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Assessing the Robustness of
Frequency-Domain Ultrasound Beamforming

Using Deep Neural Networks
Adam C. Luchies , Member, IEEE, and Brett C. Byram, Member, IEEE

Abstract— We study training deep neural network (DNN)
frequency-domain beamformers using simulated and phan-
tom anechoic cysts and compare to training with simulated
point target responses. Using simulation, physical phan-
tom, and in vivo scans, we find that training DNN beamform-
ers using anechoic cysts provided comparable or improved
image quality compared with training DNN beamformers
using simulated point targets. The proposed method could
also be adapted to generate training data from in vivo scans.
Finally, we evaluated the robustness of DNN beamforming
to common sources of image degradation, including gross
sound speed errors, phase aberration, and reverberation.
We found that DNN beamformers maintained their ability to
improve image quality even in the presence of the studied
sources of image degradation. Overall, the results show the
potential of using DNN beamforming to improve ultrasound
image quality.

Index Terms— Beamforming, deep neural networks
(DNNs), gross sound speed error, off-axis scattering, phase
aberration, reverberation.

I. INTRODUCTION

ULTRASOUND imaging continues to be one of the most
commonly used imaging modalities because it is inex-

pensive, portable, has good soft tissue contrast and is capable
of real-time imaging. However, B-mode ultrasound images are
frequently corrupted by multiple sources of image degradation.
For example, cardiac imaging quality can be impeded by
strong off-axis scattering from the ribs or lungs [1], [2].
Abdominal imaging can be degraded by superficial layers of
fat that cause reverberation clutter to mask the imaging region
of interest [3].

Because improved B-mode ultrasound image quality could
have clinical impact on many applications, the development
of advanced beamforming methods continues to be an active
area of research. Examples of advanced beamforming methods
that have been developed for ultrasound imaging include
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the coherence factor [4], [5] and generalized coherence fac-
tor [6], minimum variance (MV) beamforming [7]–[9], phase
coherence imaging [10], short-lag spatial coherence imaging
(SLSC) [11], [12], aperture domain model image reconstruc-
tion (ADMIRE) [13]–[16], compressive sensing methods [17],
filtered delay multiply and sum (F-DMAS) [18], and frequency
space prediction filtering (FXPF) [19].

Recently, there has been growing interest in using
deep neural networks (DNNs) for ultrasound beamforming
[20]–[28]. The DNN beamformer that we developed utilizes
DNNs to filter aperture domain signals in the frequency
domain [20], [23]. We showed that it was possible to train
DNN beamformers using simulation-based training data and to
increase contrast and contrast-to-noise ratio (CNR) in physical
phantom and in vivo scans. We explored several methods for
studying DNN beamformer operation and found that the DNNs
appeared to adjust the beam based on the input signal [23].
We studied the method for selecting DNN beamformers and
found that loss, which is normally used for selecting a
model, was a limited predictor of image quality [29]. Instead,
we proposed using simulated image quality as a predictor
for in vitro and in vivo image quality and as a method for
model selection [30]. We also showed that DNN beamformers
were robust to noise and conducted an initial study of their
robustness to other sources of image degradation, including
gross sound speed errors and phase aberration [29], [31].

Previously, we found that image quality improvements
plateaued at about 10 000 training examples when training
with point targets (see [30, Fig. 12]), which motivates explor-
ing new methods for improving image quality with DNN
beamformers. The deep learning community has identified
three methods for improving the performance of deep learn-
ing models: 1) search for improved model architectures;
2) creating larger training data sets; and 3) scaling computation
(i.e., training larger models) [32]. In this work, we focus on
creating larger and more diverse training data sets for training
DNN beamformers. Toward this end, we study anechoic cyst-
based training data using simulated and physical phantom
anechoic cysts and compare it to training with simulated point
targets [29]. This study was also set up to provide insight
into data mismatch issues for training DNN beamformers
(e.g., training with simulated data and testing on phantom
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Fig. 1. Diagram showing frequency-domain processing by a DNN beam-
former. k is the frequency index for each DNN. The number of elements in
the receive subaperture was N. The gated data for the nth channel were
sn(t). The input signals were a single-gated depth of channel data. A DFT
transformed each channel signal into the frequency domain. � indicates
the real component and � indicates the imaginary component. Processed
frequency-domain data are transformed back into the time domain using
an inverse discrete Fourier transform (IDFT) [34].

TABLE I
HYPERPARAMETER SEARCH SPACE

scans). In addition, we expand on our previous study of
DNN beamformer robustness to gross sound speed and phase
aberration and also study the effect of reverberation clutter on
DNN beamforming [31], [33].

II. METHODS

The DNN beamformer that we study in this article operates
in the frequency domain [30]. Channel data were converted
from the time to the frequency domain using a short-time
Fourier transform (STFT). The gate length for the STFT
window was 16 samples (one pulselength).

A set of DNNs constituted a DNN beamformer in this
work. A separate DNN was trained for each discrete Fourier
transform (DFT) bin, and a frequency-specific DNN was
trained for each DFT bin. Fig. 1 shows a diagram of the
frequency-domain processing by a DNN beamformer.

A. Neural Networks

The DNNs were fully connected feedforward multilayer
networks, and the hyperparameter search used during training
is in Table I. All DNNs within a DNN beamformer (i.e., the
DNN for each DFT bin) were trained with the same hyperpa-
rameter settings and model architecture.

Adam (adaptive moment estimation) was the variant of sto-
chastic gradient descent that was used during training with the
values suggested by Kingma and Ba [37], including α = 10−3

(learning rate), β1 = 0.9 and β2 = 0.999 (coefficients
used for computing running averages of the gradient and its
square), and � = 10−8 (a term to improve the numerical
stability of the gradient update). The rectified linear unit
(ReLU) was used for the activation function [38]. Three loss

TABLE II
LINEAR ARRAY SCAN PARAMETER VALUES

functions were included in the hyperparameter search—mean
squared error, mean absolute error, and smooth L1, which uses
the mean squared error for small values and mean absolute
error otherwise. The weights of the network were initialized
using a zero-mean Gaussian random variable with variance
given by (2/n)1/2, where n is the size of the previous layer
[39], [40]. A 20-epoch patience was used and inputs to the
networks had maximum norm equal to one during training and
inference.

Pytorch was used to create and train all of the DNNs in
this work [41]. Training was performed on a GPU computing
cluster maintained by the Advanced Computing Center for
Research and Education at Vanderbilt University.

B. Training Data

In the past, we used the responses from individual point
targets or the combined responses of two or three point
targets to train neural networks for ultrasound beamforming
[23], [30]. For this work, we developed a new training data
generation technique using anechoic cysts in simulations and
tissue-mimicking phantoms (TMPs). Table III contains a sum-
mary of the training data types used in this study.

1) Simulated Point Targets: For comparison purposes,
we include results using training data generated from point
targets. A description for how this style of training data was
generated can be found in previous work [23]. The responses
from single point targets and the combined responses from
two point targets were used as described previously [30]. The
parameters for the scanning transducer are in Table II. The
training set size included 50 000 examples and the validation
included 10 000 examples.

2) Simulated Anechoic Cysts: Cysts were scanned with a
simulated ATL L7-4 (38 mm) linear transducer array. The
parameters for the scanning transducer are in Table II. The
background region contained 25 scatterers per resolution cell
and the inside region was completely anechoic. Field II was
used to perform the ultrasound simulations [35], [36]. The
cysts were at a depth of 7 cm and had a radius of 2.5 mm.
A cartoon depiction of a single cyst is in Fig. 2. A circle was
inscribed on the cyst interior to create a training data region
for the inside of the cyst. This circle is shown as a white
dashed line in Fig. 2. An annulus was circumscribed around
the cyst exterior to create a training data region for outside the
cyst. Training examples were generated differently depending
on whether the STFT segment was inside or outside of
the cyst.

An STFT was taken off the anechoic cyst channel data. The
STFT segments on the inside of the anechoic cyst region in
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Fig. 2. Illustration of training data generation from an anechoic cyst. The
white dashed circle represents the training data region for inside the cyst.
The white dotted annulus represents the training data region for outside
the cyst.

Fig. 2 were considered to be examples of off-axis scattering.
For these off-axis scattering STFT segments, training examples
were formed by using STFT segments as input examples and
the corresponding target examples were vectors of zeros. The
STFT segments in the background training data region in
Fig. 2 were considered to be examples of on-axis scattering.
For these on-axis scattering STFT segments, training examples
were formed by using STFT segments as input examples and
the corresponding target examples were the same as the inputs.
The same number of training examples was used from the cyst
and background training data regions.

For the simulated cysts that had a radius of 2.5 mm,
the training data boundary for the cyst interior was set using
the known location and size of the cysts and the measured
resolution of the imaging system. Using a simulation, the
6-dB lateral width of a point target at the focus was measured
to be 1 mm and the 6-dB axial length of a point target
was measured to be 0.2 mm. Therefore, the training data
boundary for the cyst interior was an ellipse with a lateral
radius of 2 mm and an axial radius of 2.4 mm. The interior
boundary for the background annulus region was the same as
that used for the cyst region. The exterior boundary for the
annulus was set so that an equal number of STFT segments
were used from both the cyst region and the background
region.

A total of 24 anechoic cysts were simulated. Training data
were formed from 21 of these cysts and validation data was
formed from three of the cysts. The training set size included
50 000 examples and the validation included 10 000 examples.

3) Tissue-Mimicking Phantom Anechoic Cysts: An ATL L7-4
(38 mm) linear array transducer was operated using a Vera-
sonics Vantage 128 system (Verasonics, Kirkland, WA, USA)
to conduct physical phantom scans. The physical phantom
was a multipurpose phantom (Model 040GSE, CIRS, Norfolk,
VA, USA) and a cylindrical anechoic cyst with approximately
10 mm diameter at a 7 cm depth was scanned. The parameters
for the scanning transducer are in Table II.

Training data were generated using the same method as that
used for the simulated anechoic cysts in Section II-B2. For the
phantom cysts, the training data regions were placed manually
so that the cyst region only included STFT segments that were

entirely on the inside of the cyst and the background annulus
region only included STFT segments that were entirely on
the exterior of the background region. A total of 14 scans
were made from a 1-cm-diameter cylindrical cyst at different
positions along the cylinder: 12 of them were used for training
data and 2 of them were used for validation. The training
set size included 50 000 examples and the validation included
10 000 examples.

4) Simulated Point Targets and Cysts: We also studied mix-
ing different kinds of training data. In this example of data
mixing, we mixed the point target data from Section II-B1
and the simulated anechoic cyst data from Section II-B2. The
training set size included 50 000 examples and the validation
included 10 000 examples and the mixing was 50% from each
class of training data.

Previously, we showed that image quality improvements
plateaued at about 10 000 training examples when training
with point targets [30]. In this article, we used 50 000 training
examples because we expect the plateau starting point to
increase when training with mixed data types such as the one
described in this section. A five-fold increase in training data
size was selected to give confidence that the training conditions
were indeed above the plateau identified previously but for
a mixed training data set. In addition, when training with
only one type of training data (e.g., point targets or cysts,
but not both), using more training data serves as a form of
regularization and is not expected to degrade test performance.

5) Simulated Point Targets and Phantom Anechoic Cysts:
In this example of data mixing, we mixed the point target data
from Section II-B1 and the phantom anechoic cyst data from
Section II-B3. The training set size included 50 000 examples
and the validation included 10 000 examples and the mixing
was 50% from each class of training data.

C. Image Quality Metrics
We quantified image quality using speckle signal-to-noise

ratio (SNRs)

SNRs = μbackground

σbackground
(1)

contrast ratio (CR)

CR = −20 log10

�
μlesion

μbackground

�
(2)

and CNR [13], [42]–[45]

CNR = 20 log10

⎛
⎝ |μbackground − μlesion|�

σ 2
background + σ 2

lesion

⎞
⎠ (3)

where μ is the mean and σ is the standard deviation of the
uncompressed envelope. CR and CNR require specification of
a lesion region and a background region.

Traditionally, CNR has been viewed as one of the better
metrics for assessing ultrasound image quality because it
can be related to the lesion detection probability for an
ideal observer [43]. Recently, Rodriguez-Morales et al. [46]
observed that when CNR is measured using high contrast
lesions, CNR can be artificially increased using a sim-
ple dynamic range transformation. They proposed a new
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image quality metric designed to be immune to such
dynamic range transformation called the generalized contrast-
to-noise (GCNR). GCNR is computed from the overlap area
of two probability distributions

GCNR = 1 −
	

min{plesion(x), pbackground(x)}dx (4)

where plesion(x) is the density function from the lesion region
and pbackground(x) is the density function from the background
region. Although we have not seen evidence that DNN beam-
forming behaves like a simple dynamic range transformation,
we include GCNR in this work for completeness.

D. Test Data Comparison Scans

1) Simulation: Anechoic cysts having 1, 2.5, 5, and 10 mm
diameter were simulated at a depth of 7 cm and imaged
using a simulated L7-4 (38 mm) linear transducer array.
The parameters for the scanning transducer are in Table II.
No scatterers were located inside the cysts and 25 scatterers
per resolution cell were placed in the background region. The
speed of sound was 1540 m/s. A total of 20 anechoic cysts
were simulated for each of the specified diameters: 10 were
used as a validation set and 10 were used as a test set. The
validation set was used to select the DNN beamformer that
provided the best image quality (i.e., CNR) and the test set
was used to report image quality metrics for the selected DNN
beamformer.

2) Physical Phantom Scans: An ATL L7-4 (38 mm) linear
array transducer was operated using a Verasonics Vantage
128 system (Verasonics, Kirkland, WA, USA) to conduct
physical phantom scans. The parameters for the scanning
transducer are in Table II. The physical phantom was a multi-
purpose phantom (Model 040GSE, CIRS, Norfolk, VA, USA),
and cylindrical anechoic cysts at a 7 cm depth with approxi-
mately 5 and 10 mm diameters were scanned. Ten scans were
made at different positions along the cylindrical cyst: five were
used in a validation set for DNN beamformer selection and
five as a test set for image quality performance reporting.
Note that although this physical phantom was the same one
that was used to generate training data in Section II-B3,
a different cylindrical cyst inside the phantom was scanned
for the evaluation purposes described in this section.

3) In Vivo Scans: A linear array transducer (ATL L7-4
38 mm) was operated using a Verasonics Vantage 128 system
(Verasonics, Kirkland, WA, USA) to scan the liver of a
36-year-old healthy male. Scanning was conducted to look at
liver vasculature. The parameters for the scanning transducer
are in Table II. The study was approved by the local Institu-
tional Review Board.

The same experimental setup was used to scan the carotid
artery of this healthy individual. It was necessary to use
standoff pads in order to place the carotid within the depth of
field of the DNNs studied in this work. Scans were conducted
to obtain a cross-sectional view of the carotid.

The liver of this healthy individual was also scanned using
a curvilinear array transducer (ATL C5-2) and a Verasonics
Vantage system. A total of six scans were conducted to image
different locations in the liver. DNN beamformers for a C5-2

TABLE III
DNN BEAMFORMING TRAINING DATA NOTES

TABLE IV
ATL C5-2 CURVILINEAR ARRAY SCAN PARAMETER VALUES

array were trained from scratch, and the training data were
generated using Field II using the scan parameters in Table IV.
The style of the training data that was used for the C5-2 array
corresponded to DNNcyst in Table III.

E. Robustness Assessment Scans

1) Gross Sound Speed Errors: The speed of sound is
usually assumed to be 1540 m/s when beamforming ultra-
sound signals. However, the speed of sound in human tissue
can actually vary from this value by 10% or more [47].
Therefore, it is important to study the performance of an
advanced beamformer in the presence of gross sound speed
errors [16]. Anechoic cysts having 5 mm diameter were
simulated at a depth of 7 cm and imaged using a simulated
L7-4 (38 mm) linear transducer array. No scatterers were
located inside the cysts and 25 scatterers per resolution cell
were placed in the background region. A total of 20 cysts
were simulated. The cysts were simulated using sound speeds
between 1294 and 1786 m/s. Transmit beamforming and
receive beamforming were performed assuming 1540 m/s. The
same 20 cysts were imaged using each of the studied sound
speed settings. To prevent overfitting and inflated performance
metrics, a validation set was formed using 10 of the cysts for
DNN beamformer selection and a test set was formed using
10 of the cysts for image quality performance reporting. Note
that the test set was only used for performance reporting.

2) Phase Aberration: We studied the effect of phase aberra-
tion on DNN beamforming using a near-field phase screen
model applied to simulated cysts. Aberration profiles were
generated by convolving a Gaussian function with random
white noise [15], [48]. The generated aberration profiles were
made to be zero-mean by fitting a line to the generated
profile and then subtracting this linear trend. This phase screen
model was applied on transmit and receive to the mathematical
elements of the FIELD II simulation. A single aberration
profile was characterized by its autocorrelation full-width at
half-maximum (FWHM) and its root mean square (rms).
Smaller FWHM values and larger rms values indicate stronger
phase aberration. In this study, the aberration profiles had
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Fig. 3. Example loss curves for the different training data types. Training data were for the center frequency. To facilitate comparison, the same
set of hyperparameters was used for all training data types. The boundary regions surrounding each curve represent the minimum and maximum
values over five training runs. The sources of randomness across the training runs included starting weights, batch order, and dropout.

an FWHM of 5 mm and the rms values of 0, 10, 20, 30,
and 40 ns. The targets were 5-mm-diameter anechoic cysts
simulated at a depth of 7 cm using a simulated L7-4 (38 mm)
linear transducer array. A total of 20 cysts were imaged using
different levels of phase aberration. A validation set was
formed using 10 of the cysts for DNN beamformer selection,
and a test set was formed using 10 of the cysts for image
quality performance reporting.

3) Reverberation: Evidence continues to grow that rever-
beration clutter from near-field sources is a major source of
ultrasound image degradation [49]. Therefore, it is impor-
tant to evaluate an advanced beamformer in the presence of
reverberation clutter [15]. To study the effect of reverberation
clutter on DNN beamforming, we used a pseudononlinear
technique developed previously by members of our group [50].
This method operates by simulating the responses from point
targets from a region close to the surface of the transducer
and then artificially delaying these signals in time with the
goal of mimicking near-field reverberation. We also note that
this reverberation clutter generating method may not accu-
rately model all of the different kinds of reverberation effects
encountered in vivo [53] However, it has been shown that the
pseudononlinear reverberation generation method that we used
in this article can create a wide variety of reverberation form
factors [50].

We used the signal-to-clutter ratio (SCR)

SCR = 10 log10

�
PSOI

PClutter

�
(5)

where PSOI is the power of the uncluttered signal and PClutter

is the power of the reverberation signal to characterize the
strength of reverberation clutter. In this study, the SCR was
varied in the range from −20 to 10 dB. A total of 20 cysts were
imaged using different levels of SCR. A validation set was
formed using 10 of the cysts for DNN beamformer selection
and a test set was formed using 10 of the cysts for image
quality performance reporting.

III. RESULTS

A. Loss Curves

Fig. 3 show the example loss curves for the different train-
ing data types. DNNpoint had the lowest loss values, which

shows that the cyst-based training data were more difficult to
learn than point target training data and suggesting that cyst-
based training data have higher variance than point target train-
ing data. The difference between training and validation losses
was minimal for DNNpoint, DNNTMPcyst, and DNNpoint+TMPcyst,
suggesting that these DNNs were not overfitting. The differ-
ence between training and validation losses for DNNcyst and
DNNpoint+cyst was on the order of 50%, suggesting that some
overfitting may be occurring. Using more regularization, such
as increasing dropout or using more training data, could help
to reduce the observed difference between the training and
validation losses in these cases. Finally, the observed variance
in the loss curves across training runs with different starting
weights, batch order, and dropout was minimal.

B. Test Data Comparison

Fig. 4(a)–(f) shows the examples of point target responses
for DAS and DNN beamforming using the styles of training
data described in Table III. Previously, we showed that DNN
beamformers trained with point targets generalized to diffuse
scattering targets [20]. Fig. 4(c) shows how DNN beam-
formers trained with diffuse targets (i.e., cysts) generalized
to point targets. Fig. 4(g) shows how DNNpoint, DNNcyst,
and DNNpoint+cyst suppressed lateral sidelobes on the order
of 40 dB. In contrast, DNNTMPcyst and DNNpoint+TMPcyst sup-
pressed sidelobes on the order of 0–10 dB.

Fig. 4(h) shows how all of the DNN beamformers increased
axial range lobes relative to DAS, which is consistent with
our previous findings [20]. DNNpoint produced the lowest
range lobes followed by DNNcyst and DNNpoint+cyst. In general,
we note that the DNN beamformers trained with simulated
training data sets provided the best performance on simulated
point targets.

Fig. 5 shows the example images for simulated anechoic
cysts using DAS and DNN beamformers. Fig. 5(i), (o), and (u)
show how DNNcyst produced the highest quality images
based on visual inspection and Tables V–VIII show how
this beamformer also generally produced the best CNR for
all of the studied cyst sizes. For the 10-mm-diameter cysts,
DNNTMPcyst and DNNpoint+cyst produced CNR values that were
0.07 dB higher than DNNcyst; however, DNNcyst provided the
best GCNR. These qualitative and quantitative results show
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Fig. 4. Simulated point targets for (a) DAS beamforming and (b)–(f) DNN beamforming with different styles of training data (DNNpoint, DNNcyst,
DNNTMPcyst, DNNpoint+cyst, and DNNpoint+TMPcyst, respectively). (g) Axially integrated lateral and (h) axial profiles. DNN beamformer training data
types are in Table III. Images shown with 60-dB dynamic range.

TABLE V
SPECKLE STATISTICS FOR SIMULATED

1 mm DIAMETER CYSTS (N = 10)

TABLE VI
SPECKLE STATISTICS FOR SIMULATED

2.5-mm-DIAMETER CYSTS (N = 10)

that DNN beamformers trained using one-sized anechoic cyst
produced improved image quality for cysts having a different
size, which demonstrates that training DNN beamformers with
one-sized cyst can generalize to other sized cysts. The fact
that DNNcyst produced the best image quality improvements
relative to DAS is not surprising because the training data
for this DNN beamformer were most similar to this type of
evaluation scan. Training with a different kind of simulated
target (i.e., DNNpoint) or training with physical phantom data

TABLE VII
SPECKLE STATISTICS FOR SIMULATED

5-mm-DIAMETER CYSTS (N = 10)

TABLE VIII
SPECKLE STATISTICS FOR SIMULATED

10-mm DIAMETER CYSTS (N = 10)

instead of simulated data (i.e., DNNTMPcyst) reduced CNR by
about 0.1–1 dB depending on the cyst size.

Example images for phantom anechoic cysts using DAS
and DNN beamformers are in Fig. 6. Speckle statistics for
phantom anechoic cysts are in Tables IX and X. For these
scans, DNNTMPcyst provided the largest CNR improvements
compared with DAS. We note that the cyst edges in the
phantom evaluation scans when using DNNTMPcyst as shown
in Fig. 6(d) and (j) were not as well defined as the cyst edges
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Fig. 5. Simulated anechoic cysts for (a), (g), (m), and (s) DAS, (b), (h), (n), and (t) DNNpoint, (c), (i), (o), and (u) DNNcyst, (d), (j), (p), and (v)
DNNTMPcyst, (e), (k), (q), and (w) DNNpoint+cyst, and (f), (l), (r), and (x) DNNpoint+TMPcyst.

Fig. 6. Physical phantom anechoic cysts for (a) and (g) DAS, (b) and (h) DNNpoint, (c) and (i) DNNcyst, (d) and (j) DNNTMPcyst, (e) and (k) DNNpoint+cyst,
and (f) and (l) DNNpoint+TMPcyst.

in the simulation scans when using DNNcyst as shown in
Fig. 5(o) and (u). For the phantom cyst training data used to
train DNNTMPcyst, it was not possible to exactly determine the
location of the boundary between cyst and background. When
setting up the training data, the gap between the cyst interior
region boundary and the inner boundary of the exterior cyst
region as shown in Fig. 2 was about 0.4 mm. Reducing this
gap region could help to improve boundary performance in
the phantom scans.

DNNTMPcyst produced the best CNR as expected because
the training data for this beamformer were most similar
to this evaluation scan. Training with a simulated target
(i.e., DNNpoint or DNNcyst) reduced CNR by about 0.2–0.6 dB
depending on the cyst size.

Fig. 7 shows the example images for DAS and DNN beam-
forming for in vivo liver scans, and speckle statistics for these
scans are in Table XI. DNNTMPcyst produced the best CNR for
the in vivo scan. Compared to training with simulated training
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Fig. 7. In vivo liver scans for (a), (h), and (o) mask regions, (b), (i), and (p) DAS, (c), (j), and (q) DNNpoint, (d), (k), and (r) DNNcyst, (e), (l), and (s)
DNNTMPcyst, (f), (m), and (t) DNNpoint+cyst, and (g), (n), and (u) DNNpoint+TMPcyst.

TABLE IX
SPECKLE STATISTICS FOR PHYSICAL PHANTOM

5-mm-DIAMETER CYSTS (N = 5)

TABLE X
SPECKLE STATISTICS FOR PHYSICAL PHANTOM

10-mm-DIAMETER CYSTS (N = 5)

data, which is the method we had used previously, DNNTMPcyst

improved CNR by 0.8–2.3 dB. DNNpoint produced better CNR
than DNNcyst, which is surprising because one might expect
training with a diffuse target to be more similar to liver scans
than point targets. Overall, the DNN beamformers trained with

TABLE XI
SPECKLE STATISTICS FOR In Vivo LIVER SCANS USING L7-4 (N = 15)

phantom anechoic cysts produced the best image quality in
terms of CNR on the in vivo evaluation scans.

The arrows in Fig. 7(i)–(n) indicate evidence that DNN
beamforming revealed a small blood vessel that was unvisual-
izable using DAS. Similarly, the arrows in Fig. 7(p)–(u) indi-
cate evidence DNN beamforming revealed a small blood vessel
that was somewhat visible using DAS. It is interesting to note
that the amount of vessel visualization improvement varied
depending on the training data type for DNN beamforming.

The same networks that were evaluated using the liver
data above were also evaluated using a scan from an in vivo
carotid artery, and this scan is shown in Fig. 8 for DAS
and DNN beamforming. For DAS and DNNTMPcyst, CNR
was 4.78 and 6.05, respectively. Qualitatively, DNNTMPcyst

provided the best image quality improvement out of the studied
DNN beamforming training data types.
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Fig. 8. In vivo carotid artery scans for (a) DAS, (b) DNNpoint, (c) DNNcyst, (d) DNNTMPcyst, (e) DNNpoint+cyst, and (f) DNNpoint+TMPcyst using an ATL
L7-4 linear array transducer.

Examples of DAS and DNN beamforming for an in vivo
liver scan using a curvilinear array are in Fig. 9. For DAS and
DNNcyst, the CR was 16.3 ± 4.1 and 31.0 ± 6.9 dB, respec-
tively. For DAS and DNNcyst, the CNR was 1.7 ± 0.7 and
3.2 ± 1.1 dB, respectively. These quantitative results com-
plement the qualitative improvements in Fig. 9 when using
DNNcyst compared with DAS. These results show that the
frequency-domain DNN beamforming method studied here
translates to array geometries beyond linear arrays.

C. DNN Beamforming Robustness

The results in Section III-B showed that DNNcyst produced
the best image contrast in simulated anechoic cyst scans.
Therefore, we studied the robustness of DNNcyst to gross
sound speed error, phase aberration, and reverberation using
simulated anechoic cyst scans.

1) Gross Sound Speed Errors: The DNN beamformer was
selected to maximize the average CNR observed across the
range of studied gross sound speed error values. A valida-
tion set was used to select the best DNN beamformer and
the images and quantitative results reported here are from
a test set. Fig. 10 shows the examples of DAS and DNN
beamforming for different gross sound speed errors. Fig. 11
shows CR, CNR, and SNRs as a function of the speed of
sound.

DNN beamforming always produced better CR compared
with DAS for the studied speed of sound range. DNN beam-
forming produced better CNR than DAS as long as the
sound speed was within about 15% of the assumed sound
speed. DNN beamforming decreased SNRs noticeably when
the sound speed deviated by about 8% from the assumed sound
speed. Because CR for the DNN beamformer was always
better than that of DAS, these results suggest that the observed
degradation in CNR was primarily due to the increase in
speckle pattern variance. The DNNs were never exposed to
gross sound speed errors during training, so it is encouraging
to see in Fig. 12 that even for the largest errors in sound
speeds, the cyst was still visible in the DNN beamformed
images and the background speckle pattern was still similar
to the corresponding DAS speckle pattern.

Fig. 9. In vivo liver scans for (a) DAS and (b) DNN beamforming
(DNNcyst) using a C5-2 curvilinear array transducer. Note that the DNNs
for these scans were trained using training data from a simulated C5-2
curvilinear array transducer. Images shown with 60-dB dynamic range.

2) Phase Aberration: The DNN beamformer was selected
to maximize the average CNR observed across the range of
studied phase aberration rms values and when the FWHM of
the aberration profile was 5.0 mm. Fig. 12 shows the example
images for the effect of phase aberration on DNN beam-
forming compared with DAS beamforming. Fig. 13 shows
the CR, CNR, and SNRs as a function of the rms value of
phase aberration profiles. DNN beamforming always produced
better CR and CNR for the studied rms values. When the rms
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Fig. 10. DAS and DNN beamforming images for anechoic cysts simu-
lated using different speed of sounds. Transmit and receive beamforming
was performed assuming the speed of sound was 1540 m/s. Images
shown with 60-dB dynamic range.

value for the aberration profile was less than 15 ns, DNN
beamforming produced similar SNRs values compared with
DAS, but the DNN beamformers increased the speckle pattern
variance compared to above this cutoff. Fig. 12 shows that
the cyst was visible in the DNN beamforming image for
all of the studied phase aberration rms values, while it was
barely visible in the DAS image for the largest aberration
rms values.

Fig. 11. (a) CR, (b) CNR, and (c) SNRs as a function of actual speed
of sound. Error bars indicate one standard deviation.

3) Reverberation: The DNN beamformer was selected to
maximize the average CNR observed across the range of
studied reverberation levels. The first two columns of Fig. 14
show the examples of the effect of reverberation clutter on
DNN and DAS beamforming. Fig. 15 shows the CR, CNR,
and SNRs as a function of SCR. For the studied SCR values,
CR and CNR were always better for DNN beamforming than
DAS. In general, the amount that DNN beamforming degraded
SNRs increased as a function of the amount of reverberation
clutter.

The final column of Fig. 14 shows the examples of a
DNN trained with reverberation clutter. The input training
data examples were anechoic cysts with reverberation at a
strength of −5 dB, and the output examples were anechoic
cysts without reverberation. The results show how training a
DNN beamformer with reverberation improved CR, CNR, and
SNRs for test scans with SCR less than −5 dB. For example,
Fig. 14 shows how the cyst was visible at SCR −20 dB when
training a DNN beamformer with reverberation, but it was not
visible when training without reverberation and also for DAS.

Fig. 15 shows that as the reverberation became weaker
than that used during training, the DNN trained without
reverberation provided equivalent CNR and SNRs and better
CR than the DNN trained with reverberation. Training over
a wide range of reverberation levels could provide a DNN
beamformer with the best performance over a wider SCR range
than that shown here.

IV. DISCUSSION

DNN beamforming is flexible in multiple ways, including
the method used to generate training data. The results in
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Fig. 12. DAS and DNN beamforming images for anechoic cysts
simulated using different amounts of phase aberration. The FWHM for
each aberration profile was 5 mm. Images shown with 60-dB dynamic
range.

Fig. 7 and Table XI show that the proposed anechoic cyst-
based training data generation method improved in vivo image
contrast and CNR compared with the point target training
data generation method that we used in the past [20], [23].
This anechoic cyst-based training data generation method has
several advantages over the point target method. For example,
the number of scans required was reduced by multiple orders
of magnitude because many training examples can be produced
from a single scan of an anechoic cyst. In this work, we imple-

Fig. 13. (a) CR, (b) CNR, and (c) SNRs as a function of phase aberration.
The FWHM for each aberration profile was 5 mm. Error bars indicate one
standard deviation.

mented this method on simulated and phantom anechoic cysts.
However, it may be feasible to implement this method on
in vivo anechoic targets in the human body, such as the bladder.

While Table XI shows how the DNN approach improved
CR and CNR in larger structures, Fig. 7 shows how the
DNN approach also revealed small structures that were not
visualized by DAS. In our example, the smaller structures were
blood vessels, but in general, the ability of deep networks
to image things unvisualized by DAS is a function of the
data used to train the networks. This finding demonstrates the
importance of developing improved methods to create training
data for DNN beamforming in addition to more traditional
methods, such as improving network architectures.

The results in Section III-B show a range of degradation
caused by mismatched training data and evaluation scans.
For example, training using Field II simulation scans and
evaluating physical phantom scans or the other way around
reduced CNR by at least 0.1 dB and as much as 1.0 dB.
In addition, we found that in vivo CNR was improved
by 0.8 dB when training DNN beamformers with physi-
cal phantom-based training data instead of simulation scans.
These results suggest that finding ways to better match the
simulation training data to the experimental scans or finding
ways to generate training data from experimental scans will
offer at least small improvements in CNR and possibly large
improvements. As far as we know, the cyst training data pro-
posed here are one of the first physical scan-based methods for
training DNN beamforming that uses fully sampled training
data. The method by Gasse et al. [21] used experimental
training data, but the goal was to recover the image quality
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Fig. 14. DAS and DNN beamforming images for anechoic cysts
simulated using different levels of reverberation clutter. For the DNNs
trained with reverberation, the training data included reverberation with
SCR −5 dB.

achieved using many plane wave transmit angles from a few
plane wave transmit angles, which amounts to recovering
fully sampled channel data from channel data that has been
subsampled along the transmit event dimension. The method
by Yoon et al. [27] also used experimental training data, but
the goal was to recover fully sampled channel data from sub-
sampled channel data. For these methods, the best performance
is already achievable by using fully sampled channel data.

So far, two categories for creating DNN beamformer train-
ing data have been explored. The first category of methods
relies on the artificial degradation of ultrasound channel data
in some form or fashion (e.g., adding noise or subsampling),
which is followed by teaching DNNs to recover image quality
as if the channel signals had not been degraded [21], [25], [27].
In these methods, the goal was to reduce the number of
necessary transmit events or to reduce the data load needed
to create ultrasound images. The second category of methods
relies on simulation scans in which it is possible to create
input and target example training pairs for the image quality
improvement task [23], [26], [28]. The main advantage of
this second category is that it is possible to push ultrasound
image quality beyond the state of the art achievable when fully
sampled channel data are available.

Introducing sources of image degradation, such as gross
sound speed errors, phase aberration, and reverberation, can
be viewed as a way to push channel data outside the data

Fig. 15. (a) CR, (b) CNR, and (c) SNRs as a function of SCR. Error bars
indicate one standard deviation.

region in which the DNN beamformers were trained. It would
not be surprising if the DNN beamformers had failed to
generalize to these new regions of channel data space. Instead,
the results showed that the DNN beamformers maintained their
performance over a fairly wide range of image degradation
space. For example, CNR continued to show improvements
compared with DAS for all values of the studied image
degradation mechanisms except for the extreme values of
sound speed errors.

The results in Section III-C3 show how including sources of
image degradation in the training data can further improve the
robustness of DNN beamforming. For this work, we studied
adding reverberation clutter in the training generation process
and found that doing so increased the robustness of the DNN
beamformer studied here to stronger reverberation levels.

The anechoic cyst training data generation method proposed
in this work has several limitations. For example, this method
uses off-axis scattering examples from anechoic regions only,
while in general, off-axis scattering is not limited to anechoic
regions. It is possible that the beamformer is only learning
to improve anechoic regions and may not improve CNR for
high contrast targets, such as hypoechoic cysts. In addition,
the DNN beamformers trained with anechoic cysts tend to
exhibit a dark region artifact for hypoechoic and hyperechoic
targets and strong point targets in a speckled background.
We are actively developing a training data generation method
that relies on hypoechoic cysts instead of anechoic cysts in
order to address these limitations [51], [52].

For the physical phantom and the in vivo test scans,
the effect of increasing simulated training data diversity
(in particular, comparing DNNpoint+cyst to DNNpoint and
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DNNcyst) was to increase CR, decrease speckle SNR, and
decrease CNR. These results persist (with a few exceptions)
across Tables IX–XI and Figs. 6 and 7. Furthermore, the cyst
appears slightly larger and the borders appear sharper for
DNNpoint+cyst compared with DNNpoint and DNNcyst for
the physical phantom scans in Fig. 6. Similar trends were
not observed for the simulation data as the image quality
of DNNpoint+cyst tended to be between those of DNNpoint

and DNNcyst.
We think these results suggesting that the effect of increas-

ing training data diversity (i.e., using point targets and
anechoic cysts for training) was to expand the null space
(i.e., the aperture domain signal space over which the DNN
beamformer sets the signal amplitude to zero or close to
zero) of the DNN beamformers in both a global and local
sense. Globally, we expect the null space for DNNpoint+cyst

to be expanded relative to DNNpoint and DNNcyst because
single point target examples of off-axis scattering exist in a
different region of aperture domain signal space compared
with anechoic cyst examples of off-axis scattering. However,
the results mentioned earlier also suggest that an erosion
operation was also applied to the null space of DNNpoint+cyst

compared with DNNpoint and DNNcyst. The presence of this
erosion is conditioned on mismatched training and test data
(e.g., train with simulation and test with experiment) and also
on the use of a training strategy designed to create a distinct
null space for the DNN beamformer.

This finding suggests that developing new ways to generate
simulated training data similar to the methods examined here
(i.e., developing methods to globally expand the null space
of the DNN beamformer) will most likely also include the
null space erosion effect described earlier. We speculate that
the development of training data generation methods not domi-
nated by the creation of a null space for the DNN beamformer,
but instead on the recovery of low amplitude signals of inter-
est (e.g., on-axis scattering) in higher amplitude, structured
noise (e.g., off-axis scattering or reverberation clutter) may
overcome this limitation [51].

We studied selecting DNN beamformers using GCNR.
However, in some cases, GCNR selected DNN beamformers
that produced poor image quality upon visual inspection.
In these cases, CNR was positively correlated with speckle
SNR and negatively correlated with CR and the opposite trend
was observed for GCNR—GCNR was negatively correlated
with speckle SNR and positively correlated with CR. These
findings suggest that while GCNR is useful for verifying that
CNR improvements are not due to dynamic range transforma-
tion, GCNR may not always be a good indicator for image
quality assessment based on visual inspection. We note that
the correlations we described earlier did not exist across all
DNN training data types listed in Table III and also varied
across simulations, phantom, and in vivo scans. In this work,
we used CNR to pick the best DNN beamformers from
within each class of training data described in Table III and
so the behavior described earlier is not apparent from the
presented results. Note that this discussion is specific to the
DNN beamforming method studied in this work and may not
apply to other DNN beamforming methods. We briefly discuss

the observed phenomena concerning GCNR in relation to the
existing discussion in the literature [54].

As noted by Rodriguez-Morales et al. [54], speckle smooth-
ing leads to reduced variance in the probability density func-
tions for both inside and background regions and to higher
GCNR values. In order to understand the unexpected negative
correlation between GCNR and speckle SNR that we described
earlier, we examined cases near the extremes of the described
negative correlation and found the following situations. For
high GCNR and low speckle SNR, the region inside the
cyst had almost zero variance and was concentrated around a
small value (i.e., the probability density function for the inside
image pixels resembled a delta function at zero), whereas
the background region exhibited speckle that was degraded
by dropout (i.e., the variance for the background region was
increased). This result suggests that as long as the probability
distribution for one region is made to resemble a delta func-
tion, the variance for the second probability distribution can be
increased, but GCNR will still be high. For low GCNR and
high speckle SNR, speckle was smoothed for both regions,
but the difference between the means of the probability distri-
butions was decreased, resulting in decreased GCNR. These
examples illustrate some strategies that a beamformer might
use to arbitrarily manipulate GCNR and some of the DNN
beamformers trained in this work appear to have arbitrarily
learned these strategies.

We would expect most DNN beamforming methods to
exhibit similar robustness to the studied sources of image
degradation as that observed for the DNN beamformer stud-
ied in this article. The point target and anechoic cyst-based
training methods proposed in this work and our previous
work would be most applicable to the method proposed by
Hyun et al. [28]. It should also be possible to mix the
training data generation ideas proposed here with other DNN
beamforming methods that rely on recovering fully sampled
channel data from subsampled channel data [24], [25], [27].
However, we note that the DNN beamformer that we study
here is unique in that many training examples can be generated
from a single scan, while most other DNN beamforming
methods consider a single scan to be a single training example.

V. CONCLUSION

In this article, we studied generating DNN beamformer
training data using phantom anechoic cysts and found that this
method improved in vivo image contrast and CNR compared
with training data generation methods that rely on simulation
scans. We also investigated the robustness of DNN beamform-
ing using common sources of image degradation, including
gross sound speed errors, phase aberration, and reverberation
clutter. We found that the DNN beamforming method studied
in this article was robust to these sources of image degradation
over fairly wide ranges of degradation. These sources of image
degradation are common in clinical imaging scans and the
simulation study results presented here suggest that DNN
beamformers maintained their ability to improve image quality
relative to DAS in the presence of common sources of image
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degradation. Overall, the results of this article demonstrate the
strong potential of using DNN for ultrasound beamforming.

ACKNOWLEDGMENT

The authors would like to thank the staff of the Vanderbilt
University ACCRE computing resource. They would also like
to thank Kathryn Ozgun and Siegfried Schlunk for their
technical assistance in support of this work.

REFERENCES

[1] M. Kurt et al., “Impact of contrast echocardiography on evaluation
of ventricular function and clinical management in a large prospec-
tive cohort,” J. Amer. College Cardiol., vol. 53, no. 9, pp. 802–810,
Mar. 2009.

[2] L. M. Hinkelman, T. L. Szabo, and R. C. Waag, “Measurements of
ultrasonic pulse distortion produced by human chest wall,” J. Acoust.
Soc. Amer., vol. 101, no. 4, pp. 2365–2373, Apr. 1997.

[3] J. J. Dahl and N. M. Sheth, “Reverberation clutter from subcutaneous
tissue layers: Simulation and in vivo demonstrations,” Ultrasound Med.
Biol., vol. 40, no. 4, pp. 714–726, Apr. 2014.

[4] R. Mallart and M. Fink, “Adaptive focusing in scattering media through
sound-speed inhomogeneities: The van Cittert Zernike approach and
focusing criterion,” J. Acoust. Soc. Amer., vol. 96, no. 6, pp. 3721–3732,
1994.

[5] K. W. Hollman, K. W. Rigby, and M. O’Donnell, “Coherence factor of
speckle from a multi-row probe,” in Proc. IEEE Ultrason. Int. Symp.,
vol. 2, Oct. 1999, pp. 1257–1260.

[6] P.-C. Li and M.-L. Li, “Adaptive imaging using the generalized coher-
ence factor,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 50,
no. 2, pp. 128–141, Feb. 2003.

[7] J. A. Mann and W. F. Walker, “A constrained adaptive beamformer
for medical ultrasound: Initial results,” in Proc. IEEE Ultrason. Symp.,
Oct. 2002, pp. 1807–1810.

[8] J. Synnevag, A. Austeng, and S. Holm, “Adaptive beamforming applied
to medical ultrasound imaging,” IEEE Trans. Ultrason., Ferroelectr.,
Freq. Control, vol. 54, no. 8, pp. 1606–1613, Aug. 2007.

[9] I. K. Holfort, F. Gran, and J. A. Jensen, “Broadband minimum variance
beamforming for ultrasound imaging,” IEEE Trans. Ultrason., Ferro-
electr., Freq. Control, vol. 56, no. 2, pp. 314–325, Feb. 2009.

[10] J. Camacho, M. Parrilla, and C. Fritsch, “Phase coherence imaging,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 56, no. 5,
pp. 958–974, May 2009.

[11] J. J. Dahl, D. Hyun, M. Lediju, and G. E. Trahey, “Lesion detectability
in diagnostic ultrasound with short-lag spatial coherence imaging,”
Ultrason. Imag., vol. 33, no. 2, pp. 119–133, Apr. 2011.

[12] M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, “Short-
lag spatial coherence of backscattered echoes: Imaging characteristics,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 58, no. 7,
pp. 1377–1388, Jul. 2011.

[13] B. Byram and M. Jakovljevic, “Ultrasonic multipath and beamforming
clutter reduction: A chirp model approach,” IEEE Trans. Ultrason.,
Ferroelectr., Freq. Control, vol. 61, no. 3, pp. 428–440, Mar. 2014.

[14] B. Byram, K. Dei, J. Tierney, and D. Dumont, “A model and regulariza-
tion scheme for ultrasonic beamforming clutter reduction,” IEEE Trans.
Ultrason., Ferroelectr., Freq. Control, vol. 62, no. 11, pp. 1913–1927,
Nov. 2015.

[15] K. Dei and B. Byram, “The impact of model-based clutter suppression
on cluttered, aberrated wavefronts,” IEEE Trans. Ultrason., Ferroelectr.,
Freq. Control, vol. 64, no. 10, pp. 1450–1464, Oct. 2017.

[16] K. Dei and B. Byram, “A robust method for ultrasound beamforming in
the presence of off-axis clutter and sound speed variation,” Ultrasonics,
vol. 89, pp. 34–45, Sep. 2018.

[17] H. Liebgott, R. Prost, and D. Friboulet, “Pre-beamformed RF signal
reconstruction in medical ultrasound using compressive sensing,” Ultra-
sonics, vol. 53, no. 2, pp. 525–533, Feb. 2013.

[18] G. Matrone, A. S. Savoia, G. Caliano, and G. Magenes, “The delay
multiply and sum beamforming algorithm in ultrasound B-Mode med-
ical imaging,” IEEE Trans. Med. Imag., vol. 34, no. 4, pp. 940–949,
Apr. 2015.

[19] J. Shin and L. Huang, “Spatial prediction filtering of acoustic clutter
and random noise in medical ultrasound imaging,” IEEE Trans. Med.
Imag., vol. 36, no. 2, pp. 396–406, Feb. 2017.

[20] A. Luchies and B. Byram, “Deep neural networks for ultrasound
beamforming,” in Proc. IEEE Int. Ultrason. Symp. (IUS), Sep. 2017,
pp. 1–4.

[21] M. Gasse, F. Millioz, E. Roux, D. Garcia, H. Liebgott, and D. Friboulet,
“Accelerating plane wave imaging through deep learning-based recon-
struction: An experimental study,” in Proc. IEEE Int. Ultrason. Symp.,
Sep. 2017, p. 1.

[22] D. Perdios, A. Besson, M. Arditi, and J.-P. Thiran, “A deep learning
approach to ultrasound image recovery,” in Proc. IEEE Int. Ultrason.
Symp. (IUS), Sep. 2017, pp. 1–4.

[23] A. C. Luchies and B. C. Byram, “Deep neural networks for ultrasound
beamforming,” IEEE Trans. Med. Imag., vol. 37, no. 9, pp. 2010–2021,
Sep. 2018.

[24] M. Gasse, F. Millioz, E. Roux, D. Garcia, H. Liebgott, and D. Friboulet,
“High-quality plane wave compounding using convolutional neural
networks,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 64,
no. 10, pp. 1637–1639, Oct. 2017.

[25] O. Senouf et al., “High frame-rate cardiac ultrasound imaging with
deep learning,” in Proc. MICCAI. Granada, Spain: Springer, 2018,
pp. 126–134.

[26] D. Allman, A. Reiter, and M. A. L. Bell, “Photoacoustic source detection
and reflection artifact removal enabled by deep learning,” IEEE Trans.
Med. Imag., vol. 37, no. 6, pp. 1464–1477, Jun. 2018.

[27] Y. H. Yoon, S. Khan, J. Huh, and J. C. Ye, “Efficient B-Mode ultrasound
image reconstruction from sub-sampled RF data using deep learning,”
IEEE Trans. Med. Imag., vol. 38, no. 2, pp. 325–336, Feb. 2019.

[28] D. Hyun, L. L. Brickson, K. T. Looby, and J. J. Dahl, “Beamforming
and speckle reduction using neural networks,” IEEE Trans. Ultrason.,
Ferroelectr., Freq. Control, vol. 66, no. 5, pp. 898–910, May 2019.

[29] A. Luchies and B. Byram, “Suppressing off-axis scattering using deep
neural networks,” Proc. SPIE, vol. 10580, Mar. 2018, Art. no. 105800G.

[30] A. C. Luchies and B. C. Byram, “Training improvements for ultrasound
beamforming with deep neural networks,” Phys. Med. Biol., vol. 64,
no. 4, Feb. 2019, Art. no. 045018, doi: 10.1088/1361-6560/aafd50.

[31] A. Luchies and B. Byram, “Evaluating the robustness of ultrasound
beamforming with deep neural networks,” in Proc. IEEE Int. Ultrason.
Symp. (IUS), Oct. 2018, pp. 1–4.

[32] J. Hestness et al., “Deep learning scaling is predictable,
empirically,” 2017, arXiv:1712.00409. [Online]. Available:
ht.tp://arxiv.org/abs/1712.00409

[33] L. L. Brickson, D. Hyun, and J. J. Dahl, “Reverberation noise sup-
pression in the aperture domain using 3D fully convolutional neural
networks,” in Proc. IEEE Int. Ultrason. Symp. (IUS), Oct. 2018, pp. 1–4.

[34] B. Yang, “A study of inverse short-time Fourier transform,” in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Mar. 2008,
pp. 3541–3544.

[35] J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from
arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE
Trans. Ultrason., Ferroelectr., Freq. Control, vol. 39, no. 2, pp. 262–267,
Mar. 1992.

[36] J. A. Jensen, “Field: A program for simulating ultrasound systems,” in
Proc. Med. Biol. Eng. Comput., 1996, vol. 34, no. 1, pp. 351–353.

[37] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR, 2015, pp. 1–15.

[38] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. AISTATS, 2011, pp. 315–323.

[39] X. Glorot and Y. Bengio, “Understanding the difficulty of train-
ing deep feedforward neural networks,” in Proc. AISTATS, 2010,
pp. 249–256.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in
Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026–1034.

[41] A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc. NIPS,
2017, pp. 1–4.

[42] M. Patterson, “The improvement and quantitative assessment of B-mode
images produced by an annular array/cone hybrid,” Ultrason. Imag.,
vol. 5, no. 3, pp. 195–213, Jul. 1983.

[43] S. W. Smith, R. F. Wagner, J. M. Sandrik, and H. Lopez, “Low
contrast detectability and Contrast/Detail analysis in medical ultra-
sound,” IEEE Trans. Sonics Ultrason., vol. 30, no. 3, pp. 164–173,
May 1983.

[44] E. Ozkan, V. Vishnevsky, and O. Goksel, “Inverse problem of ultrasound
beamforming with sparsity constraints and regularization,” IEEE Trans.
Ultrason., Ferroelectr., Freq. Control, vol. 65, no. 3, pp. 356–365,
Mar. 2018.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 12,2021 at 18:52:36 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1088/1361-6560/aafd50


LUCHIES AND BYRAM: ASSESSING THE ROBUSTNESS OF FREQUENCY-DOMAIN ULTRASOUND BEAMFORMING USING DEEP NEURAL NETWORKS 2335

[45] F. W. Mauldin, D. Lin, and J. A. Hossack, “The singular value filter:
A general filter design strategy for PCA-based signal separation in
medical ultrasound imaging,” IEEE Trans. Med. Imag., vol. 30, no. 11,
pp. 1951–1964, Nov. 2011.

[46] A. Rodriguez-Molares, O. M. Hoel Rindal, J. D’hooge, S.-E. Masoy,
A. Austeng, and H. Torp, “The generalized contrast-to-noise
ratio,” in Proc. IEEE Int. Ultrason. Symp. (IUS), Oct. 2018,
pp. 1–4.

[47] S. A. Goss, R. L. Johnston, and F. Dunn, “Comprehensive compilation
of empirical ultrasonic properties of mammalian tissues,” J. Acoust. Soc.
Amer., vol. 64, no. 2, pp. 423–457, Aug. 1978.

[48] J. J. Dahl, D. A. Guenther, and G. E. Trahey, “Adaptive imaging
and spatial compounding in the presence of aberration,” IEEE Trans.
Ultrason., Ferroelectr., Freq. Control, vol. 52, no. 7, pp. 1131–1144,
Jul. 2005.

[49] G. F. Pinton, G. E. Trahey, and J. J. Dahl, “Sources of image degradation
in fundamental and harmonic ultrasound imaging using nonlinear, full-
wave simulations,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control,
vol. 58, no. 4, pp. 754–765, Apr. 2011.

[50] B. Byram and J. Shu, “A pseudo non-linear method for fast simula-
tions of ultrasonic reverberation,” Proc. SPIE, vol. 9790, Apr. 2016,
Art. no. 97900U.

[51] A. Luchies and B. Byram, “High dynamic range ultrasound beamform-
ing using deep neural networks,” Proc. SPIE, vol. 10955, Mar. 2019,
Art. no. 109550P.

[52] A. Luchies and B. Byram, “DNN beamforming for high contrast targets
in the presence of reverberation clutter,” in Proc. IEEE Int. Ultrason.
Symp. (IUS), Oct. 2019, pp. 291–294.

[53] A. Fatemi, E. A. R. Berg, and A. Rodriguez-Molares, “Studying the
origin of reverberation clutter in echocardiography: In vitro experiments
and in vivo demonstrations,” Ultrasound Med. Biol., vol. 45, no. 7,
pp. 1799–1813, Jul. 2019.

[54] A. Rodriguez-Molares et al., “The generalized contrast-to-noise ratio:
A formal definition for lesion detectability,” IEEE Trans. Ultrason.,
Ferroelectr., Freq. Control, vol. 67, no. 4, pp. 745–759, Apr. 2020.

Adam C. Luchies (Member, IEEE) received
the B.S. degree in engineering from John
Brown University, Siloam Springs, AR, USA,
in 2009, and the M.S. and Ph.D. degrees
in electrical and computer engineering from
the University of Illinois at Urbana–Champaign,
Urbana, IL, USA, in 2011 and 2016, respec-
tively. He completed a postdoctoral fellow-
ship at Vanderbilt University, Nashville, TN,
USA.

He currently started a position as an Ultra-
sound Engineer at Siemens Healthineers, Issaquah, WA, USA. His
research interests include ultrasound beamforming, quantitative ultra-
sound, signal processing, and deep learning.

Brett C. Byram (Member, IEEE) received the
B.S. degree in biomedical engineering and math
from Vanderbilt University, Nashville, TN, USA,
in 2004, and the Ph.D. degree in biomedical engi-
neering from Duke University, Durham, NC, USA,
in 2011.

He was a Research Assistant Professor with
Duke University. In 2013, he joined the Biomed-
ical Engineering Department, Vanderbilt Univer-
sity, as an Assistant Professor. He has spent time
working at the Jørgen Jensen’s Center for Fast

Ultrasound, Lyngby, Denmark, and Siemens Healthcare’s Ultrasound
Division, Mountain View, CA, USA. He currently runs the Biomedical
Elasticity and Acoustic Measurement (BEAM) Laboratory, where he and
others in the lab pursue solutions to clinical problems using ultrasound.
He is also with the Vanderbilt Institute for Surgery and Engineering (VISE)
and the Vanderbilt University Institute of Imaging Science (VUIIS). His
research interests include beamforming, motion estimation, and other
related signal processing and hardware development tasks.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 12,2021 at 18:52:36 UTC from IEEE Xplore.  Restrictions apply. 


