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Abstract—Federated learning is a promising tool in the Internet
of Things (IoT) domain for training a machine learning model
in a decentralized manner. Specifically, the data owners (e.g.,
IoT device consumers) keep their raw data and only share
their local computation results to train the global model of the
model owner (e.g., an IoT service provider). When executing
the federated learning task, the data owners contribute their
computation and communication resources. In this situation, the
data owners have to face privacy issues where attackers may infer
data property or recover the raw data based on the shared in-
formation. Considering these disadvantages, the data owners will
be reluctant to use their data to participate in federated learning
without a well-designed incentive mechanism. In this paper, we
deliberately design an incentive mechanism jointly considering
the task expenditure and privacy issue of federated learning.
Based on a Differentially Private Federated Learning (DPFL)
framework that can prevent the privacy leakage of the data
owners, we model the contribution as well as the computation,
communication, and privacy costs of each data owner. The three
types of costs are data owners’ private information unknown to
the model owner, which thus forms an information asymmetry. To
maximize the utility of the model owner under such information
asymmetry, we leverage a three-dimensional contract approach to
design the incentive mechanism. The simulation results validate
the effectiveness of the proposed incentive mechanism with the
DPFL framework compared to other baseline mechanisms.

Index Terms—Federated Learning; Differential Privacy; Multi-
Dimensional Contract; Incentive Mechanism

I. INTRODUCTION

With the growing popularity of artificial intelligence (Al) in
the Internet of Things (IoT) area, the Al-based IoT applica-
tions are gradually employed in all aspects of our daily life,
such as transportation [1], [2]. The Al-based IoT applications
generate a large amount of data that feeds into the Al system
for continuous learning. Specifically, the model owner (e.g.,
an IoT service provider) periodically gathers the data from
the mobile devices of the data owners (e.g., IoT service
consumers) and trains the model over the collected data
in centralized servers. However, the collected data usually
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contains the data owners’ private information (e.g., service
usage patterns) or profile information (e.g., gender and age).
If the model owner is untrustworthy or the centralized servers
are invaded by attackers, the data owners’ data will be abused
or stolen, causing the economical loss to the data owners.

To alleviate the privacy risk, federated learning is proposed
as a promising distributed learning scheme. Data owners train
the local models over their private data and only upload
the local computation results instead of uploading their raw
data to the model owner. The model owner aggregates all
the local computation results to improve its global model.
Under this setting, the data owners can control their raw
data while the model owner can obtain a global model with
good performance. Since inception by Google [3], federated
learning has drawn great attention in IoT area [4]-[7].

Although in federated learning the data owners do not share
their raw data, they still face the risk of privacy leakage.
For example, based on the computation results from a data
owner, attackers can infer whether a sample is in the data
owner’s dataset by using membership inference attacks [8],
or recover the data owner’s raw data by construction attacks
[9]. The attackers may be an untrustworthy model owner in
the system or an eavesdropper in the communication network.
There also exits the case that a malicious data owner can
infer the feature distributions or data property of a specified
data owner according to the global model downloaded from
the model owner [10], [11]. Considering such risks, the data
owners will be reluctant to participate in federated learning.
The low participation rate of the data owners will lead to the
poor performance of the trained global model.

Federated learning has to consider incentivizing the data
owners to join the learning process. When data owners ex-
ecute the federated learning tasks, their devices consistently
consume computation and communication resources. Also, the
data owners still worry about the data privacy issue. Without
a well-designed economic incentive, the self-interested data
owners are not willing to take part in federated learning.
There are three main difficulties in designing a practical
incentive mechanism for federated learning. First, it is hard to
evaluate the contribution of data owners to the performance
of the trained models. Without accurate evaluation of the
contribution, the model owner cannot correctly reward the
data owners, leading to financial loss or low participant rate
[12]. Second, it is difficult to model the multi-dimensional
cost of data owners. The recent incentive mechanism mainly
modeled the cost of the data owners as their computation
and communication expenditures but ignored their privacy
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risk which is also an important cost [12]-[14]. Third, there
exists multi-dimensional information asymmetry since the self-
interested data owners prefer to hide their multiple types of
costs to gain more benefits. The multi-dimensional information
asymmetry complicates the incentive design [15], [16].

In this paper, we aim to eliminate the obstacles that hinder
data owners from participating in federated learning, such
as privacy issues and naive incentives. We first analyze a
Differentially Private Federated Learning (DPFL) framework
that injects artificial Gaussian noise to the local model for
alleviating the privacy issue. Based on the DPFL framework,
we then proposed a three-dimensional contract-based incentive
mechanism by considering the information asymmetry and the
heterogeneous types of costs. The simulation results validate
the efficiency of the designed incentive mechanism with the
DPFL framework compared to other incentive mechanisms. In
summary, the main contributions of this paper are as follows.

o We design an incentive mechanism in a DPFL frame-
work that is able to prevent privacy leakage in federated
learning. To the best of our knowledge, we are the first
to study the incentive mechanism jointly considering the
task expenditure and privacy issue of federated learning.

« By theoretical analysis and experimental evaluation of the
DPFL framework, we model the data owners’ contribu-
tion and heterogeneous costs consisting of computation,
communication, and privacy cost. These physical models
essentially support the design of the incentive mechanism.

o Considering the information asymmetry between the
model owner and the data owners, we design the incentive
mechanism by using a three-dimensional contract, where
the model owner provides the contract items specifying
the training data size and offering corresponding rewards
according to different cost types of data owners.

The remainder of this paper is organized as follows. Section
IT introduces the related works of the privacy concerns and
incentive mechanisms of federated learning. Section III de-
scribes the established DPFL framework and related analysis.
Section IV describes the system model based on the DPFL
framework. Section V provides a detailed description of multi-
dimensional contract design problem and solution. The simu-
lation results and performance evaluation are shown in Section
VI. Finally, the conclusion remarks are made in Section VII.

II. RELATED WORKS
A. Privacy Concerns in Federated Learning

Despite the data owners do not share private data during the
federated learning process, they still face privacy issues. The
shared computation results of the data owners may be used by
attackers for inferring the data owners’ private information [8]
or reconstruct the raw data [9]. The downloaded global model
may be used by attackers for inferring the feature distribution
or property of a specified data owner [10], [11].

To address the privacy issue, there emerge many studies
focused on designing defense methods. Among them, ho-
momorphic encryption and secure multi-party computation
are popular methods defending against the attacks which are
based on the shared local computation results [17]. But these

methods are only applicable to simple tasks and cannot defend
against the attacks which are based on the global model. DP
provides a practical privacy analysis and is widely adopted
in big data privacy-preserving systems [18]-[21] and private
distributed learning systems [17], [22]-[25]. The DP-based
distributed learning schemes offer a comprehensive defense
against the aforementioned attacks. However, most of these
studies made an optimistic assumption that the data owners
voluntarily join federated learning, which is not seldom seen
in practice. To incentivize the data owners to join DP-protected
federated learning, we propose a contract-based incentive
mechanism based on the established DPFL framework.

B. Incentive Mechanisms for Federated Learning

In recent years, there is an increasing number of studies
focused on designing incentive mechanisms for federated
learning. There are two key issues to be addressed for de-
signing the incentive mechanism. The first is evaluating the
contribution of each data owner which affects the profit of
the model owner. The works in [13], [14], [26] modeled the
contribution as the completion time of learning tasks. The
works in [12], [16], [27], [28] modeled the contribution as
the trained model performance depending on the training data
size. The second is modeling the costs of data owners. Most
of the works (in [12]-[14], [16], [26], [28]) modeled the cost
as computation and communication expenditures. The authors
in [29] considered the privacy issue in FL and proposed a DP
budget-based incentive mechanism. However, none of them
modeled the contribution and cost of the data owners and
designed the incentive mechanism by jointly considering the
task expenditure and privacy issue of federated learning.

We are motivated to design the incentive mechanism for
federated learning jointly considering these two factors. Based
on the established DPFL framework that adopts the DP for
preventing privacy leakage in the federated learning process,
we model the data owners’ contribution by evaluating the
trained model performance and model their costs by analyzing
task expenditure and privacy risk. In order to deal with the
information asymmetry between the model owner and the
data owners, we use a multi-dimensional contract approach
to design the incentive mechanism in the DPFL framework.
Compared with the traditional single-dimensional contracts,
the multi-dimensional contract allows the principal (the model
owner) to extract more detailed private information of agents
(the data owners) and thus design the more precise contracts.
The authors in [16] also adopted the multi-dimensional con-
tract approach to incentivize the data owners. But they focused
on the UAV-based scenarios and, moreover, didn’t consider the
privacy issue, so our models are different and our mechanisms
are not comparable.

III. DIFFERENTIALLY PRIVATE FEDERATED LEARNING

In this section, we first introduce the federated learning and
the threat model. Then we describe the adopted DPFL frame-
work against the threats. The privacy analysis and convergence
analysis of the DPFL framework are also given.
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A. Federated Learning and Threat Model

Consider a federated learning setting that consists of a
model owner and I data owners. The data owner ¢ has a
local dataset D; = {(x;,y;)} including sample-label pairs
(2,y;) from its device. For a machine learning problem, we
typically take f;(w) = D%Zﬂ(xi;yi;w) as the objective,
where D; = |D;| denotes the size of local dataset and
0(x;;y;;w) is the loss of the prediction on the local dataset
with model parameters w. The goal of the model owner is
to learn a model w from the data owners while they are
allowed to keep their local datasets. Therefore, each data
owner trains the model on their local datasets and the model
owner aggregates the model parameters from the data owners.
The objective can be expressed by f(w) = Zlepi fi(w),

where p; = ,’# denotes the weight of the local model

. D,
from the data owner i.

We consider that the adversary can be the ‘“honest-but-
curious” model owner or the malicious data owner in the
system as well as the eavesdropper in the communication
network. The model owner would honestly execute federated
training operation, but is curious about the data owners’ private
information and may recover their training data from the
uploaded models or gradients [9]. Meanwhile, based on the
downloaded global model, some malicious data owner could
adopt the auxiliary data to infer the property of a target data
owner [11], or use Generative Adversary Network (GAN)
to learn its feature distribution [10]. Besides, the uploaded
and downloaded message may be eavesdropped during the
transmission. The eavesdropper will also infer or reconstruct
the data owner’s private data based on the message but will
not actively inject false messages or intervene in the message
transmission. We consider that the data owners will transmit
the correct computed results and the data pollution attacks by
the malicious data owners are not considered in this paper.

B. DPFL Framework

We aim to establish a federated learning framework that
enables the data owners against the above threat model without
sacrificing much accuracy of the trained model. (¢, d)-DP
provides a standard to measure privacy risk [30], where the
parameter € denotes the privacy budget (detailed definition
please see Appendix A). The lower ¢, the data owners have
a lower risk of privacy leakage. Inspired by works [17],
[22], we set up the DPFL framework where each data owner
adds artificial Gaussian noise in the local model at each
iteration for guaranteeing (e,d)-DP of its local data. The
overall process is summarized in Algorithm 1. Specifically,
at round 0 < ¢ < T —1, each data owner ¢ receives the global
model w; from the model owner and updates its local model
w% = w; (Step 5). Each data owner splits its local dataset D;
into batches (3; with batch size B (Step 6). Thus the expected
local iteration number is |5;|F = %E, where E is the local
epoch number and 0 < s < |5;|E. At each local iteration, each
data owner updates the local model w,%é by learning a batch
of data b; ; (Steps 9 and 10). Then the local model is added
with the Gaussian noise N (0,0214) (Step 11 and 12), where
o; 1s the Gaussian variance and d is the model dimension. At

Algorithm 1 DPFL Algorithm
Input: The [ data owners are indexd by ¢; B is the local
minibatch size, E is the number of local epochs; n is the
learning rate; T' is the communication rounds; o; is the noise
scale ; the local iteration is indexed by 0 < s < |5;|E
Output: Global model wr

1: initialize wg

2: for each round ¢ from 0 to 7' — 1 do

3: The model owner sends w;.

4 for all I data owners in parallel do

5 Update the local parameters as w;O = wy
6: Bi < split D; into batches of size B

7 for each local epoch from 0 to £ — 1 do
8 for batch b; € 3; do

9 Update the local parameters as

10: wz,s A w;s—l - %vg(w;,sv bl)

11: Add noise into local parameters

12: w; , = wj , +N(0,071q)

13: end for

14: end for

15: Send the local parameters w§,| g 10 the model
owner

16: end for

17: The model owner aggregates the parameters

18: Wiyl Eif:lpiwi,l,@ilE

19: end for

20: return wr

the end of each round, each data owner sends its local model
to the model owner (Step 15) and the model owner performs
the weighted averaging to obtain new global model (Step 17
and 18).

C. Privacy Analysis

Now we analyze the DP guarantee of the established DPFL
framework. We aim at using DP is to prevent the attackers
from extracting sensitive information from the uploaded local
models and the downloaded global model. The downloaded
global model is the aggregation of the uploaded noisy local
models at each round. Therefore, as long as the local models
are differential private, the global model can also defend
against privacy leakage. Instead of using DP directly, we use
Renyi Differential privacy (RDP) to tightly account for the
privacy loss of the data owner and then convert it to a DP
guarantee (detailed definition please see Appendix A). By
using the RDP, we compute the overall privacy guarantee for
a data owner after 7" rounds of training and give the (¢, §)-DP
guarantee in Theorem 1.

Theorem 1. For any 6 € (0,1) and € > 0, Algorithm 1 satis-
fies (€,8)-DP when its injected Gaussian noise N (0,0?1q) is
chosen to be

o \/ 4o ET
"=\ BDy(e —log(1/8)/(a — 1))’

(D

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 12,2021 at 22:43:46 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2021.3050163, IEEE Internet of

Things Journal

2log(1/6) +1

2
given a — 1 < 2‘;" log (m) with o =

and T = g.
Proof: See Appendix B. ]

Theorem 1 indicates that the added noise scale is inversion
proportional to the local data size for guaranteeing the (e, d)-
DP of local data. The reason is that the increasing data
size reduces the sensitivity of the local model trained on the
adjacent datasets.

D. Convergence Analysis

In this section, we analyze the convergence of the estab-
lished DPFL framework under non-convex objectives which
are common in neuron networks. Similar with [17], [31], we
give the standard assumptions as follows.

Assumption 1 (Smoothness). fi,..., fr are all L-smooth: for
all wand w', f(w') < f(w)+(w'—w)TVf(w)+% [w — wl.

Assumption 2 (Unbiased Gradients). Let bi,s be the batch of
data with batch size B sampled from D; uniformly at random.
The variance of stochastic gradients in each giata owner is
bounded: E ||V f;(wi ;b ) — V fi(wi )] < %

Assumption 3 (Bounded Gradients). The expected squared
norm of stochastic gradients is uniformly bounded, i.e.,
E val(wz,svbi,s)n < G?

For the s-th local iteration at round ¢, we use w;, to
denote an auxiliary parameter vector that follows a centralized
gradient descent based on w; ; = Zi}:lpi (wi ,+mnt ), which
is the weighted average of local solution wg S over all I data
owners with weight p; = 2 and n} , ~ N(0,071q) is the
Gaussian noise. It is immediate that

I I
We,s = Wy5—1 — nE pigi,s + E pmi,s
nt S
= wt s—1—1 E pz

Since each data owner in Algorithm 1 restarts its SGD with
the same initial point w; = w; = w{ at the beginning of each
round, deviation between each local solution w}iys and w, , are
related to s with 1 < s < |§;|E. The following useful lemma

2
)

gives the bound of the expected gap E [Hﬁt,s — w;S HZ} after
s local iterations at round t.

Lemma 1. For the s-th iteration at round t, Algorithm 1
ensures -
E | —wi|*] < H. 3)

where H = anGQZZ 7+ sdzl pio? + sn*G? + sdo?.

Proof: See Appendix C. ]
Lemma 1 indicates that the bound of the expected gap is
related to the local iteration index s and the expected noise
scale do?.
Convergence Criteria. Since the objective function is non-
convex, like [17], [31], we use the expected gradient norm as
an indicator of convergence. After 7' — 1 rounds and S local

iterations at the T'-th round, the algorithm reaches an expected
sub-optimal solution if:

TlS

KZZE 1V F @) 4)
t=1s=1
where v is arbitrarily small and K = (T — 1)|8|E + S.

This condition ensures that the algorithm can converge to a
stationary point.

Theorem 2. If0 <1 < 1, after T—1 rounds and S iterations
at the T'-th round, we have

T-1 8
1 _ —_ *
gzz[wm%mﬁs7umm#>
e 5)
] nQ?
+ 12 p2H + ’ Z 2+Lndzp
=1 =1
where [* is the minimum value of f(w) and K = (T —
1)|BIE + S.
Proof: See Appendix D. [ ]

Theorem 2 indicates that the DPFL framework satisfies the
convergence criteria and the noise magnitude will affect the
convergence.

IV. INCENTIVE MECHANISM FOR DPFL

In this section, we consider the DPFL-incentive scenario.
We give the models of the data owners’ contribution and three-
type costs, and provide the utility functions of the model owner
and the data owners, respectively.

A. DPFL-Incentive Scenario

As aforementioned, the DPFL framework provides the pri-
vacy protection of the data owners and reaches convergence
of Algorithm 1. We conduct experiments to measure the
trained model performance with the DPFL framework over
the MNIST dataset and show the result in Fig. 1. We observe
that with the same ¢, the test accuracy of the trained model
decreases with the growing noise scale under both independent
and identically distributed (iid) and non-iid setting. Thus, we
define a data owner’s contribution as the expected trained
model performance and fit the performance curve as

A=—ao?+b

4an?*ET
=—a il + b,

BD;(c — log(1/6)/(a — 1)) ©

where a and b is system factors, and o = M + 1.

Under this setting, we consider a DPFL-incentive scenario
consisting of a model owner and I data owners. The model
owner publishes DPFL tasks specifying the uniform privacy
budget €,,in < € < €maz- When € < €,,i,, the added noise
scale is too large so that the training cannot converge. When
€ > €mazx, the added noise scale is too small to perturb the
model and thus cannot protect the data owner’s privacy. The
model owner also specifies required training data size D; and
corresponding reward R;. Each data owner selects the data
size by considering its computation cost, communication cost,
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Fig. 1: Test accuracy with respect to noise scale under different
privacy budget (under IID and non-IID setting).

and privacy cost. Then the data owners complete their tasks
over private data of chosen size D; and obtain reward R;. In
order to design the incentive mechanism matching R; and D,
we model the three-type costs and utilities of the model owner
and data owners in next section.

B. The Costs in DPFL

Privacy Cost. At each local iteration, each data owner adds
Gaussian noise to perturb their local computation results, i.e.,
model parameters. According to (1), the noise magnitude o;
depends on the DP budget ¢ € (0,+o00) which affects the
level of privacy protection. With a smaller ¢, the distribution
difference of the local computation results from between the
local dataset D, and adjacent dataset D; becomes smaller,
and the level of privacy protection is higher. In the extreme
case where ¢ — 0, the attacker can not tell the difference of
the computation results, and the highest privacy protection is
achieved. Here we define the privacy cost of a data owner
as his economical loss from the potential privacy exposure,
which is given as .

li =

v; Dy, (7)
ema:c

where v; is the economical loss per unit data from privacy

leakage and €,,,, is the constraint for the perturbation. When

€ exceeds €,,44, the injected noise is too little to perturb the

model result and is not able to protect the privacy of the data

owners anymore.

Computation Cost. After downloading the initialized or
aggregated global model from the model owner, each data
owner carries out the local training. When the data owner ¢
uses its local data of chosen size D); for training, the total
workload for local training is given as W; = Np D, E, where
N is the number of floating point operations (FLOPs) needed
for processing each sample, and E is the number of local
epochs set in Algorithm 1. The CPU clock frequency of device
1 is denoted as ff, and thus the computing capability of device
is f; = f{n;, where n; is the number of CPU FLOPs per cycle.
The computation time of the data owner ¢ for local training at
each round is given as

th _ E o NFE
Y S
For a CMOS circuit [32], the power consumption of CPU can
be given by PP = 1;(f¢)3, where 1); is the coefficient [in

D;, ®)

Watt/(Cycle/s)®] depending on the chip architecture. The
computation energy consumption of the data owner ¢ at each
round can be given as

NpE, f&* D

e = P =
U

i ©))

Communication Cost. At the end of each round, each data
owner uploads the noisy local model to the model owner via
wireless communication of frequency-division multiple access
(FDMA). The bandwidth allocated for the data owner i is
denoted as b; in an arbitrary round and assumed to be fixed
throughout the round. Let s be the model size (in bit). The
communication time that the data owner ¢ spends is 7™ oc 3
[33], [34]. Based on synchronous updates, a time constraint
Timae of each round is set for all the data owners. Here we
assume that after computation, the data owners make full use
of constraint time for transmission to save bandwidth: t{™ =

Trnax — t;°. Thus, the communication energy consumption of
the data owner ¢ at each round is
: NpE
egm - Pcm(Tmax - tgp) = Pcm(TmaaB - f(’iTLDZ)’ (10)
7 (]

where P“™ is the transmission power which is considered to
be the same for all data owners [2].

C. Data Owner and Model Owner Modeling

The expected utility of data owner ¢ is the difference
between its gained rewards R; and its total costs of completing
federated learning tasks. The costs includes the privacy cost
spent for economic loss caused by potential privacy leakage,
and the cost spent for energy consumption of computation and
communication. If the data size is D;, the expected utility of
data owner 7 can be expressed as

ul(D;, R;) =R; — T (e +e5™) — 1

NpEy; f&°
_p, g NEEGST (JP””TW
Pem N T]LE (i
—er—2EEp )y £ D,
ftcnz €max

=R, —0;D; — (C - TiDi) - ,OiDi,

where ¢ is unit cg)st of energy, T is number of rounds,
0; = cTiNFilf"ﬁ , cTipc;;]ZfE, pi = g and
¢ = TP T .. 0; refers to the computation cost and p;
refers to the privacy cost. The communication cost is { — 7;
and relies on 7; since ( is a constant. Thereby, here 7; refers
to the communication cost.

Based on (11), the data owners can be classified into
different types to characterize their heterogeneity. In partic-
ular, the data owners can be categorized into a set @ =
{0,:1<xz< X} of X computation cost types, set T =
{ry :1<y <Y} of Y communication cost types, set P =
{p.:1 <2< Z} of Z privacy cost types. Therefore, there
are total XY Z types of data owners whose distribution is
represented by a joint probability mass function Q (6, 7y, p2)-
The data owners’ types are sorted in a non-decreasing orders
as for each dimension: 0 < 6; < 0y < < fx,

0<71§72g---gTy,and0<p1Spgg---ng.The

T, —
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data owners are discriminated by these three cost types. For
notation simplicity, we represent a data owner of computation
cost type x, communication cost type ¥, and privacy cost type
z to be that of type-(x,y, z). We then ignore the subscript i
and use the combination of data size and rewards {D, R} to
write the utility of the type-(z,y, z) data owner as

ug,y,z(Da R) =R- Oﬁc,y,z(D)

12)
=R-0,D+71,D—p,D—(,

where C,,, . is the total cost of the type-(z, y, z) data owner.
As discussed in Section IV-A, the trained model perfor-
mance with DPFL is a concave function with respect to the
added noise scale which is converse proportional to the data
size given the privacy budget. Without loss of generality, we
consider the aggregate model performance to be the average
contribution of all the data owners, which is expressed as

I
WD) = 73" (~a0? +b)
i=1 (13)

2
where k = B(E_lig‘é”/ 5?/:2(1_1)). Considering the contract item

Wey,z = 2,2, Rzy,»p for each data owner type, the
aggregate model performance can be rewritten as

X Y Z ak
h(Dx,y,z) = ZZZQI,’[,{,Z <_D

r=1ly=1z=1 z,Y,2

+ b) , (14)

where @), , . is the joint probability mass function for the type
of each data owner, i.e., ,,7,, and p.. The expected utility of
the model owner is expressed as

XY Z
um = ’yh(Dmyy,Z) - ZZZIQx,y,sz,y,z
r=1ly=1z=1
XY Z k (15)
= ZZZIQ%U’Z (’Iy (_% + b) - Rm7y,z) ’

r=1ly=1z=1

where v > 0 denotes the conversion parameters from model
performance to profits.

V. MULTI-DIMENSIONAL CONTRACT DESIGN

In this section, we first formulate the problem as a
three-dimensional contract. Then we transform the three-
dimensional contract to the equal one-dimensional contract
problem with constraints. Finally, we relax the constraints for
contract feasibility so as to solve for the optimal contract.

A. Contract Conditions Analysis

We design a three-dimensional contract Q(©,7,P) =
{Wa,y,2, 1< <X, 1<y<Y,1<z<Z} for the model
owner to attract the participation of data owners in DPFL
under the information asymmetry condition, where the model
owner doesn’t know the three-type cost information of each
data owner. The contract is feasible if and only if each data
owner chooses the contract item corresponds to its type. This

is ensured when Individual Rationality (IR) and Incentive
Compatibility (IC) constraints are satisfied at the same time.

Definition 1 (Individual Rationality (IR)). Each type-(x,y, z)
data owner’s utility is non-negative when it selects the contract
item wy . . corresponds to its type, i.e.,

uh (Wey:) >0,1<z <X, 1<2<Y,1<z<Z (16)
Definition 2 (Incentive Compatibility (IC)). Type-(z,y, 2)
data owner gets the maximum utility if it selects the contract

item Wy, . correspond to its type rather than any other
contract items, i.e.,

d

uw,y,z(wlyy,z) > ug,y,z(wl',y'yz')’ 1<z <X,

a7
1<z<Y,1<x<”Z
Thus, the three-dimensional contract design problem is
formulated as

max u™
« (18)
s.t. (16), (17).

However, the multi-dimensional contract design problem has
XY Z 1R constraints and XY Z(XYZ — 1) IC constraints
which are all non-convex. It is difficult to directly handle the
contract design problem with multiple non-convex constraints.
To study the contract feasibility, we first transform the multi-
dimensional contract into a single-dimensional contract for-
mulation. Based on (12), the total cost of a type-(x,y, z) data
owner is Cy y »(D) = 0, D — 17,D + p.D + (. we derive the
marginal cost « of data size for a type-(z,y, z) data owner as

0Cy y.-(D)

2D (19)

a(ew’Ty,ﬂz): :0£_Ty+pz-
Intuitively, a(6, 7y, p-) > 0 shows the unwillingness of the
type-(z,y, z) data owner since the data owner with larger
marginal cost is always more unwilling to participate in the
DPFL. We sort the XY Z data owners according to their
marginal cost of data size in a non-decreasing order as
®1(D), ®2(D),...,2;(D),...,2xyz(D), (20)
where ®;(D) represent certain type-(z,y, z) as type-®, data
owner. Given the sorting order, the data owner types are in an
ascending order according to the marginal cost of data size:
a((I)l,D)S...Oé(CI)j,D) S"'SCE(@XYZ’D). (21)
To ease of notation, we use type-®; to represent the data owner
type and denote w; = (D;, R;) as the contract item designed
for type-®; data owner. In addition, we use C(®;,D;) to
represent the new ordering of cost subsequently. Similarly, we
use a(®;, D;) to represent the marginal cost of data size. We
then use the data owners’ marginal cost type to analyze the
necessary and sufficient conditions for a feasible contract that
satisfies the IR and IC conditions.
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B. Feasibility of a Contract

We first analyze the necessary conditions for a feasible
contract.

Lemma 2. For any feasible contract w(©,T,P), D; < Dj/
holds if and only if R; < Rj: .

The proof can be referred to [15]. Lemma 2 indicates that
if the data owner chooses to use more data for training, the
feasible contract needs a higher reward, and vise versa.

Lemma 3 (Monotonicity). For any feasible contract
w(©,T,P), if a(®;,D;) > a®;,Dj), it follows that
D; < Dj.

The proof can be referred to [15]. Lemma 3 shows that the
data owner with a higher type prefers to do training with more
data. According to Lemma 1 and Lemma 2, we can achieve
the necessary conditions for a feasible contract as follows.

Theorem 3 (Necessary Conditions). A feasible contract must
satisfy:

(22)

Dy >Dy>--->Dj>--> Dxygz,
Ri>Ry>--->R; >+ > Rxyz.

We then analyze the sufficient conditions for a feasible
contract. In order to achieve the solution of optimal contract
by reducing the number of constraints, we relax the IR and
IC constraints as follows.

According to the independence of ®; on the contract item
{D, R}, ie., ®;(D,R) = ®;(D',R),D # D',R # R/,
the data owner type does not change with the data size and
contract rewards. In addition, based on (19), we can deduce
that the data owner type with minimum marginal cost is
w1 = {01,7v,p1}, and the data owner type with maximum
marginal cost is wxyz = {0x,71,pz}. We can derive the
minimum-utility data owner type wy,q, as

Wmaz = argminu®(D, R, w;). (23)
Wi

Based on (12), the utility decreases in 6, increase in 7,

decreases in p,. We can deduce that the minimum-utility is

{0x,71,pz} and wper, = wxyz which is the data owner

type that incurs the highest marginal cost of data size.

Lemma 4 (Reduce IR Constraints). If the IR constraint of
the minimum utility data owner type wxy z is satisfied, the IR
constraints of other data owner types will also satisfied.

Proof: According to the IC and IR constraints, we have

d

wjw; > uf(wxyz) > uky z(wxyz) > 0. (24)

As long as the IR constraint of the type-wxyz data owner is
satisfied, the IR constraints of the other data owner type will
also hold. The proof is now completed. ]

Lemma 4 enables to cut the XY Z IR constraints to only
one IR constraint, i.e., UdXYZ(onyz) > 0.

Definition 3 (Pairwise Incentive Compatibility). If and only

! { wy(wy) = uy(wy)

25
ujr(wjr) > ujr(wy), (23)

is satisfied, the contract item w; and wj are pairwise incentive
. PIQ
compatible and denoted as w; <= wj.

The Pairwise Incentive Compatibility (PIC) consists of all
IC conditions in the two-data owner case. In other words,
the XY Z(XYZ — 1) IC conditions are equivalent to the
XYZ(XYZ — 1)/2 PIC conditions for all the data owner
pairs.

Lemma 5 (Reduce IC Constraints). Under the feasible con-

. PIC d PIC " PIC
tract, if wj_1 == w; and w; <= wj41, then w;_| <
Wij41.

The proof can be referred to [15]. Lemma 5 makes the
contract problem more tractable. It shows that we can cut
a total of XY Z(XYZ — 1)/2 PIC conditions to a total of
XY Z — 1 PIC conditions for the neighbor data owner type
pairs. Now we can reduce IR and IC constraints and derive a
tractable set of sufficient conditions for the feasible contract
as follows.

Theorem 4 (Sufficient Conditions). A feasible contract must
satisfy:

()Rxyz — C(®xyz,Dxyz) >0

2)Rj11 — C(®jq1, Djp1) + C(®j11, Dj) =2 Ry > Rjpa —
C(®;,Djt1) + C(®;, D;)

C. Optimal Contract

According to the conditions for the feasible contract, we
first obtain the optimal reward given a feasible set of data size
as follows.

Theorem 5 (Optimal Reward). For a feasible set of data size

D satisfying Dy > Dy > -+ > Dj > -+ > Dxyg, the
optimal reward is obtained by
R — C(®xyz,Dxyz),j=XYZ
J 1 — C(®), Dj1) + C(®4, Dj), otherwise.
(26)
We rewrite the optimal rewards in (26) as
XYz
R =Ryyz+ Y Am, 27)
m=j
where Axyz = 0 and A,, = C(®,,D,) —

C(®p, Dmt1)sm = 1,2,...,XYZ — 1. To analyze the
optimal data size D* for the data owners, we substitute the
optimal rewards R* into the utility function of the model
owner and rewrite the optimization problem (18) as

XYZ
Gi(D;
mDa‘X ; J( ]) (28)
st. Dy >Dy>--->D;>--->Dxyyg,
where
j—1
G =I (Q(‘Pj)vh(Dg‘) +C(®5-1,D5) Y Q)
m=1 (29)

m=1

—C(CI’ij)ZQ(@m)) :
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Since the objective functions G;(D;) and G;(D;) are inde-
pendent of each other, 4,5 € {1,..., XY Z},i # j, G;(Dy)
is only related to D;. Thus, D; can be derived by optimizing
only G;(Dj), which is given as
j—1
Dj =argmax Q(®;)yh(D;) + C(®j-1, Dj) > Q@)

m=1

J
—C(®;,D;)> Q(Py).
m=1
(30)
In addition, we observe that G;(D;) merely consists of a
concave function and a linear function such that it is a
concave function. According to Fermat’s Theorem [35], we

0G; = 0 to derive the D?. If the derived
aD] D].:D’.k ¢

can solve

solutions satisfy the ]monotonicity conditions, they are the
optimal contract formulations. Otherwise, we use the iterative
adjust algorithm [15] to obtain the solutions that satisfy the
monotonicity constraint.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
multi-dimensional contract-based incentive mechanism under
the DPFL framework.

A. DPFL Performance

Experimental Setup. We conduct experiments on the
standard MNIST dataset for handwritten digit recognition
including 60,000 samples for training and 10,000 samples
for testing. We adopt a LeNet with 2 convolution layers and 2
fully connection layers for the multi-class classification task,
namely, recognizing digit O to 9. Each convolution layer has
32 channels and kernel size is 3. We consider both iid and
non-iid settings. For the iid setting, we uniformly split the
training samples to 100 data owners. For the non-iid setting,
we sort the data by digit label and distribute the data to 100
data owners by using the fashion in [3]. According to [3], we
set batch size B = 10, number of local epochs £ = 5, and
number of communication rounds 7" = 30 for iid setting and
T = 50 for non-iid setting. We adopt SGD for the optimizer
and set the learning rate = 0.01.

Trade-off between Accuracy and Privacy. Fig. 1 shows
the test accuracy with respect to noise o under different privacy
budgets. When the privacy budget € is fixed, the test accuracy
decreases with the increasing noise o. This is because that
the model injected by larger noise has lower performance. We
further fit the performance curve A related to noise scale o and
use it to model the contribution of data owners for the incentive
mechanism. When the model parameters are injected by the
same noise scale, the test accuracy is higher with a lower
e. This is because that under the same noise scale, the data
owners choose a larger data size to reach a lower e. With the
same privacy budget, the model performance under the non-iid
setting decreases more rapidly than that under the iid setting.
The reason is that the non-iid data increases the difficulty of
training. Fig. 2 shows the test accuracy with respect to total
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Fig. 2: Test accuracy with respect to data size under different
privacy budget (under IID and non-IID setting).
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Fig. 3: Test accuracy with respect to communication rounds
for the MNIST dataset (under IID and non-IID setting).

data size D. When ¢ is fixed, the test accuracy increases with
increasing data size D. This is because that the model trained
on a larger data size has better performance. When we use the
same data size to train the model, the test accuracy is higher
with a higher e. This is because that with the same data size,
the data owners choose to inject less noise to reach a higher
€. The test accuracy of the trained model under the iid setting
outperforms that of the non-iid setting. The reason is that it is
more difficult for training the model over non-iid data.

Convergence Properties. We set the total data size D =
50,000 and the number of communication rounds 7" = 50 to
observe the algorithmic convergence properties of the DPFL
framework. Fig. 3 and 4 show the test accuracy and training
loss with respect to communication rounds under different
privacy budget. The traditional federated learning algorithm
FedAvg [3] is considered as a baseline performance without
adding noise. As the privacy budget e decreases, the train-
ing loss converges to a higher bound and the test accuracy
decreases. This is because that with fixed data size, a lower
data budget € brings to a larger noise o which implies larger
convergence error. This is consistent with the convergence
analysis in Section III-D. Comparing with the training under
the iid setting, the training under the non-iid setting has a
higher bound of training loss and a lower test accuracy. The
reason is that training over the non-iid setting brings a larger
convergence error.

B. Contract Performance

Simulation Setup. We consider that 100 model owners
use the LeNet on MNIST dataset under iid setting and
the compuation workload is Ny = 10MFLOPs. The CPU
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clock frequencies of devices f{ are uniformly chosen from
{1100, 1150, 1200, 1250 }MHz. The Coefficient of the CMOS
circuit ¢; is uniformly chosen from {1,1.5,2,2.5} x 10728,
The economical loss of unit data v; is uniformly chosen from
{0.01,0.012,0.014,0.016}. The profit coefficient is v = 500
and the unit cost of energy is ¢ = 0.5. The other parameters
are set based on the table 1.

TABLE I: Parameter Setting in the Simulation

Parameters Setting

DPFL: B, E, T, n 10, 5, 30, 0.01

DP: 6, €maw, a, b 102, 50, 252.5413, 0.9351
Computation: n; 8FLOPs/cycle
Communication: P, Tyq. | 0.2Watt, 6s

Performance Comparison. We compare our proposed
contract-based incentive mechanism under asymmetric infor-
mation scenario (CA) with the other three incentive mech-
anisms: contract-based incentive mechanism under complete
information scenario (CC), contract-based incentive mech-
anism for social maximization (CS) [15], and Stackelberg
game-based incentive mechanism (SG) [36]. CC considers the
scenario where the model owner knows the cost types of each
data owner. CS considers the information asymmetry but the
model owner aims to maximize the social welfare which is
expressed as

XYZ
ud = u™m 4 E u;i
i=1

XYZ ~y ak
Z IQr,y,z <I (D + b> - Omvyvz) :
i=1 v

SG considers the data owners share a total reward R from
the model owner based on the proportion of data size and the
objective of each data owner is to maximize its own utility
which is expressed as

a_Di
D
We consider 8 (2 x 2 x 2) data owner types. Fig. 5 shows
the system performance under different incentive mechanisms.
With the CC mechanism, the model owner achieves the highest
utility but the utilities of data owners are zero. It is because
that the model owner has full knowledge of data owners’
types and thus designs the contracts for maximizing its own
utility, leading minimum utilities of data owners. With the

€2y

u R —0;D; — (( — 7:D;) — piD;. (32)

CS mechanism, the data owners achieve higher utilities while
the model owners obtain lower utilities. The reason is that
the CS mechanism aims at maximizing the social welfare and
thus reaches the balance between the data owner side and the
model owner side. We find that the CS mechanism attains
the highest social welfare as well as the CC mechanism, but
the CS mechanism is under information asymmetry condition.
With the SG mechanism, the data owners have the highest
utilities but the model owner has the lowest utility. The reason
is that the objective of the data owners with SG mechanism
is to maximize their own utilities and thus reduce the utility
of the model owner. Compared with the three mechanisms,
our proposed CA mechanism allows the model owner to
obtain near-optimal utility under the information asymmetry
condition.

Impact of Privacy Budget e. Fig. 5 shows the system
performance with respect to privacy budget e. With higher
€, the utility of model owner and the social welfare increase
but the utilities of data owners decreases. It is because that
setting a higher € will allow the data owners to make higher
contribution for the model performance and thus improve the
profit of the model owner. But a higher € also brings higher
privacy cost to the data owners.

Impact of Multi-Dimension Types. Fig. 6 shows the
system performance with respect to number of data owners
under different number of data owner types. When the number
of data owners increases, both the model owner and the data
owners obtain higher utilities. It is because that the growing
number of data owners can contribute more data for training
the model and gain more rewards. Thus, the social welfare
is also improved. When the number of data owner types
increases, the utility of model owner decreases but the utilities
of data owners increase. The reason is that when the number
of data owner types increases, it becomes more difficult for
the model owner to mine the information of the data owners’
type and design the corresponding contract. Therefore, the data
owners can extract more reward from the model owner.

Contract Properties Fig. 7 shows the properties of the
designed optimal contracts. We consider 8 (2 x 2 x 2) data
owner types. Fig. 7a and 7b show that both the data size
and reward monotonically decrease with the increase of the
marginal cost of data owners. This satisfies the feasibility of
contract structure given in Theorem 3. Moreover, type-7 and
type-8 have the same data size and reward. It is the result of
adjusting the solutions to satisfy the monotonicity constraint..
Fig. 7c shows the utility of different type of data owner
selecting different types of designed contracts. We observe that
the data owner achieves the highest utility only when it selects
the contracts of its own type. This satisfies the IC constraints.
When they select the contract of their own types, their utilities
are non-negative. This satisfies the IR constrains. In particular,
the utility of type-8 is zero, as verified in Lemma 5.

VII. CONCLUSION

In this paper, we proposed a practical incentive mechanism
for incentivizing the data owners to join federated learning
in the IoT area by jointly considering their task expenditure
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Fig. 7: The properties of contract-based incentive mechanism.

and privacy risk. To control the risk of privacy leakage in the X, X' € X ir holds D, (f(X) || f(X')) < p.
federated learning process, we built up a DPFL framework and
provided corresponding theoretical analysis. Under the DPFL
framework, we modeled the data owners’ contribution and
three-type costs, which are related to local training data size
and privacy budget. Based on the contribution and cost mod- Lemma 6. Gaussian mechanism M = f(D) + N(0,0%1q)
els, we designed a three-dimensional contract-based incentive  applied on a subset of samples that are drawn uniformly
mechanism to find the optimal reward and local training data  without replacement with probability T satisfies (c, 3'5(’77;20‘)—
size for different types of data owners under the information ppp given a—1< 2%2 log ( (11+ 2)), where the sensitivity
asymmetry. We also conducted simulations to validate the of fis 1. ariire

effectiveness of the proposed incentive mechanism.

RDP is a natural relaxation of DP that is well-suited for
expressing guarantees of privacy-preserving algorithms. It has
the following properties [37]:

Lemma 7. If a randomized mechanism M satisfies («, p)-
APPENDIX RDP. M satisfies (p + 232 '5).DP for all § € (0,1)
A. Additional Notation
Definition 4 ((¢,0)-DP). A randomized machanism f : X —  B. Proof of Theorem 1
R with domain D and range R offers (e, 0)-differential privacy
if for any two adjacent datasets X, X' € X that differ in at
ii?;tizzepff}”(p )l:) aequ]a n<y eiugi ’f}s( ;,)CGRS]VE/:tg a bound 4, it For local iteration s of round ¢, the data owner ¢ learns a
! - ’ batch of data with batch size B to update the local model:
Definition 5 ((o, p)-RDP). A randomized mechanism f : X — wi’s — wi,s_l - %Vﬁ(wfys_l; b; s). Given any two neighbor-
R offers («, p)-Renyi different privacy, if for any adjacent ing datasets X and X' of size B, the sensitivity of the local

Proof: We use RDP to tightly account the privacy loss
of the data owner and then convert it to a DP guarantee.
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model at local iteration s of round ¢ is

A(wz,s) = %}%”fwi,e - fU‘i,s’”2
2nL

—l(wf o ;X )[|l2 < 5

U i
= g@gggﬂf(wt,H;X)

The inequality is due to the L-Lipschitz continuous of the
loss function ¢(-). The sampling rate is 7 = B . Accord-
ing to Lemma 6, if we add Gaussian noise drawn from
N(0,021,), each iteration then preserves («, €(c)’)-RDP with
e(a) = 10°L®  After T rounds with |8;| E local iterations at

D?O’?
M)_RDP. By Lemma 7,

BD;c2
Algorithm 1 provides (¢, §)-DP with € = 14735 fTO‘ + loi(l/lé).

We set L =1 [17] and solve o; from € and achieve (H. m

each round, it provides (a,

C. Proof of Lemma 1

Proof: At round ¢ > 1, each data owner calculates the

n;,s

7 )
— ; Ny o

By (2), we have Wy = w1 — 0> p_y Simypildhs — =)

Thus, we have

update for s-th iteration as w} , = we_1—nY_y_,(9f ,—

E [Hms - wi,SIIQ]

2
n s 5 . ng 4
= nZsz (g1, — — )= ny (g, ——2)
h=1i=1 h=1 n
s s I
i |2 P12
ZWQZZP?E [Hgt,sH } +> ) PiE [H”ts“ }
h=1i=1 h=1i=1
+12) E [llgh ] + 2 [l l]
h=1 h=1
(a) ! !
< 5772G2ZP? + stpfof + 50°G? + sdo?,
- . (33)

where (a) follows Assumption 3 and the expected noise scale

E [Hntsﬂﬂ = do? with noise dimension d. [ |

D. Proof of Theorem 2

Proof: Based on the Assumption 1, we have

E[f(w)] < E[f(m)] + 2E [[m1
+ E[(V f(W,5-1), We,s —

— Et,s—l “2} (34)

Et,sfl>]
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Note that
2
E @10 — eoa|?] < n?E (giy — >
i 1 2
szvf’t wts 1
=1
2
+7I2E vava wte 1
=1
2 ! 2 i i 2 2 i |12
="y 2E [|lgh.. — Vfilwio)|’] +zpiE [t oI1°]
i=1 =1
I
+ Y 2R [||V fitwh o))
=1
(b) 2
dre zpz +dzp +n2zp3E 1V 7:twi—0)I]
- (35)

_where (a) follows from (2); (b) follows because each
9t =V fi(w} , ;) has 0 mean and is independent across data
owners, and the expected noise scale. We further note that

E[(V f(Wt,s—1), Wt —Wts 1))

(;)—nE <Vf Wi, 5— 1 sz (gts bi]s>>‘|

=1
() — ! ;
= —nE <Vf(wt,s—1),Zpivfi(wi,s_l)ﬂ

i=1 I ED)
O IE | IV @) + || D_pi Vit o)

i=1 ,
HVf (Wt,5-1) szvfz wts 1) )
i=1

where (a) follows from (2); (b) refers to [31]; (c¢) follows
from the basic identity (z,y) = 1 (||lz[|* + |ly[|* + [z — y||?).
where z, y are any two vectors with same length. We note that

2

Vf(Wia-1) Zplv.fz (Wi o 1)

i=1

2

I I
=E Zpivfi(mt,sfl) — Zpivfi(wi,sfl)

=1 =1

(37)
1
=Y PE [|IV£i(@rem1) = Vilwh )|

i=1

Yy ym [ L2zp3H

i=1

where (a) follows from Assumption 1; (b) follows from
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Lemma 1. We substitute (35) and (36) into (34) and get

E [f(wt,s)}
_ n— L i 2
<E [W,s-1] — TZPJE [vai(wt,s—l)” }
1=1
L2202 1 2 I
~ I8 IV i@ )] + ”TQZp? + = pio?
i=1 ) =1
+ gE vf Wt,s—1 szvfz ’LUt s—1 )
7 L2 &
<E [@is-1) = 3B [|VF (@0 + =D p2H
=1
Ln QQZ + 77 Z 2 2
. (38)

We divide both sides by

E IV f(@,s-1)I]

and rearrange terms to have

I
2
< B @ee)] ~EU@) + PSR gy
g i=1 (39)
I I
LnQ? 2 2 2
+ szz + Lndzpi o -
=1 =1
We set K = (T — 1)|5|E + S. Sum over K local iterations
and divide both side by K and achieve
[ T-1.8
KZZE 1V @) I?]
t=1s=1
9 I
Sﬂ? (f(Wo,0) — E[f(we,s)]) + LQZP?H
LnQ? . 2 : 2 2
+ T;pi + Lnd;pi o (40)
I I
2 L \ LnQ?
< (f(@oo) — F*) + LD pPH + TS
nK i=1 B
I
+ Lndy “plo?
i=1
|
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