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Abstract—With the wide range application of machine learning
in healthcare for helping humans drive crucial decisions, data
privacy becomes an inevitable concern due to the utilization of
sensitive data such as patients records and registers of a company.
Thus, constructing a privacy preserving machine learning model
while still maintaining high accuracy becomes a challenging
problem. In this paper, we propose two differentially private
algorithms, i.e., Output Perturbation with aGM (OPERA) and
Gradient Perturbation with aGM (GRPUA) for empirical risk
minimization, a useful method to obtain a globally optimal
classifier, by leveraging the analytic Gaussian mechanism (aGM)
to achieve privacy preservation of sensitive medical data in a
healthcare system. We theoretically analyze and prove utility
upper bounds of proposed algorithms and compare them with
prior algorithms in the literature. The analyses show that in
the high privacy regime, our proposed algorithms can achieve a
tighter utility bound for both settings: strongly convex and non-
strongly convex loss functions. Besides, we evaluate the proposed
private algorithms on five benchmark datasets. The simulation
results demonstrate that our approaches can achieve higher
accuracy and lower objective values compared with existing
ones in all three datasets while providing differential privacy
guarantees.

Index Terms—Differential Privacy, Analytic Gaussian Mecha-
nism, Empirical Risk Minimization, Machine Learning, Health-
care.

I. INTRODUCTION

In the big data era, data becomes incredibly easy to acquire
and aggregate. Machine learning is being increasingly used
to extract useful information from data aimed to benefit
our lives in various aspects. Due to the high performance
and great potential in different domains such as computer
vision and speech recognition, machine learning brings lots of
new opportunities to healthcare. For instance, Enlitic is using
machine learning to spot nearly undetectable health problems
from billions of medical images like X-rays, CT scans and
MRIs [1]; Machine learning techniques are also used for
calculating the mortality probability after a heart surgery [2]
and the probability of patients suffering postpartum depres-
sion [3] and cardiovascular disease [4]. At the same time,
however, machine learning algorithms used for healthcare
may give rise to privacy concerns because the training data
may contain sensitive information such as medical records,
patients identification, and so on. Recently, Fredrikson et
al. [5] used hill climbing on output probabilities of a computer
vision classifier to recover the personal faces from the training
set. Thus, the problem of data privacy in machine learning,

especially for the privacy of training datasets, has attracted
more attention.

Recently, differential privacy has been proposed as a de-
facto privacy model that can offer a strong privacy guar-
antee when releasing sensitive results of statistical analysis.
Differential privacy measures the difference in the output
of an algorithm due to the presence of a single element
in the original dataset, which ensures the adversary cannot
infer any sensitive information. The mechanisms for achieving
differential privacy mainly include the Laplace mechanism [6],
the classical Gaussian mechanism [7], and the exponential
mechanism [8]. Therefore, because of the powerful guarantee
of differential privacy, research has been done on studying
privacy preserving machine learning together with differential
privacy, such as [9]-[11].

Empirical risk minimization (ERM) as a standard technique
covers a wide set of learning tasks like classification and
regression, etc., where the averaged loss of the model over a
dataset is minimized. We can directly obtain private machine
model by designing a private ERM algorithm, in other words,
solving ERM problem in a differentially private way. A
number of approaches have been proposed for designing a
differentially private ERM algorithm that can be classified into
three categories: output perturbation, objective perturbation
and gradient perturbation. Output perturbation and objective
perturbation first proposed by Chaudhuri et al. [9]. Output per-
turbation protects the privacy by using the Laplace mechanism
or the classical Gaussian mechanism to perturb the output of
the non-differentially private algorithm. Objective perturbation
guarantees differential privacy by adding noise to the objective
function of ERM and obtaining the precise solution to the
noisy objective function. For output perturbation and objective
perturbation proposed in [9], it is unnecessary for the practical
problem to require precise solutions. Thus, an extended output
perturbation approach for ERM problem has been proposed
by [10], which obtained approximate solutions and achieved
good utility and time complexity by running gradient descent
algorithm for a fixed number of iterations. However, due to the
limitations of the classical Gaussian mechanism, which is not
suitable in the low privacy regime, the scope of applications
of the above algorithms is limited. Gradient perturbation
approach proposed by [12] achieves (e, 0)-differential privacy
by adding Gaussian noise to each iteration and derives good
utility for both strongly convex and non-strongly convex loss
functions. However, the classical Gaussian mechanism used
in [12] is suboptimal in the high privacy regime. As a result,
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there is still much room for improvement concerning the utility
bound.

To overcome above limitations of the classical Gaussian
mechanism: loose in the high privacy regime (¢ — 0) and not
applicable in the low privacy regime (¢ — oo), the analytic
Gaussian mechanism has been proposed by Balle et al. [13].
The improvement of the analytic Gaussian mechanism (aGM)
is based on a noise calibration method that instead of relying
on tail bounds of Gaussian distribution to calibrate the variance
of Gaussian noise, focuses on numerical evaluations of the
Gaussian cumulative density function (CDF).

In this paper, we utilize two private learning algorithms
to build a privacy preserving classification model in the
healthcare system for disease prognosis and diagnosis. The
privacy level of the classifier is controlled by the healthcare
server and the system will be distributed to each patient. Due
to the strong privacy guarantee of the private classifier, the
attacker with access to model parameters, training methods
and model architectures still cannot infer any sensitive in-
formation. By utilizing the analytic Gaussian mechanism, the
proposed efficient private ERM algorithms will provide tighter
utility upper bounds. The main contributions of this paper are
summarized as follows:

e« We propose an efficient machine learning scheme for
a healthcare system to train differentially private clas-
sification models, which helps doctors make diagnostic
decisions and increase efficiency while protecting privacy
of medical datasets.

e« We design two differentially private machine learning
algorithms, i.e., Output Perturbation with aGM (OPERA)
and Gradient Perturbation with aGM (GRPUA). For both
strongly convex and non-strongly convex problems, our
theoretical analysis shows that the proposed algorithms
have tighter utility bounds than previous works in the
high privacy regime.

o Using real-world datasets, we apply our algorithms to two
common machine learning objective functions: logistic
regression, support vector machine and neural network
to verify the effectiveness of OPERA and GRPUA al-
gorithms. The results of performance evaluation show
the proposed algorithms significantly outperform existing
algorithms in the high privacy regime.

The rest of the paper is organized as follows. Section II
presents the system architecture and threat model. We intro-
duce preliminaries about the convex optimization and differ-
ential privacy in Section III. This is followed by two proposed
private risk minimization algorithms in Section IV. We show
performance evaluation and related work in Section V and
Section VI. Section VII concludes the whole paper.

II. PROBLEM STATEMENT

In this section, we first describe the healthcare system ar-
chitecture for classification and introduce the machine learning
problem: empirical risk minimization, a learning principle that
machine learning model is trained in regard to minimizing the
average loss over the training data. We then describe the threat
model of this healthcare system.
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Fig. 1: Architecture of Healthcare System

A. System Architecture

In this work, we focus on the healthcare system where a
healthcare server owns plenty of patients’ data and utilizes
them for model training. The healthcare system model is
shown in Fig. 1. As shown in the figure, the sensitive health
data that holds in the server includes glucose levels, heart
rates and blood pressure, etc. The raw data obtained from
different modalities like images and texts are preprocessed
and represented with binary feature vectors. The dataset that
stores in the server is denoted as D = {(z1,41), .., (Tn, Yn) }+
where z is the feature vector, y is the corresponding label,
and n is the size of D. The doctor will assist the healthcare
server to perform machine learning over such feature vectors.
After obtaining the trained model, the server will publish it to
specific patients and doctors.

In particular, we assume that the doctor follows Empirical
Risk Minimization (ERM) [14] rule, i.e., the machine learning
model trained by minimizing the average loss error over the
training data. Given a dataset D = {21, 29, ..., 2, }, where each
z; = (x4, y;) lies in a domain X, the ERM problem is defined
as follows

glelngD wazl (D)

where C C R< is a convex set, f(w, z;) is a loss function for
each z;. The ERM problem (1) can be implemented for many
important machine learning problems by choosing different
loss functions, such as logistic regression, where the loss
function is set to logistic loss; and support vector machine,
in which the loss function is defined as hinge loss.

As we all know, medical resources are limited. The doctors
with such a machine learning model can help them make
diagnostic decisions and increase efficiency. As for patients,
this machine learning model can help them do a health
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assessment and boost chances of recovery. Specifically, in
diabetes management, a research institute wants to develop
a binary classifier that predicts whether the glucose level is
normal or not. As a part of this procedure, the training dataset
is collected from patients in a hospital including food intake,
physical activity, and other biological and environmental fac-
tors. Moreover, the glucose levels gathered from the patients
are labeled as ’-1” or ’1” (i.e., y € {—1,1}) based on a safety
threshold. Thus, the research institute constructs a classifier
over the training dataset that can predict the glucose level.
As a result, without the frequent blood tests, the health of
diabetics is better monitored. In addition, after publishing the
learning model, it would also benefit the whole society.

B. Threat Model

Our goal is to let the healthcare server perform the machine
learning model where it would not expose any other infor-
mation about patients’ data. During the training procedure,
the training samples composed of feature vectors and labels
are private, because they include the daily activity and health
status of patients. As we mentioned before, the learning model
constructed over the sensitive training dataset is shared by
healthcare server and stored on mobile devices, which makes
inference power-efficient and contribute to privacy due to no
need communicating patient data to the healthcare system. As
shown in Fig. 1, an adversary may attack a patient so that it can
obtain the healthcare system model, i.e., the adversary access
to the model’s parameters. Additionally, we consider the same
assumption of an adversary as the previous work [15] that is a
strong adversary with full knowledge of the training methods
and it aims to learn the private information in training samples
from the model.

Based on the above adversary, the published machine learn-
ing model gives rise to privacy concern especially when the
training dataset contains the medical records. Therefore, it is
highly desirable to construct a privacy preserving healthcare
system.

III. PRELIMINARIES

In this section, we first introduce some background knowl-
edge of convex analysis. Then we present the start-of-the-
art privacy preserving technology: differential privacy, which
helps us to build the private machine learning model.

A. Convex Analysis

Definition 1 (L-Lipschitz Function). A function f : Cx X —
R over w € C is said to be L-Lipschitz if for all wi,ws € C
and z € X,

|f(w1,2) = f(we, 2)| < Lljwy — wallz,
where || - ||2 is la-norm.

Definition 2 (3-Smooth Function). A function f : CxX — R
is B-smooth if for every wy,wq € C, and z € X we have

Fwr, )= Flwz, )= (VF ), w1 — wa) | < 5w — w3

Definition 3 (p-Strongly Convex). A function f : CxX — R
is p-strongly convex if, for every wi,ws € C, and for z € X
and every subgradient V f(w, z) € 0f(w, z), we have

0f (wa,2) 2 (Vi (w1, 2), wa = wr) + & lwz — w3

B. Differential Privacy

Differential privacy is introduced by Dwork [16], which
provides strong privacy guarantees by measuring the privacy
risk of each single element in the dataset. The concept of
differential privacy is defined as:

Definition 4 ((¢,6)-Differential Privacy). A randomized
Mechanism A is (¢,0)-differentially private if for any two
neighboring inputs D, D’ € D that differ in at most one single
element, and for any possible output s in the output space of
A, it holds that

Pr(A(D) =s) <ePr(A(D') =s) +4.

To design a (e,0)-differentially private algorithm, the com-
mon approach is the classical Gaussian mechanism [7], which
adds noise from Gaussian distribution calibrated to the sensi-
tivity of the query function.

Definition 5 (Sensitivity). The sensitivity of a query function
q(+) that takes a dataset D as input is defined as follows

Ay = sup [lg(D) —q(D’)|2
D,D’

The sensitivity of the query function means the maximum
difference in the output of ¢ when one element of input data
is changed.

Theorem 1 (Classical Gaussian Mechanism). Given any
function q : X — R® and for any €, € (0,1), the Gaussian
mechanism defined by Mg (D, q,¢€) = q(D) + N(0,0%1,) is
(¢, 0)-differential privacy, where N(0,021;) is the Gaussian

V210g(1.25/86)A,

We can notice that the classical Gaussian mechanism is
limited because of the range of privacy budget e. It is shown
that the classical Gaussian mechanism cannot achieve (e, 0)-
DP at the case ¢ > 1. Thus, the analytic Gaussian mechanism
(aGM) is presented in [13] to solve the limitations of the
classical Gaussian mechanism.

distribution and o >

Theorem 2 (Analytic Gaussian Mechanism). For any ¢ > 0
and § € [0,1] and given any function q : X" — R%, the
Gaussian mechanism Mg (D, q,¢) = q(D) + N(0,0%1,) is
(¢, 0)-differential privacy if and only if

AW €o A, €o
Za Y L e ' AN I
(I)(2U Aq) eq)( 20 Aq)é7

where @ is the CDF of the standard Gaussian distribution:
®(t) = PriN(0,1) < t] = ﬁ fioc /2y,

2

The result in Theorem 2 shows that it is enough to find a
Gaussian noise with variance o satisfying the constraint (2)
to achieve an (e, §)-differentially private Gaussian mechanism.
Because the particularity of the Gaussian CDF @, a highly
accurate calibration of the variance of Gaussian noise by using
a numerical algorithm is proposed in [13].
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IV. PRIVATE RISK MINIMIZATION

In this section, we provide two differentially private al-
gorithms together with the analytic Gaussian mechanism to
obtain differentially private machine learning models. And
then we analyze their utilities for strongly convex and convex
cases, respectively.

A. Private Convex Optimization via Output Perturbation

The output perturbation mechanism was first proposed
in [9], which solves the ERM problem (1) to get the minimizer
w and then adds random noise from a random variable. The
mathematical description is as follows.

Definition 6 (Output Perturbation).

Wprin(D) = (D) + 2, 3)

where a random vector z is drawn from a Gaussian distribu-
tion N'(0,021) and (D) is the minimizer W over a dataset
D.

We first consider the case that the loss function f(w, z;) is
p-strongly convex, and then consider the non-strongly convex
loss function.

1) Strongly Convex Case:

Lemma 1 ( [10]). Assume a loss function f(w,z;) is L-
Lipschitz, 3-smooth and pi-strongly convex for all z;. Suppose
we run gradient algorithm with constant step size 1 <
for T steps. The sensitivity A then satisfies

A< Lt B)
T B

Theorem 3 (Privacy Guarantee). In OPERA (Algorithm 1),
for any € > 0 and 6 € [0,1], it is (e, §)-differentially private.

B+

Proof. Theorem 3 can be directly derived by combining
Theorem 2 and Lemma 1. O

Algorithm 1 Output Perturbation with aGM (OPERA)
1: Input: (€, ) is the privacy parameters and the sensitivity
A. f(w,z;) is L-Lipschitz, S-smooth. 7 is the step size,
T is the number of iteration and wy is the initial point.

2: Let 6 = @ (0) — e® (—/2¢).

3: if § > §p then

4 Define BY(v) = @ (Vev) — @ (—\/e(0 +2));
5 Compute v* = sup{v € R>¢ : BT (v) < d};

6: Let @ = /1 +v*/2 — \/v*/2.

7: else

8  Define B~ (v) = & (—/ev) — e“® (—«/e(v n 2));
9: Compute v* = inf{v € R>o : B~ (v) < ¢};

10: Let @ = /1 +v*/2 + \/v*/2.

11: end if

12: Set noise variance o2 = "“22?2

13: for t =0,1,....,7T — 1 do

14: W41 = Wy — % Z;L:l Vf(wt, Zi).

15: end for

16: Output: wy,i,, = wy + N(0,021).

4

Theorem 4 (Utility Guarantee). Suppose that for any z; and
lwlle < R, the loss function f(w, z;) is L-Lipschitz, B-smooth
and p-strongly convex. In OPERA (Algorithm 1), if one choose

n < ﬁ and A < w) the following holds for T =

2 2 2n2 26
o (<5 i)

. BLdo?

where o is parameter calculated in OPERA (Algorithm 1) for

obtaining the noise variance o>.

Proof. By B-smoothness of f and wp,i, = wr + 2, where
z ~ N(0,0%I) , we have

]E[F(wpriv7D)] - F(’Lb,D)
< E[F(wr, D) + (VF(wr, D), 2) + 5 |21 - F(i D)

= F(wr,D) — F(@, D) + gEHzH%
< 8, 2uBT ) 25L2(u+6)2da2’
2 w+ B)? 4n?p?Be
where the second equality is due to Lemma 5 in [10].
Thus if we take 7' = © (“2:}552 10g(“2”2R2€)), we can get

L2da

5L2da2>

O
n2u2e

E[F (wpriv, D)] — F(w,D) < O (
Remark 1. For strongly convex loss function, our proposed
algorithm OPERA achieves (e, 0)-differential privacy and has
the utility bound 0 (%) (O means we ignore all log factors
and «). Comparing with the best known utility upper bound
o} (ane2) for output perturbation approach in [10], OPERA
vields a tighter bound by a factor of % in the high privacy
case (e — 0). And also, our OPERA algorithm can extend
to the low privacy regime (e — oo) with the help of the an-
alytic Gaussian mechanism while providing (e, §)-differential
privacy. The time complexity of our algorithm OPERA can

ne

be easily obtained as time(a) + O(nd log(\/ﬁ)), where
og

time(a) is the time for computing « in Step 2-11, while

the time complexity of [10] is O(ndlog(ﬁ). Hence,
dlog
to provide a very efficient and robust way to find the solutions

up to arbitrary accuracies for computing o, we adopt the the
simple scheme in [13] based on binary search method.

2) Non-strongly Convex Case:

Lemma 2 ( [10]). Assume a loss function f(w,z;) is L-
Lipschitz and B-smooth for all z;. Suppose we run gradient
algorithm with constant step size 1 < % for T steps. The
sensitivity A then satisfies

A< 3LT7).
n

Theorem 5 (Privacy Guarantee). In OPERA (Algorithm 1),
for any € > 0 and 6 € [0,1], it is (e, §)-differentially private.

Proof. While using Theorem 2 and Lemma 2, Theorem 5 can
be directly derived. O
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Theorem 6 (Utility Guarantee). Suppose that for any z; and
|lwlle < R, the loss function f(w,z;) is L-Lipschitz and (-
smooth. In OPERA (Algorithm 1), if we choose 7] < L and

B
A< 3LT" the following holds for T' = @( L2da2 %)

Bd] , (9
€

where « is parameter calculated in OPERA (Algorithm 1) for

obtaining the noise variance o>.

LR?a

E[F(wprivaD” — F(w n

D)<O

Proof. By [-smoothness of f and wpry, = wr + 2, Where
z ~ N(0,0%1;) , we have

E[F(wpm'm D)] - F(ﬁ}, D)

< E[F(wr. D) + (VF(wr, D).) + |z]] - F(i, D)

= F(wr, D) ~ F(i0, D) + D23
_28R* | 9L%da?
- T 2Ben? ’

where the second inequality is due to Lemma 8 in [10].

Let T=0 ([ deD; B ) We have
LR? 5
ELF (w0, D)] - P, D) <O [ |F1E0 W]
€

Remark 2. For non-strongly convex loss function under (€, 0)-
differential privacy, our OPERA algorithm yields an upper

bound O ( . In the high privacy case (¢ — 0), We

improve the unllty bound by a factor of - e in terms of the

best known bound O ( Y # in [10]. Due to the advantages

of the analytic Gaussian mechanism, our OPERA algorithm
can extend to the low privacy case (¢ — 00).

B. Private Convex Optimization via Gradient Perturbation

The gradient perturbation mechanism first proposed in [12]
is using noisy gradient to minimize the ERM problem (1),
and then obtains the output the differential private minimizer.
The definition of the gradient perturbation mechanism is as
follows.

Definition 7 (Gradient Perturbation).

n[VF(w, D) + 2], (6)

where z is a zero mean random noise and the private output
IS Wpriv (D) = wp (D).

Theorem 7. GRPUA (Algorithm 2) is (
2ne(e™ — 1),nd)-differentially private.

wt+1(D) = W¢ —

8log(n/d)e

Proof. Consider the t-th query: M; = nV f(wy, ;) + 2, where
2z ~ N(0,02%1;). As a result of the analytic Gaussian mecha-
nism, M; is (e, 0)-differentially private. Applying the privacy

5

Algorithm 2 Gradient Perturbation with aGM (GRPUA)
1: Input: (¢,0) is the privacy parameters and loss function
f(w, z;) is L-Lipschitz. i is the step size and w; is the
initial point.

2: Let 6y = @ (0) — e“® (—/2¢).
3. if § > §p then
4: Define B¥(v) = & (/ev) — e® e(v+2));
5 Compute v* = sup{v € R>¢ : BT (v) < d};
6: Let v = /1 +v*/2 — \/v*/2.
7: else
8: Define B~ (v) = ® (—/ev) — e*® e(v+ 2));
9: Compute v* = inf{v € R>o : B~ (v) < d};
10: Let a = /1 +v*/2 + \/v*/2.
11: end if
272

12: Set noise variance 0?2 = 2E-.
13: for t =1,...,n% — 1 do
14: Pick i € [n].
15: wir1 = wy — () [nV f(wy, 2;) + 2],

where z ~ N(0,02%1,).
16: end for

17: Output: Wy = Wp2.

amplification method in Lemma 3 with v = n, the query
M, ensures (%7 %)-differential privacy. We then apply strong
composition theorem in Lemma 4 to guarantee 7' composition
of M, queries is (1/81og(n/d)e+2ne(e™ —1), nd)-differential
private with T' = n?2.

O

Lemma 3 ((Privacy Amplification [17]). For any n-dataset
D, if an (e, d)-differential private algorithm runs on uni-
Sormly random ~n entries, this algorithm preserves (2ve,v9)-
differential privacy.

Lemma 4 (Strong Composition [18]). For any ¢ > 0, § €
[0,1], and &' € [0,1], the class of (¢, d)-differentially private
mechanisms satisfies (er/2T log(1/6) + Te(e® —1),46" + T46)-

differential privacy under T-fold adaptive composition.

In Theorem 8 and Theorem 9, we provide the utility upper
bounds for our GPRUA algorithm under two different cases
when the loss function is p-strongly convex and when the loss
function is non-strongly convex.

1) Strongly Convex Case:

Theorem 8 (Utility Guarantee). Suppose that for any z;
and |\w||2 < R, the loss function f(w,z;) is L-Lipschitz and
M-strongly convex. In GRPUA (Algorithm 2), if one choose

n(t) = ;Lnt’ the following holds

E[F (wprio, D)) — F(ib, D) < O (Ld“g(”)) L

pens

where « is parameter calculated in GRPUA (Algorithm 2) for

obtaining the noise variance o>,

Proof. For t-th query M; = nVf(ws,2;) + 2, we have
E[M;] = VF(w;,D) (the expectation is taken w.r.t
z and 2). Also, E[|M||3] = n2E[|Vf(w,z)|3] +
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2nE[(V f(wy, 2i), 2)] + E[||2]3] < n?L? + do?. Thus the
theorem holds by directly using Lemma 5, where G =
Vn2L2 +do?, T =n?, and A\ = nu and n(t) = -1 O

pnt”
Lemma 5 ( [19]). Suppose F(w) be a A-strong convex
function and W = argmiIéF (w). In a stochastic gradi-
we

ent algorithm, we have w1 = wy — n(t)Mi(wy), where
E[M;(w;)] = VF(wy), E[||My(w;)||3] < G? and the learning
rate n(n) = % Then for any T > 1, the following holds

G?log(T)
-

Remark 3. For (\/3log(n/d)e+2ne(e™ —1), nd)-differential
privacy, our GRPUA algorithm has a utility bound of O (%)
which has much improvement of previous works O (an@)
in [12] and [11]. The time complexity of our GRPUA algo-
rithm can be easily obtained as time(a) + O(nd?), where
time(a) is the time for computing « in Step 2-11, while
the time complexity of [12] is O(nd?). We also use the
simple approach proposed in [13] to improve the efficiency
of computing time(q).

EWWﬂF@ﬂ_O(

2) Non-strongly Convex Case:

Theorem 9 (Utility Guarantee). Suppose that for any z;
and ||wll2 < R, the loss function f(w,z;) is L-Lipschitz. In

GRPUA (Algorithm 2), if one choose n(t) = W’
n g
the following holds

ELF(yrir, D) = F(i,D) < O (“"L‘“g(m\ﬂ L ®

n

where « is parameter calculated in GRPUA (Algorithm 2) for

obtaining the noise variance o>.

Proof. The bound is obtained by directly using Lemma 6,
where G = Vn?2L2+do?, and T = n?, and 7n(t) =
R/\/t(n?L? + do?). O
Lemma 6 ( [19]). Suppose F(w) be a convex function
with |lw|z < R and @ = argmeirch(w). In a stochastic
w

gradient algorithm, we have w1 = wy — n(t) M (wy), where
E[M;(w;)] = VF (wy), E[||My(wy)||3] < G? and the learning
rate n(n) = GL\/{. Then for any T > 1, the following holds

RGlog(T)
)
Remark 4. For (\/3log(n/d)e+2ne(e™ —1), nd)-differential
privacy and the non-strongly convex loss function, our GRPUA
algorithm yields an upper bound of O @) In the high
privacy case, our GRPUA algorithm improve the previous
results O (%) by a factor of ﬁ

EWWﬂF@HO(

V. PERFORMANCE EVALUATION

In this section, we will conduct experiments on real bench-
marks and consider two machine learning models, logistic
regression and support vector machine, to evaluate the per-
formance of our proposed algorithms.

6

A. Experiment Settings

1) Dataset Description :
datasets:

e Adult: The Adult dataset is from UCI Machine Learning
Repository [20] and consists of 48,842 personal records,
including age, education, occupation, work-class, sex,
race, income, etc. The label is to predict whether the
annual income is more than $50k or not.

o BANK: The BANK dataset was collected from the mar-
keting campaigns of a Portuguese banking institution,
which includes 45,211 examples. Each example contains
age, job, housing, loan, month, campaign, etc. The goal
is to predict whether the product is subscribed.

o IPUMS-BR: The IPUMS-BR dataset is from IPUMS-
International [21] and it contains 38,000 records of census
microdata, which includes year, phone, sewage, cell,
autos, etc. The label is to predict whether the monthly
income of an individual is above $300.

o Cardio: The Cardio dataset is from [22] and it contains
70,000 records of patients, which includes 11 features like
Age, weight, Gender, Glucose, smoking, etc. The target
is to predict whether an individual is presence or absence
of cardiovascular disease.

o Heart: The Heart dataset is from [20] and it contains 303
records of patients, which includes 14 features like Age,
fasting blood sugar, resting electrocardiographic results,
exercise induced angina, etc. The goal is to decide the
presence of heart disease in the patient.

The experiments involve five

2) Data Prepossessing: The following steps are used
to prepossess the datasets. We first remove all individuals
with missing values and then use the one-hot encoding
method to convert every categorical attribute into a set of
binary vectors. After that, we normalize all numerical at-
tributes such that the range of each value is [0,1]. Finally,
we transform labels of Adult {> 50k, < 50k}, BANK
{subscribed, not-subscribed}, IPUMS-BR {> 300, < 300},
to {+1,—1}, Cardio {presence, absence} to {+1,—1}, and
Heart {presence, absence} to {+1, —1}.

3) Compared Methods: In this paper, we compare our
OPERA and GRPUA algorithms with existing algorithms,
namely, OutPert, SgdPert, NonPriv. OutPert is the name of
output perturbation algorithm used in [10] that runs gradient
descent algorithm for a fixed number of iterations and adding
Gaussian noise from the classical Gaussian mechanism to the
output. SgdPert [12] perturbs gradient of stochastic gradient
algorithms and it computes the privacy budget using privacy
amplification and strong composition methods to ensure the
differential privacy. We set NonPriv as the optimal accuracy
values that are obtained by running different optimization
algorithms to do the classification tasks on these three datasets.

4) Parameter Setting: We perform 30 independent runs of
algorithms, and record the mean values of objective value and
accuracy. In all experiments, we set § = 0.001, h = 0.5 and
the regularization term A = 0.001. To enforce the Lipschitz
constant L, we normalize each data sample to a unit norm
G.e., ||zi||l2 =1, fori =1,--- ,n), which makes the Lipschitz
constant L = 1. For logistic regression, we have smoothness
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Fig. 2: Comparison of classification accuracies for

Logistic regression on three datasets with different e.
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Fig. 3: Comparison of Objective values for Logistic regression on three datasets with different e. (Note that the figure does

not represent the objective values at much higher scale and o

constant 3; < % + A. For SVM, we have smoothness constant
Bs < 5 4+ A

B. Logistic Regression

We apply our two algorithms OPERA and GRPUA to a
logistic regression model for classification.

Given a dataset {(x;,y:)}"(z; € Ry, € {+1,—1}), the
regularized logistic regression model is defined as

A
F(aw, 2) = log(1 + exp(—yswTw:)) + 5 w3

where A is the regularizer. The goal of classification is to
minimize the logistic regression to obtain a minimizer, which
is the weight vector.

Figure 2 shows classification accuracies of logistic regres-
sion on three datasets, i.e., Adult, BANK and IPUMS-BR. The
proposed OPERA algorithm consistently outperforms OutPert
in the high privacy regime (¢ — 0). This is because OutPert
uses the classical Gaussian mechanism to perturb gradients
or outputs to achieve differential privacy. Compared with
the analytical Gaussian mechanism, the classical Gaussian
mechanism yields much more noise when ¢ is small. In other
words, the noise calibration strategy of the analytical Gaussian
mechanism provides a minimal amount of noise required to
obtain (e, d)-differential privacy. As for GRPUA algorithm,

2332-7790 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE perm:

nly represents the objective values in the range of [0, 2.5].)

TABLE I: Computation Time.

OPEERA | OutPert GRPUA SgdPert
e=0.01 21.325s | 21.282s | 244.76635s | 244.00784s
€=0.001 | 67.976s | 67.798s | 245.04303s | 244.30279s

it always outperforms the gradient perturbation algorithm:
SgdPert, in the high privacy case. We also compare the
computation time results of all methods on Adult dataset, as
illustrated in Table 1.

We further explore how the final objective value of each
algorithm changes as the value of e increases in Fig. 3.
As classification accuracy observed in experiments, OPERA
nearly obtains the best achievable objective values in the high
privacy regime due to the advantages of the analytic Gaussian
mechanism. GRPUA also obtains low objective values but
the values are much larger compared with OPERA. Due to
adding noise to the gradient, it is difficult for the algorithm
to find the right descent direction. Thus the objective values
are higher compared with OPERA. However, GRPUA still
performs better than other algorithms.

It should be emphasized that the analytic Gaussian mech-
anism has shown that the standard deviation of noise must
scale like ©(1/+/€) in order to extend the classical Gaussian
mechanism (¢ = ©(1/¢)), from the range ¢ € (0,1) to € > 1.
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Moreover, as the value of privacy budget € gets close to 1, the
noise provided by analytic Gaussian mechanism is almost the
same as the classical Gaussian mechanism, shown in [13].
Therefore, in both Fig. 2 and Fig. 3, the performance of
GRPUA and OPERA algorithms is satisfactory as the value
of privacy budget e approaches 1.

C. Support Vector Machine

In this paper, we also perform our algorithms to a support
vector machine (SVM) model for classification.
The regularized SVM model is given by

A
flw, ) = H(yw" z;) + §||w||§
with
1—u, l1—u>h
H(u) =10, l—u<—h
(115)2 + PT“ + %, otherwise

where x; € R%,y; € {4+1,—1}, and ) is the regularizer.
Figure 4 studies the performance of OPERA, GRPUA,
Outpert, and SgdPert for SVM model on three datasets, i.e.,
Adult, BANK and TPUMS-BR. As it is clear from plots,
OPERA also achieves the best accuracy in the whole privacy
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regime, i.e., the values of privacy budget ¢ from 107 to 1.
Furthermore, as we decrease the value of privacy budget e,
GRPUA algorithm becomes better than OutPert and SgdPert
algorithms on these datasets.

As shown in Fig. 5, our algorithms OPERA and GRPUA are
quite robust for the very low privacy budget e. For OPERA
algorithm, it has obtained an absolutely low objective value
when other algorithms have to sacrifice privacy to achieve this
value. It should be mentioned that the objective values Outpert
are lower than GRPUA when € approximates to 1. At the same
time, GRPUA has the same objective value as SgdPert. This is
because the gain provided by analytic Gaussian mechanism is
not more pronounced over the classical Gaussian mechanism
in the low privacy regime, in other words, the amount of
Gaussian noise used in OutpPert and SgdPert algorithms are
nearly as much as the noise from the analytic Gaussian
mechanism.

D. Neural Network

Here we consider a neural network architecture which
includes two hidden layers with 100 hidden units each. We
also use Rectified linear unit (ReLLU) as the activation function,
hyreiu, and choose the deterministic cross-entropy loss as loss
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the figure does not represent the objective values at much higher scale.)

function, which is given by
f(w, zi) = —yilog(h(zi)) — (1 — yi) log(1 — h(zi))

where h(zz) = m’ Zi = w3hrelu(w2hrelu(w1xi)),
and w = {w;,ws, w3} denotes the ensemble of weight
matrices.

Since the neural network is non-convex problem, the sensi-
tivity computations (i.e., Lemma 1, Lemm 2) for OPERA are
not hold. Hence, we just adopt GRPUA to train the neural
network and compare the results with SgdPert, where we
use the norm gradient clipping C' to bound the sensitivity of
gradient A = C. Here, we set clipping threshold C' = 1.
The experimental results on two medical datasets, Heart and
Cardio, are shown in Fig. 6(a) and Fig. 6(b). We observe that
our algorithm still outperforms baseline algorithm for neural
network on medical datasets.

VI. RELATED WORK

A. Privacy threats in machine learning

Many attacks have been proposed in the works which
try to obtain sensitive information from the target model.
Shokri et al. in [23] proposed membership inference attack
to infer whether or not a given data sample is present in
the training dataset. Fredrikson et al. in [5] presented an
attribute inference attack (or model inversion attack) to infer
the value of sensitive attribute of a test input. Wang et al.
in [24] proposed a hyperparameter stealing attack to recover
the underlying hyperparameters (such as model architectures
) used during the model training. Moreover, an adversary may
perform model stealing attack [25] to obtain a new model,
whose performance is equivalent to that of a target model,
via black-box access to the target model. As pointed out by
[26], differential privacy has also been studied as a powerful
method to defense against above tasks.
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B. Privacy preserving ERM

A more recent line of research focuses on developing
privacy preserving algorithms for convex ERM problems
which tackle the problem from different aspects. In online
settings, [27] investigated generic regret bound of online linear
optimization problems. [28] focused on the learnability and
stability under differential privacy. In incremental settings, [29]
studied private incremental regression combining continual
release to analyze the utility bound of several algorithms.
For the special case of “generalized linear models”, [30] gave
dimension-independent expected excess risk bounds by using
a sampling technique for an ERM with entropy regularizer.
Some papers also consider the private ERM learning in a
high dimension dataset. For a private high-dimensional sparse
regression algorithm, [31] consider the convergence of param-
eter. The following work [32] used an algorithm based on a
sample efficiency test of stability to extend and improve the
results. [33] introduced Gaussian width of the parameter space
in the random projection to derive a risk bound by using a
private compress learning method in ERM algorithms.

C. Privacy preserving deep learning

There have been several techniques to develop privacy pre-
serving deep learning mechanisms using differential privacy.
Abadi et al. [15] trained deep neural networks with non-convex
objective functions using differentially private stochastic gra-
dient descent algorithm and they also implemented moments
accountant to calculate the privacy budget. In the work of [34],
the authors trained an ensemble teacher model by combining a
set of teacher models, which are trained over disjoint training
datasets and the author also trained the differentially private
student model by querying the ensemble teacher to label public
data. Moreover, Xie et al. [35] and Zhang et al. [36] focused
on achieving differential privacy on Generative Adversarial
Nets (GAN). However, none of these works provide utility
guarantees for their algorithms.
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VII. CONCLUSION

In this paper, we present a machine learning approach
with differential privacy to healthcare scenario for increasing
diagnostic efficiency while preserving training data privacy.
We first develop two algorithms, OPERA and GRPUA, to
obtain differentially private machine learning models, which
provide privacy guarantee by applying the analytic Gaussian
mechanism to the output and the gradient, respectively. In
addition, we theoretically analyze the utility guarantee and
privacy guarantee of proposed algorithms. For strongly convex
and non-strongly convex loss functions, OPERA provides
tighter utility bounds than existing output perturbation meth-
ods and GRPUA also achieves tighter utility bounds compared
with previous gradient perturbation methods, especially in the
high privacy regime. At last, we evaluate our algorithms on
five datasets and the experiment results show that the proposed
algorithms outperform the existing methods and guarantee the
privacy of training datasets at the same time.
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