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Abstract— Clutter produced using bright acoustic
sources can obscure weaker acoustic targets, degrading
the quality of the image in scenarios with high dynamic
ranges. Many adaptive beamformers seek to improve image
quality by reducing these sidelobe artifacts, generating a
boost in contrast ratio or contrast-to-noise ratio. However,
some of these beamformers inadvertently introduce a dark
region artifact in place of the strong clutter, a situation
that occurs when both clutter and the underlying signal of
interest are removed. We introduce the iterative aperture
domain model image reconstruction (iADMIRE) method
that is designed to reduce clutter while preserving the
underlying signal. We compare the contrast ratio dynamic
range (CRDR) of iADMIRE to several other adaptive
beamformers plus delay-and-sum (DAS) to quantify the
accuracy and reliability of the reported measured contrast
for each beamformer over a wide range of contrast levels.
We also compare all beamformers in the presence of
bright targets ranging from 40 to 120 dB to observe the
presence of sidelobes. In cases with no added reverberation
clutter, iADMIRE had a CRDR of 75.6 dB when compared
with the next best method DAS with 60.8 dB. iADMIRE
also demonstrated the best performance for levels of
reverberation clutter up to 0-dB signal-to-clutter ratio.
Finally, iADMIRE restored underlying speckle signal in
dark artifact regions while suppressing sidelobes in bright
target cases up to 100 dB.

Index Terms— Array signal processing, clutter, dynamic
range, image quality, imaging, ultrasonic imaging.

I. INTRODUCTION

ADAPTIVE beamforming methods have become increas-
ingly popular in recent years due to the reportedly

great improvements to contrast ratio or contrast-to-noise
ratio (CNR) that they can produce [1]–[3]. However, there
is growing concern that not all of these methods produce
“true” improvements to contrast ratio and CNR. Because
of this concern, some groups have begun expressing the
importance of developing new robust measurements to test
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performance [4]–[8]. These methods include contrast ratio
dynamic range (CRDR) [5], which seeks to quantify measured
versus true contrast, and generalized CNR (GCNR) [6], [7],
which seeks to generalize CNR by providing a detectability
metric that is less susceptible to artificial improvements.

Many adaptive beamformers characterize their performance
based on the contrast ratio of anechoic cysts, where the
average target intensity is compared to some nearby back-
ground region. However, sidelobe clutter as well as the dark
region artifact described by Rindal et al. [9] can interfere
with this assessment. The dark region artifact can arise in
the presence of strong acoustic targets, where sidelobe clutter
will obscure nearby, lower strength acoustic targets. Some
adaptive beamformers will remove this clutter, but in doing
so also remove the underlying signal of interest, resulting
in the dark region artifact. This lowers the intensity in that
region leading to a reported contrast ratio or CNR that is
higher than its true value. Alternatively, other beamformers
may fail to remove this sidelobe clutter, resulting in cysts of
varying intensities appearing identical (e.g., an anechoic cyst
measured as −40 dB), as demonstrated by Dei et al. [5] with
CRDR.

We provide several instances where these problems can
occur clinically. First, renal cysts are quite common and are
classified as either simple (benign, homogeneous, fluid-filled
with a well-defined outline) or complex (indicative of disease,
filled with nonhomogeneous fluid and an irregular cyst wall
with potential calcifications) [10]. However, complex cysts
can be difficult to classify [11], [12], and many beamformers
will display a −40-dB complex cyst identically to a anechoic
simple cyst, either due to removing the weak signal from the
complex cyst or failing to remove the sidelobe clutter from
the simple cyst. A second example is the visibility of blood
flow. Because the blood signal is typically much weaker than
the surrounding tissue signal, this can lead to the blood signal
being completely masked by sidelobe clutter, or worse the
blood signal being completely removed along with the clutter.

Since the dark region artifact can appear in situations where
nearby targets have severe differences in acoustic strength, it is
an important consideration for high dynamic range applica-
tions. In previous papers, we introduced the aperture domain
model image reconstruction (ADMIRE) method [13]–[15] that
uses a physics-based model to reduce strong sidelobe clutter
and reverberation, which increased the dynamic range [5].
However, it is susceptible to the dark region artifact [16],
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where the strong sidelobe clutter signal is preferentially
fit by the model, resulting in the complete loss of the
weaker underlying signal. In this article, we introduce iter-
ative ADMIRE (iADMIRE) as a solution to that problem.
In iADMIRE, sources of clutter are iteratively solved and
subtracted from the input signal so that weaker signals can
progressively be fit. This results in a more accurate estimate
of the region of interest (ROI). We will show that this iterative
approach can mitigate both sidelobe and dark region artifacts,
improving CRDR in some cases.

II. BEAMFORMING ALGORITHMS

We include a brief explanation of ADMIRE to provide
context for iADMIRE. Additionally, several other adaptive
beamformers are described for comparison, since many of
these beamformers are susceptible to sidelobe artifacts, dark
region artifacts, or both. All beamformers are implemented in
MATLAB (The MathWorks, Natick, MA, USA).

A. ADMIRE

ADMIRE is a method for removing reverberation and
off-axis clutter, as well as suppressing wavefront aberration.
Byram et al. [13] presented a detailed explanation of the
components of the algorithm, and additional information can
be found elsewhere [14], [15], but we include a cursory
explanation here.

Processing begins by applying dynamic receive delays to the
channel data. This delayed data is then divided into multiple
overlapping windows along the axial dimension, along which
the Fourier transform is performed [i.e., a short-time Fourier
transform (STFT)]. This data can then be analyzed for each
primary frequency component using a physics-based model.
This model is the root of ADMIRE and is derived from
the well-defined physics of linear wave propagation. It is
composed of the predicted aperture domain signals created
from scatterers throughout the field-of-view of the transducer,
as defined by the equation

ps(x; t, ω) =
N−1∑
n=0

A(x; xn, zn, τn, ω)e jkτ(x;xn ,zn ,τn) (1)

where x is the position along the aperture, t and ω specify
the time and frequency for the signal, k is the corresponding
wavenumber, N is the total number of scatterers arriving at
the transducer at time t , and τ (x; xn, zn, τn) is the wavefront
delay for a signal received from (xn, zn) at time τn . It is noted
that τn can be different from t so that subtle shifts in phase
can be included in the model. Finally, A(x; xn, zn, τn, ω) is
the amplitude modulation across the aperture caused by the
STFT windows and element sensitivity.

These modeled signals are combined into a model matrix,
X , which allow for representing a given aperture domain
signal, y, by its component sources, β, by

y = Xβ (2)

where y is for a specific wavenumber k and location (xn, zn),
X is the set of physical model predictors, and β the set of

Fig. 1. Example model X, composed of a set of estimated signals from
locations considered to be clutter (sparsely sampled, e.g., a and b), and
a set from locations considered to be ROI (highly sampled, e.g., c). For
a given aperture domain signal y, the model can be used to estimate
which sources are components of the received signal, thus removing the
signal components that are not from the ROI.

solved model coefficients. Fig. 1 is included to give an intu-
itive sense of how each signal in the model matrix X relates
to a specific physical source location. In theory, solving (2)
by multiplying by X−1 reveals the exact composition of β,
which reveals the specific physical locations of the various
reflected echoes that linearly combine to form y. For the
current location being processed, ADMIRE then chooses some
small ROI centered at that location and can simply remove the
coefficients for sources outside of that ROI, and reconstruct the
decluttered signal as

ydecluttered = XβROI (3)

using only the coefficients βROI corresponding to signals
originating from inside the ROI. This removes any signals
located off-axis or from reverberant sources.

In practice, (2) is ill-posed due to the relatively small size
of y compared to the potentially large size of X depending on
the sampling of the model space. To solve for the model pre-
dictors, ADMIRE uses the elastic-net regularization technique
[17] with the optimization equation

β̂ =arg min
β

(||y−Xβ||2+λ
(
α||β||1+(1 − α)||β||22/2

))
(4)

where ||β||1 is the L1 norm, ||β||2 is the L2 norm, and α
is set between 0 and 1 to control the weighting between
L1 and L2. λ is a regularization parameter which controls
the degrees of freedom [18]. Choosing α = 1 results in a
purely L1 fit, resulting in high coefficient sparsity and little
(or no) correlation between them. Setting α = 0 is L2 and
results in almost no nonzero coefficients, with many of the
coefficients being correlated. L1 and L2 both have benefits
and shortcomings, and the elastic-net allows for a balanced
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Fig. 2. Qualitative example of the L1, L2, and elastic-net estimates for
some specific model coefficient, βi. In the L1 case, coefficients that are
sufficiently small are zeroed in favor of larger ones. No coefficients are
zeroed in L2, but instead there is significant coefficient shrinkage (loss of
amplitude) for stronger components. ADMIRE uses the elastic-net, which
balances the two extremes but includes features of both.

minimization between the two. In this article, we choose α =
0.9 and λ based on the root mean square (rms) of the signal y.
We ran both a low degree of freedom (LDF) and a high degree
of freedom (HDF) case, giving us λLDF = (0.0189/2)yrms

and λHDF = (0.0189/10)yrms. Generally, higher degrees of
freedom result in a more precise fit with many more nonzero
coefficients, while lower degrees of freedom favor sparsity of
coefficients. The choice of parameters is based on previous
work [13], [14], and in our testing seems to be robust across
most imaging scenarios.

Once the aperture domain signal has been decluttered using
the coefficients solved by the elastic-net and (3), the inverse
STFT is applied to return to the time domain [19]. This results
in a decluttered version of the channel data that can still
be processed using other beamformers, if desired, or simply
combined using the delay-and-sum (DAS) equation (7). In this
article, the ADMIRE results do not include any additional
postprocessing. Computation time is variable since it increases
at deeper depths (larger models), for larger apertures, and for
increased overlap between STFT windows. For the simulations
in this article, we use 90% overlap between windows and
process a 10-mm band centered at a depth of 3 cm. This was
split across 50 computational cores, with each core requiring
30–40 min. Though this timing is acceptable for research,
a variety of ADMIRE development efforts are focused on
architectural changes to achieve near real-time processing [20].

B. iADMIRE

iADMIRE is a modification to the ADMIRE algorithm
that seeks to accommodate environments with high dynamic
ranges by mitigating the shortcomings of the elastic-net [21].
To provide some intuition for these problems, we include in
Fig. 2, an example of how L1, L2, and elastic-net regular-
izations affect the estimate of a given coefficient. With an
L1 estimate, coefficients that are sufficiently small will be
ignored and set to zero, but larger coefficients will be fit
relatively accurately, leading to coefficient selection. With L2,
no coefficients are lost, but the cost is that larger coefficients
undergo severe shrinkage and are underestimated. By incorpo-
rating characteristics of both, the elastic-net seeks to minimize

Fig. 3. Example of the effect of iADMIRE on the dark region artifact.
(a) DAS showing the uncluttered, True speckle background. (b) DAS of
the same background with a simulated 100-dB bright scatterer introduc-
ing strong sidelobe clutter. (c) ADMIRE and (d) iADMIRE processing of
the scatterer. ADMIRE demonstrates sidelobe reduction with a visible
dark region artifact, and iADMIRE shows the same reduction without the
artifact. (e) Aperture domain signals for the uncluttered region denoted
by the diamond. (f) Signals for the cluttered region denoted by the square.
When no clutter is present, ADMIRE and iADMIRE match the True
and DAS signals since there is no clutter to be removed (note that the
slight difference in signal is due to the sparse fitting of coefficients and
has marginal impact on the final image). With sidelobe clutter present,
ADMIRE removes all signal in the region, while iADMIRE is able to restore
the underlying signal.

the negatives of each method, but crucially does not eliminate
them. Since ADMIRE uses the elastic-net and therefore has
L1 features, we see that weaker signal components may be
zeroed out in favor of stronger sources. This can result in a
dark region artifact since only the strong clutter coefficients
are fit, resulting in nothing from the ROI being included.
Fig. 3 shows an example of a speckle background (A) that
is corrupted by a 100-dB scatterer (B) and highlights an
uncluttered region (diamond) and a cluttered region (square).
For the uncluttered region, the aperture domain signals for all
four match closely since there is no clutter interference (note
that the small differences between the DAS and ADMIRE
signals is due to the elastic-net estimates of ADMIRE favoring
the dominant signal components, and has little impact on the
actual image). In contrast, the DAS signal in the cluttered
region is completely different due to the sidelobe clutter, and
ADMIRE predominantly fits that clutter resulting in a loss
of the underlying signal and the creation of the dark region
artifact. iADMIRE, however, first fits and removes that clutter
signal, allowing it to recover the true underlying signal.

Algorithm 1 shows the process by which iADMIRE itera-
tively solves for the clutter sources in the signal and removes
them, theoretically obtaining a more accurate estimate of the
ROI signal. Rather than doing a single solve for the model
coefficients and reconstructing only the ROI signal, iADMIRE
computes the clutter-only signal yclutter using (5) and the
coefficients βclutter corresponding to the clutter predictors in
the model and subtracts that from the original signal with (6).
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Algorithm 1 Iterative Clutter Removal in ADMIRE

1 Given model predictors X = [XROIXclutter], aperture
domain signal y1, parameters α and λ, and δ > 0

2 for i = 1 do
3 Solve (4) for model coefficients β̂i, given yi, X
4 Compute clutter-only signal

yi,clutter = Xclutterβ̂i,clutter (5)

5 Compute new aperture signal

yi+1 = yi − yi,clutter (6)

6 Stop when ||yi+1 − yi ||22 < δ
7 end for
8 Calculate ydecluttered = XROIβ̂i,ROI

By iteratively applying the elastic-net and removing the recon-
structed clutter signal from the signal, strong clutter sources
are continually removed until some threshold is reached.
This new, less cluttered signal is then decomposed using the
elastic-net one last time to produce the decluttered signal
using (3).

We set δ = max(abs(y))/1000 so that convergence will
depend on the input aperture domain signal. Fig. 4 shows
a simple example of convergence for a dark artifact region.
At zero iterations (normal ADMIRE), the dark region artifact
is clearly visible, but after a single iteration the background
appears to be mostly restored. Based on the change in power
between iterations, the algorithm has functionally converged
by the third iteration. For simple clutter scenarios where there
is one main source of interference, it is likely that only one
or a few iterations is required to remove that source. As a
result, for this study we enforce a hard cutoff of three iterations
to prevent wasted computation time. For ease of comparison,
the other parameters that overlap with the standard ADMIRE
algorithm are the same as those for ADMIRE (HDF) in
Section II-A. The balance between L1 and L2 fitting could
be further tuned to adjust convergence and clutter removal,
however, we have found that these values provide a fairly good
balance to prevent overfitting (and failing to remove clutter)
or underfitting (requiring more iterations).

Computation time for iADMIRE varies wildly depending
on the number of iterations required. Since the elastic-net
decomposition is computationally expensive, a window that
requires many iterations (and therefore many repeated fits)
needs nearly that much additional processing time. As a result,
for any given signal being fit, it can take between one and three
times as long to process as standard ADMIRE.

C. DAS

The conventional DAS signal for an image pixel can be
defined as

SDAS(x, z) =
M∑

i=1

wi (z)si(x, z) (7)

Fig. 4. Example of iADMIRE after 0, 1, 2, and 3 iterations for a 60-dB
cyst. The change in power between iterations of the indicated region
is included. At 0 iterations (normal ADMIRE) the dark region artifact is
clearly visible, but is almost entirely mitigated after the first iteration. In this
example, iADMIRE has mostly converged by the third iteration.

where x is the a-line of the final image, z is a discrete
time index, M is the total number of channels, wi (z) is the
weighting factor for channel i , and si(x, z) is the delayed
signal across the aperture for a given channel i . The weighting
factor accounts for apodization, and can vary by depth and
channel (taking F-number into consideration) or be static as in
the case of a fixed rectangular window, where all channels are
weighted equally. In this study, we use rectangular weighting,
unless otherwise specified.

D. Filtered Delay-Multiply-and-Sum (F-DMAS)

F-DMAS
is a simple adaptive beamformer proposed to improve con-

trast and resolution [1]. It works by combinatorially coupling
and multiplying the delayed channel data before summing
across the channels. The unfiltered DMAS signal can be
calculated as

S∗
DMAS(z) =

M−1∑
i=1

M∑
j=i+1

ŝi j(z) (8)

and ŝi j(z) is defined as

ŝi j(z) = sign(si (z)s j(z))
√|si(z)s j(z)|. (9)

The filtered signal can then be calculated from S∗
DMAS by

removing the dc and high-frequency components using a
bandpass filter centered around 2 fc.
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E. Generalized Coherence Factor (GCF)

GCF is a weighting of the DAS image by the ratio of the
energy in some low-frequency region to the total energy [2].
This ratio for a pixel at (x, z) is defined as

GCF(x, z) =
∑M0

k=0 |Pk(x, z)|2∑M
k=0 |Pk(x, z)|2 (10)

where M is the number of channels, M0 is the chosen cutoff
frequency index, and P(k) is the M-point discrete Fourier
transform across the aperture as defined by

Pk(x, z) = e jπk
M∑

i=0

si(x, z)e− j2π(ik/M) (11)

where si (x, z) is the delayed channel data for channel i . GCF
allows us to vary between pure coherence factor (M0 = 0)
and DAS (M0 = M). We chose M0 = 5 as done in [9]. The
final GCF image is then calculated simply as

SGCF(x, z) = GCF(x, z)SDAS(x, z). (12)

F. Minimum Variance (MV)

MV beamforming is also an adaptively weighted DAS
image, where the optimized apodization weights [22], [23] are

w = R−1e
eH R−1e

(13)

where e is the steering vector, H is the conjugate transpose,
and R is the covariance matrix defined as

R(z) = E[s(z)s(z)H ] (14)

where E[·] denotes the expectation and s(z) is the delayed
aperture signal at depth z. To get an invertible matrix, we used
subarray lengths of L, equal to 50% of the total aperture
length, to estimate the covariance matrix and diagonal loading
defined as ε = 
·tr(R̂), where 
 = 1/(10L), as recommended
[23]. The MV signal estimate is then defined as

ŜMV(z) = 1

M − L + 1

M−L∑
l=0

w(z)H s̄(z) (15)

where M is the total aperture length and s̄(z) is the delayed
aperture signal for the corresponding subarray.

G. Short-Lag Spatial Coherence (SLSC)

SLSC is different from many other beamformers in that it
only uses the spatial coherence of received echoes to form
images. The coherence images are usually displayed on a
linear scale. Introduced by Lediju et al. [24], the foundation of
SLSC is the van Citter-Zernike (VCZ) theorem, which demon-
strates a prediction for the spatial coherence, or covariance, for
the backscattered echoes [25]. SLSC is computed per pixel
using a correlation kernel as

SSLSC(x, z)

=
L∑

l=1

1

M − l

M−l∑
i=1

∑z+nk
n=z si (x, n)si+l(x, n)√∑z+nk

n=z s2
i (x, n)

∑z+nk
n=z s2

i+l (x, n)
(16)

TABLE I
FIELD II SIMULATION PARAMETERS FOR CONTRAST

TARGET PHANTOMS

where l is the lag, L is the number of lags to sum, and nk

is the size of the correlation kernel. This produces an SLSC
image calculated per a-line x and each depth z. The choice of
number of lags is recommended as <30% of the total number
of channels [26]. For this study, we chose to use L = 20
lags (17% of our total number of channels), with a correlation
kernel equivalent to 1 wavelength.

H. Gray-Level Transformation (GLT)

For comparison purposes, we include the GLT that is
described by Rindal et al. [8] as an example of a method
that “fakes” improvements to CNR, but sacrifices the dynamic
range. The GLT is a sigmoid function defined as

ŜGLT(B) = 1

1 + e−α(B−β)
(17)

SGLT(B) = ŜGLT(B) − max(ŜGLT(B))

ε
(18)

where B = 20log10(|SDAS|), α = 0.12, β = −40, and ε =
0.008.

III. METHODS

A. Contrast Target Phantom

Field II [27], [28] was used to simulate 5-mm-diameter cysts
of known contrasts ranging from −50 to 70 dB relative to
the background, plus an anechoic case. Each level of contrast
was simulated with six independent realizations of speckle.
Simulation parameters used in Field II are detailed in Table I.

B. Simulated Reverberation Clutter

For each of the contrast phantoms, additional realizations
were created that included simulated reverberation clutter.
This reverberation clutter was simulated using the technique
detailed by Byram and Shu [29], [30]. The clutter was added
directly to the channel data such that it satisfied the signal-to-
clutter ratio (SCR) calculated by

SCR = 10log10

(
PSOI

α2 Pclutter

)
(19)
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where PSOI is the power of the channel data of the original
phantom, Pclutter is the power of the channel data of the
reverberation clutter, and α is the scalar for the reverberation
clutter to achieve the desired SCR. A region of background
was used to calculate the power for each phantom so that the
amount of clutter added was consistent across the different
magnitudes of cysts. Equation (19) can then be rewritten to
solve for α as

α =
√

PSOI

Pclutter10SCR/10
. (20)

The scalar α is then calculated and the clutter channel data
is scaled and combined with the phantom channel data.
In this article, the reverberation clutter is scaled against the
background speckle to achieve realizations with 20-, 10-, 0-,
−10-, and −20-dB SCR compared to the channel data. We
believe these values cover a realistic range of in vivo pos-
sibilities, though we expect most clinical cases probably fall
between 20 dB (easy-to-image patients) and 0 dB (difficult-
to-image patients). However, there is a significant lack of
research into the quantification of reverberation, making it
difficult to know the level of reverberation clutter for any given
scenario. Some groups have investigated reverberation clutter,
but mainly do so in the context of harmonic imaging [31],
[32]. Studies involving the addition of simulated reverberation
clutter fall within our simulated range [26], [32], and one
in vivo study found that bladder images had bladder wall to
clutter ratios between 30 and 0 dB for all sources of clutter
including reverberation [33], further supporting our choice.

C. Bright Scatterer Phantom

To measure the dark region artifact, we used Field II to
simulate bright point targets at the focal depth with contrasts
ranging from 40 to 120 dB relative to the background speckle.
As before, six speckle realizations were created for each
amplitude. The same parameters found in Table I were used
for simulation.

D. In Vivo Carotid Artery Data

We additionally captured in vivo carotid artery data from
a healthy individual using a Verasonics Vantage Ultrasound
System (Verasonics, Inc., Kirkland, WA, USA) with a L12-5
linear transducer. A center frequency of 7.813 MHz was used
to acquire eight equally spaced angled plane waves spanning
−9◦ to 9◦ at a PRF of 3000 Hz. Coherent compounding was
used to generate a synthetically focused channel data set [34].
The resulting frames were processed using either ADMIRE
or iADMIRE and filtered using a sixth-order Chebyshev
filter with a cutoff frequency of 300 Hz to create a power
Doppler (PD) image.

E. Contrast Ratio, CNR, and Resolution

The contrast ratio and CNR were measured for each phan-
tom to characterize the measured contrast and detectability of

Fig. 5. DAS images for hypoechoic contrast target phantoms (left)
and bright scatterer phantoms (right) simulated in Field II. (a) and (b)
Target (solid) and background (dotted) regions used to calculate contrast
ratio, CNR, and GCNR measurements. (c) and (d) Regions used for
computing the background speckle correlation of each beamformer.

the simulated cyst. Contrast ratio and CNR were defined as

contrast ratio = 20log10

(
μROI

μbackground

)
(21)

CNR = |μROI − μbackground|√
σ 2

ROI + σ 2
background

(22)

where μ is the mean value and σ is the standard deviation
of the enveloped, but not log compressed, data. Fig. 5 shows
the chosen ROI and background regions for the contrast
and bright scatterer phantoms. Additionally, the point spread
function (PSF) was found for each bright scatterer and for each
method. The mean point target width was measured across all
scatterers (except 40 dB due to the noise floor) for each method
at −6 dB (full width at half maximum), −10 dB, and −20 dB.

F. CRDR

In an effort to better characterize true contrast in beamform-
ers, Dei et al. [5] proposed the CRDR method. By applying
a given beamformer to simulated cysts at varying intensities,
in this case ranging from −50 to 70 dB plus an anechoic cyst,
the measured contrast can be compared to the true contrast
over a wide range. For a given realization, the measured
contrast is then linearly interpolated to get a well sampled
curve. The CRDR measurement can then be estimated from
that measured versus true contrast curve by determining the
range on the curve for which the measured contrast does not
deviate from the true contrast (two-tailed t-test, α = 0.05).

G. GCNR

An alternative to CNR for measuring detection probability
was proposed by Rodriguez-Molares et al. [6], [7] called the
GCNR. It works by measuring the overlap of the probabil-
ity density function between the ROI and the background,
meaning it is unaffected by stretches or compressions in the
dynamic range. The GCNR is then defined by

GCNR = 1 − OVL (23)

where OVL is the measured overlap between the two
probability density functions. Therefore, GCNR varies
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TABLE II
CRDR FOR DIFFERENT LEVELS OF ADDED REVERBERATION CLUTTER

between 0 and 1, where GCNR = 1 indicates perfect dis-
crimination. The GCNR is computed for the contrast target
phantoms using the same ROI and background regions as for
contrast ratio (Fig. 5).

H. Speckle Correlation

The 2-D correlation coefficient r was calculated by com-
paring each simulated phantom to its corresponding speckle
realization in DAS (with no cyst or bright scatterer present) to
determine the degree of speckle corruption from the sidelobe
and dark region artifacts. The region used for the measurement
is shown in Fig. 5. The correlation was calculated as

r =
∑

x

∑
z(S(x, z) − μS)(D(x, z) − μD)√(∑

x

∑
z(S(x, z) − μS)2

)(∑
x

∑
z(D(x, z) − μD)2

)
(24)

where S is the enveloped, uncompressed region of the data
for the beamformer of interest, and D is the short-hand for
the reference DAS enveloped, uncompressed region of data.
Values of r closer to 1 indicate more accurate speckle in the
target region.

IV. RESULTS

A. Contrast Target Phantoms

The dynamic range for all beamformers in the presence of
no added reverberation clutter and the computed CRDR for a
range of SCRs is shown in Fig. 6. Since CRDR aims to quan-
tify how accurately a beamformer represents contrast, a higher
CRDR corresponds to a longer range over which a beamformer
reports the true contrast. SLSC and GLT notably deviate from
the true contrast line since they are designed to enhance CNR
at the cost of CRDR, which they do as shown in Fig. 7(b).
Table II shows the measured CRDR for all beamformers at
each level of added reverberation clutter from 20 dB (very low
clutter) to −20 dB (very high clutter). We also include versions
of DAS, ADMIRE (HDF), and iADMIRE summed using
Hamming apodization since DAS especially benefits in this
scenario. Though this does significantly improve the CRDR for
DAS, it still does not match the performance of iADMIRE,

Fig. 6. Dynamic range displayed as measured contrast versus actual
contrast for (a) hyperechoic and (b) hypoechoic cysts. The black-dotted
line indicates the true contrast, and adherence to that line indicates
more accurate reporting of measured contrast. (c) Computed CRDR for
a range of SCR. Included error bars indicate the standard deviation.

apodized or unapodized. Overall, for SCRs between 20 and
0 dB, iADMIRE continues to have the highest CRDR, but
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Fig. 7. (a) Sample realization of each beamformer for a 60-dB hyperechoic cyst. All beamformers are displayed on a 120-dB log scale to highlight the
strong sidelobes (where present), except SLSC, which is displayed linearly, as is the convention. (b) CNR, (c) GCNR, and (d) 2-D speckle correlation
calculated for the full range of cysts without added reverberation clutter. Included error bars indicate the standard deviation. Images are normalized
so that background speckle is at the same level across methods.

Fig. 8. Sample realization of bright scatterer phantoms at 40, 60, 80, 100, and 120 dB. All beamformers are displayed on a 100-dB log scale
to highlight sidelobes and background speckle, except SLSC, which is displayed linearly, as is the convention. Images are normalized so that
background speckle is at the same level across methods.

at more intense levels of reverberation all beamformers suffer
poor CRDR.

One realization of a simulated 60-dB contrast target phan-
tom without added reverberation clutter is shown in Fig. 7(a).
The images are displayed on a compressed log scale of 120 dB
to highlight the impact of the strong sidelobes. We can
qualitatively see the sidelobe artifacts in DAS, DMAS, GCF,
and MV, which has a noticeable affect on the dynamic range as
shown. We can also see the affect that SLSC and GLT have
on the background speckle near the cyst, which provides a
great boost to CNR, as reported in Fig. 7(b). SLSC vastly
outperforms the other methods due to this suppression of
speckle in the background, with GLT performing second best
for similar reasons. For all magnitudes of cysts, SLSC and
GLT have better than or equal CNR to the other beamformers.
In comparison, for GCNR shown in Fig. 7(c), all methods are
fairly similar at all levels of contrast.

Fig. 7(d) shows the 2-D correlation coefficient of the
defined speckle region for all beamformers at all contrast levels
when compared with the corresponding speckle realization in
DAS at 0 dB (no cyst), which should be the true speckle.
Again, due to the suppression of speckle, SLSC and GLT have
significantly reduced speckle accuracy, and all methods begin
to lose accuracy at contrast levels greater than 30 dB due to the
effect of the sidelobe artifact. In the low reverberation clutter
cases, ADMIRE (HDF) has speckle accuracy above 0.90 for
cysts up to 50 dB, and iADMIRE performs similar up to 60 dB.
However, for increased levels of reverberation, all the methods
are reduced to nearly 0 correlation as the reverberation clutter
completely masks the original speckle.

B. Bright Scatterer Phantoms

A realization of the bright scatterer phantoms is shown in
Fig. 8. Since ADMIRE (HDF) outperforms ADMIRE (LDF)

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 12,2021 at 17:40:05 UTC from IEEE Xplore.  Restrictions apply. 



490 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 68, NO. 3, MARCH 2021

Fig. 9. (a) Contrast of the dark region artifact versus the strength of the
simulated bright scatterer. Negative contrast indicates the presence of
a dark region artifact, while positive contrast indicates strong sidelobe
clutter. Values close to 0 dB indicate low artifact interference. (b) 2-D
speckle correlation in the area of the dark region artifact as compared
to clean background speckle. Values close to 1 indicate better speckle
accuracy. (c) PSFs for the 60-, 80-, and 100-dB bright scatterers,
displayed from the center of the target.

in terms of mitigating the dark region artifact, we have only
included the better variation. Sidelobe artifacts are present in
DAS, DMAS, GCF, and MV, and begin to show in ADMIRE
at higher bright scatterer contrasts. The dark region artifact

TABLE III
MEAN POINT TARGET WIDTH AT VARYING LEVELS

is strongly present in the GCF, SLSC, and ADMIRE images,
and somewhat present in the DMAS images. GLT does not
obviously exhibit either artifact, but that is primarily due to
the background speckle being completely suppressed by the
operation. iADMIRE shows reduction in the sidelobe artifacts,
but also the removal of the dark region artifact and restoration
of the background speckle in cases up to 100 dB.

Fig. 9(a) shows the contrast in the area of the dark
region artifact compared to the uncorrupted background, and
Fig. 9(b) shows the calculated speckle correlation for the area
impacted by the two artifacts. As expected from the included
realization, DMAS demonstrates improved contrast in the dark
artifact region due to somewhat suppressed sidelobes and
minimal dark region artifact, though iADMIRE has better
overall artifact mitigation. For the 120-dB case, all beam-
formers demonstrated severe artifacts either due to sidelobes
or the dark region artifact. Several methods have speckle
accuracy greater than 0.75 for cases at or less than 80 dB,
but only iADMIRE has accuracy above 0.90 in all cases up
to 100 dB. Finally, Fig. 9(c) shows the PSF for a realization of
the 60-, 80-, and 100-dB bright scatterers, and Table III shows
the corresponding mean point target width. For all levels,
ADMIRE and iADMIRE have comparable or better resolution
compared to DAS, but MV consistently has the best resolution
among the beamformers.

C. In Vivo Carotid Artery

The top row of Fig. 10 shows the B-mode of the
carotid artery beamformed using DAS, ADMIRE (HDF), and
iADMIRE, as well as a difference image to show the changes
between DAS and iADMIRE. The middle rows show the white
dashed line region enlarged and beamformed with rectangular
and Hamming apodization to highlight the high clutter in
DAS with rectangular apodization. ADMIRE (HDF) removes
this clutter entirely, presenting a dark region artifact in the
same location, and iADMIRE lessens the clutter and preserves
some of the underlying speckle. The difference images show
iADMIRE with rectangular apodization when compared with
DAS with rectangular and Hamming apodization. Its is noted
that the middle rows are displayed on a smaller dynamic range
to make the changes between speckle and clutter more visible.
Finally, a PD image is shown for each method.

V. DISCUSSION

A. Contrast Target Phantoms

The CRDR demonstrates the issue of saturation due to the
interference of the sidelobe artifact, where cysts at different
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Fig. 10. DAS, ADMIRE (HDF), iADMIRE, and the difference between iADMIRE and DAS images from an in vivo carotid artery from a healthy
individual. Top row: standard B-mode images on a 70-dB log scale. Middle and bottom rows: white dashed line section from the B-mode enlarged.
Middle rows: the same B-mode on a narrower 30-dB log scale using rectangular (Rect) and Hamming (Hamm) apodization, respectively. Bottom
row: PD images on a 25-dB log scale. The lower dynamic range helps to highlight the improved speckle texture in the iADMIRE B-mode image.

magnitudes appear identical on a more traditional compressed
log scale. In the results, the dynamic range curves show
that all beamformers eventually saturate for cysts above
some level of contrast, both hyperechoic and hypoechoic,
due to sidelobe clutter. In low reverberation clutter cases,
iADMIRE is able to more accurately report the true con-
trast in the range of −40–60-dB cysts when compared with
other beamformers, improving upon ADMIRE and DAS.
ADMIRE (HDF) and iADMIRE perform well primarily due to
their ability to mitigate the sidelobe artifact without introduc-
ing a dark region artifact. However, at higher levels of sidelobe
clutter, ADMIRE (HDF) begins to struggle to preserve the true
background speckle resulting in a dark region artifact, while
iADMIRE is able to differentiate between the clutter and the
background speckle more effectively.

We characterized the effect of the sidelobe artifact on
the background speckle by computing the 2-D correlation
coefficient for all methods at all levels of contrast against an
untouched speckle background (no cyst or additional clutter).
For hypoechoic cysts, the background region is unaffected
since there is no strong acoustic target. However, for the
strong acoustic cysts at 30 dB and greater, many of the
beamformers begin to suffer reduced speckle accuracy. Only
ADMIRE (HDF) and iADMIRE manage to maintain above
0.90 speckle accuracy at 50 dB, and only iADMIRE pre-
serves speckle accurately at 60 dB. As with CRDR, speckle

correlation drops significantly as the level of added reverber-
ation clutter rises above the background speckle.

From the CNR results, SLSC is the clear choice if cyst
detectability is the primary focus. Since SLSC takes advantage
of the lack of coherence in the sidelobe clutter, it is able to
dramatically reduce the amplitude of the background in those
areas, increasing the contrast and decreasing the variance.
GLT functions similar, though to a lesser extreme. All the
other beamformers have similar performance, with DAS and
the ADMIRE variants performing nearly identically. GCNR,
on the other hand, only compares the probability distribution
of the magnitudes of the cyst versus the background, meaning
that given a fixed speckle variance, there is some level of
contrast above which all cysts will have a GCNR of 1,
regardless of beamformer. Because of this, GCNR does not
value the difference in contrast or the speckle variance beyond
a certain level, and therefore does not fully differentiate
between beamformers in this study. The GCNR results argue
that the improved CNR that SLSC and GLT are getting from
suppressing the background is not functionally improving
detectability more than the other beamformers, which is fair
since the cysts are extremely easy to differentiate from the
background, regardless of which method is used.

The added reverberation clutter results show that iADMIRE
is better able to correctly mitigate sidelobe clutter for reverber-
ation cases up to 0-dB SCR, but once the reverberation clutter
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is sufficiently strong, it begins to fail along with the other
beamformers. At −10- and −20-dB SCR, all of the beamform-
ers failed to represent true cyst contrast due to the complete
corruption of the background speckle. This indicates that
ADMIRE is more robust to high levels of sidelobe clutter
than reverberation clutter due to the nature of the two sources.
Specifically, off-axis signals have intrinsically lower correla-
tion with the ROI signals when compared with reverberation
signals, which makes it more difficult to fully separate high
amplitude reverberant sources [35]. This issue could poten-
tially be avoided using tissue harmonic imaging, which has
been demonstrated many times to reduce reverberation [31],
[32], [36] and has previously been successfully implemented
with ADMIRE [13].

When ADMIRE is tuned toward an L1 fit (encouraging spar-
sity of coefficients), the high magnitude signals (reverberation)
are preferentially fit, and the weaker signals are lost. However,
with a more L2 fit (encouraging more nonzero coefficients),
the model again prefers the high frequency predictors to
achieve a lower error fit to the input signal, resulting in the
underlying signal being misclassified as clutter. For the severe
reverberation clutter cases, iADMIRE requires many iterations
to progressively remove the high magnitude components first
without overfitting the ROI, but this causes compounding of
small model fitting errors due to the many iterations.

B. Bright Scatterer Phantoms

Qualitatively, the bright scatterer phantom results show that
ADMIRE and iADMIRE almost entirely mitigate the sidelobe
artifact that is present in the DAS, DMAS, GCF, and MV
images. Furthermore, iADMIRE mitigates the dark region
artifact that begins to appear in ADMIRE (HDF) at 80 and
100 dB, restoring the lost background speckle. Not only is
the magnitude of the speckle restored, but the 2-D correlation
coefficient shows that it is restoring the speckle accurately.
In the 100-dB bright scatterer case, iADMIRE reports a
correlation coefficient of 0.93, with MV and DMAS a distant
runner-up with coefficients of 0.42 and 0.40, respectively.
Though none of the beamformers were able to perform well
in the 120-dB bright scatterer case, this shows that iADMIRE
is able to mitigate both sidelobe and dark region artifacts in
cases up to 100 dB.

C. In Vivo Carotid Artery

The data obtained from the carotid artery shows an exam-
ple of the dark region artifact in vivo. ADMIRE (HDF),
in the presence of the sidelobe clutter from the tissue wall,
completely removes the blood speckle along with the clutter,
resulting in a complete loss of the blood signal in that region.
In comparison, iADMIRE is able to restore that lost blood
signal and largely preserve the underlying speckle, which
can be seen by the improved speckle appearance in the
highlighted cluttered region compared to DAS with rectangular
apodization. Hamming apodization clearly helps to remove
the clutter signal from the vessel, but seems to remove more
signal compared to iADMIRE with rectangular apodization.
Given the nature of the in vivo situation, it is difficult to

know whether the Hamming apodization is removing too much
signal or not.

VI. CONCLUSION

We have presented iADMIRE as a modification to the
original ADMIRE algorithm that is able to extend its dynamic
range as well as mitigate the dark region artifact that results
from adaptive beamformers. Using CRDR and GCNR, we con-
firmed the performance of iADMIRE when compared with
other common adaptive beamformers, while also demonstrat-
ing the issues with regard to sidelobe artifact saturation and
true contrast.

In the no added reverberation clutter cases, iADMIRE had a
CRDR of 72.1 dB, improving upon the next best methods DAS
and ADMIRE (HDF) at 50.0 and 45.4 dB, respectively. The
added reverberation clutter cases proved more difficult, where
iADMIRE loses some of its relative improvements as the
level of reverberation increases. This indicates that iADMIRE
has difficulty fully differentiating these highly reverberant
sources from the ROI signals. As Byram et al. [13] showed
previously, the physical model of ADMIRE loses accuracy in
the extreme near field and additionally sources at different
depths from the ROI tend to have higher correlation with the
ROI when compared with same-depth, off-axis sources [35].
This means that while iADMIRE is robust to off-axis clutter,
differentiating between near-field and ROI signals is more of
a challenge in these highly reverberant cases.
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