
HetSeq: Distributed GPU Training on Heterogeneous Infrastructure

Yifan Ding, Nicholas Botzer, Tim Weninger
Department of Computer Science & Engineering

University of Notre Dame
Notre Dame, IN, USA

{yding4,nbotzer,tweninge}@nd.edu

Abstract

Modern deep learning systems like PyTorch and Tensorflow
are able to train enormous models with billions (or trillions)
of parameters on a distributed infrastructure. These systems
require that the internal nodes have the same memory capac-
ity and compute performance. Unfortunately, most organiza-
tions, especially universities, have a piecemeal approach to
purchasing computer systems resulting in a heterogeneous
infrastructure, which cannot be used to compute large mod-
els. The present work describes HetSeq, a software pack-
age adapted from the popular PyTorch package that pro-
vides the capability to train large neural network models
on heterogeneous infrastructure. Experiments with language
translation, text and image classification shows that HetSeq
scales over heterogeneous systems. Additional information,
support documents, source code are publicly available at
https://github.com/yifding/hetseq.

Introduction
The AI community has witnessed rapid growth in the num-
ber of neural network models. Many of these models have
matched or even exceeded human performance in a wide
range of areas including image classification (Simonyan and
Zisserman 2014; He et al. 2016), natural language process-
ing (Vaswani et al. 2017; Devlin et al. 2018; Peters et al. 2018;
Radford et al. 2019; Yang et al. 2019), go (Silver et al. 2017,
2018) and multiplayer online battle arena (MOBA) games
like DOTA2 (Berner et al. 2019), and StarCraft II (Vinyals
et al. 2019).

These increasingly powerful neural network models oper-
ate over extremely large training data and require millions (or
even billions) of model parameters (Pudipeddi et al. 2020).
This requires enormous computational resources that are
only available to a handful of large organizations. Along-
side the investment in hardware including CPU, GPU and
high performance file systems, economies of scale present in
only the largest organizations allow for the management and
rapid development of new technologies like cloud computing
(e.g., AWS, Azure), tensor processing units (TPUs), half-
precision computation (e.g., Volta or Turing architectures of
NVIDIA GPUs), and network architectures (e.g., infiniband)

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for high performance communication between thousands of
these hardware systems.

Smaller organizations like startups and universities, on
the other hand, have relatively limited resources and typi-
cally purchase computing systems in an ad hoc manner –
whenever funds allow. University computing resources are
therefore much more heterogeneous in their composition
compared to large technology companies and government
labs. Furthermore, mismatches in memory capacity, network
interface, and GPU/CPU capacity limit the development of
large models. Given the system-homogeneity assumptions of
deep learning software platforms, even the process of training
an existing model on new data is difficult or impossible be-
cause the resource limits of a single node in a heterogeneous
system limits the entire pipeline. With these limitations, train-
ing even moderately sized models could take weeks or even
months to complete.

If not corrected, universities and other small organizations
risk losing relevance in the race to develop newer and better
machine learning models.

In the present work, we endeavour to level the play-
ing field by adapting existing software platforms to
train large neural network models on heterogeneous sys-
tems. We release our software package called HetSeq at
https://github.com/yifding/hetseq, which is built on PyTorch
and includes the common GPU environment and NVIDIA
Collective Communications Library (NCCL) without any ex-
tra libraries or packages. In contrast, most existing distributed
GPU training platforms (Sergeev and Del Balso 2018; Paszke
et al. 2019) require extra packages like Docker and Open MPI,
which may not be deployable over shared file system without
administrative privileges.

We evaluate HetSeq using NVIDIA GPU nodes with vari-
ous number of cores, memory capacity, and CPU architecture,
while running in competition with the myriad of other ma-
chine learning projects at the University of Notre Dame. We
perform experiments on translation, language modeling, and
image classification tasks. We show vast improvements in
training scalability using HetSeq without sacrificing model
performance. Finally, the released project code covers de-
tailed steps to install and execute. Examples of language
translation, language modeling, and image classification tasks
are included. Furthermore, developers and researchers can
easily extend HetSeq to many other models with little effort.

Preliminaries
Many deep neural network (DNN) models are built upon
popular platforms like TensorFlow (Abadi et al. 2016), Py-
Torch (Paszke et al. 2019) and Apache TVM (Chen et al.
2018a). A standard DNN model with backpropagation in-
cludes:

1. Model

2. Dataset and Dataloader

3. Optimizer and Learning Rate Scheduler

4. Checkpointing
A model can be described as a directed graph, where nodes
represent parameters and edges represent the dependencies of
the pipeline. A dataset is defined as the input of the model and
the dataloader executes the data loading process from disk
into memory. The optimizer plays a key role by updating the
model parameters according to calculated gradients and learn-
ing rate generated by the scheduler. Finally, checkpointing is
often used to store and load training snapshots.

In the typical case, after the model is defined and its pa-
rameters are initialized or loaded from a previous checkpoint,
the indices of the dataset are loaded into memory. Because
modern datasets are usually too large to fit into GPU memory
all at once, the dataloader constructs smaller subsets of the
dataset called batches to pass to the model one by one. Upon
receiving each batch of data, the model performs a forward
pass of the data over the model parameters and computes a
loss function. Based on the results of the loss function, learn-
ing gradients are obtained by performing backpropagation.
For each parameter, a pre-defined optimizer takes its gradient,
the corresponding learning rate from learning rate scheduler,
and other required factors to update the parameter. For a sin-
gle batch of training data, this whole process including the
forward pass, backpropagation, and the parameter update is
called one step. One epoch is complete when all the batches
have been processed over the entire training data.

Finally, once the training steps/epochs reach a certain
threshold or other defined training criteria are reached (based
on the objective function, learning rate, etc), we store a check-
point. The checkpoint stores the model parameters as well as
other necessary training status (like optimizer status, learning
rate status, etc.)
Parallel Processing. The model training process is costly, es-
pecially using traditional CPU processing. Fortunately, most
deep learning platforms support highly parallel GPU pro-
cessing as well. There are three popular models for GPU
parallelism: model parallelism (Shoeybi et al. 2019; Shazeer
et al. 2018), pipeline parallelism (Harlap et al. 2018; Huang
et al. 2019) and data parallelism (Tarditi, Puri, and Oglesby
2006; Dean et al. 2012). Model parallelism refers to splitting
models into several parts where different parts are distributed
to different devices (GPUs). In a backpropagation schema,
intermediate output from the previous device is transferred
to the next device in the forward step while the gradients
of next device are transferred to the previous device during
backpropagation. Model parallelism is essential especially
for very large models which cannot fit the limited memory
of a single GPU. However, heavy intermediate output and

gradient communication may cause high latency. Pipeline
parallelism is similar to model parallelism, instead of split-
ting the model into multiple steps, pipeline parallelism splits
a single step into multiple parts. Data parallelism approaches
split the training data into different parts to be distributed into
different devices. Each device has its own model, data batch
and optimizer thus performing forward, backward, parameter
update individually. Recently, researchers from Microsoft
have developed a combined platform using aspects from data
parallelism, model parallelism, and pipeline parallelism to
successfully train a trillion-parameter language model (Rajb-
handari et al. 2019; Pudipeddi et al. 2020).
Heterogeneous Infrastructure. These state-of-the-art dis-
tributed parallel frameworks work well when the infrastruc-
tures are homogeneous, having the same memory capacity,
GPU capacity and CPU throughput with high inter-node
communication speed. Unfortunately, the business models of
many smaller organizations necessitate the need for a more
piecemeal approach to their system purchases. As a result,
their computing infrastructure is heterogeneous, with many
different types of systems purchased individually and without
coordination. In this heterogeneous setting, the deep learning
system cannot assume that each individual system, CPU, and
GPU will have identical memory and throughput. Instead,
communication across nodes with different networking in-
frastructure can be costly. Furthermore, the principles of
model parallelism and pipeline parallelism cannot be easily
applied because differences in memory capacity and through-
put performance cause severe conflicts when reconciling the
distributed computation. As a result not all models and train-
ing settings are compatible with certain systems and perform
poorly on heterogeneous infrastructure.

The HetSeq package, described in the present work, is a
distributed deep learning package that provides the capability
to train large models on heterogeneous distributed infrastruc-
ture. HetSeq is adapted from the fairseq subpackage within
PyTorch and uses principles of data parallelism to avoid
heavy data communication so that each GPU process can
execute expensive forward and backward passes and parame-
ter updates locally. Other inter-node communication of the
training loss, gradients, and parameters is managed carefully.

HetSeq: Distributed GPU Training on
Heterogeneous Systems

HetSeq is designed to perform distributed data parallel GPU
training across heterogeneous systems with large models
and training datasets. Specifically, we modified modules
to enable fast communication and avoid structural hazards
like exceeding the memory capacity. In the HetSeq system
implementation, each GPU contains an individual process
and inter-process communication (IPC) is utilized. HetSeq is
adapted from PyTorch 1, especially the DistributedDataParal-
lel (DDP) mechanism2, and fairseq 3.

1https://github.com/pytorch/pytorch
2https://pytorch.org/docs/stable/notes/ddp.html
3https://github.com/pytorch/fairseq

data batch 1

data batch 2

data batch 3

param1

param2

GPU 1
grad11

grad12

opt1 lr_sch1

param1

param2

GPU 2
grad11

grad12

opt2 lr_sch2

param1

param2

GPU 3
grad11

grad12

opt3 lr_sch3

Avg.loss

loss1

of ins1

Avg.loss

loss2

of ins2

Avg.loss

loss3

of ins3

Avg.loss

total loss

of ins

forward backpropagation parameter update gradient update

Figure 1: Distributed Data Parallel pipeline employed in HetSeq. The training can be divided into four major steps: the forward
step, backpropagation, gradient update, and parameter update. Each GPU has individual models, optimizer (opt) and learning
rate scheduler (lr_sch). Model, optimizer, and learning rate scheduler are all initialized with the same states while different GPUs
process different segments of training data. In the forward pass, data batches assigned to different GPUs are loaded, the forward
pass is executed and individual loss functions are computed. Different loss functions from different GPUs are aggregated to
compute the average loss. In the backpropagation step, the average loss is distributed back to each GPU to calculate individual
gradients. Gradient updates are then applied to communicate the gradients back to each GPU. Finally, the optimizer and learning
rate scheduler of each GPU performs parameter updates individually.

As shown in Figure 1, different GPUs perform forward
pass, backpropagation, and updating parameters in parallel.
Individual GPU processes also communicate parameters, gra-
dients, and loss functions. In the remainder of this section
we introduce main aspects of HetSeq one by one and de-
scribe how they handle the complications that arise in the
heterogeneous setting.

Model Initialization
We first initial the ProcessGroup by executing
init_process_group function4. After the Process-
Group is initialized, HetSeq initializes the model. A model
is defined as a child class of torch.nn.module, which
takes an input tensor (i.e., images or sentences), and outputs a
real number from the loss function. This model initialization
is performed once on the master node and broadcast to all
other GPUs so that they share the same initial state.

Dataset and Dataloader
The format of the input data varies widely depending on the
application. Data access should support multiprocessing and
multithreading, and the data access medium should support
shuffling of the training instances in a way that can be easily
stored and reproducible.

Unlike the typical training process on a single GPU, dis-
tributed training on multiple nodes with multiple GPUs has

4https://pytorch.org/docs/stable/distributed.html

many challenges. When the dataset is small, then the system
should just load it from disk into memory, and in each train-
ing step a chunk of the dataset is passed to the GPU. However,
this is not feasible for even medium-sized datasets. In these
typical cases, the dataloader is a bottleneck in training large
models. Our solution is to separate the dataset into shards so
that the dataset can be loaded in parallel. In addition to the
dataset size and dataloader speed, the index sampler must be
able to accommodate multiple dependent tensors with dif-
ferent data types. Simply put, our goal is to find a universal
input and output mechanism that can quickly handle arbitrary,
dependent tensors stored over multiple shards.

For this HetSeq uses HDF5 wrapped by h5py5 pack-
ages as our main strategy to deal with the dataloading
challenges. HDF5 supports self-describing and heteroge-
neous data at scale. Another benefit is that it can group
multiple relative tensors together in a hierarchical man-
ner so that it can be loaded faster with multiple processes
and threads. We define our dataset class as a child mod-
ule of torch.utils.data.Dataset. __len__ and
__getitem__ functions must be implemented in the
dataset definition, and the file open function must be de-
fined inside the __len__ and __getitem__ functions
instead of the __init__ function to support multithreading
loading in the PyTorch dataloader. In order to handle data
shards, we add another class to accumulate the lengths of

5https://github.com/h5py/h5py

each file. The index of each training instance is mapped to an
offset location at a corresponding shard.

Forward Pass
Having obtained the lengths and indexes of all shards, we
generate sampler indices by forming batches that satisfy some
criteria like maximum number of instances in a batch (i.e.,
batch size) or maximum number of tokens in a batch. In
a distributed training forward pass, each GPU has separate
sampling indices according to its GPU index. Each GPU
has an individual dataloader to load corresponding data by
looking up sampling indices to form a batch. Once a data
batch is ready, each GPU can immediately complete the
forward pass and compute its individual loss function.

Optimizer and Learning Rate Scheduler
Each GPU has its own optimizer as well as a learning rate
scheduler. Both are initialized with the same parameters.
Different from the backpropagation process in a homoge-
neous system, heterogeneous GPUs, with different memory
capacities, may require different batch sizes or a different
number of tokens. So the loss functions of individual GPUs
will likely have different weights.

During the last step of an epoch, GPUs may contain
partially-filled batches and empty batches. For example, if
there are 5 training instances and the batch size is set to 2
globally, we want to perform distributed training on 4 GPUs
named A, B, C, and D, then the corresponding batch sizes
should be 2, 2, 1, and 0 respectively, where batch C is half-
filled (1/2) and batch D is empty (0/2). If we take the average
or sum of the loss directly, then we will not compute the av-
erage loss in a way equivalent to the non-distributed setting.
Instead, we augment the output by associating it with weights
like batch size or number of tokens. After all GPUs send their
output, we use a weighted sum to obtain the average. This
task is performed by the master process. When complete, the
master broadcasts the average loss to all the other processes.

Backpropagation
As soon as a GPU receives the average loss from the master,
it can perform backpropagation to obtain the gradient for
its individual model. However, because individual models
stored on each GPU consider different data (in parallel), their
parameters are likely to diverge. It is important to ensure
that each parameter has the same partial derivative across
GPUs. The DistributedDataParallel (DDP) class
of PyTorch supports partial backpropagation and gradient
synchronizations across GPUs; however, if one GPU has
empty batch, we provide the GPU a dummy batch by copying
its very first data batch and setting the gradient to 0 before
backpropagation. After the backpropagation pass is complete,
the calculated gradient is broadcast to each GPU. Then the
GPU’s optimizer retrieves the learning rate from the learning
rate scheduler and updates the parameters in the model.

Checkpointing
In HetSeq, the master process is responsible for loading and
storing checkpoints. In addition to include model parameters

in checkpoints, we also need to consider: (1) the number of
completed epochs, (2) the number of completed steps, (3) the
optimizer status (including the learning rate scheduler status),
(4) the random number seed, and several other settings.

Additional Considerations
Delayed Update (Gradient Accumulation) Compared to
the forward pass, backpropagation is a relatively expensive
process. It needs to compute the gradient for the whole model
and update each parameter. Because of the difference in com-
plexity, PyTorch recently implemented delayed updating,
which aggregates the loss function computed from multi-
ple forward passes before performing the backpropagation
pass (Ott et al. 2018; Youkawa et al. 2018). However, when
using delayed update the batch size is essentially scaled by
the number of forward passes. Changing the batch size and
data splitting is further complicated in the heterogeneous
infrastructure because batch sizes may be different according
to each node’s capacity. Because batch sizes dramatically
influence training performance, we need to consider the scal-
ing effect of delayed update when computing the average
loss function. In addition, carefully managing delayed update
settings is important for reproducing model results.

Cython Compared to C/C++, Python is much slower. Per-
formance differences are exacerbated when looping over
large datasets and shuffling billions of training instances. Het-
Seq uses Cython and C++ bindings whenever possible for
quicker runtime.

Prefetch and Cache Even though HetSeq achieves multi-
processing and multi-threading on heterogeneous infrastruc-
ture, data loading is still a bottleneck before each forward
pass, especially on larger batch sizes. We use prefetching and
caching to reduce data loading latency. With prefetch, instead
of loading every batch just before the forward pass, we fetch
the next batch while training on the current batch. When
memory capacity allows we can prefetch multiple batches.
For caching, we utilize the least recently used (LRU) policy
to store data in the memory. Although the LRU cache saves
some disk access, the use of prefetch results in considerable
performance gains because of the large size of most datasets.

Extending the HetSeq Package
The HetSeq package contains three major modules illustrated
on the left in Figure 2: train.py, task.py, and controller.py
to coordinate the main components illustrated on the right.
The train.py module initializes the distributed system and its
various components. The task.py module defines the model,
dataset, data loader, and optimizer functions; it also exe-
cutes the forward pass and backpropagation functions. The
controller.py module acts as the main training controller. It
executes the actual model, optimizer, and learning rate sched-
uler; loads and saves the checkpoint; communicates the loss;
and updates the parameters.

To extend the HetSeq package to other tasks, the five
components highlighted in red in Figure 2 need to be de-
fined by using existing plug-ins or by defining customized

task.py

train.py

controller.py

model

dataset

data loader

optimizer

lr scheduler

checkpoint

forward pass backpropagation parameter update

setup extension module

Figure 2: Module and component architecture of the HetSeq
package. Python modules on the left are responsible for vari-
ous components listed on the right. Modules and components
highlighted in red can be extended to perform other machine
learning tasks over heterogeneous infrastructure.

CPU GPU
Type Cores Mem Type # Cores Mem
Xenon 16/24 96/128GB Xp 4 3840 12GB
Xenon 24 128GB 1080Ti 4 3584 11GB
Xenon 24 128GB P100 4 3584 16GB

Table 1: Infrastructure used in experiments.

components. We also provide documentation on how to in-
stall, use, and extend HetSeq which is publicly available at
https://hetseq.readthedocs.io.

Experiments

Here we test the performance of HetSeq on three popular
deep neural network models: (1) the transformer translation
model, (2) the BERT language model, and (3) an image clas-
sification model for MNIST handwritten digit database. We
used a variety of different heterogeneous distributed setups.
Described in Tab. 1, each GPU node has 4 GPUs consisting
of a various number of cores and main memory. Experiments
evaluate the training speed, scalability, and model perfor-
mance across various configurations, specified in Tab. 2. Sim-
ply put, experiments with homogeneous regime use the same
GPU nodes while heterogeneous settings use different combi-
nations of different GPU nodes. For different heterogeneous
settings, we keep the number of epochs constant while chang-
ing the number of steps on each GPU. For example, a single
epoch with 16 steps on one GPU is equivalent to one step per
GPU over 16 GPUs. All the other settings are set to the same
for the same task.

Nodes Translation Config. BERT & MNIST Config.
1 1080Ti×1 P100×1
2 (hom) P100×2 Xp×2
2 (het) P100×1 + Xp×1 P100×1 + Xp×1
4 (hom) P100×4 Xp×4
4 (het) P100×1 + Xp×1 + 1080Ti×2 P100×2 + Xp×2
8 (het) P100×1 + Xp×4 + 1080Ti×3 P100×4 + Xp×4

Table 2: Experiment Configurations

Transformer Translation Model
We evaluate HetSeq using the base Transformer
model (Vaswani et al. 2017) on the WMT 2014 English-
to-German translation task (En-to-De). The model has 6
encoder layers and 6 decoder layers. The size of the word
embedding (i.e., hidden state) is 512 and the number of heads
is 8. Dropout rate is set to 0.1 and we use the label-smoothed
cross entropy loss function with ε = 0.1. In total, this model
has about 65 million parameters. We use the Adam optimizer
with β1 = 0.9, β2 = 0.98 and ε = 10−9.
Results. Table 3 shows the results of the transformer exper-
iments on 2014 English-to-German dataset. We record the
total training time and BLEU4 score (for the average and 1-,
2-, 3-, and 4-grams), which is a standard evaluation metric
for language translation, for each experiment.

The heterogeneous configurations show that speedup
scales at about one-half the linear rate, which can certainly
be improved with further development. As the number of
nodes increases from 1 to 2 (i.e., 4 to 8 GPUs), the training
time is sped up by a factor of 1.42. As more nodes are added,
the performance improvement (i.e., expansion) decreases to
0.6 over 8 heterogeneous nodes, but a nearly 5x speed up
is achieved. This allows for the transformer to be trained in
only 10 hours.

Critically, the performance of the heterogeneous config-
urations are rather similar to the performance of the homo-
geneous configurations. These results indicate that the per-
formance of HetSeq does not deteriorate significantly in the
presence of heterogeneous infrastructure - at least as com-
pared to homogeneous infrastructure.

We also find that the BLEU4 score does vary for each
task. Different experiments are conducted with the same
optimizer and learning rate scheduling set ups but different
batch sizes. Although the 2 node configuration resulted the
best performance over the same number of steps, the model
performance was relatively consistent across configurations.

In summary, we show that HetSeq can speed up training
on the transformer model on heterogeneous infrastructure
without sacrificing model performance.

BERT Language Model
The BERT language model (Devlin et al. 2018) masks some
of the words in a sentence and tries to infer identities of
the masked words using information from the unmasked
words. We evaluate HetSeq using the base BERT language
model trained on the Wikipedia corpus. We train base BERT
using the Adam optimizer with β1 = 0.9, β2 = 0.999 and
ε = 10−8. We use the linear decay learning rate scheduler

nodes GPUs epochs max tokens steps per GPU avg. step time training time BLEU4 score expansion speedup
Tr

an
sl

at
or

1 4 128 4,096 260,000 0.62 s 49.47 hr 25.09, 56.8/30.8/18.9/12.0 1.00 1.00
2 (hom) 8 128 8,192 130,000 0.90 s 34.23 hr 25.16, 57.1/30.9/18.9/12.0 0.73 1.45
2 (het) 8 128 8,192 130,000 0.90 s 34.81 hr 25.57, 57.2/31.2/19.3/12.4 0.71 1.42
4 (hom) 16 128 16,384 65,000 0.94 s 18.12 hr 24.98, 56.7/30.5/18.7/12.0 0.68 2.73
4 (het) 16 128 16,384 65,000 0.94 s 18.74 hr 25.19, 57.1/30.9/18.9/12.1 0.66 2.64
8 (het) 32 128 32,768 32,500 0.98 s 10.3 hr 18.74, 52.2/24.4/13.2/7.5 0.60 4.80

nodes GPUs epochs batch-size steps per GPU avg. step time training time training loss expansion speedup

B
E

R
T

1 4 5 128 267,139 2.60 s 7.19 d 0.026 1.00 1.00
2 (hom) 8 5 256 133,570 2.69 s 4.19 d 0.028 0.86 1.72
2 (het) 8 5 256 133,570 2.74 s 4.26 d 0.028 0.85 1.69
4 (hom) 16 5 512 66,785 2.79 s 2.23 d 0.031 0.81 3.22
4 (het) 16 5 512 66,785 2.81 s 2.19 d 0.031 0.82 3.28
8 (het) 32 5 1024 33,393 3.13 s 1.21 d 0.055 0.74 5.94

nodes GPUs epochs batch-size steps per GPU avg. step time training time test loss test accuracy expansion speedup

M
N

IS
T

1 4 20 256 47,00 0.00612 s 87.6s 0.0005 0.9918 1.00 1.00
2 (hom) 8 20 512 2,360 0.01364 s 87.0s 0.0004 0.9911 0.50 1.01
2 (het) 8 20 512 2,360 0.01406 s 87.7s 0.0004 0.9912 0.50 1.00
4 (hom) 16 20 1024 1,180 0.01490 s 72.1s 0.0004 0.9912 0.30 1.21
4 (het) 16 20 1,024 1,180 0.01473 s 72.6s 0.0005 0.9916 0.30 1.21
8 (het) 32 20 2,048 600 0.01745 s 80.6s 0.0005 0.9909 0.14 1.09

Table 3: We evaluate HetSeq on Translation, BERT, and MNIST. Homogeneous (hom) and heterogeneous (het) experiments
over 1-, 2-, 4-, and 8-node node configurations. HetSeq on heterogeneous configurations scales on the translation task at about
the same rates as the homogeneous configurations. On 8 heterogeneous nodes, HetSeq achieves almost a 5x speedup on the
Translation task and a 6x speedup on the BERT task without a significant loss in model performance. HetSeq does not show
performance gains on the MNIST task because of the small number of training samples.

with maximum learning rate = 0.0001. In total, the model
has over 1 billion parameters. We use the first 10K steps as
the warm up and 1 million steps total over all GPUs.
Results. Runtime and training loss are described in Table 3.
We show significant speedup as the number of GPUs and
nodes increases. Despite fewer steps on each GPU, the train-
ing loss is maintained as the number of nodes increases.

Again we find that heterogeneous and homogeneous con-
figurations achieve roughly the same speedup. However, it
is important to note that in both the language model and the
transformer experiments these runtime results are not apples-
to-apples comparisons. For example, the P100s included in
the heterogeneous configuration are faster than the Xps used
in the homogeneous experiments. We do not intend the cur-
rent work to be a full system analysis, but rather provide these
runtime benchmarks as as evidence of HetSeq’s scalability.

In summary, HetSeq is able to reduce the training time for
the BERT language model on a single node from seven days
to about one day on heterogeneous infrastructure.

MNIST Image Classification Model
To show the extensibility of HetSeq to other models, we also
implement the image classification model from PyTorch and
evaluate it within HetSeq. This model contains two layers of a
convolutional neural network follows by a flat fully connected
layer to perform image classification with a cross entropy
loss (Simard et al. 2003). We use the Adam optimizer with
β1 = 0.9, β2 = 0.999 and ε = 10−8. The starting learning
rate is set to 1.01 for all the experiments.
Results. Runtime and accuracy on test set are described in
Table 3. Compared to the translation and language models,
the image classifier does not show good scaling with Het-

Seq due to the very small model and datasets. Specifically,
MNIST has only 60, 000 training examples which we load
directly into memory. Furthermore, the model requires fewer
than 5, 000 training steps on single GPU, which is only a
small fraction of the actual training time. Nevertheless, this
task is useful because it shows how to extend HetSeq to other
kinds of models. We expect that training over much larger
datasets will more clearly reveal the benefits of HetSeq.

Discussion
The present work describes HetSeq, a publicly available deep
learning platform adapted from PyTorch that enables dis-
tributed GPU training on heterogeneous infrastructure. Het-
Seq works by duplicating and distributing the model archi-
tecture to each GPU, which is its own process having its
own optimizer, learning rate scheduler, data loader, etc. Each
GPU communicates the loss and gradients while performs pa-
rameter update individually. Experiments on the transformer
and BERT language model show that HetSeq can achieve
reasonable speedup even over heterogeneous infrastructure.

HetSeq can be extended to incorporate other deep learning
models in natural language processing, computer vision, and
elsewhere. Future plans include adapting ongoing research in
distributed optimization (You et al. 2019) to further improve
training performance on heterogeneous infrastructure.

Acknowledgements
We thank Satyaki Sikdar for his help preparing this pa-
per. This work is funded by the US Army Research Office
(W911NF-17-1-0448) and the US Defense Advanced Re-
search Projects Agency (DARPA W911NF-17-C-0094).

References
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. 2016.
Tensorflow: A system for large-scale machine learning. In
OSDI, 265–283.

Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Dębiak, P.;
Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse, C.;
et al. 2019. Dota 2 with Large Scale Deep Reinforcement
Learning. arXiv preprint arXiv:1912.06680.

Chen, T.; Moreau, T.; Jiang, Z.; Zheng, L.; Yan, E.; Shen,
H.; Cowan, M.; Wang, L.; Hu, Y.; Ceze, L.; et al. 2018a.
{TVM}: An automated end-to-end optimizing compiler for
deep learning. In OSDI, 578–594.

Chen, X.; Chen, D. Z.; Han, Y.; and Hu, X. S. 2018b.
moDNN: Memory Optimal Deep Neural Network Training
on Graphics Processing Units. IEEE TPDS 30(3): 646–661.

Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao,
M.;Ranzato, M; Senior, A.; Tucker, P.; Yang, K.;2012. Large
scale distributed deep networks. In NeurIPS, 1223–1231.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.

Harlap, A.; Narayanan, D.; Phanishayee, A.; Seshadri, V.; De-
vanur, N.; Ganger, G.; and Gibbons, P. 2018. Pipedream: Fast
and efficient pipeline parallel dnn training. arXiv preprint
arXiv:1806.03377.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.

Huang, Y.; Cheng, Y.; Bapna, A.; Firat, O.; Chen, D.; Chen,
M.; Lee, H.; Ngiam, J.; Le, Q. V.; Wu, Y.; et al. 2019. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. In NeurIPS, 103–112.

Ott, M.; Edunov, S.; Grangier, D.; and Auli, M. 2018. Scaling
neural machine translation. arXiv preprint arXiv:1806.00187.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. PyTorch: An imperative style, high-performance
deep learning library. In NeurIPS, 8024–8035.

Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark,
C.; Lee, K.; and Zettlemoyer, L. 2018. Deep contextualized
word representations. arXiv preprint arXiv:1802.05365.

Pudipeddi, B.; Mesmakhosroshahi, M.; Xi, J.; and Bharadwaj,
S. 2020. Training Large Neural Networks with Constant
Memory using a New Execution Algorithm. arXiv preprint
arXiv:2002.05645.

Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and
Sutskever, I. 2019. Language models are unsupervised multi-
task learners. OpenAI Blog 1(8): 9.

Rajbhandari, S.; Rasley, J.; Ruwase, O.; and He, Y. 2019.
ZeRO: Memory Optimization Towards Training A Trillion
Parameter Models. arXiv preprint arXiv:1910.02054.

Rhu, M.; Gimelshein, N.; Clemons, J.; Zulfiqar, A.; and Keck-
ler, S. W. 2016. vDNN: Virtualized deep neural networks for

scalable, memory-efficient neural network design. In IEEE
MICRO, 1–13.
Sergeev, A.; and Del Balso, M. 2018. Horovod: fast and
easy distributed deep learning in TensorFlow. arXiv preprint
arXiv:1802.05799.
Shazeer, N.; Cheng, Y.; Parmar, N.; Tran, D.; Vaswani, A.;
Koanantakool, P.; Hawkins, P.; Lee, H.; Hong, M.; Young,
C.; et al. 2018. Mesh-tensorflow: Deep learning for super-
computers. In NeurIPS, 10414–10423.
Shoeybi, M.; Patwary, M.; Puri, R.; LeGresley, P.; Casper, J.;
and Catanzaro, B. 2019. Megatron-lm: Training multi-billion
parameter language models using gpu model parallelism.
arXiv preprint arXiv:1909.08053.
Silver, D.; Schrittwieser J.; Julian S.; Simonyan K.;
Antonoglou I.; Huang A.; Guez A.; Hubert T.; Baker L.;
Lai M.; Bolton A.; et al. 2017. Mastering the game of go
without human knowledge Nature, 550(7676), 354–359.
Silver, D.; Hubert, T.; Schrittwieser J.; Antonoglou I.; Lai
M.; Guez A.; Lanctot M.; Sifre, L.; Kumaran D.; Graepel
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play Science,
362(6419), 1140–1144.
Simard, P.Y.; Steinkraus, D.; and Platt, J.C. 2003. Best prac-
tices for convolutional neural networks applied to visual doc-
ument analysis. In ICDAR, volume 3.
Simonyan, K.; and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Tarditi, D.; Puri, S.; and Oglesby, J. 2006. Accelerator: using
data parallelism to program GPUs for general-purpose uses.
ACM SIGPLAN Notices 41(11): 325–335.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. In NeurIPS, 5998–6008.
Vinyals, O.; Babuschkin, I.; Chung, J.; Mathieu, M.; Jader-
berg, M.; Czarnecki, W. M.; Dudzik, A.; Huang, A.; Georgiev,
P.; Powell, R.; et al. 2019. Alphastar: Mastering the real-time
strategy game starcraft ii. DeepMind blog 2.
Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov,
R. R.; and Le, Q. V. 2019. Xlnet: Generalized autoregressive
pretraining for language understanding. In NeurIPS, 5754–
5764.
You, Y.; Li, J.; Reddi, S.; Hseu, J.; Kumar, S.; Bhojanapalli,
S.; Song, X.; Demmel, J.; Keutzer, K.; and Hsieh, C.-J. 2019.
Large batch optimization for deep learning: Training bert in
76 minutes. In ICLR.
Youkawa, T.; Mori, H.; Miyauchi, Y.; Yamada, K.; Izumi, S.;
Yoshimoto, M.; and Kawaguchi, H. 2018. Delayed Weight
Update for Faster Convergence in Data-parallel Deep Learn-
ing. In IEEE GlobalSIP, 663–667.

