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Deep neural networks easily learn
unnatural infixation and reduplication patterns

Coleman Haley
Independent Researcher
coleman.c.haley@gmail.com

1 Introduction

Morphological patterns can involve simple con-
catenation of fixed strings (e.g., unkind, kindness)
or ‘nonconcatenative’ processes such as infixa-
tion (e.g., Chamorro lumi?e? ‘saw (actor-focus)’,
Topping, 1973) and reduplication (e.g., Amele
babagawen ‘as he came out’, Roberts, 1987),
among many others (e.g., Anderson, 1992; Inke-
las, 2014). Recent work has established that deep
neural networks are capable of inducing both con-
catenative and nonconatenative patterns (e.g., Kann
and Schiitze, 2017; Nelson et al., 2020). In this pa-
per, we verify that encoder-decoder networks can
learn and generalize attested types of infixation and
reduplication from modest training sets. We show
further that the same networks readily learn many
infixation and reduplication patterns that are unat-
tested in natural languages, raising questions about
their relationship to linguistic theory and viability
as models of human learning.

2 Infixation

Broad cross-linguistic surveys have identified a
small number of edge-anchored positions at which
infixes can be located (e.g., before the first vowel of
the word; Yu, 2007). No known language places an
infix such as -um- consistently after the second or
third segment, or after the second or third vowel —
patterns that are trivial to describe formally and that
involve limited counting or memory — and no lan-
guage places a non-reduplicative infix such as -mu-
after the first Onsetless syllable (McCarthy and
Prince, 1993). We implemented a generic encoder-
decoder network with OpenNMT-py (Klein et al.,
2017) and tested its ability to learn and generalize
two attested infixation patterns and eight unattested
patterns (see Table 1).

Because data is scarce for many languages with
infixation and most of the patterns are hypothetical,
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we implemented the patterns using the phonologi-
cal forms of 7000+ Spanish lemmas. From a larger
set of lemmas (Sagot, 2018), we eliminated those
that contained triconsonantal clusters, non-initial
onset clusters, word-final coda clusters, or glide-
vowel sequences. This made the syllable structure
of the remaining lemmas somewhat simpler than
that of Spanish, streamlining the definition and
implementation of infixation (and reduplication)
patterns. The remaining lemmas were randomly
partitioned into 1000 train and 6000+ test inputs.
For each infixation pattern, a custom regular expres-
sion was used to create outputs from the inputs.
There is some ambiguity in how unattested pat-
terns that reference the second or third vowel (or
consonant) should apply to inputs that do not con-
tain the designated pivot. On one interpretation,
the infix should ‘back off’ to the immediately pre-
ceding unit of the same type (e.g., appearing after
the first vowel in a monosyllabic form). This is
analogous to a stress pattern that typically targets
the penultimate syllable but assigns final stress in
monosyllables. Alternatively, the infix could de-
fault to a suffix. Under this interpretation, the infix
necessarily ‘skips’ all elements until reaching its
pivot, landing at the rightmost position when the
pivot is absent.! Table 1 represents the results for
the back-off interpretation while results for the skip-
ping interpretation are provided in the appendix.
The model had an embedding dimension of 50
(approximately twice the number of unique phono-
logical segments that appeared in the lemmas), a
single-layer bidirectional LSTM or GRU encoder
with 100 units, and a single-layer attention-based
decoder with 100 units and copy attention. Ten
simulations were conducted for each of several
resource conditions (1000, 500, 100, or 50 of the

I'This ambiguity is negligible for patterns referencing the
first vowel or consonant, or one of the first three segments,
which are essentially always present in the input.
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LSTM GRU
Pattern Train size: | 1000 | 500 | 100 | 50 | 1000 | 500 | 100 | 50
Before first V (e.g., Chamorro lumi?e?) | 1.0 1.0 | 98 | 95| 1.0 1.0 | 98 | .92
After first C (e.g., Tagalog gumradwet) | 1.0 1.0 | 1.0 | .99 | 1.0 1.0 | 1.0 | 1.0
Before second V C*VC*umV... | .93 96 | .87 | .73 | 98 97 | 90 | .87
Before third V C*VC*VC*umV... | .89 89 | .82 (.79 .92 91 | 8 |.75
After second C V*CV*Cum... | .99 99 | 98 | .94 | .99 99 | 98 | .95
After third C V*CV*CV*Cum... | .97 97 | .93 | .78 | .97 98 | .93 | .79
After second segment XXum... | 1.0 1.0 | 1.0 | 1.0 | 1.0 1.0 | 1.0 | 1.0
After third segment XXXum... | 1.0 1.0 | 1.0 | .99 | 1.0 1.0 | 1.0 | 1.0
After fourth segment XXXXum... | 1.0 1.0 | 1.0 | 98 | 1.0 1.0 | 1.0 | .99
After initial Onsetless syll. (VC*)muCV... | .96 95 1.90 | 90 | 1.0 1.0 | 95 | .88

Table 1: Average held-out test accuracy for attested (top) and unattested (bottom) infixation patterns

input/output training pairs sampled without replace-
ment). In each simulation, the model was trained
for 1000 epochs using Adagrad with an initial learn-
ing rate of 0.01. Most of the average test accuracies
were above .95; bold cells identify the others.

With LSTM units, the model performed very
highly on almost all of the infixation patterns when
given at least 500 examples in training. The princi-
pal exception was infixation before the third vowel.
For this pattern, the model nearly always produced
an output that contained the infix (more than 99%
of responses), but erred by placing the infix in the
wrong position (either too early or to late in the
output) or making spurious changes to the base of
infixation (primarily deletion of one or two seg-
ments).

Performance degraded for many patterns in the
very low resource conditions of 100 or 50 training
examples, but not in a way that cleanly observed the
attested vs. unattested divide. Counting patterns
that depend on the distinction between consonants
and vowels (e.g., after the third consonant) were
difficult to learn from 50 examples, but unattested
segment-counting infixation were learned at least
as well as the Chamorro pattern. The results were
overall similar with GRU units, notwithstanding
their relatively limited counting abilities (Weiss
et al., 2018).

3 Reduplication

We also compared learning performance for five
attested reduplication patterns and five patterns that
have been discussed in the theoretical literature
as unattested and putatively impossible (see Ta-
ble 2). The attested patterns included both light
and heavy syllable reduplication, as in Amele and
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Ilokano respectively, and Foot reduplication as in
Yidin. We also considered patterns in which the
reduplicant is reduced relative to the base, either
by Onset simplification as in one pattern of light-
syllable reduplication in Tagalog or by omission of
any Foot-final Coda as in Dyirbal. The unattested
patterns included copying of an initial string of seg-
ments, regardless of its prosodic composition (e.g.,
Marantz, 1982; McCarthy and Prince, 1993), and
Foot reduplication patterns that differ minimally
from Dyirbal in omitting internal or both internal
and final Codas (e.g., McCarthy et al., 2012).

The same set of Spanish lemmas described
above, split into 1000 train and 6000+ test inputs,
was used to implement the reduplication patterns.
As before, a custom regular expression was written
for each pattern; when the base was shorter than the
target reduplicant size, the default was always full
copy (i.e., complete reduplication). Simulations
were performed in the same way as for infixation.

The results indicate that unattested segment-
counting patterns, such as reduplication of the first
four segments, are at least as easy for the model to
learn as attested syllable- and Foot- based patterns.
Indeed, the average accuracy for segment counting
was higher than for attested patterns in the low-
resource conditions. While model performance on
Foot reduplication with deletion of internal Codas
was numerically lower than that of the two attested
Foot-reduplication patterns, accuracy on Foot redu-
plication with omission of all Codas was higher
than for intact Foot reduplication as in Yidij.

4 Ultra-low resource experiments

To better understand which patterns are easiest for
the model to learn, we ran additional simulations



LSTM GRU
Pattern Train size: | 1000 | 500 | 100 | 50 | 1000 | 500 | 100 | 50
Initial o, (e.g., Amele babagawen) | 1.0 1.0 | 96 | 95| 1.0 1.0 | 97 | .92
Initial o, with Onset simplification 1.0 1.0 .96 | 92| 1.0 1.0 | 97 | .92

(e.g., Tagalog tatrabaho)
Initial 0,

(e.g., Dyirbal balgabalgan)

Initial Foot

(e.g., llokano kalkaldin) | .92
Initial Foot with deletion of final Coda .99

(e.g., Yidin palalpalal) | .94

94 | 90 | .84 | 95 95 | .93 | .81
99 | 98 | 91|10 99 | .99 | 93

94 | .89 | 75| .99 99 | .88 | .71

Initial 2 segments
Initial 3 segments

(e.g., pseudo-Dyirbal baganbalgan)

Initial Foot with deletion of all Codas .99

(e.g., pseudo-Dyirbal bagabalgan)

X1 XoX1Xs... | 1.0
X1 XoX3X1X2X3... | 1.0
Initial 4 segments X3 XoX3XyX1XoX3Xy... | 1.0
Initial Foot with deletion of internal Coda 90

1.0 | 1.0 | .99 | 1.0 10 | 1.0 | 1.0
1.0 | 1.0 | 1.0 | 1.0 1.0 | 1.0 | 1.0
1.0 | 98 | 98 | .98 98 | 98 | .97
89 | .85 | .73 | .98 99 | .90 | .70

99 | 97 | 84 | .99 99 | 98 | .86

Table 2: Average held-out test accuracy for attested (top) and unattested (bottom) reduplication patterns

using LSTMs only on extremely low-resource set-
tings of 5, 10, 25, 50, 75, or 100 examples, with 10
simulation runs each. Otherwise, identical settings
to the previous experiments were used. Results on
the held-out test set are summarized in Figure 1.

These results largely confirm the patterns ob-
served in the previous experiments. While the
spread of accuracies is quite wide for all patterns
for 25 or fewer examples, the spread is typically
small with higher amounts of training data, vary-
ing by about 10% or less. Notably, the unattested
segment-counting patterns (e.g., infixation after the
first two segments), are learned reliably with the
least data for both infixation and reduplications,
with average model accuracy above 0.8 with just
25 example. All other types of patterns (involving
prosodic feet, syllables, consonants, or vowels), re-
quire at least 50 examples for this type of accuracy,
suggesting that these patterns are in fact easier for
the model to learn than those which are attested.
No patterns could be learned reliably with fewer
than 25 examples.

5 Discussion

A large body of research in theoretical linguis-
tics has sought to develop restrictive approaches
to infixation and reduplication (e.g., Moravcsik,
1978; Marantz, 1982; Steriade, 1988; McCarthy
and Prince, 1986/1996, 1993; Raimy, 2000; Yu,
2007; McCarthy et al., 2012). For example, the non-
existence of reduplication patterns that consistently
copy the first k segments provided motivation for
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the early C/V skeleton approach (Marantz, 1982)
and for the even more restrictive framework of
Prosodic Morphology (e.g., McCarthy and Prince,
1993). From the perspective of language acquisi-
tion, the principles of such theories can be con-
sidered as limits on the implicit hypothesis space
considered by human learners.

Our results suggest that such limits may be un-
necessary for successful learning of infixation and
reduplication, as long as a relatively modest amount
of input data is available to the learner, and that net-
works of the kind considered here do not have soft
biases that systematically favor natural over unnatu-
ral patterns. This could provide support for theories
that eschew strong synchronic restrictions on mor-
phophonological patterns, and which therefore pre-
suppose robust learning mechanisms (e.g., ble). Al-
ternatively, artificial-grammar or other experiments
may reveal that human pattern learning is limited
or biased in ways that generic deep neural networks
cannot explain. For example, the networks show a
preference for learning segment-counting patterns
over patterns that take prosodic structure into ac-
count, despite these patterns being unattested. As
such, these models do not provide an account of
this apparent bias in human language.
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Figure 1: Held out test set accuracies in an ultra-low resource context (less than 100 examples). Each point

represents a simulation run.
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A Appendix A: Additional infixation
results
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LSTM GRU
Pattern Train size: | 1000 | 500 | 100 | 50 | 1000 | 500 | 100 | 50
Before second V 90 93 | .89 | .64 | 98 97 | .80 | .72
Before third V 83 88 | .80 | .62 | .85 85 | .83 | .68
After second C 1.0 99 | 96 | 95| 1.0 1.0 | .97 | .97
After third C .98 98 .92 |.79 | 97 98 | .94 | .76

Table 3: Average held-out test accuracy for unattested infixation patterns
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