
Pencil: A pipelined algorithm for distributed stencils
Hengjie Wang

University of California Irvine
hengjiew@uci.edu

Aparna Chandramowlishwaran
University of California Irvine

amowli@uci.edu

Abstract—Stencil computations are at the core of various
Computational Fluid Dynamics (CFD) applications and have
been well-studied for several decades. Typically they’re highly
memory-bound and as a result, numerous tiling algorithms have
been proposed to improve its performance. Although efficient,
most of these algorithms are designed for single iteration spaces
on shared-memory machines. However, in CFD, we are con-
fronted with multi-block structured girds composed of multiple
connected iteration spaces distributed across many nodes.

In this paper, we propose a pipelined stencil algorithm called
Pencil for distributed memory machines that applies to practical
CFD problems that span multiple iteration spaces. Based on an
in-depth analysis of cache tiling on a single node, we first identify
both the optimal combination of MPI and OpenMP for temporal
tiling and the best tiling approach, which outperforms the state-
of-the-art automatic parallelization tool Pluto by up to 1.92×.
Then, we adopt DeepHalo to decouple the multiple connected
iteration spaces so that temporal tiling can be applied to each
space. Finally, we achieve overlap by pipelining the computation
and communication without sacrificing the advantage from tem-
poral cache tiling. Pencil is evaluated using 4 stencils across 6
numerical schemes on two distributed memory machines with
Omni-Path and InfiniBand networks. On the Omni-Path system,
Pencil exhibits outstanding weak and strong scalability for up to
128 nodes and outperforms MPI+OpenMP Funneled with space
tiling by 1.33-3.41× on a multi-block grid with 32 nodes.

Index Terms—Computational fluid dynamics, stencils, multiple
connected iteration spaces, cache tiling, pipelining, distributed-
memory machines

I. INTRODUCTION

Stencils are the dominant computational pattern in Com-
putational Fluid Dynamics (CFD) using structured grids. A
stencil is characterized by a regular shape formed by a grid
cell to update and its data-dependent neighboring cells. Figure
1 shows three different stencil shapes in a 2D structured grid,
where the update of the blue cell depends on its pink neigh-
bors. We define the radius of a stencil as the largest distance
between the cell to update and its dependent neighbors. In

(a) Star (b) Box (c) Staggered

Fig. 1: Different stencil shapes in 2D with a radius of 1. The
color represents the value assigned to the cell. In Star and Box
stencils, the value is at the cell’s center. For Staggered stencils,
the value is located on the cell’s face.

stencil computations, the number of floating-point operations
(flops) and DRAM I/O are proportional to the grid size. As
a result, stencils are notorious for being memory-bound on
modern architectures with high machine balance. Cache tiling,
specifically temporal tiling with polyhedral techniques is an ef-
fective optimization for memory-bound applications. Temporal
tiling views the iterations traversing spatial dimensions and the
iterations in time as a single iteration space and decomposes
this space into polyhedral tiles. The fused iterations can
significantly improve cache reuse and performance. Several
temporal tiling algorithms have been proposed in literature
such as overlapped tiling [1]–[4], trapezoidal tiling [5], [6],
diamond tiling [7]–[10], and tessellating tiling [11], [12]. A de-
tailed summary of the state-of-the-art tiling algorithms can be
found in [13], [14]. Tilings can also be applied via automatic
parallelization tools like Pluto [15], [16] and domain-specific
compilers like Pochoir [17], PolyMage[18], and Halide [19].
Nonetheless, the above tiling algorithms and tools are aimed at
stencil computations on shared-memory machines and, more
strictly, in a single iteration space.

Structured grids are organized into blocks (i.e. rectangular
shapes in spatial dimensions). Typically, structured grids for
complex geometries such as an aircraft or turbo-machinery
contain on the order of 100’s of blocks [20]. In such multi-
block grids, each block with the iterations in time forms an
iteration space. The iteration spaces have dependencies where
the blocks are connected. Therefore, in real CFD applications,
we are confronted with multiple connected iteration spaces.
On distributed systems, a multi-block grid is partitioned into
sub-blocks and distributed across multiple nodes. Therefore,
processors have to communicate to exchange data (called halo
layers as thick as the stencil radius) at the blocks’ boundaries
that are connected. This halo exchange happens after each
computation step in iterative stencil applications. To the best
of our knowledge, none of the above state-of-the-art tiling
algorithms and tools apply to multiple connected iteration
spaces on distributed memory machines.

The halo exchange in distributed stencil computations is
most commonly implemented using the Message Passing
Interface (MPI), based on which two parallel models are
widely used – flat MPI and MPI+threads. In flat MPI, the
halo exchange happens not only among cores on different
nodes (inter-node) but also cores on the same node (intra-
node). Presumably, MPI+threads should outperform flat MPI
because threads can avoid intra-node communication by ac-
cessing shared memory. Among the available thread packages,
MPI+OpenMP is the most popular combination for OpenMP’s

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

simplicity and wide support from compilers. Prior works have
compared MPI+OpenMP against flat MPI [21]–[26] and we
refer readers to [27] for a comprehensive summary. We have
no intention to make another comparison except to highlight
that most studies overlook the single-node case.

In this paper, we are interested in optimizing communi-
cation at the user-level i.e. without modifying MPI or the
underlying network software. One approach is to combine
halo layers for several iterations together to reduce the number
of communications at the expense of redundant computation.
This optimization proposed at least as early as [28] has
been widely used under different names such as overlap area
[29], ghost cell expansion [30], and deep halo [31]. Although
improvements have been found in some studies [30], [32], the
effectiveness of this technique highly depends on the network.

A more important optimization is to overlap communica-
tion with computation. MPI implements non-blocking rou-
tines for this purpose. However, as discovered by several
studies [33]–[36], simply inserting computation between non-
blocking send/receive (put/get) and wait routines (window
fences) does not result in an overlap. The MPI standard [37]
does not specify that communication can progress outside MPI
functions. So the actual communication is likely to congest
in the MPI_Wait calls. There are two remedies. The first
is to dedicate one thread or one core to communication
[33], [34], [38]–[41]. Alternatively, one can repeatedly poll
MPI_Test to urge the network to make progress, which has
been proven effective by various studies and applications [35],
[42]–[44]. Both methods need the computation to be divided
into communication-dependent and independent parts. Such
division should not forfeit the benefit from temporal tiling.
However, state-of-the-art overlap algorithms that work with
cache tiling [42], [45] are still restricted to a single iteration
space.

In this paper, we present a distributed stencil algorithm
called Pencil that extends polyhedral temporal tiling to mul-
tiple connected iteration spaces and further hides communi-
cation using pipelining. To that end, this paper makes the
following contributions.

• We identify an optimal decomposition of MPI ranks and
OpenMP threads for hybrid temporal tiling on a single
node. This hybrid tiling is evaluated on 4 distinct stencils
with 6 numerical schemes solving the well-studied 3D
Poisson equation using weighted Jacobi (on star and box
stencils) to 3D Burgers equation (on a staggered stencil)
which is more complex and has received far less attention.
It achieves 1.09 − 3.29× speedup over OpenMP with
space tiling and outperforms Pluto [15], [16] by up to
1.92× (Section IV-A).

• We exploit DeepHalo for distributed stencils not to de-
crease communication but to enable temporal tiling for
multi-block grids that span multiple connected iteration
spaces (Section II-C).

• We propose a fine-grained pipeline algorithm, Pencil to
overlap communication with computation that retains the
benefit of temporal cache tiling (Section II-C). When

combined with hybrid tiling, Pencil demonstrates 1.39−
2.77× and 1.27 − 3.36× speedups over the best case
between flat MPI and MPI+OpenMP using space tiling
on two distributed memory machines with Omni-Path and
InfiniBand networks respectively (Section IV-C). More-
over, Pencil exhibits excellent weak scaling and near-
linear strong scaling on 16-128 nodes (Section IV-D).
Finally, we apply Pencil to a multi-block grid with mul-
tiple connected iteration spaces and show 1.33 − 3.41×
speedup over MPI+OpenMP Funneled with space tiling
(Section IV-E).

II. METHODOLOGY

In this section, we first discuss how the choice of the
programming model impacts the single-node performance of
stencil computations. Then, we present spatial and temporal
tiling optimizations and a novel pipelined distributed stencil
algorithm that combines the advantages of popular and well-
studied tiling optimizations to target multiple connected iter-
ation spaces.

A. Distributed Stencils

The classical distributed stencil computation follows Algo-
rithm 1, where communication is performed at each iteration
t to exchange the halos of grid blocks between processes
with data dependence. The iterative algorithm executes for
nIter steps until the user-defined convergence constraints are
satisfied. Instead of using MPI datatypes to define the halos
as several sub-arrays, we pack and unpack the halos explicitly
to a 1D buffer which creates opportunities for data locality
optimizations.

Algorithm 1 Classical distributed iterative stencil algorithm
for t = 1 → nIter do

compute()
pack halo to buffer()
exchange halo()
unpack buffer to halo()

B. Programming Models

The two popular choices for implementing Algorithm 1 is
the traditional flat MPI model (also known as MPI everywhere)
and a hybrid model using MPI+threads.

• Flat MPI. Each process is mapped to a core and its
communication consists of both intra- and inter-node
communications. Intra-node communication is optimized
using MPI shared memory [46].

• MPI+threads. Typically, one MPI process is assigned to
a node or socket with one thread per core. We choose
the MPI_THREAD_FUNNELED mode where each MPI

process launches multiple threads but only one thread is
responsible for calling MPI communication routines1.

On a single node, the stencil computation using flat MPI fol-
lows the same workflow as the distributed Algorithm 1, where
intra-node communication is necessary for halo exchange. This
need vanishes with threads since all threads have shared access
to the data on node. This leads to the common intuition that
threads should outperform flat MPI on a single node.

It is, however, non-trivial to realize this intuition in practice
due to memory arrangement and synchronization as we show
in Section IV-A. With flat MPI, each process allocates its own
data. A process looping over the space following i→ j → k
with i being the least rapidly changing dimension and k the
most rapidly changing dimension naturally accesses contigu-
ous data in memory, which is preferred for both prefetching
and vectorization. With threads, the data is allocated as a
single array and each thread gets its own share of the loop
i → j → k. To emulate the streaming memory access
of MPI, only the i dimension or collapsed dimensions (for
instance, with OpenMP collapse clause) is distributed
among threads. Figure 2 shows an example with a domain
of size 2 ×Nj ×Nk distributed among 2 processes (P0, P1)
versus 2 threads (T0, T1). Each thread has a j − k face that
is twice that of a process. In stencil computations, the update
of each j − k plane benefits from several previously accessed
planes remaining in cache to increase locality. As a result, the
large j − k plane in threads makes it easier to spill out of
cache compared to flat MPI.

k

j

P0 P1
T0
T1Nj

Nk/2
Nj

Nk

Fig. 2: A 2 plane domain divided among 2 processes (MPI) or
2 threads (OpenMP). Processes P0 and P1 have a j− k plane
of size Nj ·Nk/2. Threads T0 and T1 have a j − k plane of
size Nj ·Nk.

Moreover, threads2 and processes have different synchro-
nization patterns. Using OpenMP requires a global barrier at
the end of each computation iteration to avoid data race. Flat
MPI has no such safety guards and processes only wait for
their data-dependent neighbors in communication completion
routines like MPI_Waitall. In Algorithm 1, the computation
fetches much more data than packing and exchanging halos.
An OpenMP barrier forces all the threads to compute syn-
chronously and therefore competes for memory bandwidth. On
the other hand, in MPI, some processes can get a larger share
of the available bandwidth at any time while other processes

1MPI_THREAD_MULTIPLE is also frequently referred to in literature
which allows each thread to call MPI communication routines concurrently.
However, current MPI implementations only create a single network endpoint
per process which serializes the threads’ communication [47]. Therefore, it is
not expected to perform better than MPI_THREAD_FUNNELED on state-of-
the-art MPI implementations.

2We will assume OpenMP threads for the rest of this paper.

are packing or exchanging halos. As a result, computation
in OpenMP suffers a severe memory congestion compared to
MPI. On modern architectures, due to the disproportionate
increase in the number of cores compared to other on-node
resources, memory bandwidth is typically saturated with only
a fraction of the cores. In our experiments on 18-cores of Intel
Broadwell and 20-cores of Gold processors, we observe that
the socket’s bandwidth is saturated by just 4 and 10 cores
respectively. In Section IV-A, we demonstrate the impact of
memory allocation and bandwidth competition on MPI and
OpenMP’s performance on a single-node which suggests the
optimal model selection.

C. Stencil Optimizations

a) Cache Tiling: In stencil computations, updating a
j − k plane at i depends on data from previously visited i−
1, . . . , i−rs planes, where rs denotes the stencil radius. Block-
ing the computation of a range j0−j1 in the jth dimension can
help retain the data of space [i−rs, i]× [j0, j1]× [0, Nk] in L3
cache provided the range is carefully chosen. This is referred
to as space tiling. Here we denote [j0, j1]× [0, Nk] as a patch
of the j−k plane. A patch always spans the entire dimension of
k for efficient prefetching and vectorization. Although space
tiling improves locality, all the data are still read from and
written to DRAM at every iteration. Therefore, tiling in space
alone is not sufficient for highly memory-bound stencils. To
further improve performance, several studies have considered
tiling in both space and time where the latter is commonly
referred to as temporal tiling.

The idea of temporal tiling is to fuse multiple iterations
of a patch while it still resides in cache. An efficient way to
implement temporal tiling for stencils is to march along the
ith dimension and repeatedly use the most recently updated
j−k patch to update the patch beneath it. This is referred to as
wavefront blocking [3], [7], [32]. The following code snippet
shows an example of fusing f iterations on a patch [j0, j1]×
[0, Nk] with a stencil of unit radius (rs = 1). For simplicity,
we omit the inputs, outputs, and boundary conditions.

1 f o r (i n t t=1; t<nIter ; t+=f)
2 f o r (i n t i=0; i<Ni ; ++i)
3 f o r (i n t tt=0; tt<f ; ++tt) {
4 i n t p = f−1−tt ;
5 f o r (i n t j=j0−p ; j<=j1+p ; ++j)
6 f o r (i n t k=0; k<Nk ; ++k)
7 compute (t+tt , i−tt , j , k)
8 }

As shown by lines 3-7, immediately after the ith patch is
computed at iteration t, it is used to advance the (i − 1)th

patch at the next iteration, t+ 1 . This procedure is repeated
until the (i − f)th patch of [j0, j1] × [0, Nk] is updated at
iteration t+ f . To fuse the f iterations, we need to start with
a wider patch extended by f −1 cells on both sides of the jth

dimension and drop one cell on each side per iteration (line
4). This is because the update of a cell uses one cell from the
current iteration on both sides (assuming rs = 1). Figure 3a
illustrates this effect in time and space dimensions with four

iterations fused in the order of . We denote
the trapezoid formed by the patch and the fused iterations as a
time-space tile. The cells outside the tile’s own patch, i.e. cells
outside the range [j0, j1] in Figure 3a, overlap with cells in the
neighboring tiles. This introduces data dependencies between
tiles which prohibits parallel execution. There are two ways
to break this dependency. The first is to let each tile update a
copy of the dependent data in other tiles. This leads to the idea
of overlapped tiling (OT) [1]–[4], where the tiles overlap each
other as shown in Figure 3d. This removes the dependencies
at the cost of redundant computation in the overlapped area.
The second is to maximize the number of concurrent tiles by
designing special polyhedral shapes and arrangements of tiles.
Trapezoidal tiling (TT) [5], [6], diamond tiling [7]–[10], and
tessellating tiling [11], [12] follow this strategy.

t

j0 j1

(a) Time-Space Tile (b) OT Data Flow

t

j

(c) TT Time-Space

t

j

(d) OT Time-Space

Fig. 3: Data flow and time-space shape for Overlapped Tiling
(OT) and Trapezoidal Tiling (TT).

Figure 3b illustrates the dataflow of OT. With OT, each
thread has a local array to store the intermediate results of the
fused iterations. The left, middle, and right stacks in Figure 3b
represent the input, local, and output arrays respectively. Each
row in the arrays represents a j−k patch and rows of the same
color have been updated with the same number of iterations.
Given rs = 1, it takes three patches to update a patch. The
second patch in the input array is ready to be updated and it
is stored in the local array (as shown by). Then, the
iterations are performed entirely in the local array
and three patches are stored in each iteration. The final result
is written to the output array. If the local array fits in the cache,
then ideally each patch in the input and output arrays are only
transferred from/to DRAM once during the fused iterations,
significantly reducing the DRAM traffic. Our implementation
of OT only synchronizes the threads after the domain has been
updated for f iterations, differing from [3], [32], [48] where a
barrier or a set of spin-locks are used for each j−k plane. The
size of the local array for a tile covering a j−k patch sj×sk
is calculated as (sj+2ho) ·(sk+2ho) ·(2rs+1) ·(f−1) where
f denotes the number of fused iterations and ho = (f −1) ·rs
represents the thickness of the overlapped area. Note that the
number of j−k patches stored in cache increases linearly with
f and is proportional to the size of the stencils. The redundant

computation can be estimated by the overall overlapped area
as,

((sj + 2ho)(sk + 2ho)− sjsk) ·
Nj

sj
· Nk

sk

= NjNk(2ho
sj + sk
sjsk

+ 4
h2o
sjsk

)

(1)

where Nj and Nk are the size of j and k dimensions. Note that
the overlapped area increases inversely with the size of the j−
k patch sj×sk. From the above equations, the size of the local
array to fit in L3 cache can be reduced by decreasing the tile
sizes but at the expense of increasing redundant computation.

In TT, there are two types of tiles which are colored pink and
orange in Figure 3c. Tiles of the same type can be executed in
parallel. The upward tiles (pink) are identical to the time-space
tile in Figure 3a. The downward trapeziums (orange) depend
on the upward ones. TT sweeps the ith dimension twice, first
only updating the upward trapeziums with f iterations and
then makes a second pass over the downward trapeziums to
update the remaining iteration space. As a result, no redundant
computation is introduced. The tiles can be distributed to
threads using either static scheduling with synchronization
after the execution of tiles of the same type [49] or dynamic
tasking based on the tiles’ dependencies [17]. In this paper,
we follow the latter using OpenMP tasks.

In comparison to OT, TT has the advantage of reducing
the required cache quota by shrinking the tile sizes without
introducing redundant computation. This is beneficial for large
stencils and numerical schemes involving multiple variables.
The disadvantage is that intermediate results are written to
DRAM and the space updated by both trapeziums is fetched
from DRAM twice. As a result, we expect OT to exhibit better
performance for smaller stencils and lightweight numerical
schemes due to less DRAM traffic while TT might perform
better on larger stencils and systems with smaller caches.

b) Multiple Connected Iteration Spaces and DeepHalo:
The previously discussed tiling algorithms and state-of-the-
art polyhedral auto parallelization tools and compilers such
as Pluto [15], [16] and Pochoir [17] specialize at optimizing
a single iteration space which corresponds to a single-block
structured grid in CFD. The iteration space is typically com-
posed of an outer loop for time and 3 nested inner loops for the
3 spatial dimensions. In real applications, the common case is
multi-block structured grids composed of multiple connected
iteration spaces.

1 f o r (i n t t=1; t<nIter ; ++t) {
2 f o r (i n t block=1; block<nBlocks ; ++block) {
3 get_block_range (block , range) ;
4 f o r (i n t i=range [0] ; i<range [3] ; ++i)
5 f o r (i n t j=range [1] ; j<range [4] ; ++j)
6 f o r (i n t k=range [2] ; k<range [5] ; ++k)
7 compute (block , i , j , k) ;
8 }
9 f o r (i n t block ; block<nBlocks ; ++block)

10 exchange_block_boundary (block) ;
11 }

The above code snippet demonstrates the nested loops
for solving multi-block grids where each block forms a
single iteration space at lines 4-6. Blocks can be connected
and their boundaries’ data are exchanged by the function
exchange_block_boundary at line 10. This exchange
happens at every timestep and prevents state-of-the-art polyhe-
dral techniques to directly tile the time and space loop together
for each block.

We propose to first tile the outer temporal loop by f so that
each block has an iteration space composed of f temporal
iterations and 3 space dimensions. To fuse f iterations on a
grid cell, we need f · rs halo cells on both sides in each
dimension. So, we attach f · rs halo layers to the blocks’
boundaries and the halos at the connected boundaries are
exchanged with exchange_block_boundary once every
f iterations. As a result, we have broken down the multiple
connected iteration spaces to multiple single iterations spaces,
each of which can be optimized using OT or TT. We refer
to the addition of adequate halo layers to fuse f iterations as
DeepHalo.

The scenario of multiple connected iteration spaces
can be easily generalized to distributed memory sys-
tems by adding inter-node communication to function
exchange_block_boundary. With DeepHalo, each pro-
cess has to communicate up to 26 messages for a rectangular
block, i.e. 6 for faces, 12 for edges, and 8 for corners regardless
of the shape of the stencil. DeepHalo was originally proposed
to reduce communication cost by reducing the rounds of com-
munication and performance improvement has been reported
in literature [30], [32]. However, the performance of Deephalo
is still network-specific on modern systems.

c) Overlap of Computation and Communication: The
overlap of communication and computation becomes possi-
ble in modern architectures that support RDMA where the
Network Interface Card (NIC) takes over the communication
without the involvement of the CPU. The network software
underlying most MPI implementations already make use of
this feature. However, as highlighted by several studies [33]–
[36] merely using MPI’s non-blocking or RMA routines does
not achieve overlap since the MPI standard does not guarantee
the communication to make progress outside MPI function
calls. In practice, there are two popular workarounds:

• DedicatedCore (DC). Dedicate one core for communica-
tion while the other cores perform computation.

• RepeatedPoll (RP). Repeatedly call functions such as
MPI_Test during computation to urge the underlying
network software to make progress on communication.

For flat MPI, it’s non-trivial to implement DedicatedCore
and we refer readers to Casper [33], [38], [50]. In this paper,
we only consider MPI + threads model for overlap.

The degree of overlap can be estimated using the effective
overlap ratio, η defined as follows:

η =
tcomp + tcomm − tovlp
min(tcomp, tcomm)

(2)

where tcomp, tcomm, and tovlp are the measured com-
putation time, communication time, and the time for the
overlapped computation and communication respectively. We
are interested in understanding how much overlap is achievable
in practice by DC and RP for a memory-bound computation.
For this purpose, we benchmark both methods by exchanging
a large message between 2 nodes using MPI_Isend/Irecv
while the cores are busy with a memory-bound computation
a[i] = w0a[i] +w1b[i] +w2c[i]. On both nodes, we start from
a single thread and keep increasing the number of threads
until the entire node is occupied. Each thread is assigned
a fixed workload large enough to spill the L3 cache. The
overall data volume increases with the number of threads
and saturates the DRAM bandwidth. After saturation, the
computation time starts to increase proportionally with the
number of threads. With RP, MPI_Test is called periodically
during computation to make progress on communication. With
DC, one thread waits at MPI_Wait while the other threads
split the total workload. So, DC has one less core participating
in computation compared to RP where all cores are involved
in computation.

1 2 4 8 12 18 36
0

2

4

6
·10−2

Number of Threads

Ti
m

e
(s

)
tcomp DC tcomp − tcomm

tcomm DC tcomm

RP

(a) Performance of RepeatedPoll and DedicatedCore on Bebop

Cores 1 2 4 8 12 18 36
ηRP 0.31 0.19 0.29 0.31 0.24 0.39 0.35
ηDC - - 0.42 0.56 0.44 0.51 0.48

(b) Overlap ratio on Bebop

Fig. 4: Computation and communication overlap with Dedi-
catedCore and RepeatedPoll on Bebop.

We benchmark the overlap on two clusters – Bebop and
HPC3 – summarized in Table II with Omni-Path and In-
finiBand networks. The results are presented in Figures 4
and 5 respectively. The leftmost stacked bar shows the time
for communication and computation without overlap. The
second bar represents RP and the third shows DC with its
communication time (DC tcomm) highlighted on top of the
non-overlapped computation (DC tcomp− tcomm). On Bebop,
RP can achieve up to 40% of the ideal overlap. DC performs
slightly better but still only attains half of its potential. As
long as the communication time is shorter than computation,
it is completely hidden. The lack of efficiency comes from
using one less core for computation. Furthermore, the actual

communication in DC increases as the bandwidth is grad-
ually saturated. When the socket is fully occupied with 18
threads, the communication time increases by 2.2× over the
non-overlapped case. This is because, in some PCI express
(PCIe) connections, the messages written by the NIC and the
DRAM I/O issued by CPUs all go through the path between
Root Complex (RC) and DRAM. Though the NIC can issue
stores without CPU’s involvement, the actual data transfer still
competes for bandwidth with CPUs, especially in memory-
bound applications.

1 2 4 8 16 20 40
0

1

2

3

4
·10−2

Number of Threads

Ti
m

e
(s

)

tcomp DC tcomp − tcomm

tcomm DC tcomm

RP

(a) Performance of RepeatedPoll and DedicatedCore on HPC3

Cores 1 2 4 8 16 20 40
ηRP 0.98 0.99 0.78 0.74 0.72 0.74 0.75
ηDC - - 0.19 0.57 0.69 0.75 0.76

(b) Overlap ratio on HPC3

Fig. 5: Computation and communication overlap with Dedi-
catedCore and RepeatedPoll on HPC3.

On HPC3 with InfiniBand, RP’s performance starts to drop
when the bandwidth becomes saturated, which is indicated by
the increase of non-overlapped computation time. However, it
still attains over 70% of the potential benefit from overlap.
As the number of threads increases, the downside of using
one less core for computation gradually vanishes and DC
achieves similar performance and overlap as RP. Moreover,
the actual communication time of DC only increases 16%
over non-overlapped communication. Contrasting the results
from the two clusters, we conclude that the effectiveness of
the overlap highly depends on the software and hardware
of the network in addition to the application characteristics.
Though NIC can fully support RDMA, the saturation of
bandwidth by applications running on CPUs can still affect
the communication performance.

To realize overlap irrespective of which method (DC or
RP) is used, the computation must not have data dependence
on the overlapped communication. Therefore, the domain has
to be decomposed into a communication dependent part and
an independent part. The classic decomposition is to divide
the domain into an outer layer and an inner chunk whose
update does not depend on the halo region. It is, however,
challenging to compute the outer layer efficiently in parallel.
In order to divide the computation evenly among threads, one

must take into account the difference between the length of the
contiguous data segment in the i, j, and k boundaries. Such
division is highly non-trivial [27].

An alternate approach is to categorize the cache tiles based
on their dependence on the halo region and overlap the com-
munication with the halo-independent tiles. For OT and TT,
the domain can be split only in the jth dimension. Therefore,
one can partition the grid block in the jth dimension so
only the tiles touching the j boundary depends on halos.
The computation of the remaining tiles can then overlap
with communication. This idea has been exploited to improve
performance with diamond tiling in [45]. However, for multi-
block grids, imposing a 1D partition is not feasible since
blocks can be connected in any dimension.

We propose a pipelined algorithm to break the data depen-
dence and achieve overlap. The idea is to cut the domain into
chunks along the ith dimension. This way, each chunk’s com-
putation has no dependence on the previously updated chunks’
halo layers and can be overlapped with the communication of
the previous chunk. Figure 6 illustrates this idea using two
processors, P0 and P1 whose domains are cut into multiple
chunks. Each chunk has a rectangular shape and is suitable for
temporal tiling with OT or TT. At stage l, chunk Cl is being
updated (marked as cyan) while chunk Cl−1 has already been
updated (gray). So, the communication of Cl−1’s halo (pink)
is overlapped with Cl’s computation. Similarly, in stage l+1,
Cl+1’s update overlaps with Cl’s communication and so on.
Together with DeepHalo, we can achieve overlap on multiple
connected iteration spaces without losing the performance gain
from temporal tiling. Furthermore, Pencil does not impose any
limitation on the global decomposition, i.e. communication can
happen in any dimension.

Cl−1

Cl

Cl+1

P0

Cl−1

Cl

Cl+1

P1
Stage l

Cl−1

Cl

Cl+1

P0

Cl−1

Cl

Cl+1

P1
Stage l + 1

Fig. 6: Cut domain into chunks and pipeline communication
and computation for overlap.

III. EXPERIMENTAL SETUP

In this section, we describe the case studies and platforms
used for evaluating the single-node and distributed-memory
performance.

A. Case study

To systematically evaluate our proposed algorithms, we
choose 4 stencils across 6 numerical schemes whose charac-
teristics are summarized in Table I. The stencils have different
shapes (illustrated in Figure 1) and radius. The numerical
schemes have various number of input/output variables, and

TABLE I: Stencils and Numerical Schemes.

Test # Pts Shape rs Scheme AI (NT) AI # Inputs # Outputs
WJ7 7 Star 1 Weighted Jacobi 7pt 0.42 0.31 2 1

WJ13 13 Star 2 Weighted Jacobi 13pt 0.67 0.5 2 1
WJ27 27 Box 1 Weighted Jacobi 27pt 1.25 0.94 2 1

Weno3 13 Star 2 3rd order WENO 1.96 1.64 4 1
Upwind 13 Star 2 2nd order Upwind 0.85 0.71 4 1
Burgers 24 Staggered 1 Central Difference 2.50 1.67 3 3

span a wide range of arithmetic intensity (AI) from 0.42 -
2.50. Here we calculate AI with and without non-temporal
(NT) stores, which if supported by the compiler can bypass
write-allocate and improve performance. Below, we outline the
numerical schemes that give rise to the stencils test cases.

• Weighted Jacobi for 3D Poisson equation. The Poisson
Equation 3 is typically used to solve for the pressure p
in incompressible flows with source function b derived
from the velocity field.

∇2p = b (3)

Various stencils can be used depending on the order of
accuracy. Here we consider the star stencils with radius
1 and 2, consisting of 7 and 13 points respectively in 3D,
and the box stencils with 27 points. Equation 3 is solved
with the weighted Jacobi methods, which is one of the
standard smoothers for multigrid [51]. Jacobi methods
are the most widely studied stencil computations in the
space and temporal tiling body of research [2], [3], [5]–
[12], [15]–[17], [52] for its simplicity, where the updated
value is essentially a weighted average of the stencil cells’
values. However, practical numerical schemes in CFD can
be considerably complex as in the following cases.

• Upwind and WENO schemes for 3D advection. Equa-
tion 4 simulates the convection phenomena in fluid dy-
namics, in which ψ denotes a scalar propagated by the
velocity field ~u.

∂tψ + ~u · ∇ψ = 0 (4)

Here we consider the memory-bound 2nd order upwind
and the 3rd order WENO schemes (which have higher
flops per grid cell) [53] on a star stencil with radius 2.
Both schemes use different cells in the stencil depending
on the sign of the velocity. Such computation is typically
implemented with a ternary operation, for instance in 1D,

φi −= ui > 0 ? f(ui−1, ui) : f(ui, ui+1)

where f(ui−1, ui) can be a simple expression (Upwind)
or a complex inlined function (WENO3).

• 3D Burgers equation. Equation 5 represents the con-
servative form of Burgers equation, which is solved in
simulating incompressible flows (∇ · ~u = 0).

∂t~u+∇ · (~u~u) = ν∇2~u (5)

The three components of velocity ~u (the 3 inputs) are
discretized on grid cell’s face center using a staggered
stencil. Figure 7 illustrates the staggered stencil in 2D for
velocity ~u(u, v), where each square represents a grid cell
with velocity components marked by arrows at the face
centers. To update the v component of velocity (brown
arrow), not only are the surrounding v components (blue
arrows) required but also the adjacent u components
(green arrows) of velocity. Similar dependencies apply in
3D. Moreover, all the three components of velocity are
both read from and written to DRAM during the update.
As we show in Section IV-A, the coupled dependency
between components and the large data volume is highly
challenging for the tiling algorithms.

v

u

x

y

Fig. 7: 2D Staggered.

B. Platforms and Architectures

We evaluate the performance of the stencils on two dis-
tributed memory machines – Bebop equipped with 653 Intel
Xeon E5-2695v4 (Broadwell) nodes at the Argonne National
Laboratory and HPC3 with 38 Intel Xeon 6248 (Gold) nodes
at the University of California Irvine. The key parameters of
these systems appear in Table II. We choose a domain size
of 4803 per node on both systems for the experiments which
is large enough for cache tiling to be effective but at the same
time, not too large to overshadow the communication cost.

In our experiments, fusing more than 10 halos results in a
performance drop. Therefore, in the results presented in the
following section, we limit the number of fused iterations to
not exceed 10 layers of halo (i.e. f · rs ≤ 10) and the total
number of iterations to 60 which is large enough to maintain
a steady solve time per iteration.

IV. RESULTS AND DISCUSSION

In this section, we first present the single-node performance
breakdown with spatial and temporal tiling and compare the
performance of our hybrid decomposition against the state-of-
the-art polyhedral tiling tool, Pluto[15], [16]. We also compare

TABLE II: Evaluation platforms and their parameters.

Bebop HPC3
Intel Xeon Intel Xeon

Architecture E5-2695v4 (Broadwell) 6248 (Gold)
CPU Frequency 2.4 GHz 2.5 GHz

Sockets 2 2
Cores/Socket 18 20

GFlops/s (DP) 1200 2207
L2 cache 32 KB 1024 KB
L3 cache 90 MB 55 MB

DRAM Bandwidth 120.3 GB/s 194.4 GB/s
Network Omni-Path InfiniBand

Nodes 653 38
Compiler Intel 2017 GCC 8.4.0

the two temporal tiling algorithms – overlapped and trape-
zoidal tiling and present an analysis of scenarios where one
outperforms the other. Then, we evaluate the performance and
scalability of Pencil on two distributed memory clusters up
to 128 nodes. Finally, we apply Pencil to multiple connected
iteration spaces distributed on 32 nodes which represents
practical CFD problems of interest with multi-block grids.

A. Single Node Performance - MPI/OpenMP

M
PI0

OM
P0

OM
P

S

M
PI Syn

c

M
PI T

M
PI T+

OM
P

T

M
PIO

M
P

T0

1

2

Ti
m

e
(s

)

Computation
Communication
Pack+Unpack

(a) WJ7 on Broadwell

M
PI0

OM
P0

M
PI S

OM
P

S

M
PI Syn

c

M
PI T

M
PI T+

OM
P

T

M
PIO

M
P

T0

1

2

Computation
Communication
Pack+Unpack

(b) WJ7 on Gold

Fig. 8: Performance of spatial and temporal tiling with WJ7
on a single node.

Using the WJ7 stencil on Broadwell as an example, we
describe how to choose the optimum combination of MPI
processors and OpenMP threads. The MPI baseline (MPI0)
decomposes each dimension of the grid evenly to reduce intra-
node communication volume and achieve load balance. In our
experiments, a decomposition of 4 x 3 x 3 in the ith, jth,
kth dimensions delivers the best baseline performance. Unlike
MPI0, the OpenMP baseline (OMP0), splits the iteration space
only in the ith dimension to ensure threads access contiguous
data as discussed in Section II-B. As seen from Figure 8a,
even though communication and buffer preparation (i.e. pack
and unpack) take a considerable time, MPI0 still outperforms
OMP0 by 30% on Broadwell. This is because OMP0 has a
j − k plane that is 9× larger than MPI0 and spills out of
the cache. To remedy this, we add space tiling (denoted by

OMP S) in the jth dimension, which has no effect on MPI0
on Broadwell (therefore not shown in Figure 8a) but improves
the OpenMP baseline by 1.6×. Note that the computation in
MPI0 still takes less time than OMP S. This is because of the
competition for bandwidth (described in Section II-B) which
can be validated by enclosing the computation in MPI0 with
MPI_Barrier. This implementation denoted by MPI Sync
leads to similar computation performance as OMP S. More-
over, with space tiling, the measured arithmetic intensity (AI)
in Table III matches our theoretical estimate in Table I with
non-temporal stores except for Weno3 and Burgers. In the
case of Burgers, the compiler fails to generate NT stores for
the large loop writing three variables. On the other hand, the
flops of Weno3 depend on compiler optimizations of ternary
operators (Section III) and it is challenging to match the
theoretical estimates which further underscores the complexity
of these two stencil case studies.

On Gold, we observe a similar behavior. OMP S outper-
forms MPI S and the measured AI matches the estimate
without NT stores except for Weno3. The GCC compiler
does not generate NT instructions and results in write-allocate
when writing to DRAM, which lowers the theoretical AI.
Nonetheless, GCC executes all the possible paths in ternary
operator and masks the values not used, which leads to higher
AI for Weno3. Our experiments thus far establish that contrary
to popular wisdom, OpenMP outperforms MPI on a single
node only if space tiling is applied.

Now we add temporal cache tiling to both flat MPI and
OpenMP. It is best to have a small j − k area so that more
planes can reside in cache while performing the wavefront
blocking in the ith dimension. For MPI with temporal tiling,
the optimal decomposition turns out to be 1 x 6 x 6 for the
ith, jth and kth dimensions, which also minimizes the com-
munication volume. Each MPI rank applies either overlapped
tiling (OT) or trapezoidal tiling (TT) on its local domain.

In Figure 8a, MPI T presents the best performance obtained
when combining MPI with either OT or TT. Although MPI T
achieves 2× speedup over OMP S, we observe that the
packing and unpacking of halo in flat MPI can take longer
than the communication time. Copying the halo attached to
the k boundaries (i − j planes) is particularly expensive due
to the short length of the contiguous data segment. We work
around this issue by merging the packing and unpacking of
the k boundaries into the computation as demonstrated by the
following code snippet:

1 f o r (i n t i=iBegin ; i<iEnd ; ++i) {
2 f o r (i n t j=jBegin ; j<jEnd ; ++j) {
3 unpack_k_halo (i , j) ;
4 f o r (i n t k=kBegin ; k<kEnd ; ++k)
5 / / c o m p u t a t i o n
6 pack_k_halo (i ,j) ;

Now, the k halo’s data is used immediately after it is loaded
into cache and written to the buffer while still in cache. This
optimization denoted by MPI T+ further improves MPI T by
17% on Broadwell.

For temporal tiling implemented with OpenMP, we let OT
and TT decompose the iteration space in the jth dimension and
leave the kth dimension unsplit for prefetching and SIMD. In
Figure 8a, OMP T represents the best performance obtained
with OpenMP and temporal tiling. Despite the similar overall
performance between MPI T+ and OMP T, MPI T+ still
computes 18% faster than OMP T. The reason lies in the
shape of the j − k plane. Each process in MPI T+ has a
j − k patch of size 80 × 80 and threads in OMP T have a
patch of size 13 × 480 (or 14 × 480). In OT, if 6 iterations
are fused, then the j − k patch including the overlapped area
in OMP T (25 × 492) becomes 1.5x larger than MPI T+
(92 × 92). Therefore, OMP T fits less j − k planes in L3
cache compared to MPI T+. A similar analysis also applies
to TT.

To combine the advantages of MPI and OpenMP, we first
decompose the iteration space in the kth dimension among
MPI ranks and then perform temporal tiling within each rank
using OpenMP threads. The cache tiles split the jth dimen-
sion and perform wavefront blocking in the ith dimension.
This combines MPI’s advantage of a small j − k area and
only introduces limited intra-node communications by using
OpenMP to compute cache tiles. In our experiments, using 2
MPI ranks with 1 rank per socket is sufficient to emulate the
computation performance of MPI T with minimal intra-node
communication. The hybrid algorithm denoted as MPIOMP T
achieves the best performance not only for WJ7 in Figure
8a but across all the stencils. Across the broad, MPIOMP T
achieves 15% - 34% speedup over the best case between
MPI T+ and OMP T on Broadwell and up to 35% on Gold.

Comparison with the state-of-the-art: Pluto. We now
compare our hybrid algorithm with the polyhedral tiling tool
Pluto [15], [16], which generates codes using diamond tiling.
Following the guidelines in [10], we set a large tile size
for the kth dimension and perform an exhaustive search
for the optimal tile sizes of the other dimensions. Table III
summarizes the performance comparison across the different
stencil case studies. On Broadwell, our hybrid algorithm
achieves similar performance compared to Pluto for weighted
Jacobi schemes WJ7 and WJ13 but suffers a 9% slow-down
for WJ27. The sub-optimal behavior for WJ27 needs further
investigation. However, we observe a significant speedup of
1.92× and 1.49× for more complex schemes such as Up-
wind and WENO3 respectively. As for Burgers, its coupled
dependencies between the three velocity components result in
a huge linear programming system with O(103) ∼ O(104)
constraints. Pluto fails to generate diamond tiles in this case
and downgrades to a tiling that requires a pipelined start,
leading to performance even below the baseline. On Gold,
our hybrid algorithm outperforms Pluto by 1.08 − 1.74× on
all tests except for Burgers where Pluto fails like on Broadwell.

Note that the temporal tiling algorithm must be evaluated
on top of space tiling rather than the baseline. If a significant
speedup is not observed with temporal tiling, then space tiling
might be favorable for fewer code modifications. As shown in
Table III, Pluto’s temporal tiling for Upwind and WENO3 are

not effective since their performance are emulated by space
tiling alone on both Broadwell and Gold systems. The hybrid
algorithm on the other hand outperforms space tiling by 1.47−
2.83× on Broadwell and 1.09 − 3.29× on Gold. Overall, it
achieves 1.47−4.76× speedup over the baseline with OpenMP.

B. Single Node Performance - OT/TT

1 2 3 4 5 6 7
2

4

6

8

10

f

G
C

el
ls

OT TT

(a) WJ13 on Broadwell

2 3 4 5

1

2

3

4

f

Vo
lu

m
e

(5
0G

B
) OT R W

TT R W

(b) Upwind on Broadwell

1 2 3 4 5

2

4

6

f

G
C

el
ls

OT TT

(c) Upwind on Broadwell

1 2 3 4 5

2

4

6

f

G
C

el
ls

OT TT

(d) WJ13 on Gold

Fig. 9: Comparison of Overlapped and Trapezoidal tiling with
increasing number of fused iterations (f).

Figure 9 compares the two temporal tiling algorithms (OT
and TT) on WJ13 and Upwind schemes using the metric
billion cells updated per second (GCells). Both schemes use
the same star stencil with rs = 2 but exhibits different
performance behavior with OT and TT. Each curve shows
tiling with a fixed tile size. For OT, we limit one tile per thread
to reduce redundant computation. For TT, we find 2nt− 1 is
an optimal number of tiles in our experiments where nt is the
number of threads. This generates enough independent tiles
for each thread to start computation concurrently but not too
many to increase DRAM traffic discussed in Section II-C.

Column MPIOMP T in Table III lists the parameter con-
figuration that results in the best performance with hybrid
MPI+OpenMP. If OT and TT achieve performance within an
8% difference, both configurations are listed with the first
being the faster one. On Broadwell, for stencils with similar
performance, OT reaches its peak with a smaller number of
fused iterations, f , as seen from Figure 9a for the WJ13
stencil. This is because, for small f , OT’s local array still
fits in the L3 cache and results in less DRAM traffic than TT.
As shown in Figure 9b, at f = 3, OT’s reading and writing
volumes is only 34% and 70% of TT. As f increases, OT

TABLE III: Summary of single-node performance of the stencils in Table I on the two systems in Table II. AI denotes the
arithmetic intensity; MPIOMP T lists the temporal tiling algorithm (first entry) and number of fused iterations (second entry)
that achieves the best performance with our hybrid algorithm; The three columns to its right present the speedup of our hybrid
algorithm with temporal tiling over the OpenMP baseline, OpenMP with space tiling, and Pluto respectively.

Test Broadwell Gold
AI MPIOMP T vs OMP0 vs OMP S vs Pluto AI MPIOMP T vs OMP0 vs OMP S vs Pluto

WJ7 0.42 TT 10; OT 6 4.63× 2.83× 0.98× 0.29 TT 10; OT 4 4.76× 3.29× 1.15×
WJ13 0.69 OT 3; TT 6 3.46× 1.63× 0.98× 0.48 TT 5; 3.52× 1.89× 1.29×
WJ27 1.28 TT 8 2.68× 1.69× 0.91× 0.94 TT 5 2.06× 1.46× 1.10×

Upwind 0.87 TT 5 2.86× 1.67× 1.92× 0.71 TT 3 2.72× 1.57× 1.74×
Weno3 1.71 TT 3 2.06× 1.47× 1.49× 2.40 TT 2 1.59× 1.09× 1.08×

Burgers 1.63 OT 2 2.42× 1.58× 4.63× 1.52 OT 2; TT4 1.87× 1.25× 5.03×

introduces too much redundant computation and the local array
starts to spill from the L3 cache, which cause the performance
to drop drastically. TT has the advantage of using small
tiles without introducing redundant computation (Section II-C)
which allows us to start with twice as many tiles as OT. At
any time, each thread executes a tile using half the cache
as overlapped tiles in OT. Therefore TT supports more fused
iterations without spilling out of the L3 cache.

Figure 9c compares OT and TT on Upwind which has the
same stencil radius as WJ13 but loads 3 additional variables
from DRAM. Since it is desirable to keep more data in the L3
cache, TT outperforms OT for its lower cache requirement.
Using smaller tiles improves OT’s performance as shown
by the black squares in Figure 9c. Nonetheless, it does not
reach TT’s peak performance because it introduces additional
redundant computation.

To summarize, OT can achieve similar or better performance
as TT for highly memory-bound stencils such as WJ7 and
WJ13 with fewer fused iterations since it results in less DRAM
traffic. This can lead to less DeepHalo layers in distributed
computing which may result in less communication cost. TT
outperforms OT for less memory-bound numerical schemes
like WJ27 or schemes loading multiple variables, except for
Burgers in our experiments. Burgers is a special case because
three components of velocity ~u need to be written to DRAM
which highlights OT’s advantage at reducing writing volume.

The L3 cache in Gold is only about half that of Broadwell
which makes it challenging for OT. As expected, TT outruns
OT in most cases including highly memory-bound stencils
such as WJ13 as shown in Figure 9d, and achieves similar
performance for Burgers.

C. Communication with DeepHalo and Pipelined Overlap
We compare Pencil over flat MPI and MPI+OpenMP

Funneled on 128 nodes of Bebop and 32 nodes of HPC3.
Each node is assigned a block of size 4803 and each block
is connected to 6 other blocks by face. For MPI+OpenMP
Funneled, we assign one process per node and bind each thread
to a core. For flat MPI, the block is further divided evenly
among the processors. We apply space tiling to both. For the
hybrid temporal tiling, we map one MPI rank per socket with
one OpenMP thread per core.

Table IV presents the measured effective overlap ratio, η,
and speedups over flat MPI and MPI+OpenMP Funneled for
the 6 case studies. We observe that the optimal choice of
temporal tiling algorithm (OT vs TT) and the number of
fused iterations (f) align closely with the single-node results
for all 6 numerical schemes on the 4 stencils. Across both
clusters, our pipelined algorithm achieves 50% - 90% of
the potential benefit from overlapping the computation and
communication leading to a speedup of up to 1.48× over the
non-overlapped case. Note that RP’s overlap ratio is 8-34%
higher than DC among the different stencils on the InfiniBand
cluster whereas lower or comparable to DC for most numerical
schemes on the Omni-Path cluster. This confirms again the
performance of RepeatedPoll highly depends on the software
stack of the network. Compared to our baseline with space
tiling, the overlapped algorithm improves the performance by
1.39 − 2.77× on Bebop and up to 3.36× on HPC3, which
validates the effectiveness of Pencil on distributed systems.

D. Weak and Strong Scalability

To evaluate the weak and strong scalability of Pencil, we
choose Bebop since it has a larger number of nodes. For weak
scalability, we maintain the same block sizes and connections
per node as in Section IV-C. Pencil exhibits excellent weak
scalability up to 128 nodes or 4608 cores across the board for
all 6 case studies including Upwind, WENO3, and Burgers as
shown in Figure 10a.

The strong scalability results are reported in Figure 10b.
We test all the numerical schemes on a grid of size 1920 ×
1920×960. The grid is partitioned evenly into as many blocks
as the number of nodes in all the scaling tests from 16 to 128
nodes. Periodic conditions are set on the grid’s boundaries so
that each node exchanges halos on all the 6 faces of its block.
Therefore, both the computation workload (proportional to the
size of the block) and the communication volume (proportional
to the surface area of a block) is balanced in all the tests.

Pencil exhibits near-linear scaling across all the 6 numerical
schemes on 4 different stencils. However, the scaling of the
non-overlapped temporal tiling algorithm is less efficient be-
cause the communication does not scale linearly with the num-
ber of nodes. This phenomena is highlighted in Figure 10c.

TABLE IV: Summary of the performance of six stencils in Table I on 128 nodes of Bebop and 32 nodes of HPC3 summarized
in Table II. MPIOMP T lists the temporal tiling algorithm (first entry) and the number of iterations fused (second entry) that
delivers the best performance with Pencil; ηRP and ηDC are the measured overlap ratios for RepeatedPoll and DedicatedCore;
”vs non-ovlp” is the speedup of the best of RP and DC over the same tiling algorithm without overlap. ”vs baseline” is the
speedup of the best of RP and DC over the best of flat MPI and MPI+OpenMP Funneled with space tiling.

Test Broadwell Gold
MPIOMP T ηRP ηDC vs non-ovlp vs baseline MPIOMP T ηRP ηDC vs non-ovlp vs baseline

WJ7 OT 5 0.72 0.90 1.48× 2.77× TT 10 0.77 0.50 1.20× 3.36×
WJ13 OT 3 0.69 0.92 1.49× 1.97× TT 5 0.75 0.61 1.21× 2.19×
WJ27 TT 8 0.73 0.60 1.20× 1.61× TT 6 0.93 0.59 1.11× 1.86×

Upwind TT 4 0.69 0.57 1.24× 1.68× TT 3 0.66 0.55 1.26× 1.84×
Weno3 TT 3 0.69 0.70 1.27× 1.39× TT 3 0.50 0.40 1.08× 1.27×

Burgers OT 2 0.78 0.82 1.24× 1.69× OT 2 0.56 0.48 1.08× 1.54×

16 32 64 128
0.4

0.8

1.6

3.2

Nodes

Ti
m

e(
s)

WJ7 WJ13 WJ27
Upwind WENO3 Burgers

(a) Weak scalability

16 32 64 128
0.1

0.4

1.6

6.4

Nodes

WJ7 WJ13 WJ27
Upwind WENO3 Burgers

(b) Strong Scalability

16 32 64 128

0.4

1.6

6.4

Nodes

Pencil
non-overlap
tcomm

(c) Strong Scaling for Burgers

Fig. 10: Weak and strong scalability of Pencil up to 128 nodes (or 4608 cores) of Bebop. In the largest simulation for weak
scaling, there are 14 billion grid cells. The strong scaling is on a grid of size 1920× 1920× 960.

When solving the 3D Burgers equation without overlap, the
portion of communication in the overall solve time increases
from 20% to 37% as the number of nodes increases from
16 to 128. Therefore, the poorer scalability of communication
seen in Figure 10c has a negative effect on the performance at
larger node counts. Pencil effectively hides the communication
penalty and exhibits improved strong scaling compared to the
non-overlapped case.

E. Multiple Connected Iteration Space

(a) Geometry

Block Size
0 1440× 1440× 1440
1 480× 480× 480
2 480× 480× 480
3 480× 480× 480
4 480× 480× 480
5 480× 480× 480

(b) Sizes

Fig. 11: Geometry and sizes of the multi-block mesh with 6
blocks that are connected at 5 faces.

To apply Pencil to multiple connected iteration spaces, we
need to attach DeepHalo to the boundaries that connect two
blocks and communicate halos of that boundary if the con-
nected blocks reside on different nodes. The hybrid tiling and
the pipelined overlap algorithm do not require any change. To
demonstrate this capability, we apply it to a multi-block grid
illustrated in Figure 11a where 5 small blocks are connected
to 5 different boundaries of a large block. This geometry
emulates a multi-exit pipe transition in engineering.

TABLE V: Summary of performance on the multi-block mesh.
Optimal knobs list the overlap method (first entry), temporal
tiling algorithm (second entry), and the number of fused
iterations (third entry) that achieve the best performance.

Stencils Optimal knobs Speedup
WJ7 DC OT 5 3.41×

WJ13 DC OT 3 2.46×
WJ27 DC TT 6 2.30×

Upwind RP TT 4; DC TT 3 1.55×
Weno3 RP TT 3; DC TT 3 1.33×

Burgers DC OT 2; RP OT 2 2.20×

The gird blocks are partitioned to 32 sub-blocks of size 4803

and assigned to 32 nodes. Physical boundary conditions are
set at all the external faces and communication only occurs
at the connection between sub-blocks. Table V presents the
performance results of the 6 test cases on the multi-block mesh
on 32-nodes of Bebop. We achieve 1.33-3.41× speedup over
MPI+OpenMP Funneled with space tiling.

V. RELATED WORK

The term pipelined stencil or stencil pipelines has taken
different definitions in various studies aimed at vastly different
tasks. In image processing, stencil pipeline refers to multiple
stencil computation stages. Different stages can have com-
pletely different stencils and grids in contrast to CFD appli-
cations where fixed stencils are used on one grid over several
temporal iterations. Domain Specific Languages (DSLs) and
compliers such as PolyMage[18] and Halide [19] embed cache
tiling to optimize the stencil pipelines but are still far from
delivering performance that are on-par with hand-tuned codes
for real CFD applications [54]. For stencil studies on FPGA
or other custom architectures [55], the stencil update is first
explicitly broken down into tasks of memory load, store, and
arithmetic operations. These tasks are then pipelined among
multiple processing elements to enable parallel execution [55]–
[61]. The pipelined approach in Pencil applies exclusively
to overlap communication and computation in distributed
systems and thereby, differs from prior works.

The most related pipelined algorithm to Pencil is [62],
[63] where a pipelined execution is employed to overlap
communication and computation among processors. Pencil’s
key distinction is that the pipelining happens within each pro-
cess. Moreover, prior work assumes that the data dependence
between sub-blocks is only one-way, i.e. a block only sends
halo to its target block but does not receive any halo back. This
assumption, in general, does not apply to CFD applications
such as the Equations 3, 4, and 5 solved in this study.

Several studies have applied temporal tiling techniques to
distributed computation. The Geometric Multi-Grid Solver de-
veloped in [32], [64] combines DeepHalo with the overlapped
tiling [3] and demonstrates significant speedups for solving
the Helmholtz equation in a 3D box. In [45], diamond tiling
is extended to distributed systems by partitioning the grid
in the jth dimension among processes so that only the two
j boundaries need to communicate. Each process’s iteration
space is decomposed into diamond tiles [7] in a similar way to
how we arrange the trapeziums. The communication overlaps
with the update of diamonds inside the domain since only
diamonds touching the j boundaries depend on halo. The
restriction to 1D decomposition works for single-block grids
but not multi-block grids where blocks can be connected
on any face. Pencil does not impose any constraint on the
decomposition.

Domain Specific Languages (DSLs) such as Distributed
Halide [65] and the Oxford Parallel library for Structured
meshes (OPS) [66], [67] can tile loops over a single block
and distribute tiles among processors with communication
routines automatically generated. Nonetheless they mostly lack

the support of sophisticated tiling methods like trapezoidal
tiling [5], [6] or diamond tiling [7], [8].

Pluto [15], [16] represents the start-of-the-art in automatic
parallelization tools using diamond tiling with polyhedral
techniques [9], [10]. First. it decomposes the iteration space
into tiles, then distributes the tiles among processes, and finally
generates the corresponding MPI routines [68]. Communica-
tion is only needed for tiles with data dependencies across
nodes and can be overlapped with the computation of tiles
satisfying their dependencies within the node. An effective
overlap is demonstrated in [42]. However, the application is
still limited to a single iteration space formed by a single-
block grid. To the best of the author’s knowledge, none of
the state-of-the-art polyhedral compilers or DSLs can directly
tile multiple connected iteration spaces. Therefore, the present
study contributes to the state-of-the-art in distributed stencil
computation for multiple connected iteration space represen-
tative of real CFD applications.

VI. CONCLUSIONS

We propose Pencil, a novel algorithm to extend temporal
tiling to multiple connected iteration spaces for distributed
stencil computation. Through an in-depth analysis of single-
node performance, we demonstrate how to combine MPI and
OpenMP to obtain the best performance of temporal tiling.
We evaluate Pencil on 4 different stencils across 6 numerical
schemes with arithmetic intensity from 0.4 to 2.5, including
practical and complex schemes like WENO3 and Burgers on
a staggered grid. Pencil’s hybrid tiling outperforms the start-
of-the-art tool based on the polyhedral model, Pluto [15], [16]
on a single node by up to 1.9×.

On distributed systems, Pencil achieves overlap by pipelin-
ing the computation and communication along the least rapidly
changing dimension and significantly outperforms flat MPI
and MPI + OpenMP Funneled on both clusters considered in
this study. Pencil decouples the multiple connected iteration
spaces with DeepHalo and performs temporal tiling on the
individual iteration spaces. Moreover, it exhibits excellent
weak and strong scaling up to 128 nodes for all 6 case
studies. Applied to a multi-block grid with 6 connected blocks,
Pencil demonstrates a 1.33-3.41× speedup over MPI+OpenMP
Funneled with space tiling. Looking forward, we anticipate
this study will open new research directions into incorporating
Pencil in auto-parallelizing tools and compilers.

ACKNOWLEDGMENTS

This work is supported by the National Science Founda-
tion (NSF) under the award number 1750549. We greatly
acknowledge the computing resources provided and operated
by the Laboratory Computing Resource Center (LCRC) at
the Argonne National Lab (ANL) and the Research Cyber-
Infrastructure Center (RCIC) at the University of California
Irvine (UCI). We thank Rohit Zambre from our research lab
at UCI for his timely assistance in collecting results and Uday
Bondhugula at the Indian Institute of Science for his assistance
in using Pluto.

REFERENCES

[1] F. Rastello and T. Dauxois, “Efficient tiling for an ODE discrete
integration program: Redundant tasks instead of trapezoidal shaped-
tiles,” Proceedings - International Parallel and Distributed Processing
Symposium, IPDPS 2002, pp. 246–253.

[2] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Effective automatic parallelization of
stencil computations,” ACM SIGPLAN Notices, vol. 42, no. 6, pp. 235–
244, 2007.

[3] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, “3.5-D
blocking optimization for stencil computations on modern CPUs and
GPUs,” 2010 ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC 2010.

[4] B. Mostafazadeh, F. Marti, B. Pourghassemi, F. Liu, and A. Chan-
dramowlishwaran, “Unsteady Navier-Stokes computations on GPU ar-
chitectures,” in 23rd AIAA Computational Fluid Dynamics Conference,
2017.

[5] M. Frigo and V. Strumpen, “Cache oblivious stencil computations,”
Proceedings of the International Conference on Supercomputing, vol. 1,
no. 212, pp. 361–366, 2005.

[6] ——, “The cache complexity of multithreaded cache oblivious algo-
rithms,” Theory of Computing Systems, vol. 45, no. 2, pp. 203–233,
2009.

[7] R. Strzodka, M. Shaheen, D. Pajak, and H. P. Seidel, “Cache accurate
time skewing in iterative stencil computations,” Proceedings of the
International Conference on Parallel Processing, pp. 571–581, 2011.

[8] D. Orozco and G. Gao, “Mapping the FDTD application to many-
core chip architectures,” Proceedings of the International Conference
on Parallel Processing, pp. 309–316, 2009.

[9] V. Bandishti, I. Pananilath, and U. Bondhugula, “Tiling stencil com-
putations to maximize parallelism,” International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2012,
pp. 1–11.

[10] U. Bondhugula, V. Bandishti, and I. Pananilath, “Diamond tiling: Tiling
techniques to maximize parallelism for stencil computations,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 5, pp.
1285–1298, 2017.

[11] L. Yuan, Y. Zhang, P. Guo, and S. Huang, “Tessellating stencils,”
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2017.

[12] L. Yuan, S. Huang, Y. Zhang, and H. Cao, “Tessellating Star Stencils,”
ACM International Conference Proceeding Series, 2019.

[13] D. G. Wonnacott and M. M. Strout, “On the Scalability of Loop
Tiling Techniques,” Proceedings of the 3rd International Workshop on
Polyhedral Compilation Techniques, 2013.

[14] E. Hammami and Y. Slama, “An overview on loop tiling techniques for
code generation,” Proceedings of IEEE/ACS International Conference
on Computer Systems and Applications, AICCSA, vol. 2017-Octob, pp.
280–287, 2018.

[15] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” ACM
SIGPLAN Notices, vol. 43, no. 6, pp. 101–113, 2008.

[16] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Automatic transformations for
communication-minimized parallelization and locality optimization in
the polyhedral model,” in International Conference on Compiler Con-
struction. Springer, 2008, pp. 132–146.

[17] Y. Tang, R. Chowdhury, C.-k. Luk, B. C. Kuszmaul, and C. E. Leiserson,
“The Pochoir Stencil Compiler Categories and Subject Descriptors,”
Proceedings of the Twenty-third Annual ACM Symposium on Parallelism
in Algorithms and Architectures, pp. 117–128, 2011.

[18] R. T. Mullapudi, V. Vasista, and U. Bondhugula, “PolyMage: Auto-
matic Optimization for Image Processing Pipelines,” ACM SIGARCH
Computer Architecture News, vol. 43, no. 1, pp. 429–443, 2015.

[19] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe, “Halide:A Language and Compiler for Optimizing Parallelism,
Locality, and Recomputation in Image Processing Pipelines,” ACM
SIGPLAN Notices, vol. 48, no. 6, pp. 519–530, 2013.

[20] H. Wang and A. Chandramowlishwaran, “Multi-criteria partitioning of
multi-block structured grids,” Proceedings of the International Confer-
ence on Supercomputing, pp. 261–271, 2019.

[21] L. Shi, M. Rampp, B. Hof, and M. Avila, “A hybrid MPI-OpenMP
parallel implementation for pseudospectral simulations with application
to Taylor-Couette flow,” Computers and Fluids, vol. 106, pp. 1–11, 2015.

[22] N. Drosinos and N. Koziris, “Performance comparison of pure MPI
vs hybrid MPI-OpenMP parallelization models on SMP clusters,” Pro-
ceedings - International Parallel and Distributed Processing Symposium,
IPDPS 2004 (Abstracts and CD-ROM), vol. 18, no. C, pp. 193–202.

[23] H. Gahvari, M. Schulz, and U. M. Yang, “An approach to selecting
thread + process mixes for hybrid MPI + OpenMP applications,”
Proceedings - IEEE International Conference on Cluster Computing,
ICCC, vol. 2015-Octob, pp. 418–427, 2015.

[24] H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and B. Chapman,
“High performance computing using MPI and OpenMP on multi-core
parallel systems,” Parallel Computing, vol. 37, no. 9, pp. 562–575, 2011.

[25] J. M. Bull, J. Enright, X. Guo, C. Maynard, and F. Reid, “Performance
evaluation of mixed-mode OpenMP/MPI implementations,” Interna-
tional Journal of Parallel Programming, vol. 38, no. 5-6, pp. 396–417,
2010.

[26] M. J. Chorley and D. W. Walker, “Performance analysis of a hybrid
MPI/OpenMP application on multi-core clusters,” Journal of Computa-
tional Science, vol. 1, no. 3, pp. 168–174, 2010.

[27] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid MPI/OpenMP parallel
programming on clusters of multi-core SMP nodes,” Proceedings of the
17th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing, PDP 2009, no. c, pp. 427–436, 2009.

[28] F. Bassetti, K. Davis, and D. Quinlan, “Optimizing transformations of
stencil operations for parallel object-oriented scientific frameworks on
cache-based architectures,” in International Symposium on Computing in
Object-Oriented Parallel Environments. Springer, 1998, pp. 107–118.

[29] A. Sawdey and M. O’Keefe, “Program analysis of overlap area usage in
self-similar parallel programs,” in International Workshop on Languages
and Compilers for Parallel Computing. Springer, 1997, pp. 79–93.

[30] C. Ding and Y. He, “A ghost cell expansion method for reducing
communications in solving pde problems,” in SC’01: Proceedings of
the 2001 ACM/IEEE Conference on Supercomputing. IEEE, 2001, pp.
55–55.

[31] F. B. Kjolstad and M. Snir, “Ghost cell pattern,” in Proceedings of the
2010 Workshop on Parallel Programming Patterns, 2010, pp. 1–9.

[32] P. Basu, A. Venkat, M. Hall, S. Williams, B. Van Straalen, and L. Oliker,
“Compiler generation and autotuning of communication-avoiding oper-
ators for geometric multigrid,” 20th Annual International Conference on
High Performance Computing, HiPC 2013, pp. 452–461, 2013.

[33] M. Si, A. J. Pena, J. Hammond, P. Balaji, M. Takagi, and Y. Ishikawa,
“Casper: An Asynchronous Progress Model for MPI RMA on Many-
Core Architectures,” Proceedings - International Parallel and Dis-
tributed Processing Symposium, IPDPS 2015, pp. 665–676.

[34] G. Schubert, H. Fehske, G. Hager, and G. Wellein, “Hybrid-parallel
sparse matrix-vector multiplication with explicit communication over-
lap on current multicore-based systems,” Parallel Processing Letters,
vol. 21, no. 03, pp. 339–358, 2011.

[35] A. Denis and F. Trahay, “MPI overlap: Benchmark and analysis,” in 2016
45th International Conference on Parallel Processing (ICPP). IEEE,
2016, pp. 258–267.

[36] H. S. B, S. Chakraborty, and D. K. Panda, “Designing Dynamic and
Adaptive MPI Point-to-Point Communication Protocols for Efficient
Overlap of Computation and Communication,” vol. 10524, pp. 334–354,
2017.

[37] Message Passing Interface Forum, “MPI: A message-passing interface
standard,” Knoxville, TN, USA, Tech. Rep., 2015.

[38] M. Si and P. Balaji, “Process-Based Asynchronous Progress Model for
MPI Point-to-Point Communication,” in 2017 IEEE 19th International
Conference on High Performance Computing and Communications;
IEEE 15th International Conference on Smart City; IEEE 3rd Interna-
tional Conference on Data Science and Systems (HPCC/SmartCity/DSS).
IEEE, 2017, pp. 206–214.

[39] T. H. Kaiser and S. B. Baden, “Overlapping communication and com-
putation with OpenMP and MPI,” Scientific Programming, vol. 9, no.
2-3, pp. 73–81, 2001.

[40] V. Marjanović, J. Labarta, E. Ayguadé, and M. Valero, “Overlapping
Communication and Computation by Using a Hybrid MPI / SMPSs
Approach,” 2010.

[41] M. Jiayin, S. Bo, W. Yongwei, and Y. Guangwen, “Overlapping com-
munication and computation in MPI by multithreading,” Proc. of Inter-

national Conference on Parallel and Distributed Processing Techniques
and Applications, no. February, pp. 2–7, 2006.

[42] Y. Barigou and E. Gabriel, “Maximizing Communication–Computation
Overlap Through Automatic Parallelization and Run-time Tuning of
Non-blocking Collective Operations,” International Journal of Parallel
Programming, vol. 45, no. 6, pp. 1390–1416, 2017.

[43] P. R. Eller, T. Hoefler, and W. Gropp, “Using performance models to
understand scalable Krylov solver performance at scale for structured
grid problems,” Proceedings of the International Conference on Super-
computing, pp. 138–149, 2019.

[44] N. Li and S. Laizet, “2DECOMP & FFT-A Highly Scalable 2D Decom-
position Library and FFT Interface,” Cray User Group 2010 conference,
pp. 1–13, 2010.

[45] T. Malas, G. Hager, H. Ltaief, H. Stengel, G. Wellein, and D. Keyes,
“Multicore-optimized wavefront diamond blocking for optimizing sten-
cil updates,” SIAM Journal on Scientific Computing, vol. 37, no. 4, pp.
C439–C464, 2015.

[46] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell,
W. Gropp, V. Kale, and R. Thakur, “MPI+ MPI: A new hybrid approach
to parallel programming with MPI plus shared memory,” Computing,
vol. 95, no. 12, pp. 1121–1136, 2013.

[47] R. Zambre, A. Chandramowlishwaran, and P. Balaji, “Scalable commu-
nication endpoints for mpi + threads applications,” in 2018 IEEE 24th
International Conference on Parallel and Distributed Systems (ICPADS).
IEEE, 2018, pp. 803–812.

[48] P. Basu, “Compiler optimizations and autotuning for stencils and geo-
metric multigrid,” Ph.D. dissertation, The University of Utah, 2016.

[49] T. Henretty, R. Veras, F. Franchetti, L. N. Pouchet, J. Ramanujam, and
P. Sadayappan, “A stencil compiler for short-vector SIMD architectures,”
Proceedings of the International Conference on Supercomputing, pp.
13–24, 2013.

[50] M. Si, A. J. Pena, J. Hammond, P. Balaji, and Y. Ishikawa, “Scaling
NWChem with efficient and portable asynchronous communication in
MPI RMA,” Proceedings - 2015 IEEE/ACM 15th International Sympo-
sium on Cluster, Cloud, and Grid Computing, CCGrid 2015, pp. 811–
816.

[51] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial,
Second Edition, 2000.

[52] U. Bondhugula, V. Bandishti, A. Cohen, G. Potron, and N. Vasilache,
“Tiling and optimizing time-iterated computations on periodic domains,”
Parallel Architectures and Compilation Techniques - Conference Pro-
ceedings, PACT, pp. 39–50, 2014.

[53] X. D. Liu, “Weighted essentially non-oscillatory schemes,” Journal of
Computational Physics, vol. 115, no. 1, pp. 200–212, 1994.

[54] B. Mostafazadeh, F. Marti, F. Liu, and A. Chandramowlishwaran,
“Roofline guided design and analysis of a multi-stencil cfd solver for
multicore performance,” Proceedings - 2018 IEEE 32nd International
Parallel and Distributed Processing Symposium, IPDPS 2018, pp. 753–
762.

[55] M. Christen, O. Schenk, P. Messmer, E. Neufeld, and H. Burkhart,
“Accelerating stencil-based computations by increased temporal local-
ity on modern multi-and many-core architectures,” High-performance
and hardware-aware computing: Proceedings of the First International
Workshop on New Frontiers in High-performance and Hardware-aware
Computing (HipHaC’08), no. June 2014, pp. 47–54, 2008.

[56] W. Luzhou, K. Sano, and S. Yamamoto, “Domain-specific language and
compiler for stencil computation on fpga-based systolic computational-
memory array,” in International Symposium on Applied Reconfigurable
Computing. Springer, 2012, pp. 26–39.

[57] K. Sano, Y. Hatsuda, and S. Yamamoto, “Multi-FPGA accelerator for
scalable stencil computation with constant memory bandwidth,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 3, pp.
695–705, 2014.

[58] K. Dohi, K. Okina, R. Soejima, Y. Shibata, and K. Oguri, “Performance
modeling of stencil computing on a stream-based FPGA accelerator for
efficient design space exploration,” IEICE Transactions on Information
and Systems, 2015.

[59] H. M. Waidyasooriya, Y. Takei, S. Tatsumi, and M. Hariyama, “OpenCL-
based FPGA-platform for stencil computation and its optimization
methodology,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 5, pp. 1390–1402, 2017.

[60] H. R. Zohouri, A. Podobas, and S. Matsuoka, “Combined spatial and
temporal blocking for high-performance stencil computation on FPGAs
using OpenCL,” FPGA 2018 - Proceedings of the 2018 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, vol.
2018-February, pp. 153–162, 2018.

[61] ——, “High-performance high-order stencil computation on fpgas using
opencl,” in 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2018, pp. 123–130.

[62] N. Koziris, A. Sotiropoulos, and G. Goumas, “A pipelined schedule to
minimize completion time for loop tiling with computation and commu-
nication overlapping,” Journal of Parallel and Distributed Computing,
vol. 63, no. 11, pp. 1138–1151, 2003.

[63] G. Goumas, N. Anastopoulos, N. Koziris, and N. Ioannou, “Overlapping
computation and communication in SMT clusters with commodity
interconnects,” Proceedings - IEEE International Conference on Cluster
Computing, ICCC, pp. 1–10, 2009.

[64] P. Basu, M. Hall, S. Williams, B. V. Straalen, L. Oliker, and P. Colella,
“Compiler-Directed Transformation for Higher-Order Stencils,” Pro-
ceedings - 2015 IEEE 29th International Parallel and Distributed
Processing Symposium, IPDPS 2015, pp. 313–323.

[65] T. Denniston, S. Kamil, and S. Amarasinghe, “Distributed halide,”
in Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPOPP, 2016.

[66] I. Z. Reguly, G. R. Mudalige, M. B. Giles, D. Curran, and S. McIntosh-
Smith, “The ops domain specific abstraction for multi-block structured
grid computations,” in 2014 Fourth International Workshop on Domain-
Specific Languages and High-Level Frameworks for High Performance
Computing. IEEE, 2014, pp. 58–67.

[67] I. Z. Reguly, G. R. Mudalige, and M. B. Giles, “Loop tiling in large-scale
stencil codes at run-time with OPS,” IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 4, pp. 873–886, 2018.

[68] U. Bondhugula, “Compiling affine loop nests for distributed-memory
parallel architectures,” International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2013, pp. 1–12.

