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Abstract. The Capacitated Vehicle Routing problem is to find a
minimum-cost set of tours that collectively cover clients in a graph, such
that each tour starts and ends at a specified depot and is subject to a
capacity bound on the number of clients it can serve. In this paper, we
present a polynomial-time approximation scheme (PTAS) for instances in
which the input graph is planar and the capacity is bounded. Previously,
only a quasipolynomial-time approximation scheme was known for these
instances. To obtain this result, we show how to embed planar graphs into
bounded-treewidth graphs while preserving, in expectation, the client-
to-client distances up to a small additive error proportional to client
distances to the depot.
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1 Introduction

The Capacitated Vehicle Routing problem with capacity Q > 0 for a graph
G with client set S and depot r is to find a minimum-cost set of tours that
collectively visit every client, such that each tour visits the depot and at most
Q clients. This problem arises very naturally in both public and commercial
settings including planning school bus routes and package delivery. In general
metrics, Capacitated Vehicle Routing is APX-hard, even when Q is a fixed
capacity as small as three [1]. In this paper, we show that this hardness result
does not extend to planar graphs. Specifically, we give the first polynomial-time
approximation scheme (PTAS) for Capacitated Vehicle Routing with fixed
capacities in planar graphs.

An embedding of a guest graph G in a host graph H is a mapping φ :
V (G) −→ V (H). One seeks embeddings in which, for each pair u, v of vertices of
G, the u-to-v distance in G is in some sense approximated by the φ(u)-to-φ(v)
distance in H. One algorithmic strategy for addressing a metric problem is as
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follows: find an embedding φ from the input graph G to a graph H with simple
structure; find a good solution in H; lift the solution to a solution in G. The
success of this strategy depends on how easy it is to find a good solution in H
and how well distances in H approximate corresponding distances in G.

In this paper, we give a randomized method for embedding a planar graph
G into a bounded-treewidth host graph H so as to achieve a certain expected
distance approximation guarantee. There is a polynomial-time algorithm to find
an optimal solution to Bounded-Capacity Vehicle Routing in bounded-
treewidth graphs. This algorithm is used to find an optimal solution to the
problem induced in H. This solution in the host graph is then lifted to obtain a
near-optimal solution in G.

1.1 Related Work

Capacitated Vehicle Routing. There is a substantial body of work on
approximation algorithms for Capacitated Vehicle Routing. As the prob-
lem generalizes the Traveling Salesman Problem (TSP), for general met-
rics and values of Q, Capacitated Vehicle Routing is also APX-hard [16].
Haimovich and Rinnoy Kan [14] observe the following lower bound.

2
Q

∑

v∈S

d(v, r) ≤ cost(OPT ) (1)

which they use to give a 1 + (1 − 1
Q )α-approximation, where α denotes the

approximation ratio of TSP. Using Christofides 1.5-approximation for TSP [9],
this gives a 2.5− 1

Q approximation ratio. For general metrics and values of Q this
result has not been substantially improved upon. Even for tree metrics, the best
known approximation ratio for arbitrary values of Q is 4/3, due to Becker [3].
While no polynomial-time approximation schemes are known for arbitrary Q for
any nontrivial metric, recently Becker and Paul [7] gave a bicriteria (1, 1 + ε)
approximation scheme for tree metrics. It returns a solution of at most the
optimal cost, but in which each tour is responsible for at most (1 + ε)Q clients.

One reasonable relaxation is to consider restricted values of Q. Even for Q as
small as 3, Capacitated Vehicle Routing is APX-hard in general metrics [1].
On the other hand, for fixed values of Q, the problem can be solved in polynomial
time on trees and bounded-treewidth graphs.

Much attention has been given to approximation schemes for Euclidean met-
rics. In the Euclidean plane R

2, PTASs are known for instances in which the
value of Q is constant [14], O(log n/ log log n) [1], and Ω(n) [1]. For R3, a PTAS
is known for Q = O(log n) and for higher dimensions R

d, a PTAS is known for
Q = O(log1/d n) [15]. For arbitrary values of Q, Mathieu and Das designed a
quasi-polynomial time approximation scheme (QPTAS) for instances in R

2 [10].
No PTAS is known for arbitrary values of Q.

Because algorithms for Capacitated Vehicle Routing could be applied
to logistics problems in road maps, it is particularly interesting to consider the
complexity of approximating the problem in metrics that model road networks.
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Becker, Klein, and Saulpic [5] gave a QPTAS for bounded-capacity instances in
planar and bounded-genus graphs. The same authors gave a PTAS for graphs of
bounded highway dimension [6].

Metric Embeddings. There has been much work on metric embeddings. In
particular, Bartal [2] gave a randomized algorithm for selecting an embedding
φ of the input graph into a tree so that, for any vertices u and v of G, the
expected φ(u)-to-φ(v) distance in the tree approximates the u-to-v distance in
G to within a polylogarithmic factor. Fakcharoenphol, Rao, and Talwar [11]
improved the factor to O(log n).

Talwar [17] gave a randomized algorithm for selecting an embedding of a
metric space of bounded doubling dimension and aspect ratio Δ into a graph
whose treewidth is bounded by a function that is polylogarithmic in Δ; the
distances are approximated to within a factor of 1+ε. Feldman, Fung, Könemann,
and Post [12] built on this result to obtain a similar embedding theorem for
graphs of bounded highway dimension.

What about planar graphs? Chakrabarti et al. [8] showed a result that implies
that unit-weight planar graphs cannot be embedded into distributions over
o(

√
n)-treewidth graphs so as to achieve approximation to within an o(log n)

factor.
Let us consider distance approximation guarantees with absolute (rather than

relative) error. Becker, Klein, and Saulpic [6] gave a deterministic algorithm
that, given a constant ε > 0, finds an embedding from a graph G of bounded
highway dimension to a bounded-treewith graph H such that, for each pair u, v
of vertices of G, the φ(u)-to-φ(v) distance in H is at least the u-to-v distance
in G and exceeds that distance by at most ε times the u-to-r distance plus the
v-to-r distance, where r is a given vertex of G. This embedding was used to
obtain the previously mentioned PTAS for Capacitated Vehicle Routing

with bounded capacity on graphs of bounded highway dimension.
Recently, Fox-Epstein, Klein, and Schild [13] showed how to embed planar

graphs into graphs of bounded treewidth, such that distances are preserved up to
a small additive error of εD, where D is the diameter of the graph. They show
how such an embedding can be used to achieve efficient bicriteria approximation
schemes for k-Center and d-Independent Set.

1.2 Main Contributions

In this paper we present the first known PTAS for Capacitated Vehicle

Routing on planar graphs. We formally state the result as follows.

Theorem 1. For any ε > 0 and capacity Q, there is a polynomial-time algo-
rithm for Capacitated Vehicle Routing on planar graphs that returns a
solution whose cost is at most 1 + ε times optimal.

Prior to this work, only a QPTAS was known [5] for planar graphs. As
described in Sect. 1.1, PTASs for Capacitated Vehicle Routing are known
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only for very few metrics. Our result expands this small list to include planar
graphs—a graph class that is quite relevant to vehicle-routing problems as road
networks tend to be nearly planar.

The basis for our new PTAS is a new metric-embedding theorem. For a graph
G and vertices u and v, let dG(u, v) denote the u-to-v distance in G.

Theorem 2. There is a constant c and a randomized polynomial-time algorithm
that, given a planar graph G with specified root vertex r and given 0 < ε < 1,
computes a graph H with treewidth at most (1

ε )cε−1
and an embedding φ of G

into H, such that, for every pair of vertices u, v of G, dG(u, v) ≤ dH(φ(u), φ(v))
with probability 1, and

E[dH(φ(u), φ(v))] ≤ dG(u, v) + ε[dG(u, r) + dG(v, r)] (2)

The expectation E[·] is over the random choices of the algorithm.
Why does this metric-embedding result give rise to an approximation scheme

for Capacitated Vehicle Routing? We draw on the following observation,
which was also used in previous approximation schemes [5,6]: tours with clients
far from the depot can accommodate a larger error. In particular, each client can
be charged error that is proportional to its distance to the depot. In designing
an appropriate embedding, we can afford a larger error allowance for the clients
farther from the depot.

Our new embedding result builds on that of Fox-Epstein et al. [13]. The
challenge in directly applying their embedding result is that it gives an additive
error bound, proportional to the diameter of the graph. This error is too large for
those clients close to the depot. Instead, we divide the graph into annuli (bands)
defined by distance ranges from the depot and apply the embedding result to
each induced subgraph independently, with an increasingly large error tolerance
for the annuli farthest from the depot. In this way, each client can afford an
error proportional to the diameter of the subgraph it belongs to.

How can these subgraph embeddings be combined into a global embedding
with the desired properties? In particular, clients that are close to each other
in the input graph may be separated into different annuli. How can we ensure
that the embedding approximately preserves these distances while still achieving
bounded treewidth?

We draw on a technique that has often been used, e.g. in metric embeddings.
We show that by randomizing the choice of where to define the annuli boundaries,
and connecting all vertices of all subgraph embeddings to a new, global depot,
client distances are approximately preserved (to within their error allowance)
in expectation by the overall embedding, without substantially increasing the
treewidth. To do so we must ensure that the annuli are wide enough that the
probability of nearby clients being separated (and thus generating large error)
is small. Simultaneously, the annuli must be narrow enough that, within a given
annulus, the clients closest to the depot can afford an error proportional to the
distance of the farthest clients from the depot.
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A dynamic-programming algorithm can then be used to find an optimal
solution to Capacitated Vehicle Routing in the bounded-treewidth host
graph, and the solution can be lifted to obtain a solution in the input graph that
in expectation is near-optimal.

Finally we describe how this result can be derandomized by trying all possible
(relevant) choices for defining annuli and noting that for some such choice, the
resulting solution cost must be near-optimal.

1.3 Outline

In Sect. 2 we describe preliminary notation and definitions. Section 3 describes
the details of the embedding and provides an analysis of the desired properties.
In Sect. 4 we outline our algorithm and prove Theorem 1. We conclude with some
remarks in Sect. 5.

2 Preliminaries

2.1 Basics

Let G = (V,E) denote a graph with vertex set V and edge set E, and let n = |V |.
As mentioned earlier, for any two vertices u, v ∈ V , we use dG(u, v) to denote
the length of the shortest u-to-v path in G. We might omit the subscript when
the choice of graph is unambiguous. The diameter of a graph G is the maximum
distance dG(u, v) over all choices of u and v.

We say that a graph is planar if it can be drawn in the plane without any
edge crossings.

We use OPT to denote an optimal solution. For a minimization problem,
an α-approximation algorithm is one that returns a solution whose cost is at
most α times the cost of OPT . An approximation scheme is a family of (1 + ε)-
approximation algorithms, indexed by ε > 0. A polynomial-time approximation
scheme (PTAS) is an approximation scheme such that, for each ε > 0, the corre-
sponding algorithm runs in O(nc) time, where c is a constant independent of n
but may depend on ε. A quasi-polynomial-time approximation scheme (QPTAS)
is an approximation scheme such that, for each ε > 0, the corresponding algo-
rithm runs in O(nlogc n) time, where c is a constant independent of n but may
depend on ε.

An embedding of a guest graph G into a host graph H is a mapping φ : VG →
VH of the vertices of G to the vertices of H.

A tree decomposition of a graph G is a tree T whose nodes (called bags)
correspond to subsets of V with the following properties:

1. For each v ∈ V , v appears in some bag in T
2. For each (u, v) ∈ E, u and v appear together in some bag in T
3. For each v ∈ V , the subtree induced by the bags of T containing v is connected

The width of a tree decomposition is the size of the largest bag minus one, and
the treewidth of a graph G is the minimum width over all tree decompositions
of G.
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2.2 Problem Statement

A tour in a graph G is a closed path v0, v1, v2, ..., vL such that v0 = vL and for
all i ∈ {1, 2, ..., L}, (vi−1, vi) is an edge in G.

Given a capacity Q > 0 and a graph G = (V,E) with specified client set
S ⊆ V and depot vertex r ∈ V , the Capacitated Vehicle Routing problem
is to find a set of tours Π = {π1, π2, ...π|Π|} that collectively cover all clients
and such that each tour includes r and covers at most Q clients. The cost of
a solution is the sum of the tour lengths, and the objective is to minimize this
sum.

If a client s is covered by a tour π, we say that π visits s. Note that π may
pass many other vertices (including other clients) that it does not cover.

As stated, the problem assumes that each client has unit demand. In fact, the
more general case, where clients have integral demand (assumed to be polyno-
mially bounded) that is allowed to be covered across multiple tours (demand is
divisible) reduces to the unit-demand case as follows: For each client s ∈ S with
demand dem(s) = k, add k new vertices {v1, v2, ..., vk} each with unit demand
and edges (s, vi) of length zero, and set dem(s) to zero. Note that this modi-
fication does not affect planarity. Additionally, since demand is assumed to be
polynomially-bounded, the increase in graph size is negligible for the purpose of
a PTAS.

For Capacitated Vehicle Routing with indivisible demands, each client’s
demand must be covered by a single tour, and a tour can cover at most Q units
of client demand.

We assume all non-zero distances in G are at least one. If not, the graph
can be rescaled. We also assume values of ε are less than one. If not, any ε ≥ 1
can be replaced with a number ε′ slightly less than one. This only helps the
approximation guarantee and does not significantly increase runtime. Of course
for very large values of ε, an efficient constant-factor approximation can be used
instead (see Sect. 1.1).

3 Embedding

In this section, we prove Theorem 2, which we restate for convenience:

Theorem 2. There is a constant c and a randomized polynomial-time algorithm
that, given a planar graph G with specified root vertex r and given 0 < ε < 1,
computes a graph H with treewidth at most (1

ε )cε−1
and an embedding φ of G

into H, such that, for every pair of vertices u, v of G, dG(u, v) ≤ dH(φ(u), φ(v))
with probability 1, and

E[dH(φ(u), φ(v))] ≤ dG(u, v) + ε[dG(u, r) + dG(v, r)] (3)

The proof uses as a black box the following result from [13]:



A PTAS for Bounded-Capacity Vehicle Routing in Planar Graphs 105

Lemma 1 ([13]). There is a number c and a polynomial-time algorithm that,
given a planar graph G with specified root vertex r and diameter D, computes a
graph H of treewidth at most ( 1

ε )c and an embedding φ of G into H such that,
for all vertices u and v,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) + εD

For notational convenience, instead of Inequality 3 of Theorem 2, we prove

E[dH(φ(u), φ(v))] ≤ dG(u, v) + 3ε[dG(u, r) + dG(v, r)] (4)

from which Theorem 2 can be proved by taking ε′ = ε/3.
Our embedding partitions vertices of G into bands of vertices defined by

distances from r. Choose x ∈ [0, 1] uniformly at random. Let B0 be the set of

vertices v such that dG(r, v) < 1
ε

(x) 1
ε , and for i ∈ {1, 2, 3, ...} let Bi be the set of

vertices v such that 1
ε

(i+x−1) 1
ε ≤ dG(r, v) < 1

ε

(i+x) 1
ε (see Fig. 1). Let Gi be the

subgraph induced by Bi, together with all u-to-v and v-to-r shortest paths for
all u, v ∈ Bi. Note that although the Bi partition V , the Gi do not partition G.
Note also that the diameter of Gi is at most 4 1

ε

(i+x) 1
ε . The factor of 4 addresses

the fact that for u, v ∈ Bi, the u-to-v shortest path is included in Gi and may
contain a vertex w /∈ Bi. But for any such w, it must be that dG(r, w) ≤ 2 1

ε

(i+x) 1
ε .

For each Gi, let Hi be the host graph resulting from applying Lemma 1
using ε′ = ε

1
ε +1 and let φi be the corresponding embedding. Let H be the graph

resulting from adding a new vertex r′ and for all i and all v ∈ Bi adding an edge
(φi(v), r′) of length dG(v, r). That is, H is formed by connecting (all vertices of)
all the Hi to r′ (see Fig. 2). Finally, set φ(v) = φi(v) for all v ∈ Bi − {r} and set
φ(r) = r′.

Fig. 1. G is divided into bands B0, B1, ..., Bfinal based on distance from r.
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Fig. 2. Each subgraph Gi of G is embedded into a host graph Hi. These graphs are
joined via edges to a new depot r′ to form a host graph for G.

We can assume that there are at most n bands, since empty bands would not
contribute to the embedding. The runtime for constructing H is dominated by
the construction of the Hi, which by Lemma [13] is polynomial.

Let H− be the graph obtained from H by deleting r′. The connected compo-
nents of H− are {Hi}i. By Lemma 1, the treewidth of each host graph Hi is at
most ( 1

ε′ )c0 = (1
ε )c0(ε

−1+1) for some constant c0. This also bounds the treewidth
of H−. Adding a single vertex to a graph increases the treewidth by at most
one, so after adding r′ back, the treewidth of H is ( 1

ε )c0(ε
−1+1) + 1 = (1

ε )c1ε−1

for some constant c1.
As for the metric approximation, it is clear that dG(u, v) ≤ dH(φ(u), φ(v))

with probability 1. We use the following lemma to prove Inequality 4.

Lemma 2. If εdG(v, r) ≤ dG(u, r) ≤ dG(v, r), then the probability that u and v
are in different bands is at most ε.

Proof. Let i be the nonnegative integer such that dG(u, r) = 1
ε

(i+a) 1
ε for some

a ∈ [0, 1]. Let b be the number such that dG(v, r) = 1
ε

(i+b) 1
ε .

1
ε

≥ dG(v, r)
dG(u, r)

=
1
ε

(i+b) 1
ε

1
ε

(i+a) 1
ε

=
1
ε

(b−a) 1
ε

Therefore
b − a ≤ ε

Consider two cases. If b ≤ 1, then the probability that u and v are in different
bands is Pr[a ≤ x < b] ≤ ε.

If b > 1 then the probability that u and v are in different bands is Pr[x ≥
a or x ≤ b − 1] ≤ 1 − a + b − 1 = b − a ≤ ε.
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We now prove Inequality 4. Let u and v be vertices in G. Without loss
of generality, assume dG(u, r) ≤ dG(v, r). First we address the case where
dG(u, r) ≤ εdG(v, r). Since φ(u) and φ(v) are both adjacent to r′ in H,
dH(φ(u), φ(v)) ≤ dH(φ(u), r′)+ dH(φ(v), r′) = dG(u, r)+ dG(v, r) ≤ 2dG(u, r)+
dG(u, v) ≤ dG(u, v) + 2εdG(v, r). Therefore E[dH(φ(u), φ(v))] ≤ dG(u, v) +
3ε[dG(u, r) + dG(v, r)]

Now, suppose dG(u, r) > εdG(v, r). If u and v are in the same band Bi, then
by Lemma 1,

dH(φ(u), φ(v)) ≤ dHi
(φ(u), φ(v)) ≤ dG(u, v) + ε′diam(Gi)

≤ dG(u, v) + ε′4
1
ε

(i+x) 1
ε

= dG(u, v) + ε
1
ε +14

1
ε

(i+x) 1
ε

= dG(u, v) + ε4
1
ε

(i+x−1) 1
ε ≤ dG(u, v) + 2ε(dG(u, r) + dG(v, r))

In the final inequality, when i = 0, we use the fact that all nonzero distances are
at least one to give a lower bound on dG(u, r) and dG(v, r).

If u and v are in different bands, then since φ(u) and φ(v) are both adjacent
to r′ in H, dH(φ(u), φ(v)) ≤ dH(φ(u), r′) + dH(φ(v), r′) = dG(u, r) + dG(v, r).
By Lemma 2, this case occurs with probability at most ε.

Therefore E[dH(φ(u), φ(v))] ≤ (dG(u, v) + 2ε(dG(u, r) + dG(v, r))) + ε[dG(u,
r) + dG(v, r)] ≤ dG(u, v) + 3ε[dG(u, r) + dG(v, r)], which proves Inequality 4 and
completes the proof of Theorem 2.

The construction depends on planarity only via Lemma 1. For the sake of
future uses of the construction with other graph classes, we state a lemma.

Lemma 3. Let F be a family of graphs closed under vertex-induced subgraphs.
Suppose that there is a function f and a polynomial-time algorithm that, for any
graph G in F , computes a graph H of treewidth at most f(ε) and an embedding
φ of G into H such that, for all vertices u and v,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) + εD

Then there is a function g and a randomized polynomial-time algorithm that,
for any graph G in F , computes a graph H with treewidth at most g(ε) and an
embedding φ of G into H, such that, for every pair of vertices u, v of G, with
probability 1 dG(u, v) ≤ dH(φ(u), φ(v)), and

E[dH(φ(u), φ(v))] ≤ dG(u, v) + ε [(dG(u, r) + dG(v, r)]

4 PTAS for Capacitated Vehicle Routing

In this section, we show how to use the embedding of Sect. 3 to give a PTAS for
Capacitated Vehicle Routing, proving Theorem 1.
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4.1 Randomized Algorithm

We first prove a slight relaxation of Theorem 1 in which the algorithm is ran-
domized, and the solution value is near-optimal in expectation. We then show in
Sect. 4.2 how to derandomize the result.

Theorem 3. For any ε > 0 and capacity Q, there is a randomized algorithm
for Capacitated Vehicle Routing on planar graphs that in polynomial time
returns a solution whose expected value is at most 1 + ε times optimal.

Our result depends on the following lemma, which is proved in the full ver-
sion [4] of [6].

Lemma 4 (Lemma 20 in [6], Lemma 15 in [4]). Given an instance of
Capacitated Vehicle Routing with capacity Q on a graph G with treewidth
w, there is a dynamic-programming algorithm that finds an optimal solution in
nO(wQ) time.

Given the dynamic program of Lemma 4 and the embedding of Theorem 2
as black boxes, the algorithm is as follows. First, the graph G is embedded as in
Theorem 2 using ε̂ = ε/Q into a host graph H with treewidth (1

ε̂ )cε̂−1
for some

constant c, and dG(u, v) ≤ E[dH(φ(u), φ(v))] ≤ dG(u, v) + ε̂(dG(u, r) + dG(v, r))
for all vertices u and v. The dynamic program of Lemma 4 is then applied to H.
The resulting solution SOLH in H is then mapped back to a solution SOLG in
G which is returned by the algorithm.

Note that the tours in any vehicle-routing solution can be defined by specifying
the order in which clients are visited. In particular, we use (u, v) ∈ SOL to denote
that u and v are consecutive elements of {clients} ∪ {depot} visited by the solution.
In this way, a solution in H is easily mapped back to a corresponding solution in G,
as (u, v) ∈ SOLG if and only if (φ(u), φ(v)) ∈ SOLH . We use costG(SOL) (resp.
costH(SOL)) to denote the cost of a solution SOL in G (resp. H).

We now prove Theorem 3 by analyzing this algorithm.

Lemma 5. For any ε > 0 the algorithm described above finds a solution whose
expected value is at most 1 + ε times optimal.

Proof. Let OPT be the optimal solution in G and let OPTH be the correspond-
ing induced solution in H. Since the dynamic program finds an optimal solution
in H, we have costH(SOLH) ≤ costH(OPTH). Additionally, since distances in
H are no shorter than distances in G, costG(SOLG) ≤ costH(SOLH). Putting
these pieces together, we have,

E[costG(SOLG)] ≤ E[costH(SOLH)] ≤ E[costH(OPTH)]

= E[
∑

(u,v)∈OPT

dH(φ(u), φ(v))] =
∑

(u,v)∈OPT

E[dH(φ(u), φ(v))]

≤
∑

(u,v)∈OPT

dG(u, v) + ε̂(dG(u, r) + dG(v, r)) =
∑

(u,v)∈OPT

dG(u, v) + 2ε̂
∑

v∈S

dG(v, r)

≤ costG(OPT ) + 2ε̂
Q

2
costG(OPT ) = (1 + ε)costG(OPT )

where the final inequality comes from Lower Bound 1 (see Sect. 1.1).
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The following lemma completes the proof of Theorem 3.

Lemma 6. For any Q, ε > 0, the algorithm described above runs in polynomial
time.

Proof. By Lemma 1, computing H and the embedding of G into H takes poly-
nomial time. By Lemma 4, the dynamic program runs in |VH |O(wQ) time, where
w is the treewidth of H. By Theorem 2, w = (1

ε̂ )cε̂−1
= (Q

ε )c′Qε−1
, where c and

c′ are constants independent of |VH |.
The algorithm therefore runs in |VH |(Qε−1)O(Qε−1)

time. Finally, since |VH | is
polynomial in the size of G, for fixed Q and ε, the running time is polynomial.

4.2 Derandomization

The algorithm can be derandomized using a standard technique. The embedding
of Theorem 2 partitions the vertices of the input graph into rings depending
on a value x chosen uniformly at random from [0, 1]. However, the partition
depends on the distances of vertices from the root r. It follows that the number
of partitions that can arise from different choices of x is at most the number of
vertices. The deterministic algorithm tries each of these partitions, finding the
corresponding solution, and returns the least costly of these solutions.

In particular, consider the optimum solution OPT . As shown in Sect. 4.1,

E[
∑

(u,v)∈OPT

dH(φ(u), φ(v))]

=
∑

(u,v)∈OPT

E[dH(φ(u), φ(v))]

≤ (1 + ε)costG(OPT ).

So for some choice of x, the induced cost of OPT in H is nearly optimal,
and the dynamic program will find a solution that costs at most as much. This
completes the proof of Theorem 1.

5 Conclusion

In this paper, we present the first PTAS for Capacitated Vehicle Routing

in planar graphs. Although the approximation scheme takes polynomial time, it
is not an efficient PTAS (one whose running time is bounded by a polynomial
whose degree is independent of the value of ε). It is an open question as to
whether an efficient PTAS exists. It is also open whether a PTAS exists when
the capacity Q is unbounded.
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