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Abstract—The aim of this paper is to preserve location
privacy of crowdsourced-based spectrum sensing agents using
geo-indistinguishability. We considered database-driven dynamic
spectrum access, where a radio environment map provides
spectrum availability information for dynamic spectrum access
management. Moreover, we assumed crowdsourced-based spec-
trum sensing, where a pool of allocated mobile users, called
crowdsourced-based spectrum sensing agents, sense the spectrum
and report their actual location and the received signal strength
to the spectrum manager that constructs a radio environment
map. This discloses location information of crowdsourced-based
spectrum sensing agents and violates their location privacy. Con-
sequently, crowdsourced-based spectrum sensing agents could be
discouraged to participate in spectrum sensing. In our paper,
to solve the problem of location disclosure, we adopted planar
Laplacian mechanism, where each crowdsourced-based spectrum
sensing agent reports an obfuscated location instead of its actual
location, which achieves geo-indistinguishability. Our simulation
results were based on real-world CRAWDAD dataset. Our results
showed that with a moderate privacy level, location privacy
of crowdsourced-based spectrum sensing agents was preserved
while the effect of introduced location noise on the accuracy of
radio environment map was insignificant.

Index Terms—dynamic spectrum access, received signal
strength, spectrum availability, location privacy, prediction ac-
curacy

I. INTRODUCTION

Dynamic spectrum access (DSA) is a promising solution for
the wireless spectrum scarcity problem. In DSA, a secondary
user is allowed to access the spectrum when the primary
user is absent, which leads to better spectrum utilization.
In a database-driven DSA system, the spectrum manager
(SM) manages the spectrum using a radio environment map
(REM), proposed in [1], [2], which is a database that contains
information about spectrum availability over an area of inter-
est. Constructing an accurate REM is essential for providing
reliable spectrum availability information for better spectrum
utilization.

There are several techniques for constructing REM in the
literature. Some techniques are based on the radio propagation
model [3], which ignore local environment factors and lead
to REM inaccuracy. Other techniques are based on allocated
wireless sensors in the area of interest that sense the dy-
namic signal strength, which is used to estimate spectrum
availability. However, only a limited number of sensors could

be allocated due to their high cost [4], which leads to poor
coverage. To address this problem, the SM could allocate a
pool of mobile users (MUs) [5]-[7] to sense the received
signal strength (RSS) using their mobile devices, referred to
in the literature as crowdsourced-based [8] spectrum sensing
(CSS) agents. Using the reported RSS and their corresponding
locations, the SM constructs REM based on kriging, a popular
interpolation method in geo-statisitics.

Since CSS agents submit their sensitive location informa-
tion, this may lead to privacy violations. Information such
as an individual’s home or work location, sexual preferences,
political views, and religious tendencies could be easily in-
ferred from the individual’s actual location when collected
and analyzed on regular basis [9]. For this reason, CSS
agents could be unwilling to participate in spectrum sensing
tasks. Thus, private location information should be protected
against attackers who maliciously use location information for
robbing, stalking, blackmailing, and other privacy threats [9].

In literature, several techniques have been proposed to ad-
dress location privacy preservation. Some researchers adopted
anonymization to achieve k-anonymity [10], [11], which
guarantees that an adversary cannot distinguish an individual
whose information is in the released data among at least
k — 1 other individuals whose information is also in the
released data. However, if the adversary has sufficient prior
knowledge, this method can no longer guarantee privacy. Oth-
ers focused on encryption-based methods, which could hide
location information by encryption, but requires huge com-
putational cost [12] leading to undesired communication de-
lays. Another approach proposed in literature is perturbation-
based methods, which guarantee differential privacy or geo-
indistinguishability [13], a generalized definition of differen-
tial privacy used in geo-statistics.

In our work, we were motivated to use geo-
indistinguishability to preserve location privacy of CSS
agents due to the limitations observed in anonymization and
encryption-based methods:

o We used geo-indistinguishability which guarantees loca-
tion privacy regardless of the prior knowledge available
to the adversary. To achieve geo-indistinguishability,
each CSS agent adopted a planar Laplacian mecha-
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nism [13], which is computationally inexpensive, to ob-
fuscate/randomize its location information locally.

o We evaluated how privacy impacts the radio environment
map construction performance through extensive simula-
tions using a real-world dataset.

The rest of our paper is organized as follows. In Section II,
we define our problem. In Section III, we explain our proposed
privacy preserving OK-based REM construction method. In
Section IV, we present and discuss our simulation results. In
Section V, we give our recommendations for future research.
In Section VI, we conclude our work.

II. PROBLEM STATEMENT

In this section, we explain our system model, threat model,
and location privacy preservation of CSS agents.

A. System Model

In our framework shown in Fig. 1, we considered two
parties: the SM and MUs. The SM constructs REM over an
area of interest denoted by D and utilizes the resulting REM
to manage DSA. The MUs work as sensing agents referred to
in the rest of our paper as CSS agents. Each CSS agent senses
the RSS at its location using its mobile device and sends a
measurement report to the SM. Denoting the actual location of
CSS agent i by x;, and the RSS at x; by Z(x;), the CSS agent
at x; reports R(x;) = (%, Z(x;)), where X; is an obfuscated
location of CSS agent i. We considered N CSS agents located
at {x; :1=1,2,...,N}. The N CSS agents measure the RSS
at their locations: {Z(x;),s = 1,2,..., N} and send their
measurement reports {R(x;) = (X;, Z(x;)),i =1,2,..., N}
to SM. Based on the received measurement reports from CSS
agents, the SM predicts the RSS {Z(y;) : j = 1,2,..., M}
at unobserved locations: {y; : j = 1,2,...,M}, and then
constructs REM over the area of interest D based on its
measurement predictions. In our paper, we focused on one
primary user. We assumed that the SM knows the location
Xg, licensed band, and transmission schedule of the primary
user.

B. Threat Model

We assumed that CSS agents are trusted to perform spec-
trum sensing. CSS agents would not intentionally report false
measurements to poison REM. On the other hand, we aimed

to protect CSS agents’ location information against inference
attacks from an adversary with arbitrary prior knowledge. The
adversary could be the honest-but-curious SM that follows
the protocol trustfully, but tends to infer CSS agents’ location
information. The adversary could also be an eavesdropper that
eavesdrop messages exchanged between CSS agents and SM.

C. Location Privacy Preservation of Crowdsourced-Based
Spectrum Sensing Agents

In our work, we adopted geo-indistinguishability, proposed
by Andre et al. in 2013 [13], to preserve location privacy of
CSS agents. Geo-indistinguishability provides strong privacy
guarantees against attackers with arbitrary prior knowledge.
The definition of e-geo-indistinguishability is as follows [13]:

Definition 1 (e-Geo-Indistinguishability): A mechanism M
satisfies e-geo-indistinguishability, iff for all output O and all
locations x, X where |[x —x || <7, 7 > 0:

Pr(M(x) =0)
Pr(M(x') =0)

where € indicates the level of privacy at one unit of distance.
In this paper, we used planar Laplacian mechanism to achieve
e-geo-indistinguishability as shown in Algorithm 1 [13]. Using
planar Laplacian mechanism, each CSS agent computes its
obfuscated location X;, and then reports X; to SM instead of
reporting its actual location.

In <e

Algorithm 1 Planar Laplacian Mechanism for Achieving e-

Geo-Indistinguishability

Input:
1: Sample 6 uniformly in [0,
2: Sample p unlformly in [0,1
37 —L(W_1(21) 4+ 1), where W_; is the Lambert W

function;

4 w; <+ X; + [r*cosf,r*sinf);
50 X uy;

Output: obfuscated location X;

real location x;, €

2m);
)

III. PRIVACY PRESERVING ORDINARY KRIGING-BASED
RADIO ENVIRONMENT MAP CONSTRUCTION

In this section, we explain the steps to constructing REM.
When SM receives the measurement reports {R(x;)} from
CSS agents, SM constructs REM using OK. There are three
main steps to OK-based REM construction: measurement
detrending, semivariogram parameter estimation, and mea-
surement prediction.

A. Measurement Detrending

Generally, kriging assumes the following model [14]:
Z(x;) = p(x;) + 0(x;), where u(-) is the mean capturing
the path loss, and &(-) is the residue capturing the shad-
owing effect. Ordinary kriging further assumes that Z(x;)
is intrinsically stationary, ie. [14]: E[Z(x;)] = p(x;) =
, E[(Z(x;) — Z(xj))g] = 2v(h;, ), where p is an unknown
constant; h; ; Ix; — x;|| is the distance between two
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locations, and ~y(-) is the semivariogram function that models
the correlation between two locations.

In radio environment, the mean capturing path loss pu(x;)
is not constant, but is a function of location x;. Therefore,
we first performed detrending in order to make Z(x;) an
intrinsically stationary process with a constant mean. At SM,
using the knowledge of the obfuscated location %x; and RSS
Z(x;), we estimated p(%;), and then subtracted p(%;) from
Z(x;). The path loss at location X; is estimated as [15]:

P(%x;) = al0log,(d(Xi,%0)) + Po, €))

where d; is the distance between %; and the location of the
primary user X, and « and P, are path loss parameters
calculated empirically. The detrended measurement at x; is:

From (1), it is clear that we estimated the path loss at
obfuscation location X; instead of actual location x;.

B. Semivariogram Parameter Estimation

The exponential semivariogram is commonly used to model
radio systems involving shadowing [16] and could be ex-
pressed as [4]:

v(h) = Bi(1 —exp(—ﬁi))’ 3

2

where 31 represents the variance of the RSS measurements
and is called sill variance, and 2 is known as the range
indicating the exponential decay in the semivariogram. In our
paper, we assumed that both 5, and 5 are unknown. To obtain
(1 and [, we trained the exponential semivariogram model
in (3) using the detrended measurements in (2). First, we
calculated a set of empirical semivariogram values {4 (fa4)}
using the detrended measurements as follows [4]:

Glhiag) = e S (86a) — S0x))
20H (htag)| . S
Xi,X; lag
) )
where hj,q is a set of pre-calculated separation distances
called lag distances, and H(hja,) = {(Xi,%;)|hiag — 0 <
[%; — %;|| < h'9 + o}, where o is a small tolerance.
Second, using the empiricial semivariogram values
{(RL* 4(Rl*))} in (4), we trained the exponential semivar-
iogram model in (3) by minimizing the mean squared error
between the model and empirical semivariogram values [4].
From (4), it is clear that, instead of using actual locations
{x;}, we used obfuscated locations {X;} to calculate both
the detrended measurements and lag distances {Bé“y }, which
are used in calculating the empirical semivariogram values
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Fig. 2. Measurements and base station (primary user) locations in group D
(CRAWDAD dataset)

C. Measurement Prediction

Based on the estimated semivariogram model ~(h; 81, B2),
we predicted the RSS at an unobserved location y; as [4]:

Z(y;) =P(y;) + 5(v;)
N
=a10log;y(d(y;,%0)) + Po + Z w; - S(xi), (5)

i=1

where Zf;lwz = 1 are normalized weights. The optimal
set of weights {w;}}, minimizes the prediction variance
Var[e(y;)] = Var[S(y;) — S(y;)], which could be written
as follows [4]:

wy (h11) (h1,w) y(h ;)
wa v(h2,1) v(h2,N) v(h2,5)

wN v(hna) oo Alhaw) 1 Y(h.5)
14 1 . 1 0 1

(6)
where p is the Lagrange multiplier. From (6), it could be
seen that the set of weights {w;} depends on the trained
semivariogram model and distance matrix {ﬁlj} which were
calculated using obfuscated locations.

IV. SIMULATION RESULTS

In this section, we present and discuss our simulations. Our
results showed that by applying e-geo-indistinguishability, the
privacy of CSS agents was protected, and at the same time, a
fairly accurate REM was constructed for a specific range of
privacy budget e.

A. Simulation Setup

1) Dataset:: In our simulations, we used CRAWDAD
dataset [17], which was collected at the University of Col-
orado Boulder and contains measurements of the WiMAX
network serving the University of Colorado campus. The
WiMAX network consists of five base stations operating on
different channels at 2.5 GHz, with an educational license
granted to the University. The measurements include car-
rier to interference plus noise ratio (CINR), relative con-
stellation error (RCE), error vector magnitude (EVM), and
subcarrier spectrum flatness. The measurements were taken
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Fig. 4. Semivariogram parameter estimation

using a portable spectrum analyzer over four distinct cam-
paigns/groups (A,B,C, and D). In our simulations, we chose
the CINR measurements in group D, focusing on channel
308 being studied in our experiments. Group D consists of
138 measurements taken at optimized locations. The base
station (i.e. primary user) operating on channel 308 (named
“Eng_North_GENTI") is located at longitude —105.26333° and
latitude 40.00722° and has a BSID 3674210305. Fig. 2 shows
the locations of the measurements (blue triangles) and base
station (red asterisk).

2) Privacy specifications:: To set the parameter e, we
assumed that all CSS agents choose a privacy level €* and
a privacy radius r*, where ¢ .. We performed our

simulation based on €¢* = 0.01,0.05,0.2,0.5,1 and 7* = 20

<

meters, which are commonly used values for location privacy
problems in the literature [18]-[20].

B. Performance Evaluation

In Fig. 3, Fig. 4, and Fig. 5, we observed the effect of loca-
tion obfuscation on the three steps to construct REM. Fig. 3
illustrates measurement detrending, where the path loss model
in (1) (red line) is fitted to the CINR measurements (blue
asterisk) to obtain the model parameters o and F. In Fig. 3(a),
the fitted model parameters are o« = —7.2578, Py = 59.3698
when CSS agents do not obfuscate their locations. Fig. 3(b),
Fig. 3(c), Fig. 3(d), Fig. 3(e), and Fig. 3(f) show the fitted
model when CSS agents select their privacy levels €*
1,0.5,0.2,0.05,0.01, respectively. From Fig. 3(b), Fig. 3(c),
Fig. 3(d), Fig. 3(e), and Fig. 3(f) it is clear that as privacy
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level €* increases, the fitted model parameters o and Py are
insignificantly affected by location obfuscation. In Fig. 3(b),
the fitted model parameters (o« = —7.2509, Py = 59.344)
are the closest to Fig. 3(a) followed by Fig. 3(c) (a =
—6.9946, P, = 58.6533), Fig. 3(d) (o = —5.8001, Py
55.5603), Fig. 3(e) (o« = —1.8974, Py = 45.462), then
Fig. 3(f) (o = 2.4946, P, = 31.365).

To detrend the CINR measurements, first, we converted the
raw CINR measurements, which are given in linear scale, to
dB. Second, we calculated the log of the distance between
the base station and each measurement location. Third, using
the calculated distance, we fitted the parameters o and P,
in (1) to the CINR measurements as shown in Fig. 3. Since
the difference between CINR and path loss is a constant
term, which depends on the transmit power, antenna gain,
and noise floor, converting CINR to path loss before fitting is
not necessary. The path loss model parameters o and F, are
automatically adjusted to account for the constant difference
between CINR and path loss. Finally, to obtain the deterended
measurements, we subtracted the path loss calculated using (1)
from the CINR measurements.

Fig. 4 shows semivariogram parameter estimation, where
the exponential semivariogram model in (3) (blue line) is
trained using the empirical semivariogram values in (4) (red
squares) to estimate the model parameters [; and (5. From
Fig. 4(a), when CSS agents do not obfuscate their locations,
the estimated model parameters are 1 = 38.8345, [y =
617.8866. As shown in Fig. 4(b), when CSS agents select
a privacy level €* 1, the estimated model parameters
(81 = 39.0349, 5 = 610.8665) are the closest to Fig. 4(a).
This is followed by Fig. 4(c) (81 = 32.4344, B2 = 564.9401),
when CSS agents select their privacy level €* = 0.5. Then,
Fig. 4(d) (B1 = 27.8661, [ 477.6583), when CSS
agents select their privacy level ¢* = 0.2. Followed by
Fig. 4(e) (81 = 22.9247, By = 227.5531), when CSS

agents select their privacy level €* = 0.05. Then, Fig. 4(f)
(81 = 18.6861, By = 235.9174), when CSS agents select
their privacy level €* = 0.01. This means that a higher privacy
level €* leads to more accurate exponential semivariogram
parameter estimation.

Fig. 5 shows measurement prediction. Fig. 5(a) shows the
REM constructed when CSS agents do not obfuscate their
locations. We consider the REM in Fig. 5(a) as the ideal REM
when compared to the privacy preserving REMs constructed
when CSS agents choose different privacy levels. It could be
seen in Fig. 5(a), Fig. 5(b), Fig. 5(c), and Fig. 5(d) that the
base station (red spot) could be located, unlike in Fig. 5(e)
and Fig. 5(f), where the base station could not be located.
Fig. 5(b), Fig. 5(c), Fig. 5(d), Fig. 5(e), and Fig. 5(f) show
the privacy preserving REMs when CSS agents select their
privacy levels €* 1,0.5,0.2,0.05,0.01, respectively. The
REM in Fig. 5(b) is more comparable to the ideal REM
in Fig. 5(a) followed by Fig. 5(c), Fig. 5(d), Fig. 5(e), and
Fig. 5(f). This implies that a larger privacy level €* >= 0.2
slightly affects the accuracy of REM.

To measure the accuracy of REM, we calculated the MAE
of measurement prediction. Using Monte Carlo simulation, we
calculated the average of the MAE over 100 independent real-
izations. In each realization, we used k-fold cross validation.
We set k = [138| = 13, where the 138 measurements are
split into 13 smaller sets (folds) of measurements. For each
fold of the 13 folds:

1) The exponential semivariogram model (3) is trained

using k — 1 = 12 folds.

2) The resulting semivariogram model is tested using the

remaining fold by calculating the MAE as follows

Di 15
Mg = T 12@) = 2@)|

D,
where Z(x;) is the estimated CINR of the CSS agent

)
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TABLE I
MEAN ABSOLUTE ERROR
Mean Absolute Error (MAE) dB
no location obfuscation 2.41
e =1 2.53
e =05 2.66
e* =0.2 2.93
e* =0.05 3.66
e* =0.01 4.19

located at z; using the trained exponential semivari-
ogram model; Z(z;) is the actual CINR of the CSS
agent located at z;, and D, is the number of test
measurements, set to [); = 10 measurements in our
experiment.
The MAE reported by the 13 folds is finally averaged. Table I
compares the MAE of REMs constructed with different CSS
agents’ privacy levels. The ideal case, where the CSS agents
do not obfuscate their locations, resulted in the lowest MAE.
The MAE in the ideal case is equal to 2.41 dB, where errors
occur due to ordinary kriging-based interpolation. As shown
in Figures 5(b), 5(c), 5(d), 5(e), 5(f), the smaller the privacy
level €*, the less accurate the REM, and hence, the lower the
MAE. The MAE is equal to 2.53,2.66,2.93,3.66,4.19 dB
with €* = 1.0,0.5,0.2,0.05,0.01, respectively.

V. OUR RECOMMENDATIONS FOR FUTURE RESEARCH

Our simulations showed that at a low privacy level ¢ =
0.01,0.05, a large amount of location noise was introduced,
and hence, a highly inaccurate REM was obtained. To address
this problem, we recommend in future work that the negative
impact of noisy locations on REM be minimized at either SM
side or CSS agents’ side. In the former approach, assuming the
SM knows the probability distribution of location noise, SM
could apply uncertainty-aware interpolation to adjust measure-
ment detrending, empirical semivariogram calculation, and
distance matrix calculation. In the latter approach, CSS agents
could use location obfuscation mechanisms other than planar
Laplacian mechanism, which could be designed to minimize
the impact of noisy locations on REM accuracy, and at the
same time, achieve e-geo-indistinguishability.

VI. CONCLUSION

We tackled the problem of Ilocation disclosure of
crowdsourced-based  spectrum  sensing agents. Each
crowdsourced-based spectrum sensing agent adopted

planar Laplacian mechanism to obfuscate its location, which
guarantees geo-indistinguishability. We evaluated the impact
of location privacy on radio environment map construction
performance using extensive simulations, which were based
on CRAWDAD real-world dataset. Our results showed
that with a moderate privacy level, both location privacy
of crowdsourced-based spectrum sensing agents and a
reasonably accurate radio environment map were achieved.
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