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ABSTRACT

We study the problem of learning fair prediction models for unseen
test sets distributed differently from the train set. Stability against
changes in data distribution is an important mandate for responsible
deployment of models. The domain adaptation literature addresses
this concern, albeit with the notion of stability limited to that of
prediction accuracy. We identify sufficient conditions under which
stable models, both in terms of prediction accuracy and fairness,
can be learned. Using the causal graph describing the data and
the anticipated shifts, we specify an approach based on feature
selection that exploits conditional independencies in the data to
estimate accuracy and fairness metrics for the test set. We show
that for specific fairness definitions, the resulting model satisfies a
form of worst-case optimality. In context of a healthcare task, we
illustrate the advantages of the approach in making more equitable
decisions.
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1 INTRODUCTION

Deployment of machine learning algorithms to aid consequential
decisions, such as in medicine, criminal justice, and employment,
require revisiting the dominant paradigms of training and testing
such algorithms. Particularly, the assumption that the data distri-
bution in training and deployment will be the same is not always
warranted. Examples of the impact of distribution shift can be found
in medical imaging tasks [51, 68], where the algorithms trained on
one chest radiography dataset performed poorly on other datasets.
Similarly, Nestor et al. [41] find that models for critical care tasks
degraded in performance over time resulting from changes in the
instrumentation of the electronic health records. Given the safety-
critical nature of the decisions, the decision-making process should
account for these shifts in distributions to ensure high predictive
accuracy of the algorithms.

Many methods exist to learn under distribution shifts [52], includ-
ing recent work from a causal inference perspective [2, 46, 55, 62].
Such methods have significant appeal since they allow learning
accurate models for arbitrary shifts, including those in unseen fu-
ture data. This is achieved by exploiting causally-relevant factors
in data that are generalizable to unseen test sets, as opposed to
fitting to the factors specific to the training sets. However, the focus
of the methods has been on average case prediction performance
alone. In certain circumstances, while high predictive accuracy
is a necessary requirement, decisions made using the algorithms
should also not lead to or perpetuate past disparities among groups
in the data. Without any design changes, algorithmic solutions for
mitigating distribution shifts that do not account for disparities in
training data can result in disparate impact while predicting under
distribution shifts. We discuss a concrete example later.

At the same time, most work in algorithmic fairness addresses
the setting with a single learning task (or domain) under the as-
sumption that the data distribution does not change between train
and test settings [1, 22]. Under this assumption, minimizing classifi-
cation risk along with constraints on the fairness metric in training
data is likely to generalize to identically distributed test data. Think-
ing about shifts in fair machine learning is also important though,
since deployment of a (fair) decision-making tool might affect what
data is collected in future (e.g. selectively policing locations with
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high predicted risk [31]), or might incentivize individuals to strate-
gically adapt their features for favourable outcomes [21, 30], thus,
causing distribution shift. In addition, due to data-scarcity, such
as in medical decision-making [66], the models may be applied to
newer settings (such as hospitals) than the ones seen during train-
ing. The issue of ensuring fairness when deployment environment
differs from the training one has received little attention [57]. Due
to the variety of train-test shifts that can occur, conceptualizing
and addressing the problem has been challenging.

Our contributions. We address the problem of learning fair
models under mismatch in train-test distributions when either lim-
ited or no data is available from the test distribution. We consider
the setup of causal domain adaptation where possible shifts are
expressed using causal graphs with the goal of learning models
with stable performance under the specified shifts. Our main con-
tribution is to formulate the fair learning problem in this setup
and provide sufficient conditions that enable estimation of model
accuracy and fairness metrics in the test domain. For a subset of
covariate shifts and for several well-known group-fairness metrics,
we show that the resulting solution is worst-case optimal. We op-
erationalize the sufficient conditions in an algorithm based on a
reduction to the standard fair learning problem. Finally, we present
a case study on a medical decision-making task which demonstrates
applicability of the approach.

2 RELATED WORK

Domain adaptation and fair machine learning are both widely stud-
ied problems. Thus, we primarily focus the discussion on literature
at their intersection.

Fairness. A number of fairness metrics have been proposed
that make different normative statements on the machine learning
models’ output (see [37] for a review). Depending on the application
context, different metrics might be appropriate or mandatory by
law [40]. Consequently, fairness methods have been developed to
build/modify models that satisfy different fairness criteria. We focus
on a class of methods that pose the problem as that of constrained
optimization [1, 15].

Domain adaptation. The seminal work of Ben-David et al. [3]
relates the target domain error to the source domain error and
the distance between the distributions. This inspired many domain
adaptation methods based on adversarial training of representations
to align the distributions [18]. One drawback is that the methods re-
quire some data from test distribution while training. When causal
structure of the domains is known, recent work on causal domain
adaptation [33, 55, 60, 62] identify predictors with stable accuracy
under unseen changes in distribution. To accomplish this, the meth-
ods exploit the principle of invariance of causal mechanisms [45,
Sec. 1.3] that says - interventions (or shifts) in certain mechanisms
in the graph keep the other mechanisms unchanged. The invari-
ant mechanisms can be used to build stable predictors. Similar to
[46, 62], we adopt a setting where a causal graph specifies antici-
pated distribution shifts and no target domain data is given (but
can be used if available). The goal is to construct predictors that
are invariant to all anticipated shifts, without necessarily observ-
ing the corresponding data. The setting is particularly well-suited
for consequential decision-making where we want to proactively
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guard against shifts that may result in harm, before deploying the
model and collecting target data. However, none of these methods
consider the possibility of unfair outcomes after adaptation.

Fairness and domain adaptation. On multiple benchmark
datasets, Friedler et al. [17] found that fair machine learning meth-
ods showed high variance in achieved accuracy and fairness on
randomly split train-test sets. To mitigate this, Huang and Vishnoi
[25] propose adding a regularization term to the constrained ERM
problem that guarantees stability. However, the term stability is
used for changes in the fairness metric as a training data sample is
removed/added, as opposed to changes under different distributions.
In [13], authors propose algorithms for generalisation of fairness
constraints but to an i.i.d. test set. In [32], the authors propose
learning feature representations, using adversarial training, which
result in fair classifiers when trained on the representations. They
do not address changes in distribution of the features (and their
representations) across domains.

In the same setup as ours under the assumption of covariate
shift but with the availability of unlabelled target data, [12] give
weighting-based estimators and [53] take a robust optimization
approach. Other works that assume some labelled data from the
target domain include [44, 57, 59]. For instance, [44] learns a repre-
sentation from multiple domains with guarantees on generalization
to the target domain, but requires labelled target data to fine-tune
classifiers and a low-rank assumption that constrains dis-similarity
between the domains. In [59], authors restrict to shifts in feature
means and propose ways to flag a potentially unfair model under
such shifts. Further, concurrent work [34] posits a set of test distri-
butions defined as weighted combinations of the training data, and
find a fair classifier minimizing the worst loss across such distri-
butions. Instead, we rely on distributional assumptions expressed
using a causal graph. Considering the causal structure of the prob-
lem allows the modeller to express plausible distribution shifts more
intuitively by denoting the mechanisms, instead of the statistical
properties, that can change. It also guides the construction of esti-
mators that are robust against shifts of arbitrary magnitude rather
than only the shifts in the observed datasets.

Our work is related in spirit to [6, 27] who consider building
fair models from ‘biased’ training data. Here, we provide a com-
plementary set of results on fairness under train-test distribution
mismatch, avoiding assumptions on specific generative processes
for the shift. Instead we use causal graphs to make weaker assump-
tions on where the mismatch is. This allows us to give a general
characterization of the addressable mismatch settings. Moreover,
at a conceptual level, our focus is on addressing mismatch with
multiple future test sets rather than a biased training set.

3 PROBLEM SETUP

Let us denote all the variables associated with the system being
modelled as V := (X, A, Y), where A is the sensitive attribute, X is
a non-empty set of covariates other than A, and Y is an outcome of
interest. We will consider a binary sensitive attribute, A € {a, d} (i.e.
advantaged and disadvantaged group), and the binary classification
case, thus, Y € {0, 1}. For simplicity of exposition, consider the
case with only two domains — a source and a target — with joint
probability distributions Psource and Prarget, respectively. Crucially,
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the two distributions may be different (e.g. data from two hospitals
with different care practices). Bold letters are used for vectors,
uppercase for random variables, and lowercase for instantiations.

3.1 Fair classifier

Consider that the classifier is built from the feature (sub)set S C {X, A}
and outputs the binary prediction f(S) € {0, 1}.1 We will operate in
the empirical risk minimization framework for learning classifiers
and introduce additional fairness constraints in the objective to con-
trol the inter-group disparity, a commonly-used approach [1, 15, 67].
Each constraint is given by some function G of the prediction, out-
come, and features. Denote the constraint by G(f(S), (Y,S)) < €
with (Y,8) ~ Prarget(Y,S) and some hyperparameter € > 0 allow-
ing for approximate fairness. If there are multiple constraints, we
write the set of constraints succinctly as G(f, Prarget) < €. Note
that the desired fairness constraint G is assumed to be the same
in both the domains. The classification error i.e. probability of a
misclassification is written as P(f(S) # Y). Then, the fair domain
adaptation (DA) problem amounts to finding a minimizer

[Fair DA] ftnget = argmin {Pearget (f(S) # Y) : G(f, Prarget) < €}
feF(S)

1

i.e. a function ftnget in the set of learnable functions ¥ (S) of fea-
tures S that minimizes classification error as well as satisfies fairness
constraints.

Fairness metrics. We will focus on group-fairness metrics de-
fined based on some notion of parity across groups. These have
received much attention in the fair machine learning literature
[1, 15, 22] due to the relative ease of communicating their implica-
tions to stakeholders and the ease of computing them from obser-
vational data.

DEFINITION 3.1. (DP) [7] A classifier f is said to satisfy demo-
graphic parity for some distribution P if P(f(S)|A) = P(f(S)). Thus,
the constraint G is |[P(f(S)|A=a) = P(f(S)|[A=d)| <e.

DEFINITION 3.2. (EO) [22] A classifier f is said to satisfy equal-
ized odds for some distribution P if P(f(S)|Y =y, A) = P(f(S)|Y =
y) fory € {0,1}. Thus, the constraints G are [P(f(S)|Y = y, A =
a)-P(f(S)|Y =y, A=d)| < e fory e {0,1}.

We define two more metrics derived from EO. If we condition
only on Y = 1, the resulting metric is known as true positive rate
equality (TPR), or more commonly equality of opportunity [22].
Similarly, for Y = 0, the metric is known as true negative rate
equality (TNR).

Solving (1) requires estimating the error Parget (f(S) # Y) and
the fairness constraint G(f, Prarget). Given enough samples from
Prarget, standard fair learning methods e.g. [1] return a solution. But,
this is not possible in the Fair DA setting, as we do not have access
to the complete target data. Thus, the central question we ask is:
Under what assumptions can we still find f:;rget? For arbitrary
distribution shifts, it is not possible to answer this question in
affirmative. With background knowledge of how the distributions
differ, past work provides methods to bound the target domain

!Note that S can contain A as we assume that disparate treatment is allowed in the
problems of our interest.
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error. Crucially, such methods still do not guarantee target domain
fairness and using fairness constraints from the source domain,
naturally, does not solve (1). Through the following example, we
illustrate that these design choices can significantly affect accuracy
and fairness of the models. It also shows how the causal inference
framework for domain adaptation allows for the specification of
shifts and design of predictors.

3.2 An illustrative example.

Consider a simplified version of the flu diagnosis task from [36]. The
associated data generating process is shown in Figure 1a. Flu status
Y of a person is to be predicted from three measurements {T, R, A}.
The disease has two known causes R and A, say virus-exposure risk
and age group (indicating adult or child) respectively. In addition,
a noisy yet predictive symptom of flu is observed as T, say body
temperature, which is expressed differently depending on the age
group. A categorical variable C indicates different data collection
sites (the domains) which differ on (i) how well the temperature
is measured, e.g. self-reported vs. clinician-tested (C — T), and
(ii) the proportion of demographics across sites (C — A). Suppose,
a classifier Y is to be built using data from a single site (source
domain) and used in multiple sites (target domains) to allocate
scarce healthcare resources (testing kits, medical consultation) to
individuals. The model designer would like to mitigate differential
error rates across age groups and chooses to use EO as the fairness
constraint while learning Y.

We compare three ways of designing the model that account
differently for the possibility of shift and unfairness. Figures 1b,
1c show results from a simulation, discussed in detail in Section
6.2. As we vary the magnitude of distribution shift between the
sites, the Standard classifier, built by regressing Y on {T, R, A} from
source data degrades in accuracy (blue curve) on target data. By
accounting for the shift, CausalDA, a domain adaptation approach
[55] that only uses the features {R, A}, remains stable (orange curve).
Surprisingly, domain adaptation leads to higher levels of fairness
violations, as shown in Figure 1c. To mitigate this we would want
to learn CausalDA with fairness constraints which is complicated,
as discussed earlier, since we cannot evaluate the constraints for
unseen target domains. However, following the method proposed
in Section 5, learning CausalDA with fairness constraints on the
source domain (red curve) retains both the desired properties —
consistently high accuracy and low unfairness. Thus, the example
illustrates the need to consider fairness constraints while adapting
for the shifts.

Next, we describe the joint causal graphs in more detail that
allow us to represent the potential shifts, followed by our main
results on learning fair and stable predictors under specific shifts.

4 JOINT CAUSAL INFERENCE AND DOMAIN
ADAPTATION

Following recent work [33, 38, 55], we consider a joint causal graph
which represents the data distribution for all domains. This allows
us to reason about the invariant distributions under shifts, which
is key to addressing the fair domain adaptation problem.

Assume that all the source and the target domains are charac-
terized by a set of variables V, which are observed under different
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Figure 1: Flu diagnosis example. (a) Data generating process for source and target domains represented as a causal graph where
domains are indicated by the context variable C. Edges from C represent shifts between the domains. {T,R, A} are features,
with sensitive attribute A, and outcome Y. (b,c) Classification accuracy and fairness violation with varying magnitude of shifts
for synthetic data (Section 6.2) for the example. Fairness violation is computed as the maximum violation of equalized odds
constraint across Y and A. Median values are plotted over 50 runs and error bars show first and third quartiles. Proposed
approach (CausalDA+FairLearn) achieves both stable accuracy and fairness in the shifted target domains.

contexts (e.g. experimental settings) particular to each domain. Joint
Causal Inference [38, Sec. 3] framework provides a way of rep-
resenting the data generating process for all domains as a single
causal graph representing an underlying causal model. In addition
to the system variables V, the framework introduces an additional
set of exogenous variables, named context variables C , that rep-
resent the modeler’s knowledge of how the domains differ from
one another (given by the causal relations among the system and
context variables).? We include the formal definition of JCI frame-
work in Appendix D along with the necessary assumptions on
faithfulness, and Markov property. For the example in Figure 1a,
system variables are {T, R, A, Y}. With a binary context variable
C,P(T,RAY|C=0)and P(T,R,A Y | C = 1) correspond to joint
distributions for the two domains, source and target. More gener-
ally, setting context variable to a particular value, say C = ¢, can
be seen as an intervention that results in the data distribution for a
domain P(V | C =¢).3

A class of causal domain adaptation problems is to learn a pre-
dictor that generalizes to different target data distributions which
correspond to different settings of the context variables in the causal
graph. In [33], authors propose learning a predictor using only a
subset of the features that guarantee invariance of the outcome
distribution conditional on the chosen feature subset. More specifi-
cally, if V= (X, A, Y) and C are the context variables, the desired
subset of features S C {X, A} satisfies Y 1L C | S, implying that
the conditional distribution of outcome Y given the features S is
invariant to the effect of domain changes. The set S is referred to as
a separating set as it d-separates Y and C in the joint causal graph.
This criterion generalizes the covariate shift criterion [63], which
assumes independence between Y and C conditioned on all the fea-
tures. Note that the separating set criterion excludes graphs where

2In a related concept, selection diagrams also add auxiliary variables to a causal graph
to represent the distributions that can change across different domains [46]. More
discussion on the relationship between the two can be found in [38].

3Under the assumptions of JCI framework, discussed in Appendix D, this is the same
as P(Vgo(c=c)) where do(C = ¢) denotes an intervention on C.

C directly causes Y, known as label shift. The predictor using the
separating set satisfies a desirable optimality property. As shown in
[55], it has the lowest mean squared loss against any distribution
having the same outcome distribution Y | S as in the source.
However, using a separable set in itself does not guarantee fair-
ness. For example, separating sets for Figure laare S € {{A}, {A,R}}.
But neither satisfies the condition required for EO, in general, i.e.
f(S) L A | Y. Thus, to ensure both invariance and fairness, we
restrict our search space in Fair DA (1) to F(S), i.e. the set of
predictors built using the separating set S. Next, we describe the
assumptions that allow us to solve this problem. All proofs are
included in Appendices A—C in the supplemental material.

5 FAIR DOMAIN ADAPTATION

Now, we return to our problem of finding fair classifiers for the
target domain and describe how the joint causal graph helps in
solving (1). In the context variable notation, we are interested in
finding
argmin {P(f(S) # Y|C =1) : G(f,P(Y,S|C =1)) < €}
feF(S)
where C = 1 represents the target domain. We start by noting the
need for further assumptions.

PROPOSITION 1. Fair DA problem (1) is not solvable in general
without further assumptions.

Proposition (1) follows by the impossibility results on domain
adaptation [4]. Even when domain adaptation is possible, i.e. target
domain error is identifiable (uniquely estimable in terms of source
domain distribution), the fairness constraint is not guaranteed to be
identifiable. We make this point by constructing an example with
group-specific measurement error in features.

Thus, the natural question is under what conditions on distribu-
tions and assumptions on data availability can we identify the error
P(f(S) # Y|C = 1) and the fairness constraint G(f, P(Y, S|C = 1)).
We make the following two assumptions for the selected features
S € {X, A} for the classifier.



Fairness Violations and Mitigation under Covariate Shift

AssUMPTION 1 (INVARIANCE OF CLASSIFICATION ERROR). Fea-
tures S form a separating set, i.e. C L Y | S.

ASSUMPTION 2 (INVARIANCE OF FAIRNESS CONSTRAINT). De-
pending on the fairness metric, assume that

o For demographic parity (DP), S satisfiesC 1L S | A,

o For equalized odds (EO), S satisfiesC L S | Y, A,

e For true positive rate equality (TPR), S satisfiesC L S| Y =
LA,

o For true negative rate equality (TNR), S satisfiesC L S|Y =
0,A.

For example, the condition for DP asserts that the characteristics
(in terms of features S) of the sensitive groups are invariant across
domains. Similarly, the condition for EO says that feature distribu-
tion for groups defined by the label and the sensitive attribute is
invariant across domains. This ensures that we can evaluate (and
hence balance) the corresponding fairness constraint irrespective
of the domain.

Next, we consider two scenarios to state the quality of the so-
lution that can be found under the two assumptions - (i) when
labelled source and unlabelled target domain data is available, alter-
natively, (ii) when only the labelled source domain data is available.

5.1 Fair domain adaptation with limited target
domain data

PROPOSITION 2. Given Assumptions 1 and 2 hold, then using
only labelled source and unlabelled target data, the Fair DA problem
(1) can be solved exactly by a data re-weighting method.

Proor skeTCH. This follows since the error is invariant, i.e.
P(f(S) #Y|S,C=1) =P(f(S) # Y|S,C = 0), due to Assumption 1.
This implies that

Eys(P(f(S) # Y|S,C=1)) = Eys(w(S) X P(f(S) # YIS,C =0))

where weights, w(S) = P(S|C = 1)/P(S|C = 0), are the ratio of
feature densities. Under Assumption 2, the fairness constraint is
invariant, i.e. G(f, P(Y,S|C = 1)) = G(f, P(Y,S|C = 0)). To solve
(1), we find

argmin {w(S)P(f(S) # Y|C =0) : G(f,P(Y,S|C =0)) < €}.
feF(s)

Both the error and the constraint are estimable as we have labelled
source data sampled from P(Y,S|C = 0). The remaining term is
the density ratio w(S) used to re-weight the error. Since we have
features from both source and target in this scenario, w(S) can be
computed, for instance, using a probabilistic classifier for discrimi-
nating between the domains [5]. o

This solution strategy is akin to the importance-weighting ap-
proach of addressing covariate shift [58, 63], with the distinction
being the use of the separating feature set instead of all the features.

5.2 Fair domain adaptation with no target
domain data

In the scenario when only the labelled source data is available, we
cannot use Proposition (2) since we cannot estimate the weights.
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Figure 2: Examples of addressable causal graphs. (a) Disease
risk scoring under population shift and treatment policy
shift [60] (b) Credit scoring under population shift [10]. Fol-
lowing Assumptions 1 and 2, including A in the feature set
blocks the effect of population shift (e.g. the paths in ma-
genta) and excluding L from the feature set blocks the effect
of treatment policy shift (e.g. the path in green).

Instead, we use the source data with the selected features,

f* € argmin {P(f(S) # Y|C =0) : G(f,P(Y.S|C =0)) < €},

FeF(s)
with S satisfying Assumptions 1 and 2
()

Next, we show that this solution minimizes the worst-case error
under fairness constraints among target distributions satisfying the
two assumptions with respect to the feature subset S. Such a prop-
erty might be desirable for models aiding consequential decision-
making as it guarantees good performance under the worst possible
target distribution. In other words, the solution to (2) will perform
well for any target distribution we may encounter, as long as the
distribution adheres to the stated assumptions.

Denote the set of continuous functions which satisfy the fairness
constraints G with respect to the distribution P by

F(G,P) = {f €C": G(f,P) < €},
where C? denotes the set of all continuous functions. Let # denote
the distributions over (X, A, Y) that satisfy Assumptions 1 and 2

for some features S. Then, the set F(G, P) is the same for any
distribution P € P.

LemMmA 1. F(G,P) =F(G,Q), VP,QeP

By Assumption 2, if G(f, Q) holds then G(f, P) also holds. Thus,
the two sets are the same. Therefore, we can denote the set of fair
functions by (G, P).

For the next result, we will restrict to three fairness definitions
(DP, TPR, or TNR) and assume that the conditional outcome, i.e. the
random variable P(Y = 1|X, A, C = 1), has strictly positive density

n [0, 1]. This technical condition allows us to characterize the
optimal predictors in ¥ (G, P), following Corbett-Davies et al. [11].

THEOREM 1 (WORST-CASE OPTIMALITY). Consider the set of dis-
tributions P satisfying Assumptions 1 and 2 which are absolutely
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Algorithm 1 Fair domain adaptation via reduction to standard fair
learning

Input Joint causal graph G, source data Dsource, fairness metric
Output Classifier ftzrget(s) or No_solution
Initialize Ry, <« {}.
forS C {X,A} do
Solve min ¢ #(s) Psource (f (S) # Y) and compute error Ryy(s)
on validation set
Ryal < {Ryal, Rval(S)}
end for
Sort Ry, in increasing order
Traverse Ry, and select S satisfying Assumptions 1 and 2, say
S*, by checking for d-separation in graph G
if S* exists then
Solve Fair DA problem (2) with features S* and return output
else
return No_solution
end if

continuous with respect to the same product measure, and a set of
fair functions ¥ (G, P) satisfying either DP, TPR, or TNR. Assume
that the conditional outcome has strictly positive density. Then, the
proposed classifier f * satisfies
f*e argmin sup P(f(X,A) #Y) (3)
feF(GP) PeP

That is, the proposed approach achieves minimum worst-case
error amongst the fair predictors with respect to the distributions
satisfying the two assumptions. We note that the assumption of
absolute continuity in Theorem 1 is made to avoid cases where
source and target distributions have disjoint support, which would
make generalization challenging if some parts of the feature space
are not observed at all in the source domain.

5.3 Practicality of assumptions

Assumptions 1 and 2 together describe the types of shifts that our ap-
proach can address. Graphically, these are characterized as (a) shifts
with causal paths to Y which all include A (ie. C--- »A— ---Y
with all arrows toward Y), and (b) shifts with non-causal paths
toY (ie. C--- »>M« ---Y for some feature M € S). This means
that any shift causing change in the distribution of the sensitive
attribute as well as any shift in variables with a non-causal path
to Y can be addressed. Figure 2 gives an example of both the cases
(described in more detail in Appendix F). Shifts in distribution of
sensitive attribute are common when there is sample selection bias
e.g. patient demographics being different between rural and urban
hospitals. In Section 6.4, we demonstrate a general class of shifts in
medical diagnosis tasks where both the assumptions are satisfied.
Finally, we note that the assumptions (barring those for DP) are
untestable without access to labelled target data. The reason for
untestability is the same as that for no unmeasured confounding -
we do not observe the (counterfactual) target data, and hence cannot
test for conditional independence. Thus, background knowledge of
plausible shifts are critical.

Singh, et al.

5.4 Proposed algorithm

The approach described in (2) suggests a simple algorithm based
on feature selection followed by solving the standard fair learn-
ing problem. We assume that the following are given — a causal
graph for the system of interest G and data from a source domain
Dsource = {(Xi, Aj, Yi) YL, . The steps, outlined in Algorithm 1, are
as follows. (a) Iterate over all feature subsets to rank them in in-
creasing order of their empirical error on the source domain. (b)
Starting from the feature set with the least error, check for As-
sumptions 1 and 2 using d-separation [45] in G. (c) Solve the fair
learning problem with Dsoyrce limited to model class ¥ (S). This
can be achieved by a fair learning algorithm, such as [1], chosen
based on the model class and the fairness definition. If there is no S
satisfying the assumptions, we do not return a solution.

The time complexity is dominated by the search over feature
subsets in (a) which is exponential in number of features. To reduce
the combinatorial search, we can run a feature selection procedure,
e.g. the lasso in case of linear models [23, Chapter 3], to prune
non-predictive features. Another heuristic is to start with the set of
causal parents of Y (which satisfy Assumption 1) and prune it to
get a subset satisfying Assumption 2.

5.5 Extension to Counterfactual Fairness

Another set of fairness definitions based on the causal effect of the
sensitive attribute on the prediction have been proposed [28, 29, 39].
We consider one version of these counterfactual fairness definitions.

DEFINITION 5.1. (Ctf) [29] A classifier Y = f(X, A) is said to
be counterfactually fair if the counterfactual distribution of Y con-
ditioned on all observed values is the same undef do(A = a) and
do(A=d), ie P(Yyo(a=a) =YX =% A=1) = P(Ygo(a=d) = yIX =
x,A=1i), fory € {0,1} and i € {a,d}.

One method to build a classifier f(S) satisfying Ctf is to only
use feature set S € {X, A} that does not contain any descendant of
A in the causal graph [29, Lemma 1].

Thus, the counterpart of Assumption 2 for solving Fair DA under
Ctf'is that the selected feature set contains the non-descendants of
A. Combined with Assumption 1, we select non-descendants of A
which form a separating set in order to solve Fair DA. Since, Ctf
only requires change in feature subset and does not include any
fairness constraints in the fair learning problem, we can show the
worst-case optimality result as well (described in Appendix E).

However, we note that there are multiple ways of defining coun-
terfactual fairness. For instance, [39] require that causal effects of
A on Y through particular paths should be zero or small. Further
work should explore approaches to solve Fair DA under broader
definitions of counterfactual fairness.

6 EXPERIMENTS

The experiment settings explained next are designed to evaluate per-
formance (accuracy and fairness) of the proposed classifier, trained
using a source dataset, on unseen target datasets. The constrained
learning problem in (2) is solved using the algorithm by [1], re-
ferred henceforth as FairlLearn, which converts the problem into a
sequence of weighted cost-sensitive classification problems. Predic-
tive performance is measured using accuracy (percentage correct),
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Figure 3: (a) Data for the domains with shift governed by y, highlighted in red. (b,c) Accuracy and fairness metrics on synthetic
data example with different magnitude of shifts. Median values are reported over 50 runs and error bars show first and third
quartiles. Proposed approach CausalDA+FairLearn is both accurate and fair under large shifts.

area under ROC and precision-recall curves (AUPRC). For the exper-
iments presented here, we use EO as the desired fairness constraint.
To evaluate (un)fairness, we report the maximum violation of the EO

constraint, i.e. maxye{o,1},Ac{ad} |P(f (S)|Y,A) -P(f(S)| Y)’.

6.1 Baselines.

We consider five baselines which account for either distribution
shift, unfairness, both, or none of these.

e Standard is the optimal un-constrained classifier with all
available features, i.e. f(V\Y).

e CausalDA is the classifier with the separating set, i.e. f(S)
st.CLY]|S.

e OTDA is an optimal transport-based method for unsupervised
domain adaptation [14].

e Standard+FairLearnis f(V \Y) trained with FairLearn.

e Finally, CausalDA+FairLearn is the proposed method i.e.
f(S) trained with FairLearn where S satisfies Assumptions
1and 2.

Results on another method, anchor regression [56], are included in
Appendix H. Since this method requires data from multiple sources,
we evaluate it against the above methods in a separate experiment
setting. Hyperparameters used for the methods are reported in
Appendix I. Code for reproducing results on synthetic data is at
https://github.com/ChunaraLab/fair_domain_adaptation.

6.2 Synthetic data example

Setup. For the flu example in Figure 1a, we generate data from a
structural equation model described in Figure 3a with linear rela-
tionships and logit link function for binary variables. To generate
target domains, we perform soft interventions [35] to shift distribu-
tions of A and T. The shift magnitude is governed by a multiplier
y in the linear equations. In total, 50 pairs of source and target
datasets are simulated with N = 2000 samples in each dataset. The
proportion of disadvantaged group in source is kept at roughly
0.5. In target domains with an extreme value for y = 15, the ratio
shifts to roughly 0.94. Class ratio is varied from 0.5 to 0.36 with

increase in y. From Figure 1a, we observe that S={A, R} satisfies
the two assumptions. Adding T (a collider) to S makes the predictor
dependent on C and, thus, unstable. We use logistic regression mod-
els in all experiments. In Figure 3b, the goal is to find a classifier
performing well on both accuracy and fairness, i.e. one close to the
right-hand bottom corner.

Results. For a high magnitude of shift, Figure 3b, domain adap-
tation (CausalDA) leads to considerably higher accuracy than using
all features (Standard), but results in high unfairness. Learning
with fairness constraints (CausalDA+FairlLearn) which results in
low unfairness with a minimal loss in accuracy even when the do-
mains differ significantly. As seen in Figure 3c, for low magnitudes
of shift, CausalDA+FairLearn still has low unfairness but results
in a pessimistic accuracy estimate as it accounts for larger shifts
than are seen in the target domain. Thus, in practice, the choice of
method will depend on the expected magnitude of shift.

6.3 Synthetic data example: additional results

Varying magnitude of shift. To check robustness of different
models to distribution shift, we generate target datasets with dif-
ferent values of y in the linear structural equations in Section 6.1.
Figure 5 (a,b,c), included at the end, shows two predictive perfor-
mance metrics — Accuracy (percentage correct), AUROC - and one
fairness metric — maximum fairness violation — for different mag-
nitudes of shift. We observe the same trends as reported in Section
6.1, i.e. CausalDA (orange curve) achieves stable predictive perfor-
mance but leads to high unfairness, whereas CausalDA+FairLearn
(red curve) achieves both stable predictive performance and low
unfairness.

Results with demographic parity. Figure 5 (d,e,f) report re-
sults on the synthetic example with demographic parity (DP) as
the fairness constraint instead of EO. In case of DP, the fairness
violation is quantified as |[P(f (S) | A=a) —P(f(S) | A= d)’. We
observe similar trends as compared to the plots for EO.
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lab test values due to unobserved common causes. (b) Legend for variables in the graph. (c) Accuracy and fairness metrics for
AKI data. Median values are reported over 50 runs and error bars show first and third quartiles. Proposed approach improves

fairness with small loss in accuracy, even on shifted target data.

6.4 Case study: diagnosing Acute Kidney Injury

Acute Kidney Injury (AKI) is a condition characterized by an acute
decline in renal function, affecting 7-18% of hospitalized patients
and more than 50% of patients in the intensive care unit (ICU) [8].
The condition can develop over a few hours to days and early predic-
tion can greatly reduce the fatalities associated with the condition.
Hence, building models for predicting AKI risk from clinical data is
an active area of research. Such models can be used to risk-stratify
patients to screen them for close monitoring or to perform further
diagnostics to guide course of treatment [24]. Importantly, AKI in-
cidence has well-documented disparities across groups defined by
race and sex [19, 20]. Thus, introduction of risk prediction tools for
guiding clinical care has a potential to perpetuate such disparities,
or alternatively, to address them through a more deliberate design
of the prediction tools. A recent study [64] showed good predictive
performance for AKI based on patient data provided by the U.S.
Department of Veteran Affairs. However, the female population
was severely underrepresented in the data, which raises concern
over differential error rates when deployed in a different popula-
tion. Therefore, to analyze the fairness across sensitive groups, we
conduct experiments on MIMIC III, a publicly-available critical care
dataset [26]. We extract variable types, mentioned in caption of Fig-
ure 3, for around 24K patients. Pre-processing steps are described in
Appendix I. We use a simplified causal graph for the AKI diagnosis
task, Figure 4a, based on the one used by [60] for a sepsis diagnosis
task. The group sex=female is taken as the sensitive attribute to
assess fairness of the predictions. In this case study, the AKI risk
score is not intended to prescribe treatment, but to flag a patient for
extra care resources e.g. by alerting clinical staff. Thus, the potential
harm that we want to avoid is groups having unequal opportunity
to such care resulting from group differences in prediction errors.

Setup. Patient encounters are randomly split (2:1) into source
and target data. We artificially introduce two types of shifts — (a)
change in female proportion, and (b) change in measurement pol-
icy, where a lab test is prescribed less often — some of the factors
affecting model performance across clinical settings [54]. We ran-
domly downsample female population by rejecting each row in the
source data from that group with probability 50%. This shifts the
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proportion of females from 40% to 25%. Also, we randomly choose
50% encounters in the target data and add missing values for the
Blood Urea Nitrogen (BUN) test, a biomarker of AKI [16]. Results
with other missingness proportions are included in Appendix I.

From Figure 4a, we note that S={D, M, X\ BUN} satisfies the two
assumptions. We report AUPRC in Figure 4c, instead of accuracy, as
it is less sensitive to class imbalance (class ratio is 0.21). All results
are reported for classifiers trained with gradient boosting trees.
We drop OTDA from comparison due to its low accuracy and high
running time for this dataset.

Results. We find that classifiers with separating feature set
perform significantly better in AUPRC compared to those with
all features (exact numbers are reported in Appendix I). Further,
CausalDA+FairlLearn improves fairness in target domain, reduc-
ing fairness violation by 47% with 0.8% decrease in AUPRC. Thus,
the experiments provide preliminary evidence that our method
can learn stable classifiers while being fair for a class of shifts in
diagnosis tasks denoted by Figure 4a. Note that the setup has some
limitations, namely, adding missing values to perturb target data
conflates the effectiveness of the procedure for handling missing
data (mean value imputation in our case) with the procedure for
domain adaptation. We plan to validate the approach on datasets
across multiple hospitals or time points to address these limitations.

7 LIMITATIONS AND DISCUSSION

Knowledge of causal graph. Our approach requires the causal
graph for the system being studied to check whether the two as-
sumptions are satisfied for any given subset. While this is a require-
ment made by multiple domain adaptation methods [60, 62], this
can be relaxed when data from multiple domains are available. In
such settings, causal discovery methods [47] can be used to posit
a graph and validate with domain experts. Such a procedure is
demonstrated in [61]. An important direction for future work in-
cludes identifying the desired feature subsets with causal discovery
algorithms. We recommend that the causal graph be postulated
conservatively, i.e. only adding conditional independencies that
are well-substantiated by domain knowledge. In this case, if the
separating features are not found, our method will output that a fair
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predictor is not possible instead of incorrectly returning a model
that will not be fair.

Addressable shifts. In Section 5.3, we described shifts that our
approach can address and presented examples. However, these are
only a part of the possible shifts that a modeller may worry about.
For example, shifts in direct causes of the outcome are excluded
due to Assumption 2. Such shifts can result in arbitrary changes to
the outcome within each group, making it impossible to balance
group-specific statistics in the fairness constraint (see Appendix
A for an example). These are difficult to address without making
strict assumptions on magnitude of the shift or assuming access to
target data. Thus, for some joint causal graphs, Algorithm 1 might
not yield any feature set. In such cases, an alternative is to return
the set with the least source domain risk but such a set has no
generalization guarantee.

Algorithmic fairness in healthcare to promote health eq-
uity. Disparities in health outcomes and healthcare access across
different groups (e.g. based on race and gender) arise from multiple
reasons such as socio-economic inequities (e.g. due to structural
racism) [50] and clinician bias [43]. Such disparities can result in
differential model performance across groups as Obermeyer et al.
[42] finds in context of a model for identifying patients who need
extra care resources. Left unaddressed, allocating resources using
‘biased’ models may worsen health disparities. As a consequence, a
growing body of work aims to develop algorithms embodying fair-
ness principles specific to healthcare [9]. This includes constraining
prediction errors across groups for the tasks of predicting risk of
cardiovascular events [48] or predicting healthcare costs [69]. How-
ever, such group-level fairness constraints, including the ones we
consider, may not match ethical desiderata in all possible health-
care settings. Some alternative constraints have been defined, for
example, using counterfactuals [49] or preference between group
or aggregate-level models [65]. We plan to investigate fair domain
adaptation under broader notions of fairness. We have motivated
the approach on healthcare tasks due to the importance of ensur-
ing reliable model performance under distribution shifts in this
domain. We note that the approach is more broadly applicable to
other domains involving high-stakes decisions.

8 CONCLUSION AND FUTURE WORK

In absence of data from new environments in which a machine
learning model will be deployed, giving performance guarantees
regarding predictive performance and fairness is challenging. We
find that methods to address distribution shift, while controlling for
decay in accuracy, can result in fairness violations. As a counter-
measure, we show that it is possible to obtain accurate and fair
predictors for widely-studied fairness definitions and under a large
class of shifts particularly prevalent in healthcare tasks. Future
work includes studying fair domain adaptation under parametric
assumptions on shifts, adaptation for counterfactual definitions of
fairness, and finite sample properties of the estimators. We hope
that the problem setup presented here will enable further work at
the intersection of fairness and causal inference.
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over 50 runs and error bars show first and third quartiles. Performance of the proposed approach is stable across different shifts
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