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Abstract

Recent work suggests improving the performance of Bloom filter by incorporating
a machine learning model as a binary classifier. However, such learned Bloom filter
does not take full advantage of the predicted probability scores. We propose new
algorithms that generalize the learned Bloom filter by using the complete spectrum
of the score regions. We prove our algorithms have lower false positive rate (FPR)
and memory usage compared with the existing approaches to learned Bloom filter.
We also demonstrate the improved performance of our algorithms on real-world
information filtering tasks over the web !.

1 Introduction

Bloom filter (BF) is a widely used data structure for low-memory and high-speed approximate
membership testing [Blo70]. Bloom filters compress a given set S into bit arrays, where we can
approximately test whether a given element (or query) x belongs to a set .S, i.e., x € S or other-
wise. Several applications, in particular caching in memory constrained systems, have benefited
tremendously from BF [BMMO2].

Bloom filter ensures a zero false negative rate (FNR), which is a critical requirement for many
applications. However, BF does not have a non-zero false positive rate (FPR) [DMO04] due to hashing
collisions, which measures the performance of BE. There is a known theoretical limit to this reduction.
To achieve a FPR of €, BF costs at least nlog,(1/€) log, e bits (n = |.S|), which is log, e = 44% off
from the theoretical lower bound [Car+78]. Mitzenmacher [Mit02] proposed Compressed Bloom
filter to address the suboptimal space usage of BF, where the space usage can reach the theoretical
lower bound in the optimal case.

To achieve a more significant reduction of FPR, researchers have generalized BF and incorporated
information beyond the query itself to break through the theoretical lower bound of space usage.
Bruck et al. [BGJ06] has made use of the query frequency and varied the number of hash functions
based on the query frequency to reduce the overall FPR. Recent work [Kra+18; Mit18] has proposed
to improve the performance of standard Bloom filter by incorporating a machine learning model.
This approach paves a new hope of reducing false positive rates beyond the theoretical limit, by using
context-specific information in the form of a machine learning model [Hsu+19]. Rae et al. [RBL19]
further proposed Neural Bloom Filter that learns to write to memory using a distributed write scheme
and achieves compression gains over the classical Bloom filter.

The key idea behind Kraska et al. [Kra+18] is to use the machine learning model as a pre-filter
to give each query x a score s(x). s(z) is usually positively associated with the odds that 2z € S.
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The assumption is that in many practical settings, the membership of a query in the set .S can be
figured out from observable features of « and such information is captured by the classifier assigned
score s(x). The proposal of Kraska et al. uses this score and treats query x with score s(x) higher
than a pre-determined threshold 7 (high confidence predictions) as a direct indicator of the correct
membership. Queries with scores less than 7 are passed to the back-up Bloom filter.

Compared to the standard Bloom filter, learned Bloom filter (LBF) uses a machine learning model to
answer keys with high score s(x). Thus, the classifier reduces the number of the keys hashed into
the Bloom filter. When the machine learning model has a reliable prediction performance, learned
Bloom filter significantly reduce the FPR and save memory usage [Kra+18]. Mitzenmacher [Mit18]
further provided a formal mathematical model for estimating the performance of LBF. In the same
paper, the author proposed a generalization named sandwiched learned Bloom filter (sandwiched
LBF), where an initial filter is added before the learned oracle to improve the FPR if the parameters
are chosen optimally.

Wastage of Information: For existing learned Bloom filters to have a lower FPR, the classifier
score greater than the threshold 7 should have a small probability of wrong answer. Also, a significant
fraction of the keys should fall in this high threshold regime to ensure that the backup filter is
small. However, when the score s(z) is less than 7, the information in the score s(x) is never used.
Thus, there is a clear waste of information. For instance, consider two elements x; and x5 with
T > s(x1) > s(z2). In the existing solutions, z; and x5 will be treated in the exact same way, even
though there is enough prior to believing that 21 is more likely positive compared to x5.

Strong dependency on Generalization: It is natural to assume that prediction with high confidence
implies a low FPR when the data distribution does not change. However, this assumption is too
strong for many practical settings. First and foremost, the data distribution is likely to change in an
online streaming environment where Bloom filters are deployed. Data streams are known to have
bursty nature with drift in distribution [Kle03]. As a result, the confidence of the classifier, and
hence the threshold, is not completely reliable. Secondly, the susceptibility of machine learning
oracles to adversarial examples brings new vulnerability in the system. Examples can be easily
created where the classifier with any given confidence level 7, is incorrectly classified. Bloom filters
are commonly used in networks where such increased adversarial false positive rate can hurt the
performance. An increased latency due to collisions can open new possibilities of Denial-of-Service
attacks (DoS) [Fei+03].

Motivation: For a binary classifier, the density of score distribution, f(s(z)) shows a different
trend for elements in the set and outside the set S. We observe that for keys, f(s(x)|z € S) shows
ascending trend as s(z) increases while f(s(z)|x ¢ S) has an opposite trend. To reduce the overall
FPR, we need lower FPRs for groups with a high f(s(z)|z ¢ S). Hence, if we are tuning the number
of hash functions differently, more hash functions are required for the corresponding groups. While
for groups with a few non-keys, we allow higher FPRs. This variability is the core idea to obtaining a
sweeter trade-off.

Our Contributions: Instead of only relying on the classifier whether score s(x) is above a single
specific threshold, we propose two algorithms, Ada-BF and disjoint Ada-BF, which leverage the
complete spectrum of score regions by adaptively tuning Bloom filter parameters in different score
regions. 1) Ada-BF tunes the number of hash functions differently in different regions to adjust the
FPR adaptively; disjoint Ada-BF allocates variable memory Bloom filters to each region. 2) Our
theoretical analysis reveals a new set of trade-offs that brings lower FPR with our proposed scheme
compared to existing alternatives. 3) We evaluate the performance of our algorithms on three real
time information filtering tasks: malicious URLs, malware MDS5 signatures and fake news tweets,
where our methods reduce the FPR by over 80% and save 50% of the memory usage over existing
learned Bloom filters.

Notations: Our paper includes some notations that need to be defined here. Let [g] denote the index
set {1,2,---,g}. We define query x as akey if x € S, or a non-key if 2 ¢ S. Let n denote the size
of keys (n = |S|), and m denote the size of non-keys. We denote K as the number of hash functions
used in the Bloom filter.

2 Review: Bloom Filter and Learned Bloom Filter

Bloom Filter: Standard Bloom filter for compressing a set S consists of an R-bits array and K
independent random hash functions, hq, hs, - - - , h, taking integer values between 0 and R — 1, i.e.,



h; : S —{0,1,--- , R — 1}. The bit array is initialized with all 0. For every item = € S, the bit
value of h;(z) =1, foralli € {0,1,--- , K}, issetto 1.

To check a membership of an item 2 in the set S, we return true if all the bits hi(:z:/), for all
1€{0,1,---, K}, have been set to 1. It is clear that Bloom filter has zero FNR (false negative rate).

However, due to lossy hash functions, z may be wrongly identified to be positive when z ¢ S while

all the hi(x/)s are set to 1 due to random collisions. It can be shown that if the hash functions are
independent, the expected FPR can be written as follows

s = (1-(1-2)")

Learned Bloom filter: Learned Bloom filter adds a binary classification model to reduce the
effective number of keys going to the Bloom filter. The classifier is pre-trained on some available
training data to classify whether any given query = belongs to S or not based on its observable
features. LBF sets a threshold, 7, where « is identified as a key if s(z) > 7. Otherwise, z will be
inserted into a Bloom filter to identify its membership in a further step (Figure 1). Like standard
Bloom filter, LBF also has zero FNR. And the false positives can be either caused by that false
positives of the classification model (s(x|z ¢ S) > 7) or that of the Bloom filter.

It is clear that when the region s(xz) > 7 contains large number of keys, the number of keys inserted
into the Bloom filter decreases which leads to favorable FPR. However, since we identify the region
s(x) > 7 as positives, higher values of 7 is better. At the same time, large 7 decreases the number of
keys in the region s(x) > 7, increasing the load of the Bloom filter. Thus, there is a clear trade-off.

3 A Strict Generalization: Adaptive Learned Bloom Filter (Ada-BF)

With the formulation of LBF in the previous section, LBF actually divides the x into two groups.
When s(x) > 7, x will be identified as a key directly without testing with the Bloom filter. In other
words, it uses zero hash function to identify its membership. Otherwise, we will test its membership
using K hash functions. In other view, LBF switches from K hash functions to no hash function at
all, based on s(x) > 7 or not. Continuing with this mindset, we propose adaptive learned Bloom
filter, where « is divided into g groups based on s(z), and for group j, we use K; hash functions to
test its membership. The structure of Ada-BF is represented in Figure 1(b).
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Figure 1: Panel A-C show the structure of LBF, Ada-BF and disjoint Ada-BF respectively.

More specifically, we divide the spectrum into g regions, where x € Group j if s(z) € [1j_1,7;),
j=1,2,---,g. Without loss of generality, here, we assume 0 =79 < 71 < -+- < Ty < Ty =1
Keys from group j are inserted into Bloom filter using K ; independent hash functions. Thus, we use
different number of universal hash functions for keys from different groups.

For a group j, the expected FPR can be expressed as,

1 Zf,:f”th 9
E (FPR;) = | 1 - -2 = (D

where ny = > I(1i—1 < s(@i|z; € S) < 7¢) is the number of keys falling in group ¢, and K is
the number of hash functions used in group j. By varying K, E (FPRj) can be controlled differently
for each group.



Variable number of hash functions gives us enough flexibility to tune the FPR of each region. To
avoid overloading the bit array, we only increase the K; for groups with large number of keys n;,
while decrease K ; for groups with small ;. It should be noted that f(s(x)|z € S) shows an opposite
trend compared to f(s(x)|z ¢ S) as s(x) increases (Figure 2). Thus, there is a need for variable
tuning, and a spectrum of regions gives us the room to exploit these variability efficiently. Clearly,
Ada-BF generalizes the LBF. When Ada-BF only divides the queries into two groups, by setting
Ky =K, Ky =0and 7y = 7, Ada-BF reduces to the LBF.

3.1 Simplifying the Hyper-Parameters

To implement Ada-BF, there are hyper-parameters to be determined, including the number of hash
functions for each group K; and the score thresholds to divide groups, 7; (19 = 0, 74 = 1). Altogether,
we need to tune 2g — 1 hyper-parameters. Using these hyper-parameters, for Ada-BF, the expected
overall FPR can be expressed as,

g
E (FPR) Zp] (FPR;) = p;a’ 2
=1

where p; = Pr(rj_1 < s(xijlz; ¢ S) < 7;). Empirically, p; can be estimated by p; =
LN I(rjo1 < s(zglw; ¢ S) < 75) = S (mis size of non-keys in the training data and
m; is size of non-keys belonging to group j). It is almost impossible to find the optimal hyper-
parameters that mlmmize the E (FPR) in reasonable time. However, since the estimated false positive
items Z _,mjafi = O(max;(m;a’i)), we prefer mja’Si to be similar across groups when
E (FPR) is minimized. While o®i decreases exponentially fast with larger K, to keep m,a’<i
stable across different groups, we require m; to grow exponentially fast with K;. Moreover, since
f(s(z)|x ¢ S) increases as s(z) becomes smaller for most cases, K ; should also be larger for smaller
s(x). Hence, to balance the number of false positive items, as j diminishes, we should increase K;
linearly and let m; grow exponentially fast.

With this idea, we provide a strategy to simplify the tuning procedure. We fix 11 = c and

K, —Kj; =1forj=1,2,--- g — 1. Since the true density of s(z|z ¢ S) is unknown To

p] —

implement the strategy, we estimate 24— by 24— = i and fix —<- = ¢. This strategy ensures
:Dg+1 Pj+1 mj41 mMj+1

p; to grow exponentially fast with K;. Now, we only have three hyper-parameters, ¢, Ky, and
Kooz (Kmaz = K1). By default, we may also set K,,,;, = K, = 0, equivalent to identifying all the
items in group g as keys.

Lemma 1: Assume 1) the scores of non-keys, s(x)|z ¢ S, are independently following a distribu-
tion f; 2) The scores of non-keys in the training set are independently sampled from a distribution f.
Then, the overall estimation error of p;, > j f Dj — Djls

2
larger. Moreover, if m > @ {\/z + \/1_?/1 , with probability at least 1 — §, we have
5105 —pj| <e
Even though in real-world applications, we cannot access the exact value of p;, which may leads to
the estimation error of the real E (FPR). However, Lemma 1 shows that as soon as we can collect

enough non-keys to estimate the p;, the estimation error is almost negligible. Especially for the large
scale membership testing task, collecting enough non-keys is easy to perform.

3.2 Analysis of Adaptive Learned Bloom Filter

Compared with the LBF, Ada-BF makes full use the of the density distribution s(z) and optimizes
the FPR in different regions. Next, we will show Ada-BF can reduce the optimal FPR of the LBF
without increasing the memory usage.

When pj/pj+1 =c¢j>2c>1land K; — K;1 = 1, the expected FPR follows,

(1-90 = ()) e 0y
E (FPR) ij = W < (é_—cc)(ag — (c)9) ’ 7
=1
1—c9

9, ca=1



where K, = K. To simplify the analysis, we assume ca > 1 in the following theorem. Given
the number of groups g is fixed, this assumption is without loss of generality satisfied by raising ¢
since o will increase as ¢ becomes larger. For comparisons, we also need 7 of the LBF to be equal to
Tg—1 of the Ada-BF. In this case, queries with scores higher than 7 are identified as keys directly by
the machine learning model. So, to compare the overall FPR, we only need to compare the FPR of
queries with scores lower than 7.

Theorem 1: For Ada-BF, given pp 11 >c¢ > 1forall j € [g— 1], if there exists A > 0 such that
ca > 1+ Aholds,and nj 41 —n; > Oforall j € [g— 1] (n; is the number of keys in group j). When
g is large enough and g < |2K |, then Ada-BF has smaller FPR than the LBF. Here K is the number

of hash functions of the LBF.

Theorem 1 requires the number of keys n; keeps increasing while p; decreases exponentially fast
with j. As shown in figure 2, on real dataset, we observe from the histogram that as score increases,
f(s(x)|z ¢ S) decreases very fast while f(s(z)|x € ) increases. So, the assumptions of Theorem
1 are more or less satisfied.

Moreover, when the number of buckets is large enough, the optimal K of the LBF is large as well.
Given the assumptions hold, theorem 1 implies that we can choose a larger g to divide the spectrum
into more groups and get better FPR. The LBF is sub-optimal as it only has two regions. Our
experiments clearly show this trend. For figure 3(a), Ada-BF achieves 25% of the FPR of the LBF
when the bitmap size = 200Kb, while when the budget of buckets = 500Kb, Ada-BF achieves 15%
of the FPR of the LBF. For figure 3(b), Ada-BF only reduces the FPR of the LBF by 50% when
the budget of buckets = 100Kb, while when the budget of buckets = 300Kb, Ada-BF reduces 70%
of the FPR of the LBF. Therefore, both the analytical and experimental results indicate superior
performance of Ada-BF by dividing the spectrum into more small groups. On the contrary, when g is
small, Ada-BF is more similar to the LBF, and their performances are less differentiable.

4 Disjoint Adaptive Learned Bloom Filter (Disjoint Ada-BF)

Ada-BF divides keys into g groups based on their scores and hashes the keys into the same Bloom
filter using different numbers of hash functions. With the similar idea, we proposed an alternative
approach, disjoint Ada-BF, which also divides the keys into g groups, but hashes keys from different
groups into independent Bloom filters. The structure of disjoint Ada-BF is represented in Figure 1(c).
Assume we have total budget of R bits for the Bloom filters and the keys are divided into g groups
using the same idea of that in Ada-BF. Consequently, the keys from group j are inserted into j-th
Bloom filter whose length is R; (R = Z?:1 R;). Then, during the look up stage, we just need to
identify a query’s group and check its membership in the corresponding Bloom filter.

4.1 Simplifying the Hyper-Parameters

Analogous to Ada-BF, disjoint Ada-BF also has hyper-parameters to set, such as the thresholds
of scores for groups division and the lengths of each Bloom filters. To determine thresholds 7;,
we use similar tuning strategy discussed in the previous section of tuning the number of groups
g and m”;il = c. To find R; that optimizes the overall FPR, again, we refer to the idea in the

previous section that the expected number of false positives should be similar across groups. For
a Bloom filter with I?; bits, the optimal number of hash functions K; can be approximated as

K; = %log(Q), where n; is the number of keys in group j. And the corresponding optimal expected

FPR is E (FPR;) = pf%/™ (i = 0.618). Therefore, to enforce the expected number of false items
being similar across groups, I2; needs to satisfy

fir] Ry R, R j — 1)1
mj.unj :ml',u'nll s 7‘7771: (j )Og(C)
ng o ny log(t)

Since n; is known given the thresholds 7; and the total budget of buckets % are known, thus, ?; can
be solved accordingly. Moreover, when the machine learning model is accurate, to save the memory

usage, we may also set [, = 0, which means the items in group j will be identified as keys directly.

4.2 Analysis of Disjoint Adaptive Learned Bloom Filter

The disjoint Ada-BF uses a group of shorter Bloom filters to store the hash outputs of the keys.
Though the approach to control the FPR of each group is different from the Ada-BF, where the



Ada-BF varies K and disjoint Ada-BF changes the buckets allocation, both methods share the same
core idea to lower the overall FPR by reducing the FPR of the groups dominated by non-keys. Disjoint
Ada-BF allocates more buckets for these groups to a achieve smaller FPR. In the following theorem,
we show that to achieve the same optimal expected FPR of the LBF, disjoint Ada-BF consumes less
buckets. Again, for comparison we need 7 of the LBF is equal to 7,_; of the disjoint Ada-BF.

Theorem 2: If pfil =c¢>landnji; —n; > 0forall j € [g— 1] (n; is the number of keys
in group j), to achieve the optimal FPR of the LBF, the disjoint Ada-BF consumes less buckets

compared with the LBF when g is large.

S Experiment

Baselines: We test the performance of existing Bloom filter algorithms: 1) standard Bloom filter,
2) learned Bloom filter, 3) sandwiched learned Bloom filter, 4) adaptive learned Bloom filter, and 5)
disjoint adaptive learned Bloom filter. We use two datasets which have different associated tasks,
namely: 1) Malicious URLs Detection and 2) Virus Scan. Since all the variants of Bloom filter
structures ensure zero FNR, the performance is measured by their FPRs and corresponding memory
usage.

5.1 Task 1: Malicious URLSs Detection

We explore using Bloom filters to identify malicious URLs. We used the URLs dataset down-
loaded from Kaggle, including 485,730 unique URLs. 16.47% of the URLs are malicious, and
others are benign. We randomly sampled 30% URLs (145,719 URLs) to train the malicious
URL classification model. 17 lexical features are extracted from URLSs as the classification fea-
tures, such as “host name length”, “path length”, “length of top level domain”, etc. We used
“sklearn.ensemble. RandomForestClassifier?” to train a random forest model. After saving the model
with “pickle”, the model file costs 146Kb in total. “sklearn.predict_prob" was used to give scores for
queries.

We tested the optimal FPR for the four learned Bloom filter methods under the total memory budget
= 200Kb to 500Kb (kilobits). Since the standard BF does not need a machine learning model, to
make a fair comparison, the bitmap size of BF should also include the machine learning model size
(146 Kb in this experiment). Thus, the total bitmap size of BF is 346Kb to 646Kb. To implement the
LBF, we tuned 7 between 0 and 1, and picked the one giving the minimal FPR. The number of hash
functions was determined by K = Round(% log 2), where ny is the number of keys hashed into
the Bloom filter conditional 7. To implement the sandwiched LBF, we searched the optimal 7 and
calculated the corresponding initial and backup filter size by the formula in Mitzenmacher [Mit18].
When the optimal backup filter size is larger than the total bits budget, sandwiched LBF does not need
a initial filter and reduces to a standard LBF. For the Ada-BF, we used the tuning strategy described
in the previous section. K,,;, was set to 0 by default. Thus, we only need to tune the combination of
(Kmaa, c) that gives the optimal FPR. Similarly, for disjoint Ada-BF, we fixed R, = 0 and searched
for the optimal (g, ¢).

Result: Our trained machine learning model has a classification accuracy of 0.93. Considering the
non-informative frequent class classifier (just classify as benign URL) gives accuracy of 0.84, our
trained learner is not a strong classifier. However, the distribution of scores is desirable (Figure 2),
where as s(x) increases, the empirical density of s(x) decreases for non-keys and also increases
for keys. In our experiment, when the sandwiched LBF is optimized, the backup filter size always
exceeds the total bitmap size. Thus, it reduces to the LBF and has the same FPR (as suggested by
Figure 4(a)).

Our experiment shows that compared to the LBF and sandwiched LBF, both Ada-BF and disjoint
Ada-BF achieve much lower FPRs. When filter size = 500Kb, Ada-BF reduces the FPR by 81%
compared to LBF or sandwiched LBF (disjoint FPR reduces the FPR by 84%). Moreover, to achieve a
FPR =2 0.9%, Ada-BF and disjoint Ada-BF only require 200Kb, while both LBF and the sandwiched
LBF needs more than 350Kb. And to get a FPR ~ 0.35%, Ada-BF and disjoint Ada-BF reduce the
memory usage from over S00Kb of LBF to 300Kb, which shows that our proposed algorithms save
over 40% of the memory usage compared with LBF and sandwiched LBF. The querying operation is
fast for all the Bloom filter algorithms. For example, when the bit array = 400Kb, vanilla BF, LBF,

2The Random Forest classifier consists 10 decision trees, and each tree has at most 20 leaf nodes.
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Figure 2: Histogram of the classifier’s score distributions of keys (Malicious) and non-keys (Benign)
for Task 1. We can see that n; (number of keys in region j) is monotonic when score > 0.3. The
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pi+1

Ada-BF, disjoint Ada-BF use 3.39, 6.98, 9.40 and 12.07 hashing operations for each query. The slight
extra hashing cost is negligible as it takes 10 micro seconds per hash evaluations without parallelism.

5.2 Task 2: Virus Scan

Bloom filter is widely used to match the file’s signature with the virus signature database. Our
dataset includes the information of 41,323 benign files and 96,724 viral files. The virus files are
collected from VirusShare database [Vir]. The dataset provides the MDS5 signature of the files,
legitimate status and other 53 variables characterizing the file, like “Size of Code”, “Major Link
Version” and “Major Image Version”. We trained a machine learning model with these variables
to differentiate the benign files from the viral documents. We randomly selected 20% samples
as the training set to build a binary classification model using Random Forest model 3. We used
“sklearn.ensemble.RandomForestClassifier” to tune the model, and the Random Forest classifier costs
about 136Kb. The classification model achieves 0.98 prediction accuracy on the testing set. The
predicted the class probability (with the function “predict_prob” in “sklearn” library) is used as the
score s(x). Other implementation details are similar to that in Task 1.
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Figure 3: Histogram of the classifier score distributions for the Virus Scan Dataset. The partition was
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Result: As the machine learning model achieves high prediction accuracy, figure 4 suggests that
all the learned Bloom filters show huge advantage over the standard BF where the FPR is reduced
by over 98%. Similar to the previous experiment results, we observe consistently lower FPRs of
our algorithms although the the score distributions are not smooth or continuous (Figure 3). Again,
our methods show very similar performance. Compared with LBF, our methods reduce the FPRs
by over 80%. To achieve a 0.2% FPR, the LBF and sandwiched LBF cost about 300Kb bits, while

3The Random Forest classifier consists 15 decision trees, and each tree has at most 5 leaf nodes.
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Figure 4: FPR with memory budget for all the five baselines (the bit budget of BF = bitmap size +
learner size). (a) FPRs comparison of Malicious URL detection experiment; (b) FPRs comparison of
Virus scan experiment.

Ada-BF only needs 150Kb bits, which is equivalent to 50% memory usage reduction compared to the
previous methods.

5.3 Sensitivity to Hyper-parameter Tuning

Compared with the LBF and sandwiched LBF, where we only need to search the space of 7 to
optimize the FPR, our algorithms require tuning a series of score thresholds. In the previous sections,
we have proposed a simple but useful tuning strategies where the score thresholds can be determined
by only two hyper-parameters, (K, ¢). Though our hyper-parameter tuning technique may lead to
a sub-optimal choice, our experiment results have shown we can still gain significantly lower FPR
compared with previous LBF. Moreover, if the number of groups K is misspecified from the optimal
choice (of K), we can still achieve very similar FPR compared with searching both K and c. Figure 6
shows that for both Ada-BF and disjoint Ada-BF, tuning ¢ while fixing K has already achieved
similar FPRs compared with optimal case by tuning both (K, ¢), which suggests our algorithm does
not require very accurate hyper-parameter tuning to achieve significant reduction of the FPR.
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Figure 5: FPR comparison of tuning ¢ while fixing the number of groups K and tuning both (K, c¢)

5.4 Discussion: Sandwiched Learned Bloom filter versus Learned Bloom filter

Sandwiched LBF is a generalization of LBF and performs no worse than LBF. Although Mitzen-
macher [Mit18] has shown how to allocate bits for the initial filter and backup filter to optimize the
expected FPR, their result is based on the a fixed FNR and FPR. While for many classifiers, FNR
and FPR are expressed as functions of the prediction score 7. Figure 4(a) shows that the sandwiched
LBF always has the same FPR as LBF though we increase the bitmap size from 200Kb to 5S00Kb.
This is because the sandwiched LBF is optimized when 7 corresponds to a small FPR and a large
FNR, where the optimal backup filter size even exceeds the total bitmap size. Hence, we should not
allocate any bits to the initial filter, and the sandwiched LBF reduces to LBE. On the other hand, our
second experiment suggests as the bitmap size becomes larger, sparing more bits to the initial filter is
clever, and the sandwiched LBF shows the its advantage over the LBF (Figure A.1(b)).
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6 Preventing Misinformation Spread over Social Media in Real-Time

The spread of misinformation over social media is widely considered as one of the worst outcome of
the connected world [AG17]. With free access to the internet, misleading content (or misinformation)
is created over the web in no time. Social media channels like Twitter can propagate this content in a
matter of seconds over the entire globe. About half a billion tweets per day or over 6,000-10,000
tweets are generated per second [Twib; OLS15; Fer+14]. Twitter recently reported a significant
overhaul of its word-wide distributed indexing system [Twia], which makes it possible for a tweet to
becomes available to the entire world within a second of its creation.

Let say, at a given time, we identify a source of

misinformation and its contents. To deal with the False Positive Rates Comparison
unprecedented generation rate of social media, an 15.0% | \
efficient system for filtering this information must 10.0% o
meet a few critical constraints. First, we should 5.0% - x sandwiched LBF —
ensure that once the source of misinformation and T A
its content are identified, this information should
propagate to all the servers within a fraction of a
second, around the globe. Effectively, we want
minimal communication overhead. Secondly, given

any generated information in a wildly distributed 0:60%1 -
setting, we should clear the right ones without any 0.40%7
computational overheads. The second condition is o005 L ‘ ‘ ‘ ‘ ‘
critical. Any computational overheads in clearing T80 0 Sizes(OKb) 9% 100
the correct information will crash the system due to P

the unprecedented data generation rate. We can see Figure 6: Fake news detection experiment
that we have a classical use case of Bloom filters.

Coming back to misinformation spread via Twitter, we want no misinformation to pass the filter.
Besides, we should ensure that almost all genuine tweets be cleared without any computational
overheads; otherwise, the data generation rate will surpass our filtering rate, potentially overwhelming
the system. This wish list is a classical use case of Bloom filters.

1.60%1"

disjoint Ada-BF

1.40%1
1.20% -
1.00% -
0.80%

False Positive Rate

0.20%

With Bloom filters, ideally, we compress our database of misinformation. Effectively, every increment
in the database only requires transmitting a few bits. Furthermore, we can clear almost all the
information by querying a bitmap. Occasionally, we might have false positives, which will require
costly checking. So long as false positives are rare enough, the system will not crash. Overall, the
false positive rate is critical, and we want our communication (memory) per update to be minimal.
It is also clear that this task involves dealing with natural language. Machine learning has shown
remarkable success in identifying natural language, and hence, we have an ideal candidate for learned
Bloom filters where learning can provide significant gains. Note that machine learning alone cannot
guarantee zero false negative as needed by the application.

We repeat our previous experiments. This time, we test the FPR of different learned Bloom filters
on the fake news dataset [Fak], which includes 23,481 fake news and 21,417 true news (cleaned
version). We use the TFIDF features to train a naive Bayes classification model. Similar to the
previous experiments’ results, Ada-BF and disjoint Ada-BF show significant advantages over the BF
and LBF. Under the same memory budget, Ada-BF and disjoint Ada-BF reduce the FPRs by over
70%. For the same FPR, Ada-BF and disjoint Ada-BF needs half the space of LBF (or sandwiched
LBF), effectively reducing the communication overhead by a factor of two.

In a further step, besides the exact membership testing, it is also important to know whether the
queried news is highly similar any fake news in the database. However, current design of Bloom
filters cannot handle this task. Kirsch and Mitzenmacher [KMO06] proposed distance-sensitive Bloom
filter, which may be a possible solution. Moreover, learned Bloom filters can be easily extended to
the distance-sensitive Bloom filters. We leave it for the future research.

7 Conclusion

We have presented new approaches to implement learned Bloom filters. We demonstrate analytically
and empirically that our approaches significantly reduce the FPR and save the memory usage
compared with the previously proposed LBF and sandwiched LBF. We envision that our work will
help and motivate integrating machine learning models into probabilistic algorithms in a more efficient
way.



8 Broader Impact

In this work, we developed two algorithms, Ada-BF and disjoint Ada-BF to extend the learned
Bloom filter. We make full use of a common observation of the binary classification model that
the distribution of prediction score show different trends for the two classes, which is ignored by
the previous learned Bloom filters. We demonstrate the significant performance boost compared
to the state-of-art methods theoretically and empirically in terms of memory cost and FPR control.
Since we did not pose extra assumptions compared to the previous learned Bloom filters, the extra
memory savings achieved by our algorithms are almost price free. Considering the generality of our
assumptions and simplicity of our algorithm structure, we expect Ada-BF and disjoint Ada-BF have
a great potential as an alternative to current learned Bloom filters.

Bloom filters is a widely used probabilistic data structure to solve set membership and related problems
in many areas including, but not limited to, web and computational biology. Any improvement to
Bloom filter false positive rates impacts the efficiency and performance of the entire internet. This
affects productivity and user experience of all the end users of internet. In the nature paper “Ultrafast
search of all deposited bacterial and viral genomic data”, the primary goal was to compress terabytes
of DNA sequences using Bloom filters. Thus, if Ada-BF can get 50% extra memory saving as
indicated by our experiment, it is a significant advantage. A more important recent example is using
Bloom filter for Covid-19 test [CTV20]. Since Ada-BF is way more accurate than standard Bloom
filter under the same memory budget, we envision it can contribute to large scale Covid-19 test.
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