. If the capacity and the demands

are arbitrary nonnegative integers, the problem is APX-

hard for trees by reduction from the partition problem.

For unit demands in the Euclidean plane, Das and

Mathieu [30] gave a quasi-PTAS. For arbitrary graphs,

the problem remains NP-hard when the capacity Q is

bounded by a constant and the demands are unit [2].

In view of the popularity of product-delivery services,

the bounded-capacity problem is still interesting. For

bounded capacity and unit demands, Asano et al. gave

an efficient approximation scheme [2] for the Euclidean

plane. For bounded capacity in planar graphs (but

where capacities are not necessarily unit), Becker et

al. [32] gave a quasi-polynomial approximation scheme,

which was subsequently improved to a running time of

n(Qε)−O(Q/ε) [33]. This raises the following question:

Question 3. Does bounded-capacity vehicle routing
admit an EPTAS in planar and bounded-genus graphs?

Since the techniques in previous work [32, 33] for

the bounded-capacity vehicle routing problem rely on

topological arguments, they are not extensible to minor-

free graphs. In fact, no nontrivial approximation scheme

was known for this problem in minor-free graphs. We

ask:
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Question 4. Is it possible to design a quasi-polynomial-
time approximation scheme for bounded-capacity vehi-
cle routing in minor-free graphs?

The approach of Becker et al. (drawing on [34]) is

through metric embeddings, similar to the celebrated

work of Bartal [35] and Fakcharoenphol et al. [36]

who showed how to embed any metric space into a

simple tree-like structure. Specifically, Becker et al. aim

at embedding the input metric space into a “simpler”

target space, namely a graph of bounded treewidth,

while (approximately) preserving all pairwise distances.

A major constraint arising in this setting is that for

obtaining approximation schemes, the distortion of the

distance should be carefully controlled. An ideal sce-

nario would be to embed n-vertex minor free graphs

into graphs of treewidth at most Oε(logn), while

preserving the pairwise distance up to a 1 + ε factor.

Unfortunately, as implied by the work of Chakrabarti et

al. [37], there are n vertex planar graphs such that every

(stochastic) embedding into o(√n)-treewidth graphs

must incur expected multiplicative distortion Ω(logn)
(see also [38, 39, 40] for embeddings into Euclidean

metrics).

Bypassing the above roadblock, Eisenstat et al. [34]

and Fox-Epstein et al. [41] showed how to embed planar

metrics into bounded-treewidth graphs while preserving

distances up to a controlled additive distortion. Specif-

ically, given a planar graph G and a parameter ε, they

showed how to construct a metric embedding into a

graph H of bounded treewidth such that all pairwise

distances between pairs of vertices are preserved up

to an additive εD factor, where D is the diameter of

G. While εD may look like a crude additive bound, it

is good enough for obtaining approximation schemes

for some classic problems such as k-center and vehicle

routing. While Eisenstat et al. constructed an embedding

into a graph of treewidth poly(1
ε
)⋅ logn, Fox-Epstein et

al. constructed an embedding into a graph of treewidth

poly(1
ε
), leading to the first PTAS for vehicle routing

(with running time n(Q/ε)
O(Q/ε)

). Yet for minor-free

graphs, or even bounded-genus graphs, obtaining such

a result with any non-trivial bound on the treewidth

is a major challenge; the embedding of Fox-Epstein et

al. [41] heavily relies on planarity (for example by using

the face-vertex incident graph). Therefore, prior to our

work, the following question is open.

Question 5. Is it possible to (perhaps stochastically)
embed a minor-free graph with diameter D to a graph
with treewidth polylog(n) and additive distortion at
most εD?

A. Main contribution

We answer all the above questions by the affirmative.

Our first main contribution is a “truly” light subset
spanner for minor-free metrics that bridges the gap for

spanners between planar and minor-free metrics; this

completely settles 2. In the following, the Or notation

hides factors in r, e.g. x = Or(m) ⇐⇒ x ≤ m ⋅ f(r)
for some sufficiently large m and computable function

f ; and poly(x) is (some) polynomial function of x.

Theorem 1. There is a polynomial time algorithm that,
given a Kr-minor-free graph G, a set of terminals K ⊆
V (G), and a parameter ε ∈ (0,1), computes a subset
spanner with distortion 1+ε and lightness Or(poly(1ε )).

Our second main contribution is a stochastic em-
bedding of minor-free graphs into bounded-treewidth

graphs with small expected additive distortion, obtaining

the first result of this kind for minor-free graphs and

resolving Question 5 positively.

Theorem 2. There is a randomized polynomial-time al-
gorithm that, given an n-vertex Kr-minor-free graph G
of diameter D, and a parameter ε ∈ (0,1), constructs a
stochastic embedding from G into graphs with treewidth
Or( lognε2

), and expected additive distortion εD.

While the embedding of planar graphs to low

treewidth graphs by Fox-Epstein et al. [41] is determin-

istic, our embedding in Theorem 2 is stochastic. Thus,

it is natural to ask whether randomness is necessary.

We show in Theorem 3 below that the embedding must

be stochastic to guarantee (expected) additive distortion

εD, for small enough ε .

Theorem 3. There is an infinite graph family H of K6-
free graphs, such that for every H ∈ H with n vertices
and diameter D, every dominating embedding of H into
a treewidth-o(√n) graph has additive distortion at least
1
20
⋅D.

For the more restricted case of a graph with genus

g, we can construct a deterministic embedding without

any dependence on the number of vertices.

Theorem 4. Given a genus-g graph G of diameter D,
and a parameter ε ∈ (0,1), there exists an embedding
f from G to a graph H of treewidth Og(poly(1ε )) with
additive distortion εD.

Next we describe the algorithmic consequences of our

results. First, we obtain an efficient PTAS for the Subset

TSP problem in Kr-minor-free graphs for any fixed r,

thereby answering Question 1.

Theorem 5. There is an algorithm that, given a set
of terminals K in an n-vertex Kr-minor-free graph G,
runs in time 2Or(poly(1/ε))nO(1) and finds a tour that
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visits every vertex in K and that has length at most 1+ε
times the length of the shortest tour.

Second, we obtain the first polynomial-time approxi-

mation scheme for bounded-capacity vehicle routing in

Kr-minor-free graphs.

Theorem 6. There is a randomized algorithm that,
given an n-vertex Kr-minor-free graph G and an in-
stance of bounded-capacity vehicle routing on G, in
time nOε,Q,r(log logn) returns a solution with expected
cost at most 1+ ε times the cost of the optimal solution.

Theorem 6 provides an answer to Question 4. En

route to this result, we design a new dynamic pro-

gram for bounded-capacity vehicle routing on bounded-

treewidth graphs that constitutes the first approximation

scheme that is fixed-parameter tractable in the treewidth

(and also in ε) for this class of graphs. For planar graphs

and bounded-genus graphs, this yields a 2poly(
1/ε)nO(1)

approximation scheme and answers Question 3.

Theorem 7. There is a randomized algorithm that,
given a graph G with genus at most g and an instance
of bounded-capacity vehicle routing on G, in time
2Og,Q(poly(1/ε))nO(1) returns a solution whose expected
cost at most 1+ ε times the cost of the optimal solution.

A tool in our algorithm in Theorem 7 is a new

efficient dynamic program for approximating bounded-

capacity vehicle routing in bounded-treewidth graphs.

The best exact algorithm known for bounded-treewidth

graphs has running time nO(Qtw) [42].

Theorem 8. Let tw, ε > 0. There is an algorithm
that, for any instance of the vehicle routing problem
(G,Q, s) such that G has treewidth tw and n ver-
tices, outputs a (1 + ε)-approximate solution in time
(Qε−1 logn)O(Qtw/ε)nO(1).

B. Techniques

In their seminal series of papers regarding minor

free graph, Robertson and Seymour showed how to

decompose a minor-free graph into four ”basic com-

ponents”: surface-embedded graphs, apices, vortices
and clique-sums [15]. Their decomposition suggested

an algorithmic methodology, called the RS framework,

for solving a combinatorial optimization problem on

minor-free graphs: solve the problem on planar graphs,

and then generalize to bounded-genus graphs, to graphs

embedded on a surface with few vortices, then deal

with the apices, and finally extend to minor-free graphs.

The RS framework has been successfully applied to

many problems such as vertex cover, independent set

and dominating set [43, 44]. A common feature for

these problems was that the graphs were unweighted,

and the problems rather “local”. This success can be

traced back to the pioneering work of Grohe [43] who

showed how to handle graphs embedded on a surface

with few vortices by showing that these graphs have

linear local treewidth.

However, there is no analogous tool that can be

applied to fundamental connectivity problems such as

Subset TSP, Steiner tree, and survivable network de-

sign. Therefore, even though efficient PTASes for these

problems were known for planar graphs [21, 45, 46]

for a long time, achieving similar results for any of

them in minor-free graphs remained an open problem.

Guided by the RS framework, we propose a multi-

step framework for light subset spanner and embedding

problems in minor-free graphs.

A multi-step framework: The fundamental building

block in our framework is planar graphs each with a sin-
gle vortex with bounded diameter D, on which we solve

the problems (Step 1 in our framework). We consider

this as a major conceptual contribution as we overcome

the barrier posed by vortices. We do so by introducing a

hierarchical decomposition where each cluster in every

level of the decomposition is separated from the rest of

the graph by a constant number of shortest paths of the
input graph.3 Similar decomposition for planar graphs

[4, 48] and bounded-genus graphs [49] has found many

algorithmic applications [4, 50, 34, 49]. Surprisingly,

already for the rather restricted case of apex graphs,4 it

is impossible to have such a decomposition. We believe

that our decomposition is of independent interest.

While it is clear that the diameter parameter D is

relevant for the embedding problem, a priori it is unclear

why it is useful for the light-subset-spanner problem. As

we will see later, the diameter comes from a reduction

to subset local spanners (Le [14]), while the assumption

is enabled by using sparse covers [51].

In Step 2, we generalize the results to Kr-minor-

free graphs. Step 2 is broken into several mini-steps.

In Mini-Step 2.1,5 we handle the case of planar graphs

with more than one vortex; we introduce a vortex-
merging operation to reduce to the special case in Step

1. In Mini-Step 2.2, we handle graphs embedded on

a surface with multiple vortices. The idea is to cut

along vortex paths to reduce the genus one at a time

until the surface embedded part is planar (genus 0), and

in this case, Step 2.1 is applicable. In Mini-Step 2.3,

3One might hope that a similar decomposition can be constructed
using the shortest-path separator of Abraham and Gavoille [47]
directly. Unfortunately, this is impossible as the length of the shortest
paths in [47] is unbounded w.r.t. D. Rather, they are shortest paths
in different subgraphs of the original graph.

4A graph G is an apex graph if there is a vertex v such that G∖v
is a planar graph.

5In the subset spanner problem, there is an additional step where we
remove the constraint on the diameter of the graph, and this becomes
Step 2.0.
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we handle graphs embedded on a surface with multiple

vortices and a constant number of apices, a.k.a nearly
embeddable graphs. In Mini-Step 2.4, we show how to

handle general Kr-minor-free graphs by dealing with

clique-sums.

In this multi-step framework, there are some steps

that are simple to implement for one problem but chal-

lenging for the other. For example, implementing Mini-

Step 2.3 is simple in the light subset spanner problem,

while it is highly non-trivial for the embedding problem;

removing apices can result in a graph with unbounded

diameter. Novel ideas are typically needed to resolve

these challenges; we refer the reader to Section III for

more technical details.

We believe that our multi-step framework will find

applications in designing PTASes for other problems in

Kr-minor-free graphs, such as minimum Steiner tree or

survivable network design.

An FPT approximation scheme for vehicle routing
on low-treewidth graphs : Our (1 + ε)-approximation

for vehicle routing with bounded capacity in bounded

treewidth graphs relies on a dynamic program that

proceeds along the clusters of a branch decomposition,6

namely the subgraphs induced by the leaves of the

subtrees of the branch decomposition. One key idea is

to show that there exists a near-optimal solution such

that the number of tours entering (and leaving) a given

cluster with some fixed capacity q ∈ [Q] can be rounded

to a power of 1 + ε̃, for some ε̃ to be chosen later. To

achieve this, we start from the optimum solution and

introduce artificial paths, namely paths that start at a

vertex and go to the depot (or from the depot to a

vertex), without making any delivery and whose only

purpose is to help rounding the number of paths entering

or leaving a given cluster of the decomposition (i.e.:

making it a power of 1 + ε̃). This immediately reduces

the number of entries in the dynamic programming table

we are using, reducing the running time of the dynamic

program to the desired complexity.

The main challenge becomes to bound the total cost

of artificial paths hence created so as to show that the

obtained solution has cost at most 1+ε times the cost of

the optimum solution. To do so, we design a charging

scheme and prove that every time a new path is created,

its cost can be charged to the cost of some ε̃−1 paths

of the original optimum solution. Then, we ensure that

each path of the original optimum solution does not get

charged more than ε times. This is done by showing by

defining that a path enters (resp. leaves) a cluster only

if it is making its next delivery (resp. it has made its

last delivery) to a vertex inside. This definition helps

limit the number of times a path gets charged to ε̃ =

6For simplicity, we work with branch decompositions

ε/(Q logn) but it also separates the underlying shortest

path metric from the structure of the graph: A path from

vertices s1, . . . , sk should not be considered entering

any cluster of the branch decomposition containing si
if it does not pick up its next delivery (or has picked

up its last delivery) within the cluster of si. This twist

demands a very careful design of the dynamic program

by working with distances rather than explicit paths.

Then, our dynamic program works as follows: The

algorithm computes the best solution at a given cluster

C of the decomposition, for any prescribed number of

tours (rounded to a power of 1+ ε̃) entering and leaving

C. This is done by iterating over all pairs of (pre-

computed) solutions for the child clusters of C that are

consistent with (namely, that potentially can lead to)

the prescribed number of tours entering and leaving at

C. Given consistent solutions for the child cluster, the

optimal cost of combining them (given the constraints

on the number of tours entering at C) is then computed

through a min-cost assignment.

II. RELATED WORK

TSP in Euclidean and doubling metrics: Arora [5]

and Mitchell [6] gave polynomial-time approximation

schemes (PTASs) for TSP (Arora’s algorithm is a

PTAS for any fixed dimension). Rao and Smith [22]

gave an O(n logn) approximation scheme for bounded-

dimension Euclidean TSP, later improved to linear-time

by Bartal and Gottlieb [7]. For TSP in doubling metrics,

Talwar [10] gave a QPTAS; Bartal et al. [57] gave a

PTAS; and Gotlieb [11] gave efficient PTAS.

TSP and subset TSP in minor-closed families: For

TSP problem in planar graphs, Grigni et al. [3] gave the

first (inefficient) PTAS for unweighted graphs; Arora et

al. [4] extended Grigni et al. [4] to weighted graphs;

Klein [8] designed the first EPTAS by introducing

the contraction decomposition framework. Borradaile et

al. [28] generalized Klein’s EPTAS to bounded-genus

graphs. The first PTAS for Kr-minor-free graph was

designed by Demaine et al. [26] that improved upon the

QPTAS by Grigni [12]. Recently, Borradaile et al. [13]

obtained an EPTAS for TSP in Kr-minor-free graphs

by connstructing light spanners; this work completed a

long line of research on approximating classical TSP in

Kr-minor-free graphs.

For subset TSP, Arora et al. [4] designed the first

QPTAS for weighted planar graphs. Klein [21] obtained

the first EPTAS for subset TSP in planar graphs by

constructing a light planar subset spanner. Borradaile et

al. [28] generalized Klein’s subset spanner construction

to bounded-genus graphs, thereby obtained an EPTAS.

Le [14] designed the first (inefficient) PTAS for subset

TSP in minor-free graphs. Our Theorem 5 completed

this line of research.
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Light (subset) spanners: Light and sparse spanners

were introduced for distributed computing [58, 59, 60].

Since then, spanners attract ever-growing interest; see

[61] for a survey. Over the years, light spanners with

constant lightness have been shown to exist in Eu-

clidean metrics [22, 23], doubling metrics [11, 24],

planar graphs [25], bounded genus graphs [12] and

minor-free graphs [13]. For subset spanners, relevant

results include subset spanners with constant lightness

for planar graphs by Klein [21], for bounded genus

graphs by Borradaile et al. [28]. Le [14] constructed

subset spanners with lightness O(log ∣K ∣) for minor-

free graphs.

Capacitated vehicle routing: There is a rich liter-

ature on the capacitated vehicle routing problem. When

Q is arbitrary, the problem becomes extremely difficult;

there is no known PTAS for any non-trivial metric. For

R
2, there is a QPTAS by Mathieu and Das for R2 [30]

and for tree metrics, there is a (tight) 4
3

-approximation

algorithm by Becker [31]. In general graphs, Haimovich

and Rinnooy Kan [62] designed a 2.5-approximation

algorithm.

In Euclidean spaces, better results were known

for restricted values of Q: PTASes in R
2 for Q =

O(2logOε(1) n) by a sequence of papers [62, 2, 63] and

for Q = Ω(n) by Asano et al. [2]; a PTAS in R
d for

Q = O(logn1/d) by Khachay and Dubinin [64].

For constant Q, progress has been made on design-

ing approximation schemes for various minor-closed

families of graphs. Becker et al. [32] gave a QPTAS

for planar and bounded-genus graphs. Later, Becker et

al. [33] designed a PTAS for planar graphs.

Other relevant work includes a PTAS for graphs of

bounded highway dimension and constant Q [42], a

bicriteria PTAS for tree metrics and arbitrary Q [65],

and an exact algorithm for treewidth-tw graphs with

running time O(ntwQ) [42].

III. PROOF OVERVIEWS

A. Light subset spanners for minor-free metrics

In this section, we give a proof overview and review

the main technical ideas for the proof of Theorem 1.

A subgraph H of a graph G is called a subset L-local
(1+ε)-spanner of G with respect to a set K of terminals

if ∀t1, t2 ∈K s.t. dG(t1, t2) ≤ L, it holds that

dH(t1, t2) ≤ (1 + ε) ⋅ dG(t1, t2)

Our starting point is the following reduction of Le [14].

Theorem 9 (Theorem 1.4 [14]). Fix an ε ∈ (0,1).
Suppose that for any Kr-minor-free weighted graph
G = (V,E,w), subset K ⊆ V of terminals, and
parameter L > 0, there is a subset L-local (1 + ε)-
spanner w.r.t. K of weight at most Or(∣K ∣ ⋅L ⋅poly(1ε )).

For any terminal set, G admits a subset (1+ε)-spanner
with lightness Or(poly(1ε )).
Our main focus is to construct a light subset L-local

spanner.

Proposition 1. For any edge-weighted Kr-minor-free
graph G = (V,E,w), any subset K ⊆ V of terminals,
and any parameter L > 0, there is a subset L-local (1+
ε)-spanner for G with respect to K of weight Or(∣K ∣ ⋅
L ⋅ poly(1

ε
)).

Theorem 1 follows directly by combining Theorem 9

with Proposition 1. Our focus now is on proving Propo-

sition 1. The proof is divided into two steps: in step 1

we solve the problem on the restricted case of planar

graphs with bounded diameter and a single vortex. Then,

in step 2, we reduce the problem from Kr-minor-free

graphs to the special case solved in step 1.

Step 1: Single vortex with bounded diameter: The

main lemma in step 1 is stated below. We define a

single-vortex graph G = GΣ∪W as a graph whose edge

set can be partitioned into two parts GΣ,W such that

GΣ induces a plane graph and W is a vortex of width
7 at most h glued to some face of GΣ.

Lemma 1 (Single Vortex with Bounded Diameter).
Consider a single-vortex graph G = GΣ ∪ W with
diameter D = Oh(L), where GΣ is planar, and W is
a vortex of width at most h glued to a face of GΣ.
For any terminal set K, there exists a subset L-local
(1 + ε)-spanner for G with respect to K of weight
Oh(∣K ∣L ⋅ poly(1ε )).

Let k be the number of terminals. The basic idea in

constructing the spanner for Lemma 1 is to recursively

break down the graph into a hierarchy of clusters where

(1) the boundary of each cluster consists of a constant

number of shortest paths, (2) each leaf cluster contains

a constant number of terminals and (3) the number

of clusters is O(k). To break the graph, we use a

variant of shortest path separators of Abraham and

Gavoille [47]. Unlike general Kr-minor-free graphs,

every shortest path in the separator of GΣ ∪W is a

shortest path of the input graph, and hence, each has

length at most L. In each recursive step, we use a

shortest path separator to either reduce the number of

terminals or reduce the number of paths in the boundary.

For each cluster in the hierarchy, we add a bipartite
spanner between every pair of shortest paths in the

boundary of the cluster; a bipartite spanner is a set of

edges that preserve all pairwise distances between two

paths such that its weight is proportional to the distance

between the paths and their lengths. Since the shortest

paths have length O(L) and we only preserve distances

7The width of the vortex is the width of its path decomposition.
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of length at most L between terminals, the weight of

the bipartite spanner is O(Lpoly(1
ε
)). That is, for each

cluster in the recursive decomposition, we add weight

O(Lpoly(1
ε
) and by property (3), the total weight of

all bipartite spanners is O(kLpoly(1
ε
) as desired.

Step 2: From minor-free to single vortex with
bounded diameter.: We generalize the spanner con-

struction of Step 1 to minor-free graphs using the

Robertson-Seymour decomposition. We have five sub-

steps, each generalizing further (at the expense of in-

creasing the weight of the spanner by an additive term

Oh(kL ⋅ poly(1ε ))).
Thus, consider the construction proposed in Step 1.

In the first sub-step, we remove the assumption on the

bounded diameter and make our spanner construction

work for arbitrary planar graphs with a single vortex.

The approach is as follows: Break a graph with un-

bounded diameter to overlapping clusters of diameter

Oh(L) such that every pair of vertices at distance at

most L belongs to some cluster, and each vertex belong

to at most Oh(1) clusters. This is done using Abraham

et al. sparse covers [51]. Then construct a spanner

for each cluster separately by applying the approach

of Step 1, namely Lemma 1, and return the union of

these spanners. More concretely, we prove the following

lemma.

Lemma 2 (Single Vortex). Consider a graph G = GΣ∪
W where GΣ is planar, and W is a vortex of width at
most h glued to a face of GΣ. For any terminal set K,
there exists a subset L-local (1+ ε)-spanner for G with
respect to K of weight Oh(∣K ∣L ⋅ poly(1ε )).

In the second sub-step, we generalize to planar graphs

with at most h vortices of width 7 h. The basic idea is

to “merge” all vortices into a single vortex of width

O(h2). This is done by repeatedly deleting a shortest

path between pairs of vortices, and “opening up” the

cut to form a new face. The two vortices are then

“merged” into a single vortex – in other words, they

can be treated as a single vortex by the algorithm

obtained at the first sub-step. This is repeated until all

the vortices have been “merged” into a single vortex,

at which point Lemma 2 applies. Here we face a quite

important technical difficulty: when opening up a short-

est path between two vortices, we may alter shortest

paths between pairs of terminals (e.g.: the shortest

path between two terminals intersects the shortest path

between our two vortices, in which case deleting the

shortest path between the vortices destroys the shortest

path between the terminals). To resolve this issue, we

compute a single-source spanner from each terminal to

every nearby deleted path, thus controlling the distance

between such terminal pairs in the resulting spanner.

The above idea is captured in the following lemma.

Lemma 3 (Multiple Vortices). Consider a graph G =
GΣ ∪W1 ∪ ⋅ ⋅ ⋅ ∪Wh′ , where GΣ is planar, h′ ≤ h, and
each Wi is a vortex of width at most h glued to a face
of GΣ. For any terminal set K, there exists a subset L-
local (1+ε)-spanner for G with respect to K of weight
Oh(∣K ∣L ⋅ poly(1ε )).

In our third sub-step, we generalize to graphs of

bounded genus with multiple vortices. The main tool

here is “vortex paths” from [47]. Specifically, we can

remove two vortex paths and reduce the genus by one

(while increasing the number of vortices). Here each

vortex path consists of essentially Oh(1) shortest paths.

We apply this genus reduction repeatedly until the graph

has genus zero. The graph then has O(g) new vortices.

Next, we apply Lemma 3 to create a spanner. The

technical difficulty of the previous step arises here as

well: There may be shortest paths between pairs of

terminals that intersect the vortex paths. We handle this

issue in a similar manner.

Lemma 4 (Multiple Vortices and Genus). Consider a
graph G = GΣ∪W1∪⋅ ⋅ ⋅∪Wh′ where GΣ is (cellularly)
embedded on a surface Σ of genus at most g = O(h),
h′ ≤ h, and each Wi is a vortex of width at most h glued
to a face of GΣ. For any terminal set K, there exists a
subset L-local (1+ ε)-spanner for G with respect to K
of weight Oh(∣K ∣L ⋅ poly(1ε )).

In our fourth sub-step, we generalize to nearly h-

embeddable graphs. That is, in addition to genus and

vortices, we also allow G to have at most h apices. The

spanner is constructed by first deleting all the apices

and applying Lemma 4. Then, in order to compensate

for the deleted apices, we add a shortest path from each

apex to every terminal at distance at most L.

Lemma 5 (Nearly h-Embeddable). Consider a nearly
h-embeddable graph G with a set K of k terminals.
There exists an L-local (1+ε)-spanner for K of weight
Oh(kL ⋅ poly(1ε )).

Finally, in our last sub-step, we generalize to minor-

free graphs, thus proving Proposition 1. Recall that

according to [15] a minor graph can be decomposed

into a clique-sum decomposition, where each node in

the decomposition is nearly h-embeddable. Our major

step here is transforming the graph G into a graph G′

that preserves all terminal distances in G, while having

at most O(k) bags in its clique-sum decomposition.

This is done by first removing leaf nodes which are not

“essential” for any terminal distance, and then shrinking

long paths in the decomposition where all internal nodes

have degree two and (roughly) do not contain terminals.

Next, given G′, we make each vertex that belongs to one

of the cliques in the clique-sum decomposition into a

595

Authorized licensed use limited to: Brown University. Downloaded on February 16,2021 at 15:50:13 UTC from IEEE Xplore.  Restrictions apply. 



terminal. The new number of terminals is bounded by

Oh(k). The last step is simply to construct an internal

spanner for each bag separately using Lemma 5, and

return the union of the constructed spanners.

B. Embedding into low-treewidth graphs

At a high level, we follow the same approach as for

the subset spanner. Due to the different nature of the

constructed structures, and the different distortion guar-

antees, there are some differences that raise significant

challenges.

To prove Theorem 4, which addresses bounded-genus

graphs, we generalize the result of Fox-Epstein et

al. [41]. Our approach is basically the same as for the

subset spanner: we decompose the graph into simpler

and simpler pieces by removing shortest paths. Here,

instead of deleting a path, we will use a cutting lemma.

However, in this setting it is not clear how to use

single-source or bipartite spanners to compensate for

the changes to the shortest-path metric due to path dele-

tions, since these spanners may have large treewidth.

Instead, we will portalize the cut path. That is, we

add an εD-net8 of the path to every bag of the tree

decomposition of the host graph. Clearly, this strategy

has to be used cautiously since it immediately increases

the treewidth significantly.

Next we turn to the proof of Theorem 2, which

addresses minor-free graphs. Here we again use the

RS framework. Apices pose an interesting challenge.

Standard techniques to deal with apices consist in

removing them from the graph, solve the problem on

the remaining graph which is planar, and add back the

apices later [43, 44]. However, in our setting, removing

apices can make the diameter of the resulting graph,

say G′, become arbitrarily larger than D and thus,

it seems hopeless to embed G′ into a low treewidth

graph with an additive distortion bounded by D. This

is where randomness comes into play: we use padded

decomposition [19] to randomly partition G′ into pieces

of (strong) diameter D′ = O(D
ε
). We then embed each

part of the partition (which is planar) separately into

graphs of bounded treewidth with additive distortion

ε2D′ = O(εD), add back the apices by connecting

them to all the vertices of all the bounded treewidth

graphs (and so adding all of them to each bag of

each decomposition) and obtain a graph with bounded

treewidth and an expected additive distortion εD.

Our next stop is to find bounded treewidth embed-

dings of clique-sums of bounded genus graphs with

8An r-net of a set A, is a set N ⊂ A of vertices all at distance at
least r from each other, and such that every v ∈ A has a net point
t ∈ N at distance at most r. If A is a path of length L, then for every
r-net N , ∣N ∣ = O(L

r
).

apices. Suppose that G is decomposed into clique-

sums of graphs G1,G2, . . . ,Gk. We call each Gi a

piece. A natural idea is to embed each Gi into a

low-treewidth graph Hi, called the host graph with

a tree decomposition Ti, and then combine all the

tree decompositions together. Suppose that G1 and G2

participate in the clique-sum decomposition of G using

the clique Q. To merge G1 and G2, we wish to have

an embedding from Gi to Hi, i = 1,2, that preserves
the clique Q in the clique-sum of G1 and G2. That is,

the set of vertices {fi(v)∣v ∈ Q} induces a clique in

Hi (so that there will be bag in the tree decomposition

of Hi containing f(Q)). However, it is impossible to

have such an embedding even if all Gi’s are planar.9

To overcome this obstacle, we will allow each vertex

in Gi to have multiple images in Hi. Specifically, we

introduce the notion ofone-to-many embeddings. Note

that given a one-to-many embedding, one can construct

a classic embedding by identifying each vertex with an

arbitrary copy.

Definition 1 (One-to-many embedding). An embedding
f ∶ G → 2H of a graph G into a graph H is a one-

to-many embedding if for every v ∈ G, f(v) is a non
empty set of vertices in H , where the sets {f(v)}v∈G
are disjoint.

We say that f is dominating if for every pair
of vertices u, v ∈ G, it holds that dG(u, v) ≤
minu′∈f(u),v′∈f(v) dH(u′, v′). We say that f has additive
distortion εD if it is dominating and ∀u, v ∈ G it holds
that maxu′∈f(u),v′∈f(v) dH(u′, v′) ≤ dG(u, v)+εD. Note
that, as for every vertex v ∈ G, dG(v, v) = 0, having
additive distortion εD implies that all the copies in
f(v) are at distance at most εD from each other. The
method of Fox-Epstein et al. [41] yielded a one-to-many
embedding but this aspect of the embedding was not
important to their result. Here we use to address the
clique-preservation problem discussed above.

A stochastic one-to-many embedding is a distribution
D over dominating one-to-many embeddings. We say
that a stochastic one-to-many embedding has expected
additive distortion εD if ∀u, v ∈ G it holds that
E[maxu′∈f(u),v′∈f(v) dH(u′, v′)] ≤ dG(u, v) + εD.

We can show that in order to combine the different

one-to-many embeddings of the pieces G1, . . . ,Gs, it

is enough that for every clique Q we will have a bag

B containing at least one copy of each vertex in Q.

Formally,

9To see this, suppose that G is clique-sums of a graph G0 with
many other graphs G1,G2 . . . ,Gs in a star-like way, where G0 has
treewidth polynomial in n, and every edge of G0 is used for some
clique sum. If H0 preserves all cliques, it contains G0 and thus has
treewidth polynomial in n.
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Definition 2 (Clique-preserving embedding). A one-to-
many embedding f ∶ G→ 2H is called clique-preserving
embedding if for every clique Q ∈ G, there is a clique
Q′ in H such that for every vertex v ∈ Q, f(v)∩Q′ ≠ ∅.

While it is impossible to preserve all cliques in a one-

to-one embedding, it is possible to preserve all cliques

in a one-to-many embedding; this is one of our major

conceptual contributions. One might worry about the

number of maximal cliques in G. However, since G has

constant degeneracy, the number of maximal cliques is

linear [52]. Suppose that f is clique-preserving, and let

T be some tree-decomposition of H . Then for every

clique Q in G, there is a bag of T containing a copy

of (the image of) Q in H .

We now have the required definitions, and begin

the description of the different steps in creating the

embedding. The most basic case we are dealing with

directly is that of a planar graph with a single vortex

and diameter D into a graph of treewidth O( logn
ε
) and

additive distortion εD. The high level idea, similarly to

our subset spanner, is to use vortex-path separator to

create a hierarchical partition tree τ . The depth of the

tree will be O(logn). To accommodate for the damage

caused by the separation, we portalize each vortex-path

in the separator. That is for each such path Q, we pick

an εD-net 8 NQ of size O(1
ε
). The vertices of NQ

called portals. Since each node of τ is associated with

a constant number of vortex-paths, there are at most

O(1
ε
) portals corresponding to each node of τ . Thus, if

we collect all portals along the path from a leaf to the

root of τ , there are O( logn
ε
) portals. We create a bag

for each leaf Υ of the tree τ . In addition for each bag

we add the portals corresponding to nodes along the

path from the root to Υ. The tree decomposition is then

created w.r.t. τ . Finally, we need to make the embedding

clique-preserving. Consider a clique Q, there will be a

leaf ΥQ of τ containing a sub-clique Q′ ⊆ Q, while all

the vertices in Q∖Q′ belong to paths in the boundary of

ΥQ. We will create a new bag containing (copies) of all

the vertices in Q and all the corresponding portals. The

vertices of Q′ will have a single copy in the embedding,

while the distortion of the vertices Q′ ⊆ Q will be

guaranteed using a nearby portal.

Lemma 6 (Single Vortex with Bounded Diameter).
Given a single-vortex graph G = GΣ ∪W where the
vortex W has width h. There is a one-to-many, clique-
preserving embedding f from G to a graph H with
treewidth O(h logn

ε
) and additive distortion εD where

D is diameter of G.

We then can extend the embedding to planar graphs

with multiple vortices using the vortex merging tech-

nique, and then to graphs embedded on a genus-g

surface with multiple vortices by cutting along vortex-

paths. The main tool here is a cutting lemma which

bound the diameter blowup after each cutting step. At

this point, the embedding is still deterministic.

Lemma 7 (Multiple Vortices). Consider a graph G =
GΣ ∪W1 ∪ ⋅ ⋅ ⋅ ∪Wv(G) of diameter D, where GΣ can
be drawn on the plane, and each Wi is a vortex of
width at most h glued to a face of GΣ, and v(G) is
the number of vortices in G. There is a one-to-many,
clique-preserving embedding f from G to a graph H of
treewidth at most h2O(v(G)) logn

ε
with additive distortion

εD.

Lemma 8 (Multiple Vortices and Genus). Consider a
graph G = GΣ ∪ W1 ∪ ⋅ ⋅ ⋅ ∪ Wv(G) of diameter D,
where GΣ is (cellularly) embedded on a surface Σ
of genus g(G), and each Wi is a vortex of width at
most h glued to a face of GΣ. There is a one-to-
many clique-preserving embedding f from G to a graph
H of treewidth at most h2O(v(G)g(G)) logn

ε
with additive

distortion εD.

We then extend the embedding to graphs embedded

on a genus-g surface with multiple vortices and apices

(a.k.a. nearly embeddable graphs). The problem with

apices, as pointed out at the beginning of this sec-

tion, is that the diameter of the graph after removing

apices could be unbounded in terms of the diameter

of the original graph. Indeed, while the embedding

in Lemma 8 is deterministic, it is not clear how to

deterministically embed a nearly embeddable graph

into a bounded treewidth graph with additive distortion

εD. We use padded decompositions [19] to decompose

the graph into clusters of strong diameter O(D/ε),
embed each part separately, and then combine all the

embeddings into a single graph. Note that separated

nodes will have additive distortion as large as 2D,

however, this will happen with probability at most O(ε).
To make this embedding clique-preserving, we add to

each cluster its neighborhood. Thus some small fraction

of the vertices will belong to multiple clusters. As a

result, we obtain a one-to-many stochastic embedding

with expected additive distortion εD.

Lemma 9 (Nearly h-Embeddable). Given a nearly h-
embeddable graph G of diameter D, there is a one-
to-many stochastic clique-preserving embedding into
graphs with treewidth Oh( lognε2

) and expected additive
distortion εD. Furthermore, every bag of the tree de-
composition of every graph in the support contains (the
image of) the apex set of G.

Finally we are in the case of general minor free graph

G = G1 ⊕h G2 ⊕h . . . ⊕h Gs. We sample an embed-

ding for each Gi using Lemma 9 to some bounded
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treewidth graph Hi. As all these embeddings are clique-

preserving, there is a natural way to combine the tree

decompositions of all the graphs Hi together. Here we

run into another challenge: we need to guarantee that

the additive distortion caused by merging tree decom-

positions is not too large. To explore this challenge,

let us consider the clique-sum decomposition tree T
of G: each node of T corresponds uniquely to Gi for

some i, and that G is obtained by clique-summing all

adjacent graphs Gi and Gj in T . Suppose that T has

a (polynomially) long path P with hop-length p. Then,

for a vertex u in the graph corresponding to one end

of P and a vertex v in the graph corresponding to

another end of P , the additive distortion between u and

v could potentially pεD since every time the shortest

path between u and v goes through a graph Gi, we

must pay additive distortion εD in the embedding of Gi.

When p is polynomially large, the additive distortion is

polynomial in n. We resolve this issue by the following

idea:(1) pick a separator piece Gi of T (Gi is a

separator of T if each component T ∖Gi has at most

2/3 the number of pieces of T ), (2) recursively embed

pieces in subtrees of T ∖ Gi and (3) add the join set

between Gi and each subtree, say T ′ of T ∖Gi to all

bags of the tree decomposition corresponding to T ′.
We then can show that this construction incurs another

additive logn factor in the treewidth while insuring

a total additive distortion of εD. Hence the final tree

decomposition has width O( logn
ε2
).

An interesting consequence of our one-to-many em-

bedding approach is that the host graphs H will contain

Steiner points. That is, its vertex set will be greater than

V . We do not know whether it is possible to obtain

the properties of Theorem 2 while embedding into n-

vertex graphs. In this context, the Steiner point removal

problem studies whether it is possible to remove all

Steiner points while preserving both pairwise distance

and topological structure [53, 54]. Unfortunately, in

general, even if G is a tree, a multiplicative distortion

of 8 is necessary [55]. Nevertheless, as Krauthgamer et

al. [56] proved, given a set K of k terminals in a graph

H of treewidth tw, we can embed the terminal set K
isometrically (that is with multiplicative distortion 1)

into a graph with O(k ⋅ tw3) vertices and treewidth tw.

It follows that we can ensure that all embeddings in the

support of the stochastic embedding in Theorem 2 are

into graphs with Or(n ⋅ log
3 n

ε6
) vertices.
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