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1 Introduction

Morphological patterns can involve simple con-

catenation of fixed strings (e.g., unkind, kindness)

or ‘nonconcatenative’ processes such as infixa-

tion (e.g., Chamorro lumiPeP ‘saw (actor-focus)’,

Topping, 1973) and reduplication (e.g., Amele

babagawen ‘as he came out’, Roberts, 1987),

among many others (e.g., Anderson, 1992; Inke-

las, 2014). Recent work has established that deep

neural networks are capable of inducing both con-

catenative and nonconatenative patterns (e.g., Kann

and Schütze, 2017; Nelson et al., 2020). In this pa-

per, we verify that encoder-decoder networks can

learn and generalize attested types of infixation and

reduplication from modest training sets. We show

further that the same networks readily learn many

infixation and reduplication patterns that are unat-

tested in natural languages, raising questions about

their relationship to linguistic theory and viability

as models of human learning.

2 Infixation

Broad cross-linguistic surveys have identified a

small number of edge-anchored positions at which

infixes can be located (e.g., before the first vowel of

the word; Yu, 2007). No known language places an

infix such as -um- consistently after the second or

third segment, or after the second or third vowel —

patterns that are trivial to describe formally and that

involve limited counting or memory — and no lan-

guage places a non-reduplicative infix such as -mu-

after the first Onsetless syllable (McCarthy and

Prince, 1993). We implemented a generic encoder-

decoder network with OpenNMT-py (Klein et al.,

2017) and tested its ability to learn and generalize

two attested infixation patterns and eight unattested

patterns (see Table 1).

Because data is scarce for many languages with

infixation and most of the patterns are hypothetical,

we implemented the patterns using the phonologi-

cal forms of 7000+ Spanish lemmas. From a larger

set of lemmas (Sagot, 2018), we eliminated those

that contained triconsonantal clusters, non-initial

onset clusters, word-final coda clusters, or glide-

vowel sequences. This made the syllable structure

of the remaining lemmas somewhat simpler than

that of Spanish, streamlining the definition and

implementation of infixation (and reduplication)

patterns. The remaining lemmas were randomly

partitioned into 1000 train and 6000+ test inputs.

For each infixation pattern, a custom regular expres-

sion was used to create outputs from the inputs.

There is some ambiguity in how unattested pat-

terns that reference the second or third vowel (or

consonant) should apply to inputs that do not con-

tain the designated pivot. On one interpretation,

the infix should ‘back off’ to the immediately pre-

ceding unit of the same type (e.g., appearing after

the first vowel in a monosyllabic form). This is

analogous to a stress pattern that typically targets

the penultimate syllable but assigns final stress in

monosyllables. Alternatively, the infix could de-

fault to a suffix. Under this interpretation, the infix

necessarily ‘skips’ all elements until reaching its

pivot, landing at the rightmost position when the

pivot is absent.1 Table 1 represents the results for

the back-off interpretation while results for the skip-

ping interpretation are provided in the appendix.

The model had an embedding dimension of 50

(approximately twice the number of unique phono-

logical segments that appeared in the lemmas), a

single-layer bidirectional LSTM or GRU encoder

with 100 units, and a single-layer attention-based

decoder with 100 units and copy attention. Ten

simulations were conducted for each of several

resource conditions (1000, 500, 100, or 50 of the

1This ambiguity is negligible for patterns referencing the
first vowel or consonant, or one of the first three segments,
which are essentially always present in the input.
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LSTM GRU

Pattern Train size: 1000 500 100 50 1000 500 100 50

Before first V (e.g., Chamorro lumiPeP) 1.0 1.0 .98 .95 1.0 1.0 .98 .92

After first C (e.g., Tagalog gumradwet) 1.0 1.0 1.0 .99 1.0 1.0 1.0 1.0

Before second V C∗VC∗umV. . . .93 .96 .87 .73 .98 .97 .90 .87

Before third V C∗VC∗VC∗umV. . . .89 .89 .82 .79 .92 .91 .85 .75

After second C V∗CV∗Cum. . . .99 .99 .98 .94 .99 .99 .98 .95

After third C V∗CV∗CV∗Cum. . . .97 .97 .93 .78 .97 .98 .93 .79

After second segment XXum. . . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

After third segment XXXum. . . 1.0 1.0 1.0 .99 1.0 1.0 1.0 1.0

After fourth segment XXXXum. . . 1.0 1.0 1.0 .98 1.0 1.0 1.0 .99

After initial Onsetless syll. (VC∗)muCV. . . .96 .95 .90 .90 1.0 1.0 .95 .88

Table 1: Average held-out test accuracy for attested (top) and unattested (bottom) infixation patterns

input/output training pairs sampled without replace-

ment). In each simulation, the model was trained

for 1000 epochs using Adagrad with an initial learn-

ing rate of 0.01. Most of the average test accuracies

were above .95; bold cells identify the others.

With LSTM units, the model performed very

highly on almost all of the infixation patterns when

given at least 500 examples in training. The princi-

pal exception was infixation before the third vowel.

For this pattern, the model nearly always produced

an output that contained the infix (more than 99%

of responses), but erred by placing the infix in the

wrong position (either too early or to late in the

output) or making spurious changes to the base of

infixation (primarily deletion of one or two seg-

ments).

Performance degraded for many patterns in the

very low resource conditions of 100 or 50 training

examples, but not in a way that cleanly observed the

attested vs. unattested divide. Counting patterns

that depend on the distinction between consonants

and vowels (e.g., after the third consonant) were

difficult to learn from 50 examples, but unattested

segment-counting infixation were learned at least

as well as the Chamorro pattern. The results were

overall similar with GRU units, notwithstanding

their relatively limited counting abilities (Weiss

et al., 2018).

3 Reduplication

We also compared learning performance for five

attested reduplication patterns and five patterns that

have been discussed in the theoretical literature

as unattested and putatively impossible (see Ta-

ble 2). The attested patterns included both light

and heavy syllable reduplication, as in Amele and

Ilokano respectively, and Foot reduplication as in

Yidiñ. We also considered patterns in which the

reduplicant is reduced relative to the base, either

by Onset simplification as in one pattern of light-

syllable reduplication in Tagalog or by omission of

any Foot-final Coda as in Dyirbal. The unattested

patterns included copying of an initial string of seg-

ments, regardless of its prosodic composition (e.g.,

Marantz, 1982; McCarthy and Prince, 1993), and

Foot reduplication patterns that differ minimally

from Dyirbal in omitting internal or both internal

and final Codas (e.g., McCarthy et al., 2012).

The same set of Spanish lemmas described

above, split into 1000 train and 6000+ test inputs,

was used to implement the reduplication patterns.

As before, a custom regular expression was written

for each pattern; when the base was shorter than the

target reduplicant size, the default was always full

copy (i.e., complete reduplication). Simulations

were performed in the same way as for infixation.

The results indicate that unattested segment-

counting patterns, such as reduplication of the first

four segments, are at least as easy for the model to

learn as attested syllable- and Foot- based patterns.

Indeed, the average accuracy for segment counting

was higher than for attested patterns in the low-

resource conditions. While model performance on

Foot reduplication with deletion of internal Codas

was numerically lower than that of the two attested

Foot-reduplication patterns, accuracy on Foot redu-

plication with omission of all Codas was higher

than for intact Foot reduplication as in Yidiñ.

4 Ultra-low resource experiments

To better understand which patterns are easiest for

the model to learn, we ran additional simulations
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LSTM GRU

Pattern Train size: 1000 500 100 50 1000 500 100 50

Initial σµ (e.g., Amele babagawen) 1.0 1.0 .96 .95 1.0 1.0 .97 .92

Initial σµ with Onset simplification 1.0 1.0 .96 .92 1.0 1.0 .97 .92

(e.g., Tagalog tatrabaho)

Initial σµµ (e.g., Ilokano kalkaldiN) .92 .94 .90 .84 .95 .95 .93 .81

Initial Foot with deletion of final Coda .99 .99 .98 .91 1.0 .99 .99 .93

(e.g., Dyirbal balgabalgan)

Initial Foot (e.g., Yidiñ NalalNalal) .94 .94 .89 .75 .99 .99 .88 .71

Initial 2 segments X1X2X1X2. . . 1.0 1.0 1.0 .99 1.0 1.0 1.0 1.0

Initial 3 segments X1X2X3X1X2X3. . . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Initial 4 segments X1X2X3X4X1X2X3X4. . . 1.0 1.0 .98 .98 .98 .98 .98 .97

Initial Foot with deletion of internal Coda .90 .89 .85 .73 .98 .99 .90 .70

(e.g., pseudo-Dyirbal baganbalgan)

Initial Foot with deletion of all Codas .99 .99 .97 .84 .99 .99 .98 .86

(e.g., pseudo-Dyirbal bagabalgan)

Table 2: Average held-out test accuracy for attested (top) and unattested (bottom) reduplication patterns

using LSTMs only on extremely low-resource set-

tings of 5, 10, 25, 50, 75, or 100 examples, with 10

simulation runs each. Otherwise, identical settings

to the previous experiments were used. Results on

the held-out test set are summarized in Figure 1.

These results largely confirm the patterns ob-

served in the previous experiments. While the

spread of accuracies is quite wide for all patterns

for 25 or fewer examples, the spread is typically

small with higher amounts of training data, vary-

ing by about 10% or less. Notably, the unattested

segment-counting patterns (e.g., infixation after the

first two segments), are learned reliably with the

least data for both infixation and reduplications,

with average model accuracy above 0.8 with just

25 example. All other types of patterns (involving

prosodic feet, syllables, consonants, or vowels), re-

quire at least 50 examples for this type of accuracy,

suggesting that these patterns are in fact easier for

the model to learn than those which are attested.

No patterns could be learned reliably with fewer

than 25 examples.

5 Discussion

A large body of research in theoretical linguis-

tics has sought to develop restrictive approaches

to infixation and reduplication (e.g., Moravcsik,

1978; Marantz, 1982; Steriade, 1988; McCarthy

and Prince, 1986/1996, 1993; Raimy, 2000; Yu,

2007; McCarthy et al., 2012). For example, the non-

existence of reduplication patterns that consistently

copy the first k segments provided motivation for

the early C/V skeleton approach (Marantz, 1982)

and for the even more restrictive framework of

Prosodic Morphology (e.g., McCarthy and Prince,

1993). From the perspective of language acquisi-

tion, the principles of such theories can be con-

sidered as limits on the implicit hypothesis space

considered by human learners.

Our results suggest that such limits may be un-

necessary for successful learning of infixation and

reduplication, as long as a relatively modest amount

of input data is available to the learner, and that net-

works of the kind considered here do not have soft

biases that systematically favor natural over unnatu-

ral patterns. This could provide support for theories

that eschew strong synchronic restrictions on mor-

phophonological patterns, and which therefore pre-

suppose robust learning mechanisms (e.g., ble). Al-

ternatively, artificial-grammar or other experiments

may reveal that human pattern learning is limited

or biased in ways that generic deep neural networks

cannot explain. For example, the networks show a

preference for learning segment-counting patterns

over patterns that take prosodic structure into ac-

count, despite these patterns being unattested. As

such, these models do not provide an account of

this apparent bias in human language.
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A Appendix A: Additional infixation

results
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LSTM GRU

Pattern Train size: 1000 500 100 50 1000 500 100 50

Before second V .90 .93 .89 .64 .98 .97 .80 .72

Before third V .83 .88 .80 .62 .85 .85 .83 .68

After second C 1.0 .99 .96 .95 1.0 1.0 .97 .97

After third C .98 .98 .92 .79 .97 .98 .94 .76

Table 3: Average held-out test accuracy for unattested infixation patterns
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