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ABSTRACT

Identifying change points and/or anomalies in dynamic network structures has become increasingly popu-
lar across various domains, from neuroscience to telecommunication to finance. One particular objective
of anomaly detection from a neuroscience perspective is the reconstruction of the dynamic manner of
brain region interactions. However, most statistical methods for detecting anomalies have the following
unrealistic limitation for brain studies and beyond: that is, network snapshots at different time points
are assumed to be independent. To circumvent this limitation, we propose a distribution-free framework
for anomaly detection in dynamic networks. First, we present each network snapshot of the data as a
linear object and find its respective univariate characterization via local and global network topological
summaries. Second, we adopt a change point detection method for (weakly) dependent time series based
on efficient scores, and enhance the finite sample properties of change point method by approximating the
asymptotic distribution of the test statistic using the sieve bootstrap. We apply our method to simulated
and to real data, particularly, two functional magnetic resonance imaging (fMRI) datasets and the Enron
communication graph. We find that our new method delivers impressively accurate and realistic results
in terms of identifying locations of true change points compared to the results reported by competing
approaches. The new method promises to offer a deeper insight into the large-scale characterizations
and functional dynamics of the brain and, more generally, into the intrinsic structure of complex dynamic
networks. Supplemental materials for this article are available online.
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1. Introduction

Identifying and analyzing change points and/or anomalies
(which we use interchangeably) has become an increasingly
active area of research in network sciences (Host-Madsen and
Zhang 2018; Messer, Albert, and Schneider 2018). For example,
in financial trading, a regime shift in the network of transac-
tions is frequently linked to various (often upcoming) insol-
vencies such as bankruptcies, defaults, and recessions while
a change in the network topology of cryptocurrency trans-
actions may suggest a potential money laundering scheme
(e.g., Elliott, Golub, and Jackson 2014; Vandermarliere et al.
2015; Abay et al. 2019; Akcora et al. 2020). Similar to other
biological networks (Wig, Schlaggar, and Petersen 2011), the
idea of studying the brain as a dynamic functional network
is helpful in understanding the complex network organiza-
tion of the brain and can lead to profound clinical break-
throughs (Bassett and Bullmore 2006; Rubinov and Sporns
2010).

Most currently available statistical methods for anomaly
detection in dynamic networks have the following limitation:
network snapshots at different time points are assumed to be
independent (e.g., Akoglu and Faloutsos 2010; Peel and Clauset
2015; Harshaw et al. 2016). This assumption appears to be
unrealistic in many applications. For example, cryptocurrency
entities and their interactions in a network of transactions

evolve in time but obviously daily snapshots of the same network
cannot be assumed to be independent. This dependence or
autocorrelation effect is well documented in the time series liter-
ature since the 1960s (Zellner 1962; Wolff, Gastwirth, and Rubin
1967). However, in many cases, this effect is often overlooked
in practice, which leads to unreliable and false conclusions.
Neglecting the dependence among the network snapshots at
different time points leads to inflated false-positive rates of
change points or anomalies, especially for small and moderate
sample sizes.

To overcome this limitation, we propose a new distribution-
free framework, named network evolution detection method
(NEDM), for anomaly detection in dynamic networks and
evolution network structures of high dimensional time series.
The setup for the proposed methodology entails the following:
With each network snapshot as a graph object, we find its
unique univariate characterization, for example, mean degree,
clustering coefficient, and clique number. As a result, a series
of possibly very high-dimensional network snapshots is trans-
formed into a time series of scalars. Given the temporal depen-
dence of network snapshots, it is infeasible to assume that
the resulting time series of linear characteristics is indepen-
dent. Next, we adopt a change point detection method (Gom-
bay 2008) for (weakly) dependent time series that is based
on efficient scores. To enhance the finite sample properties
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of the detected change points, we approximate the asymp-
totic distribution of the test statistic with a sieve bootstrap
procedure (Kreiss 1988, 1992; Bithlmann et al. 1997). We
derive asymptotic properties for the NEDM statistic, validate
its performance in respect to competing anomaly detection
methods via synthetic and real data experiments. We illus-
trate the utility of the NEDM by applying it to two input
data types: two multivariate functional magnetic resonance
imaging (fMRI) time series datasets (Cribben et al. 2012;
Cribben, Wager, and Lindquist 2013; Cribben and Yu 2017)
and a dynamic network of the Enron e-mail communication
(Diesner, Frantz, and Carley 2005; Priebe et al. 2005; Park,
Priebe, and Youssef 2012). For the sake of brevity, we defer
the analysis of one fMRI dataset to the Supplementary Material
(appendix).

In application, we find that the NEDM has the potential to
unveil the time-varying cognitive states of both controls and
subjects with neuropsychiatric diseases such as Alzheimer’,
dementia, autism and schizophrenia in order to develop new
understandings of these diseases. By applying the NEDM, we
can consider whole brain dynamics, which promises to offer
deeper insight into the large scale characterizations of functional
architecture of the whole brain.

To sum up, the proposed NEDM has the following unique
and significant attributes:

1. It is, to the best of our knowledge, the first paper to consider
estimating change points in any graph summary statistic for
the time-evolving network structure in a multivariate time
series context.

2. It can consider thousands of time series and, in particular, the
case where P, the number of time series is much greater than
T (P >> T), the number of time points.

3. Unlike existing methods it is not limited by assuming that
network snapshots at different time points are independent.

4. Tt enhances the finite sample properties of the change point
method by approximating the asymptotic distribution of the
test statistic using the sieve bootstrap.

5. Although it is inspired by and developed for brain connec-
tivity studies, it pertains to a general setting and can also be
used in a variety of situations where one wishes to study the
evolution of a high dimensional network over time.

The remainder of the article is organized as follows. We
introduce the NEDM in Section 3. A simulation study that
examines the finite sample performance of our method via sieve
bootstrapping (Kreiss 1988, 1992; Bithlmann et al. 1997) is also
covered in Section 3. In Section 4, we describe the properties
for building synthetic data and then provide background infor-
mation on the fMRI and Enron dynamic network datasets in
Section 5. The performance of the proposed algorithm, on both
the synthetic and real world data, is detailed in Section 6. A
conclusion and future work is discussed in Section 7. Finally,
proofs, supplementary material and processes are deferred to
the Supplementary Material.

2. Related Work

There exists a vast body of studies on dynamic network mod-
els across various disciplines (see, Barabasi and Albert 1999

and references therein). One method based on the minimum
description length (MDL) principle and compression tech-
niques (Sun et al. 2007) flattens the adjacency matrices into
binary strings and uses compression cost to derive data spe-
cific features. Another procedure (DELTACON) proposed by
Koutra, Vogelstein, and Faloutsos (2013) relied on the similarity
measures between a pair of equal node networks. However,
anomalous points reported by this procedure tend to suffer from
limited interpretability due to their lack of statistical quantifiers
(such as critical numbers or p-values).

The first comprehensive treatment of high dimensional time
series factor models with multiple change points in their second-
order structure has been put forward by Barigozzi, Cho, and
Fryzlewicz (2018). To detect changes in the covariance matrix
of a multivariate time series, Aue et al. (2009) introduced a
method using a nonparametric CUSUM type test, and Dette
and Wied (2016) proposed a test where the dimension of the
data is fixed. Furthermore, Cribben et al. (2012) and Cribben,
Wager, and Lindquist (2013) put forward a method for detecting
changes in the precision matrices (or undirected graph) from
a multivariate time series. In turn, Cribben and Yu (2017)
introduced a graph-based multiple change point method for
changes in the community network structure between high-
dimensional time series, called network change point detection,
that uses an eigen-space based statistic for testing the commu-
nity structures changes in stochastic block model sequences.
In addition, Barnett and Onnela (2016) developed a method
for detecting change points in correlation networks that, unlike
previous change point detection methods designed for time
series data, requires minimal distributional assumptions.

3. Methodology

In this section, we describe the proposed contribution which
tracks structural changes within the network structure of
datasets. We use the terms change point detection and anomaly
detection as well as the terms graphs and networks interchange-
ably. Table 1 in the supplementary materials details the notation
for the rest of the article.

3.1. Input Data: Graphs and Multivariate Time Series

Our proposed methodology is applicable to two types of input
data: data that are originally in a form of a graph, and mul-
tivariate time series that are used to construct a graph, based
on a certain similarity measure, for example, correlation. Since
one of our primary motivating applications is multivariate f{MRI
time series, below we describe in detail how networks can be
constructed from such datasets.

Networks from a multivariate time series. In many applica-
tions, such as neuroscience and finance, input data are mul-
tivariate time series, and the first step consists of construct-
ing a graph structure based on a user-selected (dis)similarity
measure. That is, suppose D is a T x P multivariate time
series, where T and P are the number of time points and the
number of time series, respectively. From the multivariate D, we
take a g-row sample, F € RI*P in a sequential “one-in, one-
out” manner. This mode of data segmentation is known as the



overlapping/sliding window technique (Keogh et al. 2001) and is
ideal for maintaining the time dependency structure within D,
while taking as many samples as possible from the data matrix,
D. Because each g-row sample contains information from previ-
ous or successive samples, this segmentation procedure has the
advantage of capturing all (and any) network structure distur-
bance. Note that, depending on the window length g, some data
information may not be adequately captured because not every
row in the data matrix has an equal number of appearances in
all the F folds created. For instance, the first row (Dy;, 1) and the
last row (Dyr, 1) are least likely to be included in the collection
of all Fs. However, since we hypothesize that the changes points
occur within the data and not at the endpoints (at the beginning
and end of the time series) our detection procedure and results
do not suffer.

Armed with F, we compute a correlation matrix R = (o) €
RP*P by quantifying the linear association between the P ver-
tices in F. With R and a pre-defined threshold w', we define
the finite graph-associated adjacency matrix A = (a,;) € RPxP
using

Qe = 1 if:ors Z w
71 0 otherwise.

Given each adjacency matrix A, we then construct a graph object
Gt = (V4 Ey). (Here, to identify a minimum feasible num-
ber P, as a potential rule of thumb, a practitioner can employ
approaches discussed, for example, by Ozkaya et al. 2017).

Input data as a graph structure. Alternatively, the original
input data can take form of a graph G, observed at time point
t,t =1,2,....Such examples include communication networks
(see, for instance, the Enron study in Sections 5 and 6), power
grid networks, and the emerging blockchain technology. Indeed,
one of the salient blockchain features is that all transactions
are permanently recorded on distributed ledgers and publicly
available. As a result, a blockchain graph G; can be constructed
directly on each transaction, bypassing application of correla-
tion and other similarity measures.

Finally, armed with the sequence of the graph objects G,
we then calculate various global and local graph summary
statistics (Newman 2003; Barabédsi and Pdsfai 2016). In
particular, from each graph, we estimate the following
graph summaries (Yy): average clustering coefficient (ACC),
average path length (APL), maximum node betweenness
centrality (maxBETW), clique number (CLQNUM), mean
degree (MD) and minimum local clustering coefficient
(minLCC).

3.2. Detection Procedure and the Sieve Bootstrap

Following the dimension reduction and data structure simpli-
fication in Section 3.1, our next task is to identify the time(s)
at which the regime shift(s) occur in the series of lower dimen-
sional embeddings. In our case, we are interested in testing the

'In the experimental analysis we select parameters q and w based on previ-
ous neuroscience studies. Alternatively, g and w can be selected via cross-
validation.
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following hypotheses:

Hy : There is no change in the underlying structure of {Y;}}. ,
H, : Atan unknown timet € {1,...

in {Yt};l:y

,n} a change occurs

We assume that the appropriate model to fit to {Y;}{, is a
strictly stationary and purely nondeterministic autoregressive
[AR(p)] model with Gaussian independent and identically dis-
tributed (iid) white noise &;. The assumption of Gaussianity for
& can be relaxed and substituted by the appropriate moment
conditions (Gombay 2008). (We run experiments on time series
with non-Gaussian innovations and find that while the pro-
posed change point detection is applicable to a non-Gaussian
case, performance largely depends on deviations from the nor-
mality assumption and sample size. For instance, under the null
hypothesis of no change, a nominal «-level of 0.05, and an AR(1)
process with ¢ of 0.5, it takes approximately 100 observations
to achieve an approximate size of the test of 0.05 for a case of
t-distribution with 9 degrees of freedom; in turn, it requires
about 200 observations from a uniform distribution to achieve
a similar empirical size of the test.) In turn, an approximation of
time series via AR(p) models, including the case of p — o0, is
widely used in theory and methodology of time series analysis
(for overview see, for instance, Pourahmadi 2001; Shumway and
Stoffer 2017, and references therein).

Remark. Note that under the considered problem of change
point detection on networks, the network topological summary
statistic {Y;}}_, is estimated from the data. There currently
exist no theoretical results on asymptotic properties of network
statistics, especially in a conjunction with dynamic networks;
that is, besides invoking a central limit theorem for network
mean degree, nothing can be formally said on a linear process
representation of {Y;} , or its distributional properties. As a
result, our approach is approximation-based and data-driven;
that is, while we cannot provide theoretical bounds on the linear
process approximation of {Y;}}_,, we can validate performance
of the proposed NEDM against known ground truth change
points.

In particular, we define Y as

p
Yt—u=2¢k(Yt-k—u)+8t , tz2p+1 (L1

k=1
with E[Y;] = u and let § = (M,crz,(pl,...,gop)T. Given

Equation (1.1), we formally test the null hypothesis of no change

Hy: §=§,V tefl,...,n}

Hy: §=8, V1< t<t—1,at t=[pn], pe(01);
E=¢, VvVt > 1.

against

Most studies on change point detection calculate the pre-
regime switch and post-regime switch parameter values of all
possible change points T € (1,#n), and then either use the
strength of their differences to determine a regime switch or
use these parameter values in the likelihood function (Picard
1985; Inoue 2001). However, we use a detection algorithm that
involves a one-time parameter estimation and allows us to
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test for change in the individual elements of &. In line with
allowing for one-sided tests and for flexibility, we adopt the
change point statistic of Gombay (2008) which uses the efficient
score vector Veli(Yy,. .., Yy38) = Vel (§) with £ as the log-
likelihood function on {Y;}i ;. For1 < r < p+ 2 denote
a, 62, @1, ..., @p as the simultaneous solutions of the p + 2
equations 9/9&.£,(§) = 0, and let

ad A
—t nu n
. 164)

me[nu] (Aén)
v(pg[nu] (En)

be a Gaussian process (a partial sums process approximation for
the structure of Vg £x(§)).

If§,for1 < r < p+2,changesatt =[pn]with0 < p < 1,
then the estimator 7 is defined by:

B(u) = n 1217126, (1.2)

0 A Gl 2
T, =min{ —/¢ = —Y s 1.3
Ty mnm 3%, (&) 1<I?na)<(n3§r m(&,) (1.3)
and
fo=min| 2 GGy = min o (E,) (L4)
Ty —Min§ — = mm — > .
" eg O T am< g, T

for one-sided tests (both left and right, respectively); and for
two-sided tests

- : 9z d .

Tn _managrek(E") aérﬁm(‘én)
Proof for the consistency of 7 is provided in Gombay (2008).
The asymptotic independence of the components of B(u) allows
us define the change point test statistic for each & € & (see
Gombay 2008 for the related discussion). Hence, we reject the
null hypothesis, for one-sided tests along the sequence {Y;}}_,, if

= max
l<m<n

} . (L5)

sup BO(w) > Ci(a),
o<uxl1

(1.6)

where C; () is calculated from

[x:P( sup B(l)(u) > x) = e—2x2 =a}'

ouxl1

-
w —
- —

=

[ 5] o —

N

w
o~ —
P

-0.50 0.50

If we are interested in two-sided hypothesis testing, a change
in &, (along the sequence {Y;};_,) is acknowledged whenever

sup  |BOw)| > Ciw), (1.7)

o<uxgl

such that C(«) is calculated from

{x : P( sup BV > x) = Y (e = oc}.
o<ugl1 k£0

Convergence of the test statistic B") (1) to its asymptotic
distribution can be relatively slow. The Type I error estimates
tend to be conservative with low power of the test. Under the
premise that {Y;};_ | follows an AR(p) model with Gaussian iid
white noise, we propose to adopt a sieve bootstrap procedure for
constructing the distribution of the change point test statistic
BY(u) for finite samples. The idea of such a bootstrap for
time-dependent data—originally named AR(oco) bootstrap—
goes back to the results of Kreiss (1988, 1992). The approach
was later further investigated by Bithlmann et al. (1997) who
coined the term sieve for this bootstrap method. The procedure
is outlined in Algorithm 1, and its theoretical properties are
stated in Theorem 1.

To compare the finite sample performance of the asymptotic
distribution to the sieve bootstrap method, we simulate data
(with a total of 5000 Monte Carlo iterations) from an AR(1)
model in Equation (1.1) and evaluate the following: the size and
power of the test (for precise details on the simulation procedure
used, please see the Supplementary Materials). The choice of
the model coeflicient (¢) depends on ensuring the assumption
of weak stationarity for the simulated AR(1) series. Indeed
note that as ¢ approaches 1, the time series gets closer to a
random walk process, that is, we approach to a boundary case of
violating the assumptions of weak stationarity, outlined for the
change point statistic based on the efficient scores (Theorem 1
of Gombay 2008). As a result, the performance of the change
point detection method deteriorates.

Figure 1 depicts the size of the test for the simulated data.
It shows that the asymptotic distribution behaves more conser-
vatively compared to our sieve bootstrap distribution. Addition-
ally, we find that the size is more conservative for the asymptotic
distribution when ¢ is closer to + 1 (i.e., the size is worse when
¢ = 0.9 compared to ¢ = 0.5). However, for negative ¢ cases,

0.00
©

08 Asym.
B Boot.

-0.90 0.90

Figure 1. The size of the test plotted against ¢ for the asymptotic distribution and sieve bootstrap procedure when testing for a change in the mean of an AR(1) model

using T =100.
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Figure 2. The power of the test plotted against ¢ for the asymptotic distribution
and sieve bootstrap procedure when testing for a change in the mean of an AR(1)
model with (T = 100).

we find that the size of the test under the asymptotic distribution
approaches the declared 5% level of significance as ¢ approaches
—1. Apart from the fact that the sieve bootstrap’s size is closer to
the nominal rate than the asymptotic distribution, we find that
as ¢ approaches + 1 the size of its test steadily hovers around
the declared 5% level of significance. This supports our assertion
that the asymptotic distribution of the change point test statistic
has relatively conservative Type I error, and validates our sieve
bootstrap procedure for finite samples.

The results for power is displayed in Figure 2 and from this
we find that as u increases, the power of the test also increases
under both the asymptotic and the bootstrap distributions. In
addition, as ¢ approaches + 1, there is a drop in the power
values for both the asymptotic and sieve bootstrap (with larger
power values reported by our bootstrap procedure). Next to
this, we find that as ¢ approaches -1 the power of the test
improves for both the bootstrap and the asymptotic distribu-
tion; with the bootstrap again outperforming the asymptotic
distribution.?

Theorem 1 (Sieve bootstrap). Let Y, be an autoregressive pro-
cess as defined in equation (1.1) [withy = {Y;}},], Elg)® <
00, ]-°=°0j|(pj| < 00, and p(n) = o((n/log(n))"/*). With B* ()
as the bootstrap estimate for the p + 2-dimensional Gaussian
process B(u) , and as n — 00, we have

sup |P*[n}/2(BM" (u) — B () <yl

0<u<li
— P[n2(B7 (1) — B” () <yl = 0,(1).

Proof of Theorem 1 is in the Supplementary Materials.

Suppose & = & — &,, with &, = 1/n) ;| &, then the
nonparametric sieve bootstrap estimate B*(") (1) can be replaced
with a hybrid parametric bootstrap estimate B°") (1) by generat-
ing a Gaussian sample {£7}7_; ~ N(0,s2), withs2 = Y"1 | (&, —
&0)? /(n—1) as the sample variance of {&;}}_,. This yields a finite
sample performance similar to that of {€]}}._,, with reduced
computing time.

2From Gombay (2008), a specific value of ¢ (and not |¢| or ¢2) generates a
specific change point statistic (B(u)) and the change point estimator (7).
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Algorithm 1: The nonparametric sieve bootstrap proce-
dure for the change point statistic under an AR(p) process

Input : Time series {Y;}}__;; Change point test statistic
T,(.); Level of significance o; Number of
bootstrap replications I'.
1 For {X;}1 | ={Y; — a}},, fitan AR(p) process and extract
the coefficients {(,}0_,.
2 Calculate T,,(X1, X5..., X,).

3 Obtain &; from the residuals &; = X; — Zi:l o1 X¢—k-
(Note: &; = & — &,, where g, = — Y /| &).

4 fori<1:T do !

5 | Sample, with replacement, {&/}_, from {&:}]_,.

6 | Simulate {X}} ,, with innovation {&}}}_, and

coefficients {{0,}};:1.

7 | Calculate the change point test statistic

T (XF, X5, o0 X0).

8 | Define Z; for each Monte-Carlo iteration as:

_ ) 1T > Tyl
? Z'_{ 0 otherwise.

10 end
Z;

11 The bootstrap p-value for testing Hy is given by Z,r: L

Corollary 1. If Y, satisfies Equation (1.1), then under H

sup [P*[n'/2(B°) (u) — B°P(w)) <yl

0<u<l

(1.9

— P[nY2(B (u) — BV () <vy]| = 0p(1).

Proof of Corollary 1 is in the Supplementary Materials.

4. Simulations

To validate our NEDM, we compare it to the BOM (Barnett and
Onnela 2016) using simulated data. In particular, we provide a
sensitivity analysis for the NEDM under various ¢, @ and ROI
choices. We do not compare the NEDM to the KVFM (Koutra,
Vogelstein, and Faloutsos 2013) because it does not provide a
quantifier for the statistical significance (critical numbers or
p-values) for the change point detected. Such a quantifier is
necessary for deducing the power and size of the test for the
methods under study. The simulation study covers two scenar-
ios: a no-change point and a one-change point. As evaluation
metrics, we use the true detection rates (i.e., power of the
test) and the false alarm levels under a pre-defined significance
level (i.e., size of the test). A total of 100 Monte Carlo simu-
lations is carried out in each scenario under various window
lengths g = {5,10, 15,20, 25,30}, threshold parameters @ =
{0.05, 0.1, 0.15}, two different time series lengths (T = 200, 300)
and for two graph node sizes (P = 5, 10). In addition, we provide
similar analyses with T = 300,P = 50 in Appendix B of the
Supplementary Materials.

The first simulation illustrates the baseline (no change point)
scenario using a vector autoregression (VAR; Zellner 1962;
Hamilton 1995) model; the VAR model is a generalization of


https://doi.org/10.1080/10618600.2020.1844214
https://doi.org/10.1080/10618600.2020.1844214
https://doi.org/10.1080/10618600.2020.1844214

6 . D. OFORI-BOATENG, Y. R.GEL, AND I. CRIBBEN

the univariate AR process with more than one time-evolving
component. Given the (px 1) vector of time series variables F; =
(s fats - - -5 fpt) T the w-lag vector autoregressive (VAR(w)) pro-
cess is defined as

Fy=a+1Fq + IF 5+ -+ I Fry + €,

t=1,...,T. (1.10)

where II; is an (p x p) coefficient matrix and €; is an (p X
1) unobservable mean white noise vector process with time
invariant covariance matrix X (Zivot and Wang 2007). The
VAR model is used to reconstruct the linear inter-dependency
element prevalent among multivariate time series applications
such as fMRI data.

The second simulation, which depicts a one-change point
scenario, is created by concatenating two data streams from dis-
tinct multivariate Gaussian distributions: (D;, D,) where D; ~
Np=0%X, = (211])) andD, ~N(u =0,%X, = (22,])) with

1 ifi=j 1

ifi = j
221']':

Elij =

0 otherwise 0.9 otherwise.

The results for the simulations are presented in Figures 3
and 4, and a discussion of the results is provided in Section 6.

5. Experimental Data

Next, we demonstrate the NEDM’s application to two input
data types: multivariate fMRI time series and a portion of the
Enron e-mails network. In the fMRI case study, we compare
the performance of the NEDM against two other techniques for
anomaly (change point) detection in the multivariate setting:
the KVEM (Koutra, Vogelstein, and Faloutsos 2013) and the
BOM (Barnett and Onnela 2016). With the Enron networks,
we only implement the NEDM with the APL network sum-
mary (because from our experiments the APL-based analysis
produced the best outcome), and compare the change points we
find with various events that characterized the timeframe of the
Enron scandal. In addition, we compare the performance of the
NEDM to results obtained by the KVFM. We do not compare
our results with the BOM because the BOM is only applicable
to multivariate time series data.

5.1. Case Study: Anxiety fMRI data

The data was taken from an anxiety-inducing experiment
(Cribben et al. 2012; Cribben, Wager, and Lindquist 2013).
The task was a variant of a well-studied laboratory paradigm
for eliciting social threat, in which participants must give a
speech under evaluative pressure. The design was an off-on-
off design, with an anxiety-provoking speech preparation task
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occurring between lower anxiety resting periods. Participants
were informed that they were to be given 2 min to prepare a
7 min speech, and that the topic would be revealed to them
during scanning. They were told that after the scanning session
they would deliver the speech to a panel of expert judges, though
there was “a small chance” they would be randomly selected
not to give the speech. After the start of fMRI acquisition,
participants viewed a fixation cross for 2 min (resting baseline).
At the end of this period, participants viewed an instruction
slide for 15 s that described the speech topic, which was “why
you are a good friend” The slide instructed participants to be
sure to prepare enough for the entire 7 min period. After 2 min
of silent preparation, another instruction screen appeared (a
relief instruction, 15 s duration) that informed participants that
they would not have to give the speech. An additional 2 min
period of resting baseline completed the functional run. Data
were acquired and preprocessed as described in previous work
(Wager et al. 2009). During the course of the experiment a
series of 215 images were acquired (TR = 2 s). In order to
create ROIs, time series were averaged across the entire region.
The data consists of 4 ROIs and heart rate for n = 23 subjects.
The regions in the data were chosen because they showed a
significant relationship to heart rate in an independent dataset.
The temporal resolution of the heart rate was 1 s compared to
2 s for the fMRI data. Hence, the heart rate was down-sampled
by taking every other measurement.

5.2. Case Study: Enron e-mail Networks

The Enron emails dataset is a benchmark dataset applied in
numerous instances of anomaly detection (e.g., Peel and Clauset

2015; Park, Priebe, and Youssef 2012; Priebe et al. 2005; Diesner,
Frantz, and Carley 2005). More information on this dataset
can be found online (http://www.cs.cmu.edu/~enron/). We used
the cleaned version of the employee-to-employee e-mail (sent
and received) network over the period November 1998 to July
2001. We initialize each employee as a single node and aggregate
the data by month. This implies that if there is at least one e-
mail between two employees within the month under study,
an edge is connected to the respective nodes. Figure 5 displays
the cumulative nature of the Enron network between November
1998 to July 2001, and the state of the network after two specific
month/year periods. In total, we obtain 33 networks with 102
nodes in each network.

6. Results

The NEDM uses the following summary statistics: Average
clustering coefficient (ACC), average path length (APL), max-
imum node betweenness centrality (maxBETW), clique number
(CLQNUM), mean degree (MD) and minimum local clustering
coefficient (minLCC). As we already mentioned in the previous
section, we compare our method to Barnett’s method (BOM) in
the simulation study. However, we include results from KVFM
for the Enron e-mail dataset.

6.1. Simulation Study

Figure 3 presents the results for the no-change point scenario.
We find that as g increases the size of the test reported by all
network summaries under the NEDM increase, leading to more
liberal results. Moreover, we find that as w increases, the size
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Figure 5. Enron employee-to-employee e-mail network (November 1998-July 2001). Top: Cumulative network from November 1998 to July 2001; Bottom (Left): e-mail

network at November 1998, (Right): e-mail network at July 2001.

reported by all network summaries under the NEDM improve
(and become closer to the 5% level of significance). In particular,
we find that the size of the test reported by the NEDM under
the maxBETW network summary almost always outperforms
the size reported by the BOM (except for one situation when
w = 0.05, T = 200 and g = 30). Furthermore, we notice that two
other network summaries (ACC and MD) are highly sensitive to
increasing w, and that their size values improve substantially as
o increases from 0.05 to 0.15. For the BOM results, we find that
the size of the test tends to be more liberal as P increases (the
size increases from 18% to 20%), and that its performance is
inferior to the NEDM with the maxBETW network summary.
In conclusion, many of the graph summary statistics appear
superior to the BOM in terms of the size of the test.

The results for the one-change point simulation is presented
in Figure 4. Overall, the BOM appears to attain the highest
power (ie., it correctly flags the one-change scenario every
time). However, this performance is equally matched by the
NEDM with the maxBETW network summary. In addition, for
other network summaries used in the NEDM, we found that
power drops as w and T increase, and that power increases as g
increases. Furthermore, we notice that as T increases from 200

to 300, the power reported by our NEDM with the CLQNUM
summary statistic experiences a substantial drop, but this also
improves as q rises.

In summary, we found that both the power and the size of the
test (detection ability) are sensitive to the choice of parameters
(g, w and T). In addition, while the BOM has excellent power,
it suffers from liberal Type I errors. Overall, we found that
the NEDM in combination with the maxBETW has the best
performance in terms of maintaining the size of the test while
also yielding excellent power.

6.2. Case Study: Anxiety fMRI Data

From our analyses, we obtained the results displayed in Figure 6
for the NEDM (with ACC, APL, maxBETW, and minLCC as
summary statistics), the BOM and the KVEM. Results gener-
ated by the NEDM with CLQNUM and MD as the network
topological summary statistic are deferred to the Supplementary
Materials. Previous analyses of these data found change points at
the times of the speech instruction slides, primarily time points
60 and 130 (Cribben et al. 2012; Cribben, Wager, and Lindquist
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Figure 6. Change point detection from the NEDM using graph summary statistics ACC, APL, maxBET, W and minLCC, and the BOM and the KVFM.

2013). Additionally, all results obtained by the NEDM (plus the
plot in the Supplementary material) found many of the expected
change points at (and between) the time points of the speech
instruction slides, and also during the speech preparation phase
(time points 60-130).

While the KVFM found more changes points (as expected
given it does not provide a quanitifier for statistical signifi-
cance) at the time points of the speech instruction slides and
also during the speech preparation phase, many of the change
points for the subjects were very close to one another which
makes them unrealistic for fMRI data. While the BOM also
found some significant changes points at the speech instruc-
tion slides time points, the NEDM found significantly more.
In addition, having change points so close to one another
(as is the KVFM cases) makes it impossible to estimate
the network structure between each pair of change points
and also breaks down the ability to interpret and apportion
the change phenomenon to a biological process (as in the
case of the fMRI data used here). In turn, the framework
of the NEDM allows for an estimation which depends on
a visual display of the underlying dynamic brain networks
with the advantage of noticing structural changes within these
embeddings.

6.3. Case study: Enron e-mail networks

We now turn to the anomaly detection problem for data in the
form of a graph, that is, the Enron e-mail network. From our
list of network summary statistics, we use the APL because APL

appears to be fairly sensitive to intrinsic properties of data in
the form of dynamic networks. We link the results (Figure 7)
obtained in this analysis to various events in the Enron scandal
timeline. With the NEDM, the times for significant detection
points occur at months 2, 7, 12, 15, 18 and 24. The time period
for month 2 (November 1998 to December 1998) is linked to the
hiring of Andrew Fastow as the finance chief. The time period
of month 7 was from April 1999 to June 1999. This is around the
time when Enron’s CFO was exempted by the Board of Directors
from the company’s code of ethics so that he could run the
private equity fund LJM1, and also around the time when the
head of Enron’s West Coast Trading Desk in Portland Oregon,
Timothy Biden, began his first experiment to exploit the new
rules of California’s deregulated energy market.

Next to this, month 12 is linked to the period August 1999 to
October 1999 which was around the time when Enron’s CFO
started to raise money for two LJM funds (LJM1 and L]M2),
which was later used to buy Enron’s poorly performing assets
in order to make its financial statement look better. The time
period for months 15 and 18 was from December 1999 to March
2000. This was close in time that the energy prices in California
rose significantly and the power reserves became low, which
was followed by the blackouts in metropolitan areas. Many
believed that one of the reasons for California’s energy crisis
was Enron’s trading, which led to the investigation of Federal
Energy Regulatory Commission (FERC). This investigation was
connected with our next detection point at month 24, which was
from August 2000 to December 2000, since it was the time the
FERC investigation exonerated Enron from wrongdoings in the
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Figure 7. Change point detection within the Enron e-mail networks from November 1998 to July 2001 using the NEDM.

California energy crisis. The time period in the vicinity month
24 is a very interesting one not only because it is connected
with FERC investigation, but also because Enron’s share price
hit an all-time high of $90.56 and then Enron used “aggressive”
accounting to declare $53 million in earnings on a collapsing
deal that hadn’t earned anything at all in profit.

Figure 4 in the supplementary materials displays the out-
come of the KVFM analysis applied to the Enron data. Note
that, because the KVFM is based on graph similarity scores,
we only have results from December 1998 to June 2001 (time
point 0 is November 1998, and there are no more networks
for comparison after July 2001). With the KVFM, anomalies
are reported at times 2, 6 and 23. These times coincide with
time periods [December 1998-January 1999], [April 1999-June
1999] and [September 2000-November 2000]. In Figure 2 (in
the supplementary materials), we notice that the KVFM is only
able to flag 3 out 5 anomalous time points that the NEDM
reported.

7. Conclusion

In this article, we develop a new approach, the NEDM, for
analyzing and modeling the network structure between (pos-
sibly) high dimensional multivariate time series from an fMRI
study which consists of realizations of complex and dynamic
brain processes. The method adds to the literature by improving
understanding of the brain processes measured using fMRI.
The NEDM is, to the best of our knowledge, the first paper to
consider estimating change points for time evolving graph sum-
mary statistics in a multivariate time series context. Although
this article is inspired by and developed for brain connectivity
studies, our proposed method is applicable to more general
settings and can also be used in a variety of situations where one
wishes to study the evolution of a high-dimensional graph over
time, that is, in conjunction with telecommunication, financial,
and blockchain networks (Cribben 2019; Keshavarz, Michai-
lidis, and Atchade 2013; Chen et al. 2020).

There are several novel aspects of the NEDM. First, it allows
for estimation of graph summary statistics in a (possible) very
high-dimensional multivariate time series setting, in particular,

in situations where the number of time series is much greater
than the number of time points (P >> T). Hence, in a
biomedical neuroimaging setting, it can consider the dynam-
ics of the whole brain or a very large number of brain time
series, thereby providing deeper insights into the large-scale
functional architecture of the brain and the complex processes
within. Second, the NEDM is, to the best of our knowledge,
the first piece of work to consider estimating change points of
time evolving graph summary structure in a multivariate time
series context. We introduced a novel statistical test for the
candidate change points using the sieve bootstrap and showed
that it outperformed the asymptotic distribution. However, as
the NEDM is based on binary segmentation it is restricted by
the minimum distance between change points.

It has been shown that neurological disorders disrupt the
connectivity pattern or structural properties of the brain. Future
work entails applying the NEDM to resting state fMRI data from
subjects with brain disorders such as depression, Alzheimer’s
disease and schizophrenia and to control subjects who have been
matched using behavioral data. By comparing change points
and partition specific networks, the NEDM may lead to the
robust identification of cognitive states at rest for both controls
and subjects with these disorders. It is hoped that the large-
scale temporal features resulting from the accurate description
of brain connectivity from our novel method, which might
lead to better diagnostic and prognostic indicators of the brain
disorders. More specifically, by comparing the change points of
healthy controls to patients with these disorders, we may be able
understand the key differences in functional brain processes that
may eventually lead to the identification of biomarkers for the
disease.

As an extension to monitoring change points in graph
objects, we intend to incorporate higher order structures, such
as tensors, in the network snapshot characterization procedure
of the NEDM. Moreover, we intend to extend our analysis to
include the estimation of network summaries that are based
on the local topology and geometry of the graph. In particular,
we intend to incorporate a motif-based analysis (Milo et al.
2002; Dey, Gel, and Poor 2019; Sarkar, Guo, and Shakarian
2019) and the concepts of topological data analysis (TDA),
particularly, persistent homology, in the derivation of graph



summary statistics (Carlsson 2009; Patania, Vaccarino, and Petri
2017; Carlsson 2019). Indeed, tracking local network topologi-
cal summaries based on graph persistent homology offers multi-
fold benefits. First, this approach enables us to consider edge-
weighted networks. Second, it allows for enhancing analysis of
the underlying network organization at multi-resolution levels.
Third, simultaneously considering multiple local network topo-
logical statistics based on graph persistent homology minimizes
the loss of network information that currently occurs due to
reducing a high dimensional structure to a univariate time series
representation of a single network summary.

Another interesting theoretical direction is to explore various
types of regularized approximation models (Gel and Barabanov
2007; Bickel and Gel 2011; Politis 2015) for dynamics of local
and global network topological summaries, and the associated
error bounds, which as a result, can also yield an insight on
theoretical guarantees of resampling and subsampling proce-
dures (Kreiss et al. 2011; Fragkeskou and Paparoditis 2018)
in application to (non)linear processes of network topological
descriptors and related uncertainty quantification in network
anomaly detection.

Supplementary Material

R Code and Data: The supplemental files for this article include files con-
taining R code and data for reproducing all the simulated and empirical
studies in the paper.

Appendix: The supplemental files include an Appendix which contains
the following: (i) Theorem 1 from Gombay (2008) and a Notation
table, (ii) Simulation analysis for the NEDM size and power with P =
50, (iii) Additional results for the NEDM applied to the Anxiety fMRI
data under the remaining network summaries, (iv) Plot for the KVFM
Enron e-mail network analysis, (v) Analysis and discussion of case study
(resting state fMRI data), (vi) Proofs for Theorem 1 and Corollary 1,
(vii) Procedure for comparing asymptotic and sieve bootstrap distribu-
tions.
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