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Abstract

Background: With nearly 20% of the US adult population using fitness trackers, there is an increasing focus on how physiological
data from these devices can provide actionable insights about workplace performance. However, in-the-wild studies that understand
how these metrics correlate with cognitive performance measures across a diverse population are lacking, and claims made by
device manufacturers are vague. While there has been extensive research leading to a variety of theories on how physiological
measures affect cognitive performance, virtually all such studies have been conducted in highly controlled settings and their
validity in the real world is poorly understood.

Objective: We seek to bridge this gap by evaluating prevailing theories on the effects of a variety of sleep, activity, and heart
rate parameters on cognitive performance against data collected in real-world settings.

Methods: We used a Fitbit Charge 3 and a smartphone app to collect different physiological and neurobehavioral task data,
respectively, as part of our 6-week-long in-the-wild study. We collected data from 24 participants across multiple population
groups (shift workers, regular workers, and graduate students) on different performance measures (vigilant attention and cognitive
throughput). Simultaneously, we used a fitness tracker to unobtrusively obtain physiological measures that could influence these
performance measures, including over 900 nights of sleep and over 1 million minutes of heart rate and physical activity metrics.
We performed a repeated measures correlation (rrm) analysis to investigate which sleep and physiological markers show association
with each performance measure. We also report how our findings relate to existing theories and previous observations from
controlled studies.

Results: Daytime alertness was found to be significantly correlated with total sleep duration on the previous night (rrm=0.17,
P<.001) as well as the duration of rapid eye movement (rrm=0.12, P<.001) and light sleep (rrm=0.15, P<.001). Cognitive throughput,
by contrast, was not found to be significantly correlated with sleep duration but with sleep timing—a circadian phase shift toward
a later sleep time corresponded with lower cognitive throughput on the following day (rrm=–0.13, P<.001). Both measures show
circadian variations, but only alertness showed a decline (rrm=–0.1, P<.001) as a result of homeostatic pressure. Both heart rate
and physical activity correlate positively with alertness as well as cognitive throughput.

Conclusions: Our findings reveal that there are significant differences in terms of which sleep-related physiological metrics
influence each of the 2 performance measures. This makes the case for more targeted in-the-wild studies investigating how
physiological measures from self-tracking data influence, or can be used to predict, specific aspects of cognitive performance.

(J Med Internet Res 2021;23(2):e23936) doi: 10.2196/23936
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Introduction

Background

The cognitive functioning of an individual, characterized by a
range of neurobehavioral metrics such as alertness, working
memory, and cognitive throughput, is subject to systematic
interday and intraday fluctuations [1]. These fluctuations are
driven by the interplay of 3 biological processes: a circadian
component C, a homeostatic component H, and a sleep inertia
component W [2]. The circadian process C, governed by the
circadian pacemaker (commonly referred to as the “body clock”)
located in the hypothalamus, is an endogenous oscillatory
process with a roughly 24-hour period. The exact phase of the
circadian pacemaker in each individual is subject to variation
and is determined by their chronotype—a measure of their
early-bird or late-owlness [3]. This measure determines their
individual time of minimum sleep propensity or peak cognitive
performance during the day. Sleeping out of phase with one’s
circadian rhythm—which is especially common among, but not
limited to, populations such as shift workers [4]—leads to a
phenomenon known as circadian misalignment. This
misalignment has been shown to impact work-related fatigue
[5], academic and work performance [6,7], performance on
memory tests [8], etc.

In addition to this endogenous circadian rhythm, prior work has
also established that an increase in the duration of wakefulness
contributes to an exponential increase in sleep propensity, or
homeostatic pressure [9]. This rise in homeostatic pressure H
results in a corresponding decline in alertness and cognitive
performance [10]. Other physiological measures such as heart
rate variability (HRV) [11,12] and physical activity [13] have
also been investigated to determine their impact on cognitive
function [14]. Cognitive performance has also been found to
be influenced by a variety of other factors, including sleep
patterns [15], exposure to light [16], and consumption of caffeine
[17].

Such fluctuations in cognitive performance are known to affect
an individual’s productivity on the job and influence
work-related fatigue levels [5], as well as increase the risk of
occupational hazards and accidents [18]. Therefore, there is
considerable interest in understanding the nature of these
fluctuations in real-world settings. However, much of prior
work has been done within strict experimental protocols to study
the effect of individual variables while controlling for all other
factors [19,20]. Thus, the effect of multiple factors on cognitive
performance in real-world settings is not as well-understood.

In this work, we attempt to discern the effect of various
physiological measures on cognitive performance in a real-world
setting and contextualize our findings within existing theories
proposed based on controlled experiments.

Performance Prediction and Intervention Strategies

Given the widespread use of wearable devices and fitness
trackers, recent efforts have explored using physiological data
from these devices to characterize in-the-wild cognitive
fluctuations. For example, one of the focus areas of Alphabet’s
Moonshot Factory is developing a “daytime score” that goes

beyond yielding data from the previous night’s sleep by
harnessing this datum to tell users how prepared they are for
the next day [21]. Various commercial fitness trackers are also
advertised as providing metrics that can help track workplace
productivity and cognitive performance [22,23].

There has been increasing work in the mobile health (mHealth)
community on evaluating whether performance measures can
be predicted from sleep- and circadian rhythm–based features.
For instance, Abdullah et al [24] showed that alertness can be
measured in the wild using a smartphone-based version of the
Psychomotor Vigilance Task (PVT) [25]. Mark et al [26] studied
engagement in the workplace and reported how job-related
stress levels depend on the type of work being performed, and
how rhythms of attention states can be identified in the
workplace environment. Prior work has also looked into the
effect of sleep duration and sleep debt on productivity and the
use of technology among students [27]. Wahl and Amft [28]
explored chronotype estimation using smartphone usage
information and the 2-process circadian/homeostatic model of
sleep regulation [9]. Althoff et al [29] used the speed of
keystroke and click interactions on a web search engine as
measures of cognitive performance and show that both metrics
follow a circadian trend. Murnane et al [30] attempted to
estimate sleep timings and circadian disruption from
technology-mediated social interactions and, in a later study,
showed that coarse-grained alertness levels can be gauged from
app use features [31]. Abdullah et al [24] used sleep metrics
estimated from smartphone usage to predict performance on
the PVT test.

However, most studies to date have mainly focused on a single
indicator of cognitive performance (eg, [24,29,31]). We argue
that it is imperative to consider multiple dimensions of
performance separately, because different aspects of cognitive
function (eg, alertness, working memory, decision making) are
known to be differently affected by factors such as sleep loss
[32]. Therefore, to fully understand the effects of physiological
variables on cognitive performance, one needs to take into
account the multiplicity of these measures. This is especially
important because different tasks may require different cognitive
capabilities in order to be completed safely and responsibly.
Further, many studies are constrained to a specific population,
such as students or office workers, while studying cognitive
performance. Our work targets a diverse population with an aim
to generalize our understanding of the impact of physiological
variables on 2 different cognitive measures.

Objective of the Study

While there is substantial work on studying variations in
performance, there are 3 key gaps that we try to bridge in this
work: (1) connecting in-the-wild studies to theories on the
influence of sleep, activity, and circadian/homeostatic rhythms
on performance; (2) taking into account multiple performance
measures; and (3) generalizing our analysis across diverse
populations.

We examine the effects of multiple physiological parameters
on different dimensions of performance in a real-world setting,
and thereafter contextualize our observations in the space of
existing theories. To this end, our work investigates performance
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across 2 axes: alertness and cognitive throughput. Through a
6-week-long research study, we collect physiological data
relating to sleep and physical activity using a Fitbit fitness
tracker and neurobehavioral task performance measures through
a dedicated Android app. We deliberately ensure that we
consider a diverse pool of participants with varying sleep and
work patterns, recruiting individuals part of a regular workforce,
shift workers, and graduate students. We then investigate the
effects of a range of physiological and sleep-related parameters
on alertness and cognitive throughput.

Our results provide insights into how sleep and activity metrics
relate to work performance in different ways across
alertness/cognitive throughput performance measures. We show
that while alertness is sensitive to sleep duration as well as sleep
stages, cognitive throughput exhibits no deteriorating effect
from lack of sleep. By contrast, irregular sleep timings (ie,
earlier or later bedtimes and wake-up times) indicate a
significant effect on cognitive throughput, but not on alertness.
We also quantify the influence of time of day, heart rate, and
physical activity on both these measures.

Methods

Participants

We recruited 24 participants (14 female and 10 male), including
8 graduate students, 7 regular workers, and 9 shift workers, to
participate in a 6-week-long research study between February
and December 2019. These groups were chosen in order to
ensure that our study encompasses a diverse set of participants
with varying sleep and work patterns. Regular workers were
individuals working jobs with a 9-to-5 schedule (or similar
8-hour daytime working hours) from Mondays to Fridays.
Graduate students loosely followed a 9-to-5 weekday schedule,
but reported that they also frequently worked late, occasionally
worked on weekends, and had at least some flexibility in
choosing their work hours. Shift workers in our study, by
contrast, worked varying hours on different days of the week
with shifts ranging from 8 hours to 24 hours in duration.

The study participants were recruited through convenience
sampling roughly stratified by the groups mentioned above.
The study was publicized through emailing lists at the authors’
institution as well as flyers posted in the surrounding area. The
local police and fire departments were also contacted in an
attempt to recruit emergency responders. Three of the shift
workers in the study were firefighters and 1 was a police
dispatcher, 3 other shift workers worked in the service industry,
and 1 worked as a transit driver. This gave us the unique
opportunity to study patterns of alertness and cognitive
throughput among emergency responders and essential workers.
All participants were between 20 and 42 years of age (mean
age 28 years). One graduate student had previously been treated
for insomnia and 1 shift worker had been previously diagnosed
with attention-deficit/hyperactivity disorder. None of the other
participants reported any history of being diagnosed with either
sleep or cognitive disorders.

Study Protocol

We used a Fitbit Charge 3 (Fitbit Inc.) and a smartphone app
to collect different physiological and neurobehavioral task data,
respectively, as part of our 6-week-long in-the-wild study.

Smartphone-Based Alertness and Cognitive Throughput

Measures

Prior studies such as [32] have found that sleep deprivation can
have varying effects on tasks that require sustained information
processing as opposed to vigilance-based tasks. Therefore, we
elected to study 2 fundamentally different aspects of human
performance: alertness and cognitive throughput. We collected
these metrics using an Android app to measure in-the-wild
cognitive performance that was based on the toolkit produced
by Dingler et al [33].

The app includes a questionnaire asking participants to rate their
subjective sleepiness levels on the Karolinska Sleepiness Scale
[34], and whether they had consumed a caffeinated drink in the
last hour. This is followed by a task battery comprising the
Psychomotor Vigilance Test (PVT; [25]) to measure alertness
and an Addition Test (ADD; [35,36]) to measure cognitive
throughput.

The PVT is a standard tool used to measure momentary alertness
consisting of a 10-minute reaction time test that presents test
takers with a visual stimulus at random intervals. The user has
to press a button in response to these stimuli, and the response
time is used as an objective marker of momentary alertness.
Previous research has also validated the use of shorter,
smartphone-based PVT tests [37-39], prompting us to use a
2-minute version of the test administered through the Android
app.

Similar to prior studies such as [4,24], we studied fluctuations
in alertness in terms of percentage deviation from the
individual’s response time at baseline, or relative response time.
Because each PVT task session consists of multiple stimuli that
the participants respond to, we first compute the median
response time MRTs,p for each session s completed by
participant p. In doing so, we ignore all instances of false clicks
where the participant taps the screen before the stimulus appears.
We then discard all sessions where MRTs,p exceeds 800 ms (in
comparison, the standard threshold to classify a reaction as a
lapse is 500 ms [40]). Further, we remove sessions where
MRTs,p falls outside 3SDs of the mean as outliers, and calculate
(mean_MRT)p for each participant as the average MRTs,p across
all sessions completed by p. Then, we calculate RRTs,p for each
of their sessions as

RRTs,p = {1 – ([MRTs,p]/[mean_MRT]p)} × 100

where RRT is relative response time.

It is important to note that while higher values of response time
indicate lower alertness, higher values of relative response time
indicate increased alertness.

Cognitive throughput is measured using a 1-minute
addition/calculation performance test (ie, ADD) [35,36], where
participants sum as many pairs of 2-digit numbers as possible
within a fixed duration. The user’s cognitive performance is
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calculated as a percentage deviation from the user’s baseline,
or the relative number of additions attempted. Similar to the
calculation of relative response time above, we first find NAAs,p,
that is, the number of additions attempted by participant p in
session s. We then remove sessions where NAAs,p lies more
than 3 SDs from the mean across all sessions for that participant.
We further calculate (mean_NAA)p for each participant across
all sessions, and compute RAAs,p as

RAAs,p = {([NAAs,p]/[mean_NAA]p) – 1} × 100

where RAA is relative number of additions attempted.

As with relative response times, a higher RAA indicates higher
cognitive throughput.

Figure 1 shows the sleepiness and caffeination questionnaire in
our Android app, while Figures 2 and 3 show the PVT and ADD
tasks that participants were asked to complete. Throughout the
6-week-long study period, participants were asked to complete
the task battery at least four times a day, with at least two hours
between each session. As a reminder, the study app issued push
notifications every 2 hours. However, participants were told to
complete tasks only when they had a 5-minute distraction-free
time window. We also discard the first instance of each task for
each participant, as they are unfamiliar with the app at this point.

Figure 1. Screenshot of the Karolinska Sleepiness Scale and caffeination survey.
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Figure 2. Screenshot of the PVT task.

Figure 3. Screenshot of the ADD task.
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Physiological Measures From Fitbit Fitness Tracker

We further collected physiological data from participants using
a Fitbit Charge 3, which they were asked to wear on their
nondominant hand throughout the study period. Participants
were specifically instructed to wear the Fitbit while they slept
and while they completed the PVT and ADD tests on their
phones. They were also asked to either enable auto-sync via
Bluetooth on their Fitbit app or to sync their trackers periodically
so as to avoid loss of data.

We obtained participants’ consent to collect data relating to
their sleep, activity levels, and heart rate from Fitbit. Sleep data
included the start and end time of each sleep session, time taken
for sleep onset and waking up, and time spent in each stage of
sleep (awake, light sleep, deep sleep, and rapid eye movement
[REM] sleep) during each sleep session longer than 3 hours.
Activity data included a minute-by-minute count of number of
steps walked, distance covered, floors climbed, and calories
burnt. Heart rate data included heart rate values each minute
and the current day’s resting heart rate.

Compliance and Compensation

For our analysis, we only used data from participants who had
completed at least forty-two PVT and ADD tasks each over the
entire study period (an average of at least one task per day). We
excluded 8 participants through this criterion and were left with
data from 1596 PVT and ADD sessions each. We describe our
data set in more detail in the “Results” section.

Participants were compensated for granting access to their Fitbit
data at the rate of US $10 per week, and for completing the PVT
and ADD tasks on their smartphones at US $25 per week if they
completed at least four sets of tasks each day. Monetary
compensation was pro-rated for the period they contributed data
if it was shorter than the study duration. Participants associated
with the local police and fire departments were not offered
monetary compensation in accordance with the departments’
regulations. All participants were allowed to keep the Fitbit
after the completion of the study. The study was approved by
the Institutional Review Board of the University of
Massachusetts Amherst.

Quantifying Chronobiological Sleep Metrics

Sleep Data and Components Considered

We use the sleep data obtained from Fitbit to calculate 2 sets
of metrics corresponding to the circadian component C and the
homeostatic component H. These components, along with the
sleep inertia component W, collectively modulate cognitive
performance in humans [2]. For simplicity, we ignore W in our
analysis.

Circadian Component

The phase of the circadian component is regulated by the
individual’s chronotype [3]. To determine chronotype from
Fitbit data, we leverage prior work on estimating individual
chronotypes quantitatively using the mid-sleep point on free
days (MSF), that is, the midpoint between sleep onset and wake
up times on nonworking days [41]. As people tend to
compensate for the sleep debt accumulated over work days by
sleeping longer on free days, the quantitative measurement is

typically adjusted accordingly. MSF is calculated as follows
[24,41]:

MSF = MSFuc – 0.5(SDf – [Nw × SDw + Nf × SDf]/[Nw

+ Nf])

Here, MSFuc is the uncorrected average mid-sleep point of the
participant observed across the study duration. SDf and SDw

represent the sleep duration on free and work days, while Nf

and Nw are the number of free and work days, respectively.
Based on this reference marker of the individual’s circadian
rhythm, an individual’s internal time (InT) is defined as the
time since the individual’s MSF, or, in terms of the external (or
“wall-clock”) time ExT as InT=ExT–MSF. We also quantify
the misalignment between the actual mid-sleep time of an
individual and their MSF, hereafter referred to as sleep shift.

Homeostatic Component

The sleep homeostat is responsible for building up sleep pressure
during wakefulness in a sigmoidal manner and then releasing
this sleep pressure during recovery sleep sessions [2,9]. One
metric that captures this sleep pressure is the time since waking
up from the previous sleep session.

Further, to quantify whether enough recovery sleep has been
obtained to release sleep pressure, we use 2 metrics, sleep need
and sleep debt. We calculate sleep debt based on individual
sleep need [4]. Sleep need SN for an individual is defined as

SN=Σ(SDw × Nw + SDf × Nf)/Σ(Nw + Nf)

where SDw and SDf are the sleep durations on workdays and
free days, respectively; Nw is the number of work days; and Nf

is the number of free days. Sleep debt accrued on a given night
is defined as 1−(sleep duration/SN).

Results

Data Description

The data set collected as part of our study consisted of 923
nights of sleep data, 1,032,518 minutes of heart rate data over
813 days, and 1,169,510 minutes of activity data (calories burnt,
steps walked, distance traveled, and floors climbed) over 903
days. In addition to these physiological data from the Fitbit, the
24 participants in our study also completed 2059 PVT and ADD
tasks through our smartphone app over the study period. In this
section, we describe the collected data in further detail.

Smartphone-Based Neurobehavioral Task Data

As described earlier, participants were asked to complete at
least four PVT and ADD tasks each day, with at least two hours
between each pair of consecutive tasks. The study app reminded
users to complete these neurobehavioral tasks through push
notifications every 2 hours. The average daily compliance rate
across all participants was found to be 51%. We first filtered
our data set to exclude all participants who had completed less
than 42 PVT and ADD tasks throughout the 6-week study period
(<1 task per day on average). This resulted in a data set
consisting of 16 users who completed a total of 1596 tasks. The
average number of tasks completed per day by these participants
was 2.81 (SD 0.62). For the rest of the paper, we base our
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analysis on the data from these participants alone. Figure 4
shows the average number of tasks completed by these
participants each week of the study. While compliance rates

dropped as the study progressed, the longitudinal nature of the
study ensured that all participants completed a minimum of 47
tasks or more (mean 99.75 [SD 33.06] tasks).

Figure 4. Total number of tasks attempted per participant each week of the study. The markers show the mean across all participants and the error bars
indicate the standard error of the mean.

Table 1 shows the distribution of the task completion times in
terms of time of day (or wall-clock time), internal time, and
time since waking up. The participants’ performance on these
tasks is also reported—both PVT response times and ADD

attempts were approximately normally distributed for each
participant. Figure 5 shows the distribution of tasks completed
by time of day.

Table 1. Distribution of task completion timings and performance on PVTa and ADDb tasks.

Timing, mean (SD)MaximumMinimumNTask completion timings and performance

Time of task completion

15:34 (310.72 minutes)23:583:221596Time of day (hh:mm)

11:33 (318.19 minutes)23:570:131596Internal time (hh:mm)

471.83 (309.75)122311596Time since waking up (minutes)

PVT task performance

354.53 (90.79)798.0234.01596Median response time (milliseconds)

0.23 (8.93)27.83–49.281596Relative response time (%)

ADD task performance

17.96 (3.95)30.07.01596Number of additions attempted

0.99 (13.46)40.08–47.511596Relative number of additions attempted (%)

aPVT: Psychomotor Vigilance Test.
bADD: Addition Test.
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Figure 5. Distribution of PVT and ADD tasks attempted by time of day (binned into 2-hour intervals). Only one task was attempted in the 12AM-4AM
interval.

Physiological Data From Fitbit

From the 923 sleep sessions collected, we first extracted sleep
sessions preceding the 1596 neurobehavioral task instances
described in the previous subsection. This resulted in a subset
of 556 sleep sessions across 16 participants. The features
extracted from these sleep sessions include sleep timings and
duration, percentages of sleep sessions spent in different sleep
stages (REM, light, and deep sleep), the duration of these sleep

stages, and a Fitbit-provided sleep efficiency score. We use
these metrics to further calculate chronobiological measures of
sleep such as sleep debt and sleep shift. We also calculate
average sleep measures over the last 7 days, imputing missing
nights of sleep data with the average across all previous sleep
sessions. The distribution of these sleep metrics is reported in
Table 2. We investigate the effect of these sleep measures on
median daytime alertness and cognitive throughput on the day
following the sleep session.
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Table 2. Distribution of sleep metrics obtained from the Fitbit as well as weekly averages of the same for all sleep sessions preceding the cognitive
tasks.

Mean (SD)MaximumMinimumNDistribution of sleep metrics

Previous night’s sleep metrics

433.12 (87.47)761.0180.0556Sleep duration (minutes)

18.18 (5.32)34.252.8556REMa sleep (%)

52.92 (6.95)73.7130.04556Light sleep (%)

15.92 (5.1)33.570.0556Deep sleep (%)

79.24 (29.04)190.06.0556Duration of REM sleep (minutes)

228.98 (54.13)429.079.0556Duration of light sleep (minutes)

68.69 (25.12)157.00.0556Duration of deep sleep (minutes)

3.03 (1.33)8.00.0556Number of awake periods >5 minutes

89.6 (14.11)10027556Sleep efficiency (out of 100)

0.0 (0.18)0.55–0.81556Sleep debt

7.1 (122.18)1199.21–425.04556Sleep shift

Sleep metrics over last 1 week

433.27 (50.53)564.25221.0556Average sleep duration (minutes)

78.94 (15.59)163.023.0556Average REM sleep duration (minutes)

228.67 (36.2)310.284.0556Average light sleep duration (minutes)

69.14 (15.86)123.528.0556Average deep sleep duration (minutes)

0.0 (0.06)0.19–0.17556Average sleep debt

6.97 (62.04)202.93–311.47556Average sleep shift

aREM: rapid eye movement.

We also obtained minute-by-minute heart rate, calories burnt,
steps walked, distance traveled, and floors climbed data from
the participants’ Fitbit trackers, along with an estimate of the
current day’s resting heart rate. Similar to sleep data, we extract
heart rate and activity data corresponding to the time of

completion of each of the PVT and ADD tasks. The distribution
of these metrics at task time is represented in Table 3. We
examined the effect of these momentary physiological measures
and their aggregates over the last 60- and 10-minute intervals
on both alertness and cognitive throughput.

Table 3. Distribution of heart rate and activity metrics obtained from the Fitbit during completion of the cognitive tasks.

Mean (SD)MaximumMinimumNDistribution of metrics

Heart rate metrics during PVT
a

and ADD
b

tasks

79.95 (13.81)131.045.01596Current heart rate (bpm)

66.99 (9.14)88.047.01596Resting heart rate (bpm)

Activity metrics during PVT and ADD tasks

1.48 (0.91)9.120.771596Calories burnt

0.0 (0.01)0.080.01596Distance traveled (km)

2.35 (10.58)11201596Number of steps walked

aPVT: Psychomotor Vigilance Test.
bADD: Addition Test.

Effect of Sleep on Daytime Alertness and Cognitive

Throughput

In order to examine the effect of sleep on interday alertness and
cognitive throughput, we first calculated the daily median
response times and median number of additions attempted for

each individual based on each day’s completed tasks. We then
calculate the relative daily response times and relative daily
number of additions attempted for each day for each individual.
These daily measures are calculated relative to the average
scores of that individual across all days of participation
(analogous to relative response times and relative numbers of
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additions attempted). We then examined the relationship
between these relative cognitive measures and sleep features
from the Fitbit. We hypothesized that interday variations in
alertness and cognitive throughput can be attributed to both the
sleep timings and quality of the previous night’s sleep session
as well as sleep debt accumulated over a number of past sleep
sessions.

To evaluate our hypothesis, we calculated the correlation
between each sleep-related metric and the relative daily score.
To reiterate, higher scores indicate higher alertness and cognitive
throughput. In addition to sleep metrics from the previous night,
we also considered cumulative sleep features over epochs of 1
week preceding the time the PVT/ADD test was administered.
Because our data set consists of aggregated data from multiple
participants, simple correlation can often produce spurious
results due to violation of independence. To account for this as
well as within- and inter-participant differences, we performed
repeated measures correlation analysis [42] between our
independent and dependent variables utilizing the Python
package Pingouin [43]. This adjusts for interindividual
variability using analysis of covariance, allowing us to draw
population-level inferences while accounting for our repeated
measures design.

We discuss the effect of each feature for which a significant
(P<.05) repeated measures correlation (rrm) was observed with
alertness and cognitive throughput scores. We further juxtapose
our findings from a noisy, real-world data set with existing
theories on the effect of sleep on cognitive processes by
discussing results of prior studies, most of which have been
conducted in highly controlled laboratory settings.

Sleep Duration

When duration of sleep obtained during a recovery sleep session
on a given night falls short of the individual’s basal sleep need,
it gives rise to the phenomenon of partial sleep deprivation (also
known as sleep restriction or sleep loss) [44]. Sleep debt incurred
in this manner can further exacerbate any existing long-term
chronic sleep loss and the effects thereof [19].

Traditional sleep research has, however, focused far more on
studying the effects of total sleep deprivation as compared to
that of sleep restriction [44]. Total sleep deprivation occurs
when individuals stay fully awake for long durations (typically
24-48 hours) with no recovery sleep obtained whatsoever.
Mathematical models of cognitive performance have been
heavily based on findings from such acute total sleep-deprivation
studies (eg, [2,45]).

In in-the-wild studies such as ours, we are much more likely to
observe chronic partial sleep deprivation, that is, a few hours

of sleep loss each day, rather than acute total sleep deprivation.
Chronic partial sleep deprivation is an increasingly common
issue across populations due to increasing use of televisions,
tablets, smartphones, laptops, or other electronic devices before
bedtime [46-48]. Over prolonged exposure, the blue light from
these screens suppresses the release of the sleep-inducing
hormone melatonin, making it more difficult to fall asleep [49].
Therefore, it is imperative to characterize the effects of sleep
debt incurred on a single, or multiple consecutive, night(s) on
daytime performance measures.

Some recent studies have made efforts in this direction, studying
the effects of chronic sleep loss on cognitive processes in
controlled laboratory settings. For example, PVT performance
has been shown to deteriorate with each consecutive day of
sleep restriction [50-52]. Cognitive throughput, by contrast, has
been demonstrated to show improvement across subsequent
days which can be attributed to the effect of practice, implying
that sleep restriction does not significantly impact cognitive
throughput [50]. It has also been noted that while chronic sleep
loss had a deteriorating effect on the ability to ignore distracting
stimuli due to lower arousal levels, participants were able to
overcome such effects on more cognitively complex logical
reasoning tasks with additional effort [53].

The effect of recovery sleep to alleviate sleep debt–induced
decline in performance has also been studied. PVT performance
has been shown to improve with increasing hours of recovery
sleep obtained, though there is some disagreement on whether
this improvement is linear [54] or saturating exponential [55].

Table 4 shows the results from our study—we see that higher
alertness sessions are observed following longer sleep duration
over the previous night (repeated measures correlation rrm=0.17,
P<.001) and lower accumulated sleep debt over the previous
week (rrm=−0.1, P<.001). By contrast, we failed to observe any
significant correlation between sleep duration–related metrics
and cognitive throughput (P=.92 for sleep duration, P=.13 for
previous week’s sleep debt). This suggests that there is validity
to the theory that individuals may be able to overcome any
detrimental effects of sleep debt on more cognitively challenging
tasks by potentially expending more effort (see [53]).
Interestingly, this behavior has also been observed in the context
of total sleep deprivation, where the “controlled attention model”
[32] posits that tasks that are not intrinsically engaging or
challenging are more affected by sleep loss. It is also worth
investigating whether there continues to be no significant
detrimental effect of cumulative sleep debt over a longer period
on cognitive throughput.
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Table 4. Effect of sleep duration on daytime alertness and cognitive throughput.

Effect on cognitive throughputEffect on alertnessFeature

P valuerrm (95% CI)P valuerrm
a (95% CI)

.92−0.004 (−0.09 to 0.08)<.0010.17 (0.08 to 0.25)Previous night’s sleep duration

.130.06 (−0.02 to 0.15)<.001−0.16 (−0.24 to −0.08)Average nightly sleep debt incurred over previous week

arrm: repeated measures correlation coefficient.

Sleep Timing

Prior work has shown that sleeping in late, that is, a later sleep
end time, can lead to higher sleep onset latency on the following
night as well as higher daytime fatigue and sleepiness on
subsequent days [56]. However, its effect on higher-order
cognitive functions has not been studied previously. Even with
a fixed wake-up time, a delayed bedtime leads to a sleep phase
shift, which has been shown to produce a shift in salivary dim
light melatonin onset—a marker of one’s endogenous circadian
rhythm [57]. We hypothesize that this circadian shift might

adversely impact cognitive performance similar to a shift in
wake-up times. As described earlier, sleep shift is calculated
with respect to the participant’s individual chronotype, or MSF.

Table 5 shows the findings from our study, which indicate that
a phase shift in sleep sessions toward a later mid-sleep time
corresponds to a decline in cognitive throughput the following
day (rrm=−0.13, P<.001). A later wake up time also has a similar
effect on cognitive throughput (rrm=−0.09, P=.03). However,
alertness scores were not found to be significantly correlated
with change in sleep timings (P=.09 for sleep shift, P=.74 for
sleep end time).

Table 5. Effect of sleep timings on daytime alertness and cognitive throughput.

Effect on cognitive throughputEffect on alertnessFeature

P valuerrm (95% CI)P valuerrm
a (95% CI)

<.001−0.13 (−0.21 to −0.05).09−0.07 (−0.16 to 0.01)Sleep shift

.03−0.09 (−0.18 to −0.01).740.02 (−0.07 to 0.1)Sleep end time

arrm: repeated measures correlation coefficient.

Sleep Stages

There has been significant interest in understanding the effect
of various sleep stages on daytime performance metrics,
especially with the rising number of commercial wearables that
claim to detect coarse-grained sleep stages. However, most
experts advise caution in attributing performance to sleep stages
inferred from these devices, and studies have shown that
first-generation sleep trackers were generally quite poor at
estimating sleep stages [58]. Nevertheless, prediction accuracies
have shown improvement over time—for example, Fitbit Charge
2 showed 61% accuracy in detecting wake periods, 81%
accuracy in detecting light sleep, 49% accuracy in detecting
deep sleep, and 74% accuracy in detecting rapid eye movement
(REM) sleep [59], whereas Garmin VivoFit 3 (Garmin
International, Inc.) predicts deep, light, and REM sleep stages
at roughly 69% accuracy rate, and predicts wake at 73%
accuracy [60], which is a significant improvement over previous
incarnations of these devices. As wearables get better at
estimating sleep stages, it becomes more important to understand
if we can leverage these insights to explain cognitive
performance.

While the literature on the effect of sleep stages on cognitive
performance is limited, studies have shown that
electroencephalogram spindle density in non-REM sleep is a
predictor of visual attention, verbal learning, and verbal fluency
performance [61]. It has also been noted that light sleep, slow
wave sleep, and REM sleep contribute to the recuperation of
the dorsolateral prefrontal and inferior parietal cortices, which
are areas involved in higher-order cognitive tasks [62].

Some studies have linked a reduction in total sleep duration
specifically to a reduction in REM and stage 2 (light) sleep [63].
However, other studies have also claimed that selective REM
sleep deprivation did not demonstrate changes in daytime
sleepiness/alertness [64].

From Table 6, we see that there is a significant positive
correlation between both REM (rrm=0.12, P<.001) and light
sleep (rrm=0.15, P<.001) duration and daytime alertness. By
contrast, sleep stages were not found to have a significant impact
on cognitive throughput on the following day (P=.52 for REM
sleep, P=.80 for light sleep). Duration of deep sleep was not
found to have a significant impact on either alertness (P=.22)
or cognitive throughput (P=.53).
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Table 6. Effect of sleep stages on daytime alertness and cognitive throughput.

Effect on cognitive throughputEffect on alertnessFeature

P valuerrm (95% CI)P valuerrm
a (95% CI)

.520.03 (−0.06 to 0.11)<.0010.12 (0.04 to 0.2)Duration of rapid eye movement sleep

.800.01 (−0.07 to 0.09)<.0010.15 (0.07 to 0.23)Duration of light sleep

.53−0.03 (−0.11 to 0.06).220.05 (–0.03 to 0.14)Duration of deep sleep

arrm: repeated measures correlation coefficient.

Factors Affecting Momentary Alertness and Cognitive

Throughput

Having looked at the factors that influence day-to-day variations
in daytime alertness and cognitive throughput, we now examine
other factors that may impact momentary performance measures
(ie, fluctuations in performance within a day). We specifically
look into the effect of physical activity and heart rate, along
with circadian and homeostatic effects.

Time of Day and Internal Time

Time of day has emerged as an important factor affecting
multiple aspects of cognitive performance due to the circadian
modulation of alertness and cognitive throughput [1]. Both
alertness and cognitive throughput levels have been found to
oscillate with a period approximately equal to 24 hours, with
individuals achieving peak performance at similar times each
day [65]. Further, it has been noted that an individual’s
chronotype influences the phase of this circadian modulation

(also referred to as process C), thus determining the exact time
at which this peak is observed [66].

Based on this well-established model of circadian fluctuations
in performance, we would expect to see a roughly sinusoidal
variation in PVT and ADD performance based on the time of
day and participants’ internal time. To examine whether such
a relationship is indeed evident in our data, we fit cosinor models
[67] with a period of 24 hours to relative response time and
relative number of additions attempted based on both time of
day and participants’ internal time.

As seen in Table 7, both alertness and cognitive throughput are
influenced by the current time, exhibiting an acrophase
(circadian maxima) in the morning hours even if they do not
coincide exactly. It is also important to note that interindividual
differences, including chronotype, also influence these rhythms,
which prompts us to study the variations in performance
measures with respect to individuals’ internal time. We see that
the acrophase of these rhythms is reached about 13-14 hours
after the individuals’ MSF.

Table 7. Effect of time of day on momentary alertness and cognitive throughput.a

P valueEffect on cognitive throughputP valueEffect on alertnessFeature

<.001Cognitive throughput varies sinusoidally with time of
day, with an acrophase at 09:19 (08:13 to 10:26)

<.001Alertness varies sinusoidally with time of day, with
an acrophase at 10:24 (09:26 to 11:21)

Time of day

<.001Cognitive throughput varies sinusoidally with internal
time, with an acrophase at 13:20 (12:02 to 14:38)

<.001Alertness varies sinusoidally with internal time,
with an acrophase at 14:24 (13:20 to 15:31)

Internal time

aThe acrophase of the 24-hour circadian rhythm of cognitive performance is reported in hh:mm format with the corresponding 95% confidence intervals
and P values.

Figure 6 visually illustrates the fluctuations in both performance
measures across time of day. Here, we show the mean relative
response times and number of additions attempted during each
4-hour time bin during the course of the day, omitting the
12:00-04:00 hours bin due to lack of data. We see that alertness
increases through the day until around noon, after which it

deteriorates through the evening. Cognitive throughput is lowest
early in the morning, increases through the day peaking in the
late afternoon, and decreases in the evening. In general, both
alertness and cognitive throughput peak during the regular
working hours of 08:00-16:00 hours.
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Figure 6. Fluctuations in cognitive performance by time of day. The x-axis represents alertness in terms of relative response times, and the y-axis
represents cognitive throughput in terms of relative number of additions attempted. The dots represent the mean scores in the marked time range while
the error bars represent the standard error of the mean along each axis.

Homeostatic Pressure (ie, Time Since Waking Up)

The homeostatic component of sleep regulation is governed by
a process H that induces sleep pressure (or “sleepiness”) as a
sigmoidal function of time since waking up from the last sleep
session (typically previous night’s sleep). During sleep, this
pressure is released and H decays in a saturating exponential
manner [9]. The homeostatic component of sleep regulation is
known to affect alertness, and possibly cognitive throughput,
interacting with the circadian component described previously
[2,15].

The effect of this sleep homeostat on daytime performance has
been studied in terms of time awake in total sleep-deprivation
studies, where participants are kept fully awake for very long
periods (often up to 3 nights) [50]. The results of such studies
generally indicate that alertness declines with an increase in
hours of wakefulness [2,68,69], whereas there are conflicting
theories about the effect of total sleep deprivation on more
complex cognitive functions.

Traditionally, the effects of sleep deprivation were explained
analogous to that of stress, based on the inverted-U model
proposed by Yerkes and Dodson [70]. This “arousal” model
essentially focused on the overall decline in arousal in
sleep-deprived individuals in order to explain impairment of
cognitive performance [71,72]. However, increasing empirical
evidence showed that while performance on vigilance tasks
decreased significantly across a night of sleep deprivation,
performance did not vary significantly on more complex
cognitive tasks [32,73]. This led to the proposal of several new
theories to explain the effect of sleep deprivation on various
cognitive functions.

Several researchers have proposed to single out vigilant attention
as the cognitive process most susceptible to detrimental effects

of sleep deprivation, while other cognitive tasks have varied
sensitivity to [74], or a nonspecific effect of [75], sleep
deprivation. Other studies have sought to explain their findings
by claiming that tasks mediated by prefrontal cortex function
are most impacted by homeostatic pressure [76,77]. Recent
studies of neural activation patterns during cognitive tasks using
functional magnetic resonance imaging have lent further support
to this neuropsychological theory [78]. Another theory often
used to explain sleep-deprivation effects is the controlled
attention model [32], which posits that performance on tasks
that require attentiveness and active engagement is less likely
to be affected by sleep deprivation as compared to that on tasks
that are not intrinsically interesting or engaging.

However, most of the aforementioned studies focus on the
effects of sleep deprivation, that is, homeostatic pressure beyond
at least one full day, which is much longer than typical
homeostatic pressure in the working population. It is therefore
still unclear how homeostatic pressure affects performance at
points in time sooner after waking up, which is of greater
relevance to us. To this end, we calculated the repeated measures
correlation coefficient between the time since waking up from
the last sleep session and performance on the corresponding
PVT and ADD tasks.

As reported in Table 8, our analysis shows that alertness tends
to decline with time since waking up (rrm=−0.1, P<.001) while
no significant effect is observed on cognitive throughput
(P=.87). This finding agrees with observations from the early
stages of sleep deprivation or constant routine protocol studies
(eg, [65]). This suggests that cognitive throughput may indeed
be affected less by sleep homeostasis (or the effect can be
overcome by effort) or may be considerably affected by sleep
inertia (ie, the drowsiness felt right after waking up).
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Table 8. Effect of homeostatic pressure on momentary alertness and cognitive throughput.

Effect on cognitive throughputEffect on alertnessFeature

P valuerrm (95% CI)P valuerrm
a (95% CI)

.870.004 (−0.05 to 0.05)<.001−0.1 (−0.15 to −0.05)Time since waking up

arrm: repeated measures correlation coefficient.

Heart Rate

While there is limited prior research on understanding the impact
of heart rate on cognitive performance, heart rhythm is generally
thought to affect performance. In particular, there has been
substantial work on understanding the relationship between
HRV and alertness/cognitive performance [79]. HRV is
considered a useful measure because it captures some aspects
of the interplay between the sympathetic and parasympathetic
nervous systems [80,81], which in turn has associations with
the prefrontal cortex and hence cognitive performance [82].

Sleepiness is also known to relate to HRV—for example, Chua
et al [83] showed that the R–R-interval power density correlates
strongly with lapses on the PVT and can be used to estimate
decrements in PVT performance caused by sleepiness. Henelius
et al [12] report that HRV spectral power reflects vigilant
attention in participants exposed to partial chronic sleep
restriction. Heart rate measures have also been extensively
studied in the context of fatigued driving, wherein several heart
rate measures were found to be strong indicators of drowsiness
under conditions of low mental workload [84]. Other work has
reported that individuals with high HRV performed better on
executive tasks compared to those with low HRV, but the 2
groups did not differ with regard to simple reaction time [11].

Recent work in ubiquitous computing research has also explored
heart rhythm (and perceived heart rhythm) based interventions

to improve cognitive performance—for example, Costa et al
[85] showed that even changes in the perception of heart rate
can lead to cognitive function improvement in an individual.

While our data set does not contain raw HRV information (this
was not exposed by the device used for the study), we looked
into the effects of coarser timescale variations in heart rate as
well as direct heart rate measures on alertness and cognitive
throughput. Table 9 reports the repeated measures correlation
coefficients (along with the corresponding 95% confidence
intervals) between various heart rate–based measures and both
alertness and cognitive performance. We find that the current
heart rate (measured minute-to-minute by the Fitbit) and the
current day’s resting heart rate are correlated with ADD
performance (rrm=0.16, P<.001), but a similar correlation with
PVT scores was not observed (P=.05). Average heart rate values
over epochs of 10 and 60 minutes preceding the tasks were also
found to be positively correlated with task performance, with
the correlations being slightly higher with ADD scores than
PVT scores (P<.001). Higher variance in heart rate (not to be
confused with HRV) over the previous hour is significantly
correlated with higher cognitive throughput (P=.03), while
higher variance in a shorter interval of 10 minutes before task
time corresponds to higher alertness measures (P=.04). While
the correlations between variance in heart rate and task
performance are low, they do further underscore the importance
of investigating the effects of HRV as demonstrated by prior
studies.

Table 9. Effect of heart rate on momentary alertness and cognitive throughput.

Effect on cognitive throughputEffect on alertnessFeature

P valuer rmP valuer rm
a

<.0010.16 (0.11 to 0.21).050.05 (0.0 to 0.1)Current heart rate

<.0010.1 (0.05 to 0.15).10−0.04 (−0.09 to 0.01)Resting heart rate

<.0010.16 (0.11 to 0.2)<.0010.11 (0.06 to 0.16)Average heart rate over last 60 minutes

<.0010.16 (0.11 to 0.21)<.0010.09 (0.04 to 0.14)Average heart rate over last 10 minutes

.030.05 (0.0 to 0.1).080.04 (0.0 to 0.09)Variance in heart rate over last 60 minutes

.060.05 (0.0 to 0.1).040.05 (0.0 to 0.1)Variance in heart rate over last 10 minutes

arrm: repeated measures correlation coefficient.

Physical Activity

The effect of physical activity on alertness and cognitive
throughput has not been explored much in prior studies. Most
in-laboratory studies prevent participants from engaging in any
strenuous activity, while some sleep-deprivation studies use
exercise as an additional stressor [14,86,87]. Within the latter
category, studies remain inconsistent about the effects of

exercise—Englund et al [14] claim that exercise did not
compound effects of sleep loss, and physical activity may indeed
delay any sleep loss–induced performance impairment on certain
tasks. Angus et al [86] found that exercise neither increased nor
decreased impairment caused by sleep deprivation. Exercise
has also been found to decrease reaction times, but much less
than a period of rest did [87].
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The effect of physical activity on cognitive functioning of
non-sleep-deprived individuals has been even less explored.
Nevertheless, moderate-intensity exercise has been found to
improve performance on information-processing tasks associated
with sports [88,89]. These observations support the hypothesis
that physically induced arousal due to exercise results in a
performance improvement on cognitive tasks, which may not
necessarily be explained by models of emotional arousal
described previously.

Other studies suggest that physical activity can sometimes lead
to higher alertness periods within break periods, but continued
exertion causes this effect to wear off and may have an overall

detrimental impact [13]. However, habitually engaging in
moderate exercise and maintaining general fitness have also
been correlated with better cognitive performance and academic
achievement in children [90,91].

To investigate these effects in an in-the-wild setting, we
examined whether current physical activity, or that undertaken
in the recent past, has a momentary influence on either alertness
or cognitive throughput. As shown in Table 10, we discovered
a significant positive correlation of physical activity metrics
aggregated over the previous 10- and 60-minute intervals with
both PVT and ADD performance. This presents further empirical
evidence in support of the arousal theory described previously.

Table 10. Effect of physical activity on momentary alertness and cognitive throughput.

Effect on cognitive throughputEffect on alertnessFeature

P valuer rmP valuer rm
a

<.0010.1 (0.05 to 0.15)<.0010.11 (0.06 to 0.16)Average calories burnt over last 60 minutes

<.0010.1 (0.05 to 0.15)<.0010.08 (0.03 to 0.12)Average calories burnt over last 10 minutes

<.0010.07 (0.02 to 0.12)<.0010.08 (0.03 to 0.13)Variance in calories burnt over last 60 minutes

.010.07 (0.02 to 0.12)<.0010.08 (0.03 to 0.13)Variance in calories burnt over last 10 minutes

<.0010.07 (0.02 to 0.12)<.0010.08 (0.03 to 0.12)Average distance traveled over last 60 minutes

.010.07 (0.02 to 0.12).010.06 (0.01 to 0.11)Average distance traveled over last 10 minutes

<.0010.07 (0.02 to 0.12).010.07 (0.02 to 0.12)Variance in distance traveled over last 60 minutes

.010.06 (0.01 to 0.11)<.0010.07 (0.03 to 0.12)Variance in distance traveled over last 10 minutes

.010.07 (0.02 to 0.12)<.0010.07 (0.02 to 0.12)Average steps walked over last 60 minutes

<.0010.07 (0.02 to 0.12).020.06 (0.01 to 0.11)Average steps walked over last 10 minutes

.010.06 (0.01 to 0.11).010.07 (0.02 to 0.12)Variance in steps walked over last 60 minutes

.010.07 (0.02 to 0.12)<.0010.08 (0.03 to 0.12)Variance in steps walked over last 10 minutes

arrm: repeated measures correlation coefficient.

Discussion

Principal Findings

Our results indicate that performance on less engaging tasks
that require sustained attention and that on tasks which are
inherently more challenging are affected differently by various
components of change in sleep patterns. Alertness is
significantly influenced by the duration of sleep (P<.001) as
well as time spent in various stages of sleep (P<.001 for both
REM and light sleep), whereas cognitive throughput is
moderated by phase shifts in sleep relative to an individual’s
internal circadian rhythm (P<.001). We also find that higher
heart rate and physical activity preceding cognitively demanding
tasks are positively correlated with better performance on said
tasks.

Implications

Performance as a Multidimensional Metric

Our findings make a strong case for treating performance as a
multidimensional metric and evaluating individuals’
performance on multiple axes independently. In day-to-day
societal functioning, different roles require different

combinations of cognitive abilities in order to be responsibly
and efficiently undertaken. For example, driving has been
associated with a high need for vigilant alertness [52], whereas
medical and emergency rescue personnel may rely more heavily
on higher-order cognitive functions [92]. It is evident from our
analysis that alertness and cognitive throughput are affected
differently by different sleep-related variables, even though they
covary similarly with respect to heart rate and physical activity.
Thus, the ability to perform different tasks may be hindered
differently due to the same changes in sleep patterns—a
phenomenon that should be taken into account while predicting
workplace performance, switching control of processes between
human operator and automated assistants (in self-driving cars,
for example), shift worker duty scheduling, etc.

Linking Self-Tracking Data to Actionable Insights

With commercial wearables claiming to accurately track an
increasing number of physiological variables, there has been a
growing interest in exploring the utility of these measures in
drawing useful conclusions about users’ physical, mental, and
cognitive states. Researchers are continually seeking to answer
the question of what can be learned from self-tracking data, and
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how this knowledge can be leveraged to close the loop by
providing actionable feedback to the user [93].

Consumers of commercial wearable fitness trackers are seldom
aware of distinctions in performance measures such as those
described in this work, and manufacturers of wearable devices
make frequent claims about how users can incorporate positive
behavioral changes in their lifestyles based on metrics reported
by these devices. For instance, Fitbit itself reports on its blog
that exercise can boost happiness and engagement, thereby
increasing productivity [23]. It also outlines steps to track an
afternoon drop in attentiveness through the Fitbit app using
sleep and activity data, encouraging users to then administer
self-timed interventions such as caffeine [94]. The company
also advises tracking and improving sleep to improve workplace
productivity [22], though productivity is very loosely defined.
The Fitbit app also provides personalized sleep insights, such
as, “You sleep a bit better on nights after a run. It’s subtle, but
you spend 5 fewer minutes being restless/awake on those nights”
[95]. However, the implications of these correlations are
unclear—how does 5 fewer minutes of being restless/awake
impact your day?

Our work shows that more comprehensive in-the-wild studies
are required in order to meaningfully answer such questions.
These studies should focus on understanding the effect of
physiological data on specific, well-defined measures of daytime
productivity and well-being, so that users can receive targeted
feedback on optimizing the individual measures that are
personally of most consequence to them.

Limitations

Because our objective involved studying the effect of
sleep-based metrics on cognitive performance, we opted for a
longitudinal study wherein we could collect extensive data from
a relatively small participant pool. A longitudinal study allowed
us to capture a range of intra-individual variations and to get a
better sense of our participants’ natural sleep and performance
rhythms over several weeks and ensure that the chronobiological
sleep metrics such as mid-sleep time on free days are more
stable. However, building predictive models of cognitive

performance would require further study on larger populations
in order to ensure wider generalizability. As a first step, we
compared the distribution of alertness and cognitive throughput
across our 3 subpopulations—shift workers, regular workers,
and graduate students—and found no significant differences.
Thus, we are optimistic that our observations would be
replicable on larger and more diverse populations.

Our results are also fundamentally limited by the accuracy of
the Fitbit fitness tracker in capturing physiological metrics.
Nevertheless, recent studies on these devices are promising,
showing significant improvement in the validity of their
inferences over time [59]. In addition, while real-world
physiological data may be noisy and is likely to be confounded
by several external factors, our work demonstrates that there is
substantial information in these signals that can be utilized
toward modeling cognitive performance.

Conclusion

In conclusion, our work examines how metrics of sleep, activity,
and heart rate that can be obtained from a commercial fitness
tracker correlate with different facets of performance such as
alertness and cognitive throughput. We achieve this through 2
complementary means—first, we delve into existing research
in order to discern theories postulated on the basis of several
controlled experiments. Second, we present insights from our
own longitudinal in-the-wild study in an attempt to bridge the
gap between laboratory findings and the real world.

We show that while alertness is sensitive to sleep duration as
well as sleep stages, cognitive throughput exhibits no significant
deteriorating effect from lack of sleep (P=.92). By contrast,
irregular sleep timings have a significant effect on cognitive
throughput (P<.001), but not on alertness. Both dimensions of
cognitive performance show similar circadian fluctuations, but
alertness is found to be more sensitive to homeostatic pressure.
We also find that physical activity and heart rate have
comparable effects on both alertness and cognitive throughput.
The insights from our work make a strong case for treating
performance as a multidimensional metric and evaluating
individuals’ performance on multiple axes.

Acknowledgments

This work is in part supported by the National Science Foundation under grant SBE 1839999 and start-up grant support from the
College of Information and Computer Sciences and the Institute for Applied Life Sciences at the University of Massachusetts
Amherst.

Conflicts of Interest

None declared.

References

1. Schmidt C, Collette F, Cajochen C, Peigneux P. A time to think: circadian rhythms in human cognition. Cogn Neuropsychol
2007 Oct;24(7):755-789. [doi: 10.1080/02643290701754158] [Medline: 18066734]

2. Jewett ME, Kronauer RE. Interactive mathematical models of subjective alertness and cognitive throughput in humans. J
Biol Rhythms 1999 Dec 29;14(6):588-597. [doi: 10.1177/074873099129000920] [Medline: 10643756]

3. Juda M, Vetter C, Roenneberg T. Chronotype modulates sleep duration, sleep quality, and social jet lag in shift-workers.
J Biol Rhythms 2013 Apr 19;28(2):141-151. [doi: 10.1177/0748730412475042] [Medline: 23606613]

4. Vetter C, Juda M, Roenneberg T. The influence of internal time, time awake, and sleep duration on cognitive performance
in shiftworkers. Chronobiol Int 2012 Oct 13;29(8):1127-1138. [doi: 10.3109/07420528.2012.707999] [Medline: 22888791]

J Med Internet Res 2021 | vol. 23 | iss. 2 | e23936 | p. 16http://www.jmir.org/2021/2/e23936/
(page number not for citation purposes)

Kalanadhabhatta et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX



5. Martin JS, Hébert M, Ledoux E, Gaudreault M, Laberge L. Relationship of chronotype to sleep, light exposure, and
work-related fatigue in student workers. Chronobiol Int 2012 Apr;29(3):295-304. [doi: 10.3109/07420528.2011.653656]
[Medline: 22390242]

6. Medeiros ALD, Mendes DB, Lima PF, Araujo JF. The Relationships between Sleep-Wake Cycle and Academic Performance
in Medical Students. Biological Rhythm Research 2010 Aug 09;32(2):263-270. [doi: 10.1076/brhm.32.2.263.1359]

7. Vetter C, Fischer D, Matera J, Roenneberg T. Aligning work and circadian time in shift workers improves sleep and reduces
circadian disruption. Curr Biol 2015 Mar 30;25(7):907-911 [FREE Full text] [doi: 10.1016/j.cub.2015.01.064] [Medline:
25772446]

8. HIDALGO MPL. Performance of chronotypes on memory tests during the morning and the evening shifts. PR 2004
Aug;95(5):75. [doi: 10.2466/pr0.95.5.75-85]

9. Borbély AA. A two process model of sleep regulation. Hum Neurobiol 1982;1(3):195-204. [Medline: 7185792]
10. Akerstedt T, Folkard S. The three-process model of alertness and its extension to performance, sleep latency, and sleep

length. Chronobiol Int 1997 Mar 07;14(2):115-123. [doi: 10.3109/07420529709001149] [Medline: 9095372]
11. Hansen AL, Johnsen BH, Thayer JF. Vagal influence on working memory and attention. International Journal of

Psychophysiology 2003 Jun;48(3):263-274. [doi: 10.1016/s0167-8760(03)00073-4]
12. Henelius A, Sallinen M, Huotilainen M, Müller K, Virkkala J, Puolamäki K. Heart rate variability for evaluating vigilant

attention in partial chronic sleep restriction. Sleep 2014 Jul 01;37(7):1257-1267 [FREE Full text] [doi: 10.5665/sleep.3850]
[Medline: 24987165]

13. O’Neill TR, Krueger GP, Van Hemel SB, McGowan AL, Rogers WC. Effects of Cargo Loading and Unloading on Truck
Driver Alertness. Transportation Research Record 1999 Jan;1686(1):42-48. [doi: 10.3141/1686-07]

14. Englund CE, Ryman DH, Naitoh P, Hodgdon JA. Cognitive performance during successive sustained physical work
episodes. Behavior Research Methods, Instruments, & Computers 1985 Jan;17(1):75-85. [doi: 10.3758/bf03200899]

15. Basner M, Rao H, Goel N, Dinges DF. Sleep deprivation and neurobehavioral dynamics. Current Opinion in Neurobiology
2013 Oct;23(5):854-863. [doi: 10.1016/j.conb.2013.02.008]

16. Cajochen C, Münch M, Kobialka S, Kräuchi K, Steiner R, Oelhafen P, et al. High sensitivity of human melatonin, alertness,
thermoregulation, and heart rate to short wavelength light. J Clin Endocrinol Metab 2005 Mar;90(3):1311-1316. [doi:
10.1210/jc.2004-0957] [Medline: 15585546]

17. Wesensten NJ, Killgore WDS, Balkin TJ. Performance and alertness effects of caffeine, dextroamphetamine, and modafinil
during sleep deprivation. J Sleep Res 2005 Sep;14(3):255-266 [FREE Full text] [doi: 10.1111/j.1365-2869.2005.00468.x]
[Medline: 16120100]

18. Philip P, Sagaspe P, Taillard J, Moore N, Guilleminault C, Sanchez-Ortuno M, et al. Fatigue, sleep restriction, and
performance in automobile drivers: a controlled study in a natural environment. Sleep 2003 May 01;26(3):277-280. [doi:
10.1093/sleep/26.3.277] [Medline: 12749545]

19. Van Dongen HP, Rogers NL, Dinges DF. Sleep debt: Theoretical and empirical issues. Sleep and Biological Rhythms 2003
Feb;1(1):5-13. [doi: 10.1046/j.1446-9235.2003.00006.x]

20. Johnson M, Duffy J, Dijk D, Ronda J, Dyal C, Czeisler C. Short-term memory, alertness and performance: a reappraisal
of their relationship to body temperature. J Sleep Res 1992 Mar;1(1):24-29 [FREE Full text] [doi:
10.1111/j.1365-2869.1992.tb00004.x] [Medline: 10607021]

21. Moonshot Factory - 2019 Stanford Medicine Big Data | Precision Health - YouTube Internet. Jonathan Berent, X. URL:
https://www.youtube.com/watch?v=5HenODfjEHg [accessed 2020-08-26]

22. Fitbit Blog. Getting More Sleep Can Help You Be an All-Star at Work Internet. 2017. URL: https://blog.fitbit.com/sleep-work/
[accessed 2020-08-26]

23. Fitbit Blog. 5 Easy Ways to Be More Productive at Work Internet. 2017. URL: https://blog.fitbit.com/
5-easy-ways-productive-work/ [accessed 2020-08-26]

24. Abdullah S, Murnane E, Matthews M, Kay M, Kientz J, Gay G, et al. Cognitive rhythms: unobtrusive and continuous
sensing of alertness using a mobile phone. : ACM; 2016 Presented at: Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing; September 12-16, 2016; Heidelberg Germany.

25. Dinges DF, Powell JW. Microcomputer analyses of performance on a portable, simple visual RT task during sustained
operations. Behavior Research Methods, Instruments, & Computers 1985 Nov;17(6):652-655. [doi: 10.3758/bf03200977]

26. Mark G, Iqbal S, Czerwinski M, Johns P. Bored mondays and focused afternoons: the rhythm of attention and online activity
in the workplace. New York, NY: ACM Press; 2014 Presented at: Proceedings of the 32nd annual ACM conference on
Human factors in computing systems - CHI 14; April 26-May 1, 2014; Toronto, ON, Canada.

27. Mark G, Wang YOI, Niiya M, Reich S. Sleep Debt in Student Life: Online Attention Focus, Facebook, and Mood. New
York, NY: ACM Press; 2016 Presented at: Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems; 2016; San Jose, CA.

28. Wahl F, Amft O. Data and Expert Models for Sleep Timing and Chronotype Estimation from Smartphone Context Data
and Simulations. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol 2018 Sep 18;2(3):1-28.

J Med Internet Res 2021 | vol. 23 | iss. 2 | e23936 | p. 17http://www.jmir.org/2021/2/e23936/
(page number not for citation purposes)

Kalanadhabhatta et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX



29. Althoff T, Horvitz E, White R, Zeitzer J. Harnessing the Web for Population-Scale Physiological Sensing: A Case Study
of Sleep and Performance. Geneva, Switzerland: International World Wide Web Conferences Steering Committee; 2017
Presented at: Proceedings of the 26th International Conference on World Wide Web; 2017; Perth, WA, Australia.

30. Murnane E, Abdullah S, Matthews M, Choudhury T, Gay G. Social (media) jet lag: how usage of social technology can
modulate and reflect circadian rhythms. New York, NY: ACM Press; 2015 Presented at: Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing - UbiComp 15; 2015; Osaka, Japan.

31. Murnane E, Abdullah S, Matthews M, Kay M, Kientz J, Choudhury T, et al. Mobile manifestations of alertness: connecting
biological rhythms with patterns of smartphone app use. New York, NY: ACM Press; 2016 Presented at: Proceedings of
the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services; 2016; Florence,
Italy.

32. Pilcher J, Band D, Odle-Dusseau H, Muth E. Human performance under sustained operations and acute sleep deprivation
conditions: toward a model of controlled attention. Aviat Space Environ Med 2007 May;78(5 Suppl):B15-B24. [Medline:
17547301]

33. Dingler T, Schmidt A, Machulla T. Building Cognition-Aware Systems. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol 2017 Sep 11;1(3):1-15 [FREE Full text] [doi: 10.1145/3132025]

34. Åkerstedt T, Gillberg M. Subjective and Objective Sleepiness in the Active Individual. International Journal of Neuroscience
2009 Jul 07;52(1-2):29-37. [doi: 10.3109/00207459008994241]

35. Dijk D, Duffy J, Czeisler C. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance.
Journal of Sleep Research 1992 Jun;1(2):112-117. [doi: 10.1111/j.1365-2869.1992.tb00021.x]

36. Klein K, Wegmann H, Athanassenas G, Hohlweck H, Kuklinski P. Air operations and circadian performance rhythms.
Aviat Space Environ Med 1976 Mar;47(3):221-230. [Medline: 769776]

37. Grant DA, Honn KA, Layton ME, Riedy SM, Van Dongen HPA. 3-minute smartphone-based and tablet-based psychomotor
vigilance tests for the assessment of reduced alertness due to sleep deprivation. Behav Res Methods 2017 Jun
20;49(3):1020-1029. [doi: 10.3758/s13428-016-0763-8] [Medline: 27325169]

38. Honn KA, Riedy SM, Grant DA. Validation of a Portable, Touch-Screen Psychomotor Vigilance Test. Aerospace Medicine
and Human Performance 2015 May 01;86(5):428-434. [doi: 10.3357/amhp.4165.2015]

39. Kay M, Rector K, Consolvo S, Greenstein B, Wobbrock J, Watson N, et al. PVT-Touch: Adapting a Reaction Time Test
for Touchscreen Devices. New York, NY: IEEE; 2013 Presented at: Proceedings of the ICTs for improving Patients
Rehabilitation Research Techniques; 2013; Venice, Italy.

40. Basner M, Dinges D. Maximizing sensitivity of the psychomotor vigilance test (PVT) to sleep loss. Sleep 2011 May
01;34(5):581-591 [FREE Full text] [doi: 10.1093/sleep/34.5.581] [Medline: 21532951]

41. Roenneberg T, Wirz-Justice A, Merrow M. Life between clocks: daily temporal patterns of human chronotypes. J Biol
Rhythms 2003 Feb;18(1):80-90. [doi: 10.1177/0748730402239679] [Medline: 12568247]

42. Bakdash JZ, Marusich LR. Repeated Measures Correlation. Front. Psychol 2017 Apr 7;8:456. [doi: 10.3389/fpsyg.2017.00456]
43. Vallat R. Pingouin: statistics in Python. JOSS 2018 Nov;3(31):1026. [doi: 10.21105/joss.01026]
44. Reynolds A, Banks S. Total sleep deprivation, chronic sleep restriction and sleep disruption. Prog Brain Res 2010;185:91-103.

[doi: 10.1016/B978-0-444-53702-7.00006-3] [Medline: 21075235]
45. Akerstedt T, Folkard S. Validation of the S and C components of the three-process model of alertness regulation. Sleep

1995 Jan;18(1):1-6. [doi: 10.1093/sleep/18.1.1] [Medline: 7761737]
46. Cajochen C, Frey S, Anders D, Späti J, Bues M, Pross A, et al. Evening exposure to a light-emitting diodes (LED)-backlit

computer screen affects circadian physiology and cognitive performance. J Appl Physiol (1985) 2011 May;110(5):1432-1438
[FREE Full text] [doi: 10.1152/japplphysiol.00165.2011] [Medline: 21415172]

47. Shochat T. Impact of lifestyle and technology developments on sleep. NSS 2012 Mar:19. [doi: 10.2147/nss.s18891]
48. Twenge JM, Krizan Z, Hisler G. Decreases in self-reported sleep duration among U.S. adolescents 2009-2015 and association

with new media screen time. Sleep Med 2017 Nov;39:47-53. [doi: 10.1016/j.sleep.2017.08.013] [Medline: 29157587]
49. Tosini G, Ferguson I, Tsubota K. Effects of blue light on the circadian system and eye physiology. Mol Vis 2016;22:61-72

[FREE Full text] [Medline: 26900325]
50. Van Dongen HPA, Maislin G, Mullington J, Dinges D. The cumulative cost of additional wakefulness: dose-response

effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep
2003 Mar 15;26(2):117-126. [doi: 10.1093/sleep/26.2.117] [Medline: 12683469]

51. Dinges D, Pack F, Williams K, Gillen K, Powell J, Ott G, et al. Cumulative sleepiness, mood disturbance, and psychomotor
vigilance performance decrements during a week of sleep restricted to 4-5 hours per night. Sleep 1997 Apr;20(4):267-277.
[Medline: 9231952]

52. Jackson M, Croft R, Kennedy G, Owens K, Howard M. Cognitive components of simulated driving performance: Sleep
loss effects and predictors. Accid Anal Prev 2013 Jan;50:438-444. [doi: 10.1016/j.aap.2012.05.020] [Medline: 22721550]

53. Blagrove M, Alexander C, Horne JA. The effects of chronic sleep reduction on the performance of cognitive tasks sensitive
to sleep deprivation. Appl. Cognit. Psychol 1995 Feb;9(1):21-40. [doi: 10.1002/acp.2350090103]

54. Banks S, Van DH, Maislin G, Dinges D. Neurobehavioral Dynamics Following Chronic Sleep Restriction: Dose-Response
Effects of One Night for Recovery. Sleep 2010 Aug;? 2010;33(8):1026. [doi: 10.1093/sleep/33.8.1013]

J Med Internet Res 2021 | vol. 23 | iss. 2 | e23936 | p. 18http://www.jmir.org/2021/2/e23936/
(page number not for citation purposes)

Kalanadhabhatta et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX



55. Jewett M, Dijk D, Kronauer R, Dinges D. Dose-response relationship between sleep duration and human psychomotor
vigilance and subjective alertness. Sleep 1999 Mar 15;22(2):171-179. [doi: 10.1093/sleep/22.2.171] [Medline: 10201061]

56. Taylor A, Wright HR, Lack LC. Sleeping-in on the weekend delays circadian phase and increases sleepiness the following
week. Sleep Biol Rhythms 2008;6(3):172-179. [doi: 10.1111/j.1479-8425.2008.00356.x]

57. Burgess HJ, Eastman CI. Early versus late bedtimes phase shift the human dim light melatonin rhythm despite a fixed
morning lights on time. Neurosci Lett 2004 Feb 12;356(2):115-118 [FREE Full text] [doi: 10.1016/j.neulet.2003.11.032]
[Medline: 14746877]

58. Mantua J, Gravel N, Spencer RMC. Reliability of Sleep Measures from Four Personal Health Monitoring Devices Compared
to Research-Based Actigraphy and Polysomnography. Sensors (Basel) 2016 May 05;16(5):646 [FREE Full text] [doi:
10.3390/s16050646] [Medline: 27164110]

59. de Zambotti M, Goldstone A, Claudatos S, Colrain IM, Baker FC. A validation study of Fitbit Charge 2™ compared with
polysomnography in adults. Chronobiol Int 2018 Apr;35(4):465-476. [doi: 10.1080/07420528.2017.1413578] [Medline:
29235907]

60. Garmin Blog. Garmin Health Announces Sleep Study Results. 2019. URL: https://www.garmin.com/en-US/blog/health/
garmin-health-announces-sleep-study-results/ [accessed 2020-08-26]

61. Lafortune M, Gagnon J, Martin N, Latreille V, Dubé J, Bouchard M, et al. Sleep spindles and rapid eye movement sleep
as predictors of next morning cognitive performance in healthy middle-aged and older participants. J Sleep Res 2014 Apr
18;23(2):159-167 [FREE Full text] [doi: 10.1111/jsr.12108] [Medline: 24245769]

62. Thomas M, Sing H, Belenky G, Holcomb H, Mayberg H, Dannals R, et al. Neural basis of alertness and cognitive performance
impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res
2000 Dec 18;9(4):335-352 [FREE Full text] [doi: 10.1046/j.1365-2869.2000.00225.x] [Medline: 11123521]

63. Kecklund G, Akerstedt T, Lowden A. Morning work: effects of early rising on sleep and alertness. Sleep 1997
Mar;20(3):215-223. [doi: 10.1093/sleep/20.3.215] [Medline: 9178917]

64. Nykamp K, Rosenthal L, Folkerts M, Roehrs T, Guido P, Roth T. The effects of REM sleep deprivation on the level of
sleepiness/alertness. Sleep 1998 Sep 15;21(6):609-614. [doi: 10.1093/sleep/21.6.609] [Medline: 9779520]

65. Cajochen C, Khalsa SBS, Wyatt JK, Czeisler CA, Dijk D. EEG and ocular correlates of circadian melatonin phase and
human performance decrements during sleep loss. Am J Physiol 1999 Sep 01;277(3 Pt 2):R640-R649. [doi:
10.1152/ajpregu.1999.277.3.r640] [Medline: 10484479]

66. Horne JA, Brass CG, Pettitt AN. Ciradian performance differences between morning and evening "types". Ergonomics
1980 Jan 27;23(1):29-36. [doi: 10.1080/00140138008924715] [Medline: 7189149]

67. Cornelissen G. Cosinor-based rhythmometry. Theor Biol Med Model 2014 Apr 11;11:16 [FREE Full text] [doi:
10.1186/1742-4682-11-16] [Medline: 24725531]

68. Graw P, Kräuchi K, Knoblauch V, Wirz-Justice A, Cajochen C. Circadian and wake-dependent modulation of fastest and
slowest reaction times during the psychomotor vigilance task. Physiol Behav 2004 Feb;80(5):695-701. [doi:
10.1016/j.physbeh.2003.12.004] [Medline: 14984804]

69. Lim J, Dinges D. Sleep deprivation and vigilant attention. Ann N Y Acad Sci 2008;1129(1):305-322. [doi:
10.1196/annals.1417.002] [Medline: 18591490]

70. Yerkes RM, Dodson JD. The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol 1908
Nov;18(5):459-482. [doi: 10.1002/cne.920180503]

71. Wilkinson RT. Interaction of lack of sleep with knowledge of results, repeated testing, and individual differences. J Exp
Psychol 1961 Sep;62(3):263-271. [doi: 10.1037/h0048787] [Medline: 14007063]

72. Williams HL, Lubin A, Goodnow JJ. Impaired performance with acute sleep loss. Psychological Monographs: General and
Applied 1959;73(14):1-26. [doi: 10.1037/h0093749]

73. Quigley N, Green JF, Morgan D, Idzikowski C, King DJ. The effect of sleep deprivation on memory and psychomotor
function in healthy volunteers. Hum Psychopharmacol 2000 May;15(3):171-177. [doi:
10.1002/(SICI)1099-1077(200004)15:3<171::AID-HUP155>3.0.CO;2-D] [Medline: 12404330]

74. Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol 2005 Mar;25(1):117-129. [doi:
10.1055/s-2005-867080] [Medline: 15798944]

75. Balkin TJ, Rupp T, Picchioni D, Wesensten NJ. Sleep loss and sleepiness: current issues. Chest 2008 Oct;134(3):653-660.
[doi: 10.1378/chest.08-1064] [Medline: 18779203]

76. Harrison Y, Horne J, Rothwell A. Prefrontal neuropsychological effects of sleep deprivation in young adults--a model for
healthy aging? Sleep 2000 Dec 15;23(8):1067-1073. [Medline: 11145321]

77. Jones K, Harrison Y. Frontal lobe function, sleep loss and fragmented sleep. Sleep Med Rev 2001 Dec;5(6):463-475. [doi:
10.1053/smrv.2001.0203] [Medline: 12531154]

78. Chee MWL. Functional Imaging of Working Memory after 24 Hr of Total Sleep Deprivation. Journal of Neuroscience
2004 May 12;24(19):4560-4567. [doi: 10.1523/jneurosci.0007-04.2004]

79. O'Hanlon J. Heart Rate Variability: A New Index of Driver Alertness/Fatigue. SAE Technical Paper 720141 1972:1-8.
[doi: 10.4271/720141]

J Med Internet Res 2021 | vol. 23 | iss. 2 | e23936 | p. 19http://www.jmir.org/2021/2/e23936/
(page number not for citation purposes)

Kalanadhabhatta et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX



80. Goldberger JJ, Challapalli S, Tung R, Parker MA, Kadish AH. Relationship of heart rate variability to parasympathetic
effect. Circulation 2001 Apr 17;103(15):1977-1983. [doi: 10.1161/01.cir.103.15.1977] [Medline: 11306527]

81. Ernst G. Heart-Rate Variability-More than Heart Beats? Front Public Health 2017 Sep 11;5:240 [FREE Full text] [doi:
10.3389/fpubh.2017.00240] [Medline: 28955705]

82. Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH. Heart rate variability, prefrontal neural function, and cognitive
performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav Med 2009
Apr 8;37(2):141-153. [doi: 10.1007/s12160-009-9101-z] [Medline: 19424767]

83. Chua E, Tan W, Yeo S, Lau P, Lee I, Mien I, et al. Heart rate variability can be used to estimate sleepiness-related decrements
in psychomotor vigilance during total sleep deprivation. Sleep 2012 Mar 01;35(3):325-334 [FREE Full text] [doi:
10.5665/sleep.1688] [Medline: 22379238]

84. Magjarevic R, Heinze C, Trutschel U, Schnupp T, Sommer D, Schenka A, et al. Operator Fatigue Estimation Using Heart
Rate Measures. Berlin, Heidelberg: Springer; 2009 Presented at: World Congress on Medical Physics and Biomedical
Engineering; September 7-12, 2009; Munich, Germany.

85. Costa J, Guimbretière F, Jung MF, Choudhury T. BoostMeUp. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol
2019 Jun 21;3(2):1-23. [doi: 10.1145/3328911]

86. Angus RG, Heslegrave RJ, Myles WS. Effects of prolonged sleep deprivation, with and without chronic physical exercise,
on mood and performance. Psychophysiology 1985 May;22(3):276-282. [doi: 10.1111/j.1469-8986.1985.tb01601.x]
[Medline: 4011797]

87. LeDuc P, Caldwell J, Ruyak P. The effects of exercise versus napping on alertness and mood in sleep-deprived aviators.
US Aeromedical Research Laboratory Technical Report. 2000. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.459.2378&rep=rep1&type=pdf [accessed 2021-02-14]

88. Davranche K, Audiffren M. Facilitating effects of exercise on information processing. J Sports Sci 2004 May;22(5):419-428.
[doi: 10.1080/02640410410001675289] [Medline: 15160595]

89. McMorris T, Graydon J. The effect of exercise on cognitive performance in soccer-specific tests. J Sports Sci 1997
Oct;15(5):459-468. [doi: 10.1080/026404197367092] [Medline: 9386203]

90. Keeley TJ, Fox KR. The impact of physical activity and fitness on academic achievement and cognitive performance in
children. International Review of Sport and Exercise Psychology 2009 Sep;2(2):198-214. [doi: 10.1080/17509840903233822]

91. Ploughman M. Exercise is brain food: the effects of physical activity on cognitive function. Dev Neurorehabil 2008 Jul
10;11(3):236-240. [doi: 10.1080/17518420801997007] [Medline: 18781504]

92. Dula DJ, Dula NL, Hamrick C, Wood G. The effect of working serial night shifts on the cognitive functioning of emergency
physicians. Ann Emerg Med 2001 Aug;38(2):152-155. [doi: 10.1067/mem.2001.116024] [Medline: 11468610]

93. van Berkel N, Luo C, Ferreira D, Goncalves J, Kostakos V. The curse of quantified-self: an endless quest for answers. New
York, NY: ACM Press; 2015 Presented at: Proceedings of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers - UbiComp
15; 2015; Osaka, Japan.

94. Fitbit Blog. Fitbit Data Can Help You Beat Afternoon Energy Crashes Internet. 2017. URL: https://blog.fitbit.com/
afternoon-slump/ [accessed 2020-08-26]

95. Get a Good Night’s Sleep with Fitbit’s Sleep Tools. Fitbit Blog. 2019. URL: https://blog.fitbit.com/
get-a-good-nights-sleep-with-fitbits-new-sleep-tools/ [accessed 2021-02-12]

Abbreviations

ADD: Addition Test
MSF: mid-sleep point on free days
PVT: Psychomotor Vigilance Test
REM: rapid eye movement

Edited by G Eysenbach, R Kukafka; submitted 28.08.20; peer-reviewed by T Tsoneva; comments to author 22.09.20; revised version

received 28.09.20; accepted 20.01.21; published 18.02.21

Please cite as:

Kalanadhabhatta M, Rahman T, Ganesan D

Effect of Sleep and Biobehavioral Patterns on Multidimensional Cognitive Performance: Longitudinal, In-the-Wild Study

J Med Internet Res 2021;23(2):e23936

URL: http://www.jmir.org/2021/2/e23936/

doi: 10.2196/23936

PMID: 33599622

J Med Internet Res 2021 | vol. 23 | iss. 2 | e23936 | p. 20http://www.jmir.org/2021/2/e23936/
(page number not for citation purposes)

Kalanadhabhatta et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX



©Manasa Kalanadhabhatta, Tauhidur Rahman, Deepak Ganesan. Originally published in the Journal of Medical Internet Research
(http://www.jmir.org), 18.02.2021. This is an open-access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete
bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information
must be included.

J Med Internet Res 2021 | vol. 23 | iss. 2 | e23936 | p. 21http://www.jmir.org/2021/2/e23936/
(page number not for citation purposes)

Kalanadhabhatta et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX


