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ABSTRACT

We generalize triadic closure, along with previous generalizations
of triadic closure, under an intuitive umbrella generalization: the
Subgraph-to-Subgraph Transition (SST). We present algorithms and
code to model graph evolution in terms of collections of these SSTs.
We then use the SST framework to create link prediction models for
both static and temporal, directed and undirected graphs which pro-
duce highly interpretable results. Quantitatively, our models match
out-of-the-box performance of state of the art graph neural network
models, thereby validating the correctness and meaningfulness of
our interpretable results.
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1 INTRODUCTION

Triadic closure is a widely known, simple process for modeling
the evolution and dynamics of many real world graph processes
[6, 14]. Triadic closure’s use in the graph modeling community is
due, in large part, to its ability to intuitively explain commonly ob-
served social and natural phenomenon. For example, social balance
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Figure 1: Edge-Addition Subgraph-to-Subgraph Transitions
for Undirected Four-Node Subgraphs. The same informa-
tion is depicted in two formats (A and B). A: Each arrow
indicates a possible subgraph-to-subgraph transition (SST)
caused by adding an edge to an undirected four-node sub-
graph. This format helps illustrate that subgraphs may tran-
sition to (and be transitioned to from) isomorphically dis-
tinct subgraphs. B: Each dashed missing edge indicates a pos-
sible subgraph-to-subgraph transition caused by adding the
dashed edge to an undirected four-node subgraph. This for-
mat helps illustrate that each distinct edge-addition transi-
tion corresponds to an isomorphically-distinct missing edge
in a subgraph.

theory is built upon achieving consistency among individuals in
social network triads [8], and social networks commonly predict
friendship links that close the most triangles [2]. In addition to
triads, analysis of the evolution and dynamics of other small sub-
graphs (i.e., graphlets, motifs, etc.) have proven to be illuminating
and pleasantly interpretable for many graph mining and scientific
tasks [17, 20, 22, 28].
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Figure 2: Growing a Binary Tree. The graph on the left (A)
illustrates adding three new nodes to a binary tree, where
each new node is connected by a single edge. The table on the
right (B) enumerates the connected 3-to-4-node subgraph-
to-subgraph transitions (SSTs) caused by adding the new
nodes. Columns u, v, and w depict the number of SSTs in
which each corresponding node in (A) is present.

To this end, researchers have generalized the concept of triadic
closure in different ways. For instance, Seshadhri et. al. considered
the many different kinds of triangle closures possible in a directed
graph [27]. Yin et. al. considered something similar to Seshadhri
et. al,, but did not include bidirected edges in their enumeration of
directed triadic closure types [31]. Rossi et. al. considered “motif
closures,” whereby they mean any occurrence of a motif being
formed by the adding of an edge [24].

We offer an elegant generalization which encapsulates and ex-
pands upon previous generalizations of triadic closure: The Subgraph-
to-Subgraph Transition (SST). In our formulation triangle closure
can be considered one specific kind of subgraph-to-subgraph tran-
sition: open-wedge to triangle. SSTs are also a generalization of
“motif closures,” as a motif closure only considers the resulting sub-
graph, not the beginning subgraph (see [24]); thus a single motif
closure may correspond to many distinct SSTs.

For example, Fig. 1 depicts all of the possible four-node subgraph-
to-subgraph transitions in two formats: (A) as state transitions,
and (B) with added edges. Although not shown in Fig. 1, our SST
algorithms can handle significantly larger subgraphs (albeit with
runtime implications), over directed or undirected graphs, for both
node and edge additions and deletions.

When using triadic closure to model graph evolution, the essen-
tial question is: “How many triangles would this new edge close?”
Put in the language of SSTs, we would ask, “How many wedge-to-
triangle transitions would this new edge cause?” Once we move
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beyond a single SST such as wedge-to-triangle and into the world
of multiple SSTs, we can then observe that any change to a graph
corresponds to a collection (i.e. a multiset) of SSTs. Consider the
example of a growing binary tree illustrated in Fig. 2. Here the table
(B) on the right shows the 3-to-4-node SSTs caused by the addition
of a new node and edge. Each addition has its own “feature vector”
of associated SST counts, i.e., the number of SSTs in which each
new node and edge is present. In this small example, it is quickly
evident that node v’s connection, which does not follow the binary-
nature of the rest of the graph, has a distinct vector from nodes u
and w. Considering these collections grants new power for graph
modeling, because it grants an important multidimensionality.

The larger the subgraphs one considers for SSTs, the more in-
formation one acquires (information-theoretically - meaningful
human comprehension may decrease). The largest possible “sub-
graph” to subgraph transition one could consider simply consists
of the full old graph and the full new graph.

In the present work we define a model for SSTs on directed
and undirected graphs both with and without node and/or edge
properties. We provide several analyses to show that SSTs can be
used to model graph evolution and static graphs in a variety of
contexts simply by fitting linear SVM models to the SST count vec-
tors. Notably, these models are very interpretable, yet they perform
comparably to state of the art neural network models (with their
default hyperparameters) on static and temporal link prediction
tasks. We also demonstrate, via a short case study, SSTs intuitively
modeling a known graph process.

All our code is available at https://github.com/SST- Author/
Subgraph-Subgraph-Transitions.

2 PRELIMINARIES

Before we formally introduce our SST model we first introduce
some preliminary notation. We define a graph in the usual way.
A simple directed or undirected graph is defined as G = (V,E),
where V is the set of vertices (“nodes”) and E C V X V is the set of
connections (“edges”). We use the convention that in undirected
graphs (u,0) = (v, u).

Induced Subgraph. Given a graph G = (V, E) and a set of nodes
S C V, the induced subgraph G(S) is the graph consisting only
of the nodes in S. Formally, G(S) = (S,Eg(s)) where Eg(s) =
{(u,0) | (u,0) € EAu,v € S}.

Node and Edge Properties. A graph’s nodes and/or edges may
have certain values associated with them. For instance, if an edge
indicates a road, it might have a speed limit value. In some cases
these properties may be important in how to model the graph. In
those cases, we redefine the graph as follows: Let G = (V, E, py, pg)
be a graph with two property functions, py and pg. Each property
function maps a node/edge and a property name to a value.

Isomorphisms and Automorphism Orbits. Given two graphs G1 =
(W1, E1), G2 = (Va, E2) an isomorphism is a bijection f : V; — V
such that (u,v) € E1 & (f(u), f(v)) € E2. That is, an isomorphism
is a mapping of a graph’s nodes to another graph’s nodes in a way
that lines up the structures exactly. An automorphism is simply an
isomorphism of a graph with itself.


https://github.com/SST-Author/Subgraph-Subgraph-Transitions
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When using node and edge properties (e.g. G1 = (V1, E1, pv;, pE,)
and Gy = (Va, Ez, pv;,, PE,)), an isomorphism must also preserve
property values. Formally, Vo € V1. py, (v) = py, (f(v)) andV(u,0) €
Er. pr, (w0)) = pi, (f(u), £(2)).

The automorphism orbit of a node v € V is the set of nodes to
which v is equivalent under automorphism. Formally, AO(v) =
{u|u € V A 3J automorphism f. f(v) = u}. Edges can have
automorphism orbits through a similar definition: AO((u,v)) =
{(a,b) | (a,b) € E A Jautomorphism f. f(u) =a A f(v) = b}.

Finding automorphism orbits in a graph is frequently thought
of in terms of matching or refining a set of “colors,” where nodes
in the same orbit are given the same color and the original input
graph may arbitrarily require that nodes be put in separate orbits
by giving them different colors [18, 19]. We use this idea in our
model to find the automorphism orbits of nodes in SSTs with node
and/or edge properties.

3 SUBGRAPH-TO-SUBGRAPH TRANSITIONS

A subgraph-to-subgraph transition T is defined to be a pair of
“before” and “after” subgraphs:

T = (Gr = (V1. E1, pv 1. pET) G = (V1 E pyvr 7 PEIT))

Thus, there are many, many possible subgraph-to-subgraph tran-
sitions (SSTs). In this work, we limit our analyses to incorporate
SSTs meeting certain conditions.

Specifically, we focus on modeling edge additions to a graph.
Thus we restrict ourselves to the SSTs that indicate the addition of
an edge. Additionally, we require that an SST does not include a
change in property values. (The only allowed property changes are
for a new edge to receive a property value. All existing nodes’ or
edges’ values remain unchanged in the context of the SST.) This
restriction on properties is a way to simplify our model/analyses
in this work, but conceptually, the SST generalization allows for
changing property values as well. We discuss the ways we do al-
low changing property values during our graph modeling in Sec-
tion 4.2.1. Lastly, we require that the “after” subgraph be connected.

Notably, the code we release along with this paper includes the
ability to acquire SST information for edge deletions, node additions,
and node deletions. However, only edge additions are studied in
the present work.

3.1 Properties in SSTs

We use SSTs to create interpretable models of graph evolution. To
do so, we associate changes to a graph with SSTs. If we allowed nu-
meric property values, the number of distinct SSTs would explode
combinatorically, thereby making interpretation more difficult. To
address this issue, our modeling algorithms require that each prop-
erty be treated as one of the following:

(1) Class Trait: A class trait is a property which has a (ideally
small) set of possible class values, where no ordering on the
values is required.

(2) Rank Trait: A rank trait is a property which requires that
the possible values are totally ordered (e.g. numbers). When
labeling an SST with rank traits, our modeling algorithm
does not use the raw values of the property but rather for
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each SST, the nodes (or edges) are sorted and the ranks of the
nodes (or edges) are used rather than the raw property values.
So for example, instead of listing raw PageRank values of
the nodes in an SST (e.g. PageRanks: (0.34,0.12, 0.12, 0.025)),
the SST would be encoded just with the relative ordering of
those values (e.g. “PageRank Ordering: (2, 1, 1,0)”).

4 SST GRAPH MODEL

Given our formalism, we implement a graph model that encodes
and uses SSTs to model graph evolution. This graph model has
three distinct modules:

e A “Transition Labeler,” which takes a before and after sub-
graph and produces a canonical (i.e. automorphism-invariant)
label for that subgraph-to-subgraph transition.

e A “Transition Counter,” which takes a change to a graph (an
edge addition, edge deletion, node addition, or node deletion)
and enumerates all the SSTs induced by that graph change.

o Interpretable Static and Temporal Link Predictors which
make use of the Transition Counter information.

4.1 The Transition Labeler

To correctly identify a subgraph-to-subgraph transition, we need to
label it in a way that maps all isomorphically equivalent SSTs to the
same label (i.e. a “canonical label”). To do this, we use an adaption
of the Weisfeiler-Lehman isomorphism algorithm [29], (a process
also known as “Color Refinement”) which allows node and edge
properties to be incorporated as “colors” [5, 9]. This algorithm pro-
vides a canonical node ordering for the vertices involved in the SST.
The Weisfeiler-Lehman algorithm is not a complete isomorphism
algorithm, but it is guaranteed to work on up to 9-node graphs
(SSTs) [15].

As discussed earlier, an SST can be thought of as consisting
of a “before” subgraph and an “after” subgraph. At first glance, it
may seem that to produce a label for an SST, we must compute
distinct canonical labels for the before and after subgraphs and
then combine the labels. However, as discussed in Section 3, we
limit our algorithms to working with four kinds of graph changes:
edge addition, edge deletion, node addition, and node deletion, and
we do not include property value changes in our SSTs. Thus, each
SST we work with can be described as a single subgraph where
the added/deleted edge/node is uniquely marked (i.e. colored); for
an example, revisit Figure 1.

Thus, at a high level, the transition labeler works as follows:

(1) Receive as input a graph G = (V, E, py, pg), a set of nodes
S € V, and a node or edge x to be added to or deleted from
the subgraph induced by S. In the case of a node addition,
the edges by which the new node initially connects to the
network must be included in G. Similarly, in the case of a
node deletion, the edges incident to the deleted node must
be included in G.

Uniquely label (i.e. color) x.

For any rank traits (see Section 3.1), temporarily replace the
property values with the relative ranking of those values. For
example, (“Node Degrees”: (30,4, 12, 4)) would be replaced
with (“Node Degree Ranks™: (1, 3, 2, 3)).

—~
N
~
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(4) Convert node and edge trait values into node and edge “col-
ors.” Each distinct “color” corresponds to a unique combi-
nation of trait values. This ensures that nodes (or edges)
with different property values will be assigned to different
automorphism orbits (see Section 2).

(5) Given the above coloring, perform canonical color refine-
ment on G(S) to obtain a canonical node ordering O [5, 9].

(6) Use O to serialize G(S), coupled with the information denot-
ing the added/deleted edge or node. This produces a canoni-
cal label string H.

(7) Hash string H to output a canonical numeric label.

The computational bottlenecks of the algorithm are sorting the
values of any included rank traits and running the color refinement
algorithm. If n = |S|, m = Eg(s), j = the number of node traits
(properties) and k = the number of edge traits (properties), the or-
dering of rank traits and other trait processing can be completed in
O(jnlogn+k mlogm). Similarly, using an algorithm developed by
Berkholz et. al. which can produce a canonical stable coloring even
for edge-colored graphs, the SST labeler can run its “augmented
Weisfeiler-Lehman” in O((n + m) log n) time [5]. Note that our im-
plementation of color refinement is simpler algorithmically but
less efficient than Berkholz et. al’s (O(n?)), but typically n is small
enough that the difference does not matter.

4.2 The Transition Counter

To model a graph change (e.g. an edge addition), we wish to acquire
counts of all the SSTs of a given size induced by the change. For
the kinds of changes we model (edge addition, edge deletion, node
addition, node deletion) all the SSTs will involve a few special nodes
and their surrounding regions - one special node in the case of a
node addition/deletion (the added/deleted node), two in the case
of an edge addition/deletion (the edge’s endpoints). We first note
the one or two nodes involved in all of the SSTs and then employ
a technique known as “Reverse Search” to enumerate all k-node
connected subgraphs involving those nodes, where k is the desired
SST size [3]. Lastly, for each of these connected subgraphs, we apply
our Transition Labeler to obtain a canonical label for the SST.

At present, we are unaware of any techniques to compute the
SSTs more efficiently than enumeration. Complex combinatorial
tricks allow computing of three, four, and five-node subgraphs in
a graph rapidly [10, 21]. At first glance it may seem that a simple
solution to avoid enumeration is to efficiently count the subgraphs
before and then after the graph change. However, while this would
certainly produce useful information, it would not directly produce
SSTs, since to know the SST counts one must know which subgraphs
turned into which subgraphs; recall from Figure 1 that one subgraph
can often transition into multiple other subgraphs. Additionally,
our model requires that SSTs be allowed to have node and edge
property values, but the state-of-the-art subgraph counters operate
on property-less graphs. Nonetheless we do expect that future
researchers will create quick, combinatorial methods for counting
SSTs with node and edge properties, and we hope this paper serves
as the spark that ignites that project.

As it is, if we hold the SST subgraph size constant at a value k,
the runtime of our Transition Counter is effectively equivalent to
the number of enumerated k-node subgraphs around the changes.
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4.2.1 Trait Updaters. Our Transition Labeler forces property val-
ues to be the same in both the “before” and “after” halves of an SST.
However our modeling system can still accommodate changes in
property values across time. These changes simply are not directly
shown in the SSTs. The Transition Counter allows the user to define
“Trait Updaters” which can update property values before a set of
changes is applied, just before a change’s collection of SSTs is given
labels, just after a change’s SSTs are labeled, and after a full set of
changes is applied. These options provide great flexibility, which
we utilize in our link predictors (Sections 4.3.1 and 4.3.2).

4.3 Interpretable Link Predictors

Finally, to demonstrate the power of SSTs, we use them to create
interpretable link predictors. Link prediction via subgraphs has
been discussed by Juszycyszyn et al [11], Abuoda et al [1], and
Zhang et al [32]. Likewise, the topic of “temporal motifs” distinct
from SSTs has been discussed in Liu et al’s survey [17].

Our predictors train for link prediction by collecting vectors of
SST counts which correspond to adding actual/positive edges from
training samples and vectors of SST counts which correspond to
adding randomly sampled non-edges; then we separate the edges’
SST vectors from random non-edges’ SST vectors with a simple
linear SVM. A linear SVM is certainly not the optimal model for
prediction accuracy, but even a simple linear SVM with SSTs as its
features performs quite well and, importantly, provides a simple
way to interpret its predictions: the unit vector which defines the
hyperplane separating real edges from non-edges.

Each component of the direction vector corresponds to a dis-
tinct SST. The magnitude of the component indicates the relative
importance of the SST in distinguishing between actual edges and
randomly sampled non-edges. SSTs with positive component val-
ues indicate an edge is more likely to be real; SSTs with negative
component values indicate an edge is more likely to be a randomly
sampled non-edge. We provide examples of interpreting SVM out-
put in the results section.

4.3.1 Static Link Predictor. A static link predictor is given a single
graph and tries to predict which edges may be missing. While SSTs
are implicitly designed to model evolving graphs, we can apply them
to static graphs relatively easily. To do this, we imagine each edge
in the graph as having been “just added” by some temporal process.
That is, for each edge, we can ask the question, “What SSTs would
be involved if this edge was not present and then was added?” The
imagined temporal process we uncover can then predict missing
edges in terms of which edges are “most likely to be added next”

Our code “trains” on every positive edge plus « times as many
randomly-sampled non-edges. In our experiments we set & = 10.

In a directed graph, SSTs naturally distinguish between the two
endpoints of an added edge by the direction of the new edge. While
distinguishing between the two vertices being joined is not neces-
sary, it may add useful information. Thus, if the graph is undirected,
we create a “trait updater” (see Section 4.2.1) to allow the SSTs to
distinguish between the two nodes being connected; whenever the
addition of an undirected edge (u, v) is about to have its associated
SSTs counted, this trait updater compares the degrees of u and v
and then marks them as being of “equal degree” or “higher/lesser”
degree in order to distinguish them.
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4.3.2  Temporal Link Predictor. A temporal link predictor operates
over series of interactions (edges) with timestamps. In the context
of the present work the interactions are allowed to repeat across
timestamps. Our temporal link predictor uses a fraction of its train-
ing edges as the “base graph” and then computes counts for an
equal number of true edges and randomly-sampled non-edges.

To make use of the fact that edges have timestamps and may
repeat, we create two edge traits and corresponding trait updaters
(see Sections 3.1 and 4.2.1) to reflect the recency and frequency of
interactions.

The recency trait is a “class trait” (see Section 3.1) and indicates
when an edge most recently occurred. It sorts edges into four cate-
gories based on whether the edge:

(1) has never occurred before (“never”).

(2) last occurred in the previous timestamp (“newest”).

(3) last occurred in the timestamp before the previous (“new”).

(4) last occurred at least three timestamps ago (“old”).

Similarly, the frequency trait is also a class trait that sorts edges
into four categories based on whether the edge:

(1) has never occurred before (“0”).

(2) has occurred once before (“17).

(3) has occurred twice before (“2”).

(4) has occurred three or more times before (“3+”).

These traits for edges allow the SSTs to carry meaning that is
simultaneously structural and temporal.

In our temporal link prediction tests (Section 5.4), the train-
ing/validation data is bucketed into nine timestamps. During test-
ing our model uses the first eight timestamps’ worth of interactions
as the “base graph” and then computes the SST vectors for the ninth
timestamp. Just using the latest edges for training has a twofold
benefit: The edges being trained on and the graph at time of training
most closely resemble the edges/graph at test time, and using only
the latest edges speeds up training.

5 RESULTS
5.1 Modeling Known Graph Generators

Before proceeding to show our models operating on real-world
graphs, we offer the reader a “warm-up” by demonstrating the
ability of three-node SSTs to capture the well-known preferential
attachment graph generation process first introduced by Barabasi
and Albert [4]. The preferential attachment model generates a graph
by creating a new node and wiring it to m existing nodes, with
higher odds of connecting to a node that already has many edges.
We generate an example preferential attachment graph with n =
1000 and m = 2 and run the temporal link predictor on the temporal
sequence of edge additions. As discussed earlier (Section 4.3), the
SVM yields weights for each SST, which we use to describe the
importance of each SST to the link prediction task. From these SSTs
we see that our model captures many key aspects of the preferential
attachment process. We illustrate our predictor’s top twelve SSTs
in Figure 3, in which the two subgraphs of an SST are combined
into a single subgraph where source and target nodes of the new
edge are indicated by shaded nodes, and edge colors indicate their
recency. A positive weight above the subgraph indicates that the
SST is more likely to be associated with a real edge addition than a
random edge addition. A negative weight indicates the opposite.
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Figure 3: Top 12 3-Node SSTs from a preferential attachment
graph process, listed in order of decreasing importance (see
Section 4.3). SSTs are combined into a single subgraph where
the new edge’s source and target nodes are highlighted in

gray and dark-gray respectively.

The results indicated in this example are in line with our expecta-
tions. The link predictor’s top three most important SSTs along with
SSTs 6 and 9 all indicate that a node cannot acquire out-edges at dis-
tinct timestamps. SSTs 4, 5, and 8 indicate that nodes are pointed-to
only after they first point to other nodes, which is a key aspect of
the preferential attachment process. Likewise, SST 10 suggests that
a node has a higher chance of being pointed to if it was already
pointed to recently. Similarly, SSTs 7 and 11 suggest that a node
will not begin to point to another node after it has been pointed
at. The ordering of SSTs 4, 5, and 8 indicates that newly-formed
edges are more likely than randomly-sampled non-edges to point
to nodes with older edges; this in turn indicates that nodes with
older out-edges have more in-edges. Finally, the relative lack of
triangles in the top 12 SSTs suggests that triangles are either rare,
uninformative, or both.

These results demonstrate the interpretable power of SSTs to
capture a well-known graph generation process which does not
follow triadic closure. We now proceed to analyses of real-world
graphs, generating both quantitative and interpretable results from
the same model.

5.2 Quantitative Link Prediction Metrics

Many different metrics are used to quantitatively measure the link
prediction performance. Some of the most common are the area
under the ROC curve (i.e. “AUROC” or just “AUC”), and Hits at K.

However, Yang et. al. argue that AUC may not be a particularly
meaningful metric for link prediction, and Hits at K can provide
a very different picture depending on the selected K [30]. Instead,
Yang et. al. demonstrate that area under the precision recall curve
(AUPR) may be the best metric both in terms of what it represents
and its discriminatory power. Ultimately a model with both high
precision and high recall (and thus high AUPR) is of great use, but
in an imbalanced setting like link prediction, a model with even
a very small false positive rate and high true positive rate (and
thus a high AUC) can still produce a high number of false positives
compared to the number of true positives it produces, rendering its
link predictions of little use in a real-world setting.

Unfortunately, for area under the precision recall curve (AUPR)
to be meaningful, negative test cases must not be downsampled
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[30]. However, having a model score every possible non-existent
edge can be quite time-consuming. Thus, rather than reporting
link prediction results for a whole graph, Yang et. al. recommend
evaluating on the smaller task of link prediction between nodes a
max distance of k apart, where k is some small number.

For comparability to other work, we report the AUC. For greater
correctness, we report AUPR computed on the limited task of scor-
ing all disconnected pairs of nodes (non-edges) within 3 hops and
all connected node pairs (edges) that would be within 3 hops if they
were to be disconnected. We call this “AUPR3” to differentiate.

Properly Calculating AUPR Curve Areas. Area under the preci-
sion recall curve is often calculated via the trapezoidal rule, which
effectively performs a linear interpolation between precision-recall
points. This is incorrect, as explained by Davis and Goadrich [7],
who introduce a superior interpolation in their seminal work. This
difference becomes particularly relevant when models have large
“gaps” in their precision recall curves.

5.3 Static Link Prediction

Next, we perform a quantitative and qualitative evaluation on three
popular networks, detailed in Table 1, which are frequently used
for static link prediction. Eu-core Emails is a correspondence graph
from a European research institute where an edge indicates email(s)
sent between two researchers. Cora ML and Citeseer are paper
citation networks where edges indicate citations between papers.

Table 1: Datasets for link prediction.

Dataset Node Count Edge Count Temporal
Edge Count
. Eu-core Emails 1,005 16,706 -
% CoraML 2,708 5,278 -
Citeseer 3,264 45,536 -
% Eu-core Temporal 986 24,929 332,334
§' College Messages 1,899 20,296 59,835
& Wikipedia 100,312 746,086 1,627,472

We use an 85%/5%/10% split of the edges for training, validation,
and testing respectively. Because there are no timestamps, the edges
are partitioned randomly.

We report results for our models with both 3-node and 4-node
SSTs. We compare against 2 baseline models, 4 state-of-the-art
graph neural networks (GNNs) for undirected link prediction, and 1
state-of-the-art GNN for directed link prediction. For all the GNNs,
we used the default hyperparameters from their source code.

Baseline Models. We defined two naive baseline methods: random
and common neighbor count. The random baseline assigns edge
predictions at random. The common neighbors method predicts
that the more neighbors two nodes share in common, the more
likely those two nodes are to connect [16]. Since the common
neighbors heuristic does not directly apply to directed graphs, we
count each of the four possible directed wedges connecting two
nodes for directed graphs, similar to Yin et. al. [31].

Graph Variational Autoencoders. Graph Variational Autoencoders
(GAEs) [13] have been recently developed to perform deep learning
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on graphs in support of tasks like link prediction and graph genera-
tion. GAEs are comprised of two parts. First an encoder that embeds
a graph into a latent space by applying convolutional layers to an
adjacency matrix. Second, using a simple inner-product decoder,
GAEs produce an adjacency matrix of the same dimensions as the
original input, which can be used for generating a new graph or
for evaluating link prediction on the original graph.

Linear Variational Autoencoders. In response to the introduction
of GAEs, Salha et. al. [25] questioned whether convolutional layers
are really necessary for performing high-quality node embeddings.
Their proposed Linear Variational Autoencoders (LinearAEs) re-
place the convolutional layers in GAEs with a simpler one-hop
linear model which performs competitively on static link predic-
tion. The overall behavior is similar to GAEs in that LinearAEs
embed a graph’s nodes and an inner-product decoder produces a
new adjacency matrix for evaluation.

Gravity Graph Variational Autoencoders. A limitation of both
GAEs and LinearAEs lies in their reliance on using inner products
of vectors in the latent space for decoding. This imposes a strong
restriction on the decoded adjacency matrices, which must always
be symmetric. To circumvent this limitation, with the goal of per-
forming directed link prediction, Salha et. al. [26] also introduced
Gravity-Inspired Graph Variational Autoencoders (GravityAE), ca-
pable of generating non-symmetric adjacency matrices using a de-
coder based on taking sigmoid-activated logarithms of transformed
latent vectors.

5.3.1 Quantitative Results. The undirected and directed static link
prediction results are detailed in Tables 2 and 3 respectively. The
SST-based models are consistently among the top performers.

It is important to note that the GNNs were trained with their
default hyperparameters; no hyperparameter optimization was
performed. This should make us take the GNNs’ lower performance
relative to our SST models’ with a grain of salt, as our models have
the advantage of requiring almost no hyperparameter tuning.

The key takeaway is not that our SST models will provide the
best link prediction scores. Rather, the takeaway is that they provide
good quantitative performance, and thus our models’ elegant and
interpretable results are valid.

5.3.2 Interpretation. As a case-study in the interpretability of SSTs
on real-world graphs, we analyze the four-node SSTs from the Cora
ML paper citation graph. Recall that the SVM effectively orders
SSTs by how strongly they indicate that an edge is either a genuine
edge or a randomly-sampled non-edge (Section 4.3).

We find that the SSTs ranked highest tend to involve bidirected
edges (papers that cite each other, perhaps via pre-prints). Some-
times these SSTs are used to predict the presence/non-presence
of bidirected edges; sometimes they simply use nearby bidirected
edges as indicators of single-direction links. Predicting when a
bidirected citation edge forms is a fascinating and difficult task but
has limited applicability (Only 2.8% of connections in the Cora ML
graph are bidirected.). Remember that the SVM ranks SSTs by how
informative they are if or when they occur - not by how often they
occur. Thus we look at both the SVM’s top SSTs with bidirected
edges and (to get a sense for how the SVM ranks more frequent
SSTs) the top SSTs without bidirected edges. These are depicted and
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Table 2: Link prediction performance on the static undirected graphs. The best and second-best performing models are bold-

faced and underlined respectively.

CiteSeer Cora ML Eu-core Emails

Model

AUC AUPR3 AUC AUPR3 AUC AUPR3
CommonNeighbors 0.669+0.008  0.017+0.003 0.716+0.014  0.021+0.003 0.939+0.004  0.120+0.008
GCNAE 0.784+0.019  0.017+0.003 0.847+0.013  0.018+0.003 0.912+0.006  0.098+0.009
GCNVAE 0.788+0.015  0.016%0.002 0.846+0.011  0.017+0.003 0.904+0.008  0.090+0.013
LinearAE 0.775%£0.014  0.019+0.003 0.829+£0.014  0.021+0.003 0.923+0.005  0.120+0.005
LinearVAE 0.786+0.016  0.016+0.003 0.848+0.017  0.019+0.003 0.912+0.005  0.106+0.006
Random 0.491+0.019  0.004+0.000 0.496+0.018  0.002+0.000 0.500+0.012  0.004+0.000
SST-SVM-4 0.865+0.017 0.020+0.003 0.879+0.016  0.019+0.004 0.807+0.120  0.096+0.033
SST-SVM-3 0.754+0.016  0.019+0.002 0.823+0.011  0.024+0.003 0.943+0.004 0.126+0.008

Table 3: Link prediction performance on the static directed graphs. The best and second-best performing models are boldfaced

and underlined respectively.

Model CiteSeer (D) Cora ML (D) Eu-core Emails (D)
AUC AUPR3 AUC AUPR3 AUC AUPR3
CommonNeighbors  0.669+0.006  0.007+0.001 0.721£0.007  0.012+0.002 0.947+0.002  0.103+0.004
GravityGCNAE 0.500£0.013  0.002+0.000 0.506+0.015  0.001+0.000 0.657+0.018  0.004+0.000
GravityGCNVAE 0.516+0.008  0.002+0.000 0.512+0.011 0.001+0.000 0.826+0.004  0.008+0.000
Random 0.499+0.012  0.002+0.000 0.502+0.006  0.001+0.000 0.501+0.008  0.003+0.000
SST-SVM-4 0.843+0.01 0.014+0.003 0.877+0.011  0.011+0.002 0.886+0.039  0.137+0.002
SST-SVM-3 0.766+0.01  0.013+0.002 0.891+0.008  0.018+0.002 0.970+0.001  0.176+0.006

Table 4: Link prediction performance on the temporal directed graphs. The best and second-best performing models are bold-

faced and underlined respectively.

Model College Messages Eu-core Temporal Wikipedia

AUC AUPR3 AUC AUPR;3 AUC AUPR3
CommonNeighbors ~ 0.594+0.003  0.002+0.000 0.938+0.001  0.201+0.000 0.692+0.000 —
Random 0.499+0.007  0.001+0.000 0.498+0.004  0.008+0.000 0.500+0.001 -
TGN 0.749+0.000  0.017+0.007 0.762+0.014  0.005+0.000 — —
SST-SVM-4 0.669+0.025  0.002+0.000 0.89+0.004  0.069+0.019 - -
SST-SVM-3 0.803+0.010  0.008+0.002 0.933+0.003  0.253+0.020 0.867+0.001 —

analyzed in Figures 4 and 5 respectively. The SSTs pick up intuitive
aspects of a citation network as well as some intriguing results.

5.4 Temporal Network Evolution

For evaluating networks’ behavior over time, we perform future
link prediction on three topologically rich, dynamic datasets, sum-
marized in Table 1. Eu-core Temporal is a time-attributed version
of the earlier Eu-core Emails dataset, incorporating timestamps on
the emails. College Messages is a dynamic social network where
edges indicate messages between users at certain times. Wikipedia
is a temporal hyperlink network where the addition of a hyperlink
from one page to another is represented by a timestamped edge.

For each network, the edges at time ¢ indicate interactions at
time ¢ that can then be repeated at a later time.

Similar to the methodology used by Kasat et al, we bucket the
interactions into 7 evenly-sized buckets [12]. Since a bucket may
cover multiple timestamps, an interaction (edge) may occur multiple
times in a single bucket. We squash these multiple occurrences
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into a single edge and weight the interaction by its number of
occurrences. In each bucket an edge’s original timestamp is replaced
with the index of that bucket. Thus we effectively have a series of
7 graphs, Gy, ..., G;. We train on the first 7 — 1 and test on G;. In
our experiments we set 7 = 10. Note that neither our model nor the
models we compare against make use of the weights; they just use
the topology and the timestamps. However, if desired, one could
add a “class trait” or “rank trait” (Section 3.1) to our temporal link
predictor allowing it to make use of these values.

Temporal link predictors are fewer in number than their static
counterparts. We compare against one state-of-the-art graph neural
network and the baselines from before. As in our static evaluation,
we test with both three-node SSTs and four-node SSTs.

5.4.1 Temporal Graph Neural Networks. As a state-of-the-art base-
line for comparison on the task of temporal link prediction, we rely
on the Temporal Graph Networks (TGNs) introduced by Rossi et.
al. [23]. Their TGN is a graph autoencoder capable of temporally
embedding a sequence of events on a graph (e.g., node additions
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Figure 4: Top Cora SSTs with Bidirected Citations — (See Sec-
tion 5.3.2) — SSTs 2, 3, and 6 indicate that if articles A and
B mutually cite each other, A tends to cite whatever B cites
unless another article C who bi-cites with B does not. SSTs

4 and 5 indicate that articles are more likely to bi-cite each

other if they cite the same articles.
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Figure 5: Top Cora ML SSTs Without Bidirected Citations -
(See Section 5.3.2) — The top SST indicates that if an edge
closes a 4-cycle that is considered a strong indicator that the
edge is not genuine. Similarly, SST 10 suggests that a 3-cycle
is unlikely, but not as unlikely as a 4-cycle. Other than SSTs
1 and 4, the top SSTs are positive indicators. SSTs 2 - 9, and 11
- 12 all include some kind of “transitivity”, that nodes which
cite (or are cited by) similar articles cite each other.

or deletions) using temporal graph attention layers. A Multi-Layer
Perceptron decoder allows the TGN to score candidate edges with
probabilities for evaluation of future link prediction.

5.4.2 Quantitative Results. Quantitative results are listed in Ta-
ble 4. Once again our SST-based link predictors are among the top
performers. Again, we suggest that these numbers be taken with a
grain of salt because we simply used the GNNs’ default hyperpa-
rameters. Chiefly, our tests demonstrate that our SSTs’ elegant and
interpretable results are validated by good prediction performance.
Note that we bypassed computing AUPR3 on the Wikipedia
graph due to the sheer size of the false test edge set - O((10°)2).
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Figure 6: Top 3-Node SSTs for Wikipedia Link Additions -
Main Takeaway: Wedges only close to triangles when the
wedge had recent edges (e.g. Newest) appearing for the first
or maybe second time (low frequency, e.g. ‘1), ideally includ-
ing an edge pointing to the target node of the new edge.

5.4.3 Interpretable Temporal Results. To demonstrate the inter-
pretability of SSTs on temporal graphs, we explore the three-node
SSTs on the Wikipedia edge additions graph. We find that, unlike
the general assumption of triadic closure, according to our model
many triangles are considered unlikely to close. It is only the tri-
angles where certain connection combinations in the wedge were
formed recently (indicated by our recency trait) and for the first
(or maybe second) time (indicated by our frequency trait) that the
wedge is quite likely to close into a triangle. See Figure 6. This is ev-
idenced quantitatively by the fact that the three-node SST predictor
performed much better than the Common Neighbors.

6 CONCLUSION

We defined an elegant generalization of Triadic Closure, the Subgraph-
to-Subgraph Transition (SST). This generalization allowed us to use

a simple classifier, the Linear SVM, to create interpretable link pre-
diction models which performed comparatively with state of the art
graph neural networks. We expect that the Subgraph-to-Subgraph
Transition will become a standard tool in modeling graphs and
that future research will produce new and creative ways to use and
efficiently count SSTs.
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