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a b s t r a c t

With the recent progress of data acquisition technology, classification of data exhibit-
ing relational dependence, from online social interactions to multi-omics studies to
linkage of electronic health records, continues to gain an ever increasing attention.
By introducing a robust and inherently geometric concept of data depth we propose
a new type of geometrically-enhanced classification method for relational data that
are in a form of a complex network with multiple node attributes. Starting from
a logistic regression to describe the relationship between the class labels and node
attributes, the key approach is based on modeling the link probability between any two
nodes as a function of their class labels and their data depths within the respective
classes. The approximate prediction rule is then obtained according to the posterior
probability of the class labels. Integrating the depth concept into the classification
process allows us to better capture the underlying geometry of the relational data and,
as a result, to enhance its finite sample performance. We derive asymptotic properties
of the new classification approach and validate its finite sample properties via extensive
simulations. The proposed geometrically-enhanced classification method is illustrated in
application to user analysis of the one of the largest Chinese social media platforms, Sina
Weibo.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Classification constitutes one of the key tasks in modern statistical and data sciences, with methods ranging from more
onventional tools such as logistic regression and linear discriminant analysis, to advanced machine learning techniques
uch as deep learning, see, e.g., [13,14,22,27,28]. Many traditional classification methods tend to rely on the assumption
f independence among subjects. However, in the real world, ‘‘connections’’ or ‘‘relationships’’ are typically inevitable,
nd information conveyed by the link often provides an important insight into the classification process. With the recent
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progress of data acquisition technology, the collection of such relational information becomes realistically feasible, thereby
making it easier to integrate this critical aspect into the classification process.

In turn, relational data, formed by a collection of entities and connections among them can be described using
he concept of complex networks [3,33]. Here, nodes represent, for example, observed individuals, with a set of the
ssociated node attributes, for instance, socio-demographic information, and edges correspond to relationships between
ndividuals. Among the most recent classification approaches for such relational data are machine learning tools,
.g., embedding approaches [12], neural networks [39] and network-based regularization algorithms [4,24], which have
ained a particular popularity in bioinformatics and health care applications [34]. In addition, various logistic regression
echniques, e.g., network-based logistic regression model, are widely adopted as one of the primary benchmark approaches
n statistical sciences and machine learning for addressing the classification problem for relational data [40]. Intuitively,
uch relational data and the associated resulting complex networks are likely to be both heterogeneous and exhibit a
ighly nontrivial geometric structure, for instance, driven by various hidden communities and substructures that are
ot detectable with conventional Euclidian-based metrics. Nevertheless, despite an ever increasing interest in systematic
ssessment of network dependence in classification and prediction tasks and a growing evidence of the key role of data
hape in organization of complex systems, most existing classification tools for relational data tend to neglect the intrinsic
eometry of the observed relational data.
In this paper we introduce the concept of data depth to classification of relational data which we describe as a complex

etwork with multiple node attributes. Data depth is a nonparametric data-driven method that systematically accounts for
he underlying data geometry by assigning an ordering to each data point with respect to its position within a given data
loud or probability distribution [26,42]. A higher value of a data depth implies a higher centrality in the data cloud. The
epth contour with such a natural center-outward ordering serves as a topological map of the data. As a result, clusters and
utliers can be then evaluated simultaneously in a quick and visual manner. In addition to statistical sciences, data depth is
apidly gaining its popularity in machine learning and data sciences due to its wide applicability in classification, anomaly
etection, and data visualization, for overview see, e.g., [15,17,19,25,37] and references therein. Despite a high utility
f depth methods in multivariate and functional data analysis, data depth remains largely under-explored in complex
etwork analysis. Among recent efforts in this direction are unsupervised depth-based clustering of graphs [7,35], depth-
ased classification (without node attributes) [36], and depth-based analysis of a random sample of graphs following a
robability model on the space of all graphs of a given size [10].
Our goal in this paper is to explore utility of data depth to classification of relational data in a form of a complex

etwork with multiple node attributes. We propose a probabilistic model for the observed data that consists of two parts.
irst, a logistic regression model is employed to describe relationships between the class label and attributes of each node.
econd, we introduce a network model where the link probability between any two nodes is assumed to depend on their
lass labels and data depths of the nodes in the respective classes. The above two parts constitute the depth-based network
lassification model (DNC). The parameters of the DNC can then be estimated by a maximum likelihood method within
logistic regression framework [14]. Third, the approximate prediction rules of the DNC are obtained using approximate
implification from posterior probability of the unknown class label. Finally, we derive asymptotic properties of DNC as
he network order tends to infinity under some mild conditions.

The rest of the paper is organized as follows. Section 2 introduces the definition of data depth, the DNC model
nd its corresponding approximate prediction rule, and the asymptotic classification theory. In Section 3, the proposed
eometrically-enhanced classification approach is validated on a broad range of synthetic data and is illustrated in
pplication to user classification of the one of the largest Chinese social media, Sina Weibo. The paper concludes in
ection 4 with a discussion and future research directions. All theoretical derivations are presented in the Appendix.

. Depth-based network classification

In this section we introduce the proposed data depth methodology to classification of relational data, starting from the
verview of data depth concepts (Section 2.1), and followed by the modeling framework (Section 2.2), the approximate
rediction rule (Section 2.3) of DNC and the asymptotic classification theory (Section 2.4) for the new depth-based network
lassification approach.

.1. Background on data depth

In the last two decades, a concept of data depth is shown to be an attractive nonparametric tool to analyze multivariate
ata without making prior assumptions about underlying probability distributions. Recently, data depth has witnessed
new momentum in statistics, data science and machine learning due to its high utility in high dimensional, functional
nd categorical data analysis.
A data depth is a function that measures how closely an observed point x ∈ Rd, d ≥ 2, is located to the ‘‘center’’ of a

finite set X ⊂ Rd, or relative to F , a probability distribution in Rd. Data depth measures the ‘‘depth’’ (or ‘‘outlyingness’’) of
a given object or a set of objects with respect to an observed data cloud. A higher value of a data depth implies a deeper
location, or higher centrality in the data cloud.

Given their role in descriptive analysis, depth-based approaches also have broad applications in classification and
clustering problems, as well as in visualization of the detected clusters, high-dimensional and functional data studies,
2
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usually conjunct with microarray gene expression and other biomedical applications, see [5,18,23,31] and references
therein. Depth-based approaches provide two main advantages, that is, such tools are more robust against outliers and are
intrinsically geometric. The intuitive idea of depth function is to better capture a probabilistic geometry of the underlying
data, that is, the position of each point with respect to the whole data cloud and figure out a possibility that a certain
point belongs to the community, given a geometric structure of this community.

Depth functions vary in terms of computational complexity, robustness, and reflection of particular data cloud
roperties [16,26,30,32,42]. Choice of the most feasible depth function largely depends on particular desired properties in
given study, such as robustness, behavior of the depth outside of the convex support, and computational speed. Choice
f a given depth function may also depend on the desired properties to be achieved. For example, the more robust depth
uch as projection depth could be used if the main goal is to enhance robustness against potential outliers. The geometric
epth such as simplicial depth or half-space depth could be used if no additional information about the data is available,
s geometric depths usually capture more accurately the true underlying geometric structure. In general, there exists no
ystematic rule which depth function is the most appropriate for a particular analytic task and a given data cloud. Choice
f depth function may be dictated by some desirable properties to be achieved and often constitutes a trial-and-error
pproach based on a cross-validation.

efinition 1. Let D(·, ·) be a bounded, nonnegative mapping from Rd
× F to R. If D(·, ·) satisfies the following four

roperties, (i) Affine invariance: D(Ax + b, FAx+b) = D(x, Fx) holds for any random vector X , constant vector b and any
onsingular matrix A; (ii) Maximality at center: D(θ, F ) = supx∈RdD(x, F ) holds for any distribution F having center θ ; (iii)

Monotonicity relative to deepest point: for any distribution F having deepest point θ , D(x, F ) ≤ D(θ + α(x − θ ), F ) holds
or α ∈ [0, 1]; (iv) Vanishing at infinity: D(x, F ) tends to 0 as ∥x∥ tends to infinity, then D(·, F ) is called the statistical
epth function [42].

We consider three nonnegative and bounded depth functions which are one of the most widely used depths across a
road range of analytic problems:

• (Mahalanobis depth (MhD))

MhDF (x) = {1 + (x − µF )′Σ−1
F (x − µF )}−1,

where µF and ΣF are the mean vector and covariance matrix of F , respectively. The Mahalanobis depth [30,42]
measures the outlyingness of the point with respect to the center of the distribution, and allows to handle the
elliptical family of distributions easily, including a Gaussian case. However, the Mahalanobis depth is less robust
and fails to distinguish two distributions which share first two moments.

• (Random Projection depth (RPD))

RPDF (x) = {1 + sup
∥u∥=1

|u′x − Med(Fu)|/MAD(Fu)}−1,

where Fu is the distribution of u′X , Med(Fu) is the median of Fu, MAD(Fu) is the median absolute deviation of Fu.
Random projection depth stochastically approximates projection depth which also measures the outlyingness of the
point with respect to the deepest point of the distribution. RPD is robust against possible extreme observations [41].

• (Tukey depth (TD))

TDF (x) = inf
H

{PF (H)},

where H is a closed half-space in Rd and x ∈ H , measures the tailedness of the point with respect to the deepest
point of the distribution F . For the discussion on computationally efficient algorithms of for the Tukey depth in
higher dimensions, see [6,8].

In general, RPD and TD tend to be appropriate for any distribution. When the distribution is symmetric, MhD might
e a preferred choice due to its lower computational costs comparing to the other two depths.

.2. The proposed model framework of DNC

Let Yi ∈ {0, 1} be the binary response (class label) of the ith (1 ≤ i ≤ n) observation, and Xi = (Xi1, . . . , Xip)⊤∈Rp

be the associated p-dimensional attributes, Y = (Y1, . . . , Yn)⊤ ∈ {0, 1}n and X = (X1, . . . , Xn)⊤ ∈ Rn×p. The adjacency
matrix of the network is then defined as An = (aij) ∈ {0, 1}n×n, where aij = 1 if node i follows node j, otherwise aij = 0.
Furthermore, we assume that aii = 0 for any 1 ≤ i ≤ n. Note that the subscript n of An indicates the order of the network
and the asymmetry of An is common in practice. For example, the fact that one user in Sina Weibo follows another user
does not mean the converse is true.

Now we turn to describing the relationship among X , Y and An. First, we model the relationship between X and Y ,
assume that Yi-s are conditionally independent given Xi-s and are modeled via a logistic regression model (LR)

ln
{

P(Yi = 1|Xi)
}

= X⊤

i β, (1)

1 − P(Yi = 1|Xi)

3
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where β = (β1, . . . , βp)⊤∈Rp is the regression coefficient. Assuming that aij-s are conditionally independent given X and
Y , we then consider an LR model

ln
{

P(aij = 1|Xi, Xj, Yi, Yj)
1 − P(aij = 1|Xi, Xj, Yi, Yj)

}
= ωYiYj + φ⊤Dij,

where intercept ωYiYj only depends on the class labels of Yi and Yj. Denote F and G as the distribution of class 1 and class
0, then

Dij
= (D(Xi, F ),D(Xi,G),D(Xj, F ),D(Xj,G))⊤,

where D(·, ·) is a user-selected data depth function defined in Section 2.1. Since F and G are unknown, we consider the
ollowing approximate model

ln
{

P(aij = 1|X, Y )
1 − P(aij = 1|X, Y )

}
= ωYiYj + φ⊤Dij

n. (2)

Now, denote ω = (ω11, ω10, ω01, ω00)⊤∈R4 and

Dij
n = (D(Xi, Fn),D(Xi,Gn),D(Xj, Fn),D(Xj,Gn))⊤,

where Fn is the empirical distribution of {Xi : Yi = 1, 1 ≤ i ≤ n}, i.e., class 1, Gn is the empirical distribution of
Xi : Yi = 0, 1 ≤ i ≤ n}, i.e., class 0. As a result, model (1) and model (2) constitute the DNC model. Note that, vector
ij
n indicates depths of node i and j in class 1 and 0, which incorporates both the covariates information and the class
nformation. φ = (φ1, φ2, φ3, φ4)⊤∈R4 are the regression parameters. In particular, if φ = 0, then model (2) degenerates
o the block model, which implies that the link formation only depends on the class labels of nodes. However, the block
odel ignores the impact of covariates on link formation. Hence, the term φ⊤Dij

n is appended to integrate the covariates
information in model (2). Moreover, the statistical significance of ω and φ in real data analysis in Section 3.3 illustrates
the reasonability of the model settings in application.

Let θ = (β⊤, φ⊤, ω⊤)⊤ be a vector of model parameters. Then, the likelihood function can be represented as

L(θ ) = P(Y , An|X) =

n∏
i=1

P(Yi|Xi)
∏
i̸=j

P(aij|Y , X)

=

n∏
i=1

{
exp(X⊤

i β)
1 + exp(X⊤

i β)

}Yi{ 1
1 + exp(X⊤

i β)

}1−Yi

×

∏
i̸=j

{ exp(ωYiYj + φ⊤Dij
n)

1 + exp(ωYiYj + φ⊤Dij
n)

}aij{ 1

1 + exp(ωYiYj + φ⊤Dij
n)

}1−aij
.

The maximum likelihood estimator (MLE) is then θ̂ = (β̂⊤, φ̂⊤, ω̂⊤)⊤ = argmaxθ L(θ ), which can be obtained from two
eparate logistic regression models (1) and (2).

.3. Prediction rule of DNC

Without loss of generality, denote a new node as n + 1, our goal is to predict the unknown class label Yn+1
based on Y , X , Xn+1 and An+1, i.e., the adjacency matrix of n + 1 nodes, which depends on the posterior probability
P(Yn+1|Y , X, Xn+1, An+1). Since Dn+1 cannot be acquired when Yn+1 is unknown, we substitute Dn+1 with Dn and derive
the approximate prediction rule. To illustrate the performance of the approximation and the theoretical results in the
consequent sections, we need the following technical assumptions.

Assumption C1 (Parameter Boundedness). There exist some finite positive constants Mx and Mβ , such that ∥Xi∥1 ≤ MX for
any 1 ≤ i ≤ n, and ∥β∥1 ≤ Mβ .

Assumption C2 (Network Sparsity). There exist positive constants ckl and γ < 1, such that ωkl = ckl − γ ln n, where
k, l ∈ {0, 1}.

Assumption C1 is the condition about the range of X and parameter β , which is trivial under a fixed covariates
dimension. As for Assumption C2, the assumption is equivalent to π

YiYj
ij = Op(n−γ ), where π

YiYj
ij = P(aij = 1|Y , X). Note

that Assumption C2 is intrinsically related to the concept of network sparsity. That is, a network is called sparse if the
network density, i.e., {n(n−1)}−1 ∑n

i̸=j aij, tends to 0 as the network order n tends to infinity [20]. Hence, by Assumption C2,
E(a ) = O(n−γ ), which implies that the network density tends to zero as n tends to infinity.
ij

4
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Now, we can derive the posterior distribution P(Yn+1|Y , X, Xn+1, An+1) and obtain the following approximate prediction
rule

ln
{
P(Yn+1 = 1|Y , X, Xn+1, An+1)
P(Yn+1 = 0|Y , X, Xn+1, An+1)

}
≈ X⊤

n+1β + Q1 − Q2 + Q3 − Q4, (3)

here terms Qts (1 ≤ t ≤ 4) are defined as,

Q1 =

n∑
i=1

[
ai(n+1)(ωYi1 + φ⊤Di(n+1)

n ) − ln
{
1 + exp(ωYi1 + φ⊤Di(n+1)

n )
}]

,

Q2 =

n∑
i=1

[
ai(n+1)(ωYi0 + φ⊤Di(n+1)

n ) − ln
{
1 + exp(ωYi0 + φ⊤Di(n+1)

n )
}]

,

Q3 =

n∑
j=1

[
a(n+1)j(ω1Yj + φ⊤D(n+1)j

n ) − ln
{
1 + exp(ω1Yj + φ⊤D(n+1)j

n )
}]

,

Q4 =

n∑
j=1

[
a(n+1)j(ω0Yj + φ⊤D(n+1)j

n ) − ln
{
1 + exp(ω0Yj + φ⊤D(n+1)j

n )
}]

.

Here, data depths Di(n+1)
n = (D(Xi, Fn),D(Xi,Gn),D(Xn+1, Fn),D(Xn+1,Gn))⊤ and D(n+1)j

n = (D(Xn+1, Fn),D(Xn+1,Gn),
(Xj, Fn),D(Xj,Gn))⊤ are calculated based on Fn and Gn. The detailed derivation of (3) and discussion on feasibility of
pproximation are provided in the Appendix. In applications, unknown parameters in (3) are replaced by the respective
LE θ̂ . Note that the resulting approximate prediction rule depends on both the network structure and the data depth of
odes in the two classes.

.4. Theoretical properties

We now turn to deriving theoretical properties of DNC.

heorem 1. For DNC, under Assumptions C1 and C2, if 0 < γ < 1/3, then P
(
Ŷn+1 = 1|Yn+1 = 1, X, Xn+1

)
→1 as n → ∞,

where Ŷn+1 is the predicted class label of node n + 1 according to the approximate prediction rule of DNC.

Theorem 1 implies that when the network provides enough information, i.e., 0 < γ < 1/3, the prediction accuracy of
DNC tends to 1 as n → ∞. Note that, the bigger the value of γ is, the sparser the network is. In addition, by the result of
Theorem 1, simple algebra shows that the misclassification probability P(Ŷn+1 ̸= Yn+1|X) in DNC tends to 0 as the network
order n → ∞ as long as the probabilities of any class do not degenerate to zero. The proof of Theorem 1 is given in the
Appendix.

3. Numerical studies

3.1. Simulation models and performance measurements

We investigate robustness and classification performance of the newly proposed DNC approach on synthetic data in a
broad range of finite sample scenarios, that is, our simulation settings include continuous, discrete and mixed (contains
both continuous and discrete variables) distributions, unbalanced designs and a case of outliers. In particular, we consider
six simulation models, where Xi = (Xi1, . . . , Xip)⊤ (1 ≤ i ≤ n) is distributed according to one of the models below and the
predictor dimension is fixed to be p = 5:

• Model 1: Xi is simulated from a multivariate normal distribution with mean (0, 0, 0, 0, 0)⊤ and covariance ΣX =

(σj1j2 ) ∈ R5×5 (1 ≤ j1, j2 ≤ 5), where σj1j2 = 0.5|j1−j2| [38].
• Model 2: Xi is simulated from a multivariate normal distribution with mean (1, 3, 1, 0.5, 1)⊤ and the covariance as

in Model 1. Model 2 considers the case of unbalanced classes.
• Model 3: Xi is simulated from two multivariate normal distributions with probability 0.98 and 0.02, and corresponds

to a case with outliers. The means are (0, 0, 0, 0, 0)⊤ and (4, 4, 4, 4, 4)⊤ for the first and second multivariate normal
distributions, accordingly. Covariances of multivariate normal distributions are the same as in Model 1.

• Model 4: Xij (1 ≤ j ≤ 5) is simulated from uniform distribution U(0, 1).
• Model 5: Xij (1 ≤ j ≤ 5) is simulated from binomial distribution B(1, pj), where p1 = 0.5, p2 = 0.6, p3 = 0.7,

p4 = 0.6 and p5 = 0.5.
• Model 6: Xi1 and Xi2 are simulated from B(1, 0.5) and B(1, 0.6) separately, and (Xi3, Xi4, Xi5)⊤ is simulated from

multivariate normal distribution with mean (0, 0, 0)⊤ and covariance ΣX = (σj1j2 ) ∈ R3×3, where σj1j2 = 0.5|j1−j2|

for 1 ≤ j , j ≤ 3.
1 2

5



X. Zhang, Y. Tian, G. Guan et al. Journal of Multivariate Analysis 184 (2021) 104732

I

m

Fig. 1. The classification performance of DNC and NLR in respect to LR for the six simulation models, measured in terms of IR values, where
R = (AUCDNC/AUCLR − 1) ∗ 100%. The 1st row is the result of NLR and DNC with MhD, the 2nd row is the result of NLR and DNC with RPD, the 3rd
row is the result of NLR and DNC with TD.

Next, the class label Yi is generated according to model (1), and the adjacency matrix An is generated according to
odel (2). We set β = (−1, 0.8, 1, −2, 1)⊤, ω = (−0.35, −0.5, −0.5, −0.35)⊤ and φ = (2.5, −2.5, 1.5, −1.5)⊤.
For each simulation model, we set five sample sizes, i.e., n = 300, 600, 900, 1200, 1500. The number of replications

S is 100. We consider three depth functions, namely, the Mahalanobis depth (MhD), the random projection depth (RPD)
and the Tukey depth (TD).

We measure accuracy of parameter estimation in terms of the root mean squared error RMSEβ = (S−1 ∑S
s=1 ∥β̂ (s)

−

β∥
2)1/2, RMSEφ = (S−1 ∑S

s=1 ∥φ̂(s)
− φ∥

2)1/2 and RMSEω = (S−1 ∑S
s=1 ∥ω̂(s)

− ω∥
2)1/2. Note that the coefficient β in the

LR model is as same as β in (1) of the proposed DNC models, since estimation of (1) and (2) is separable.
Finally, to evaluate the prediction accuracy in out-of-sample settings, we generate another n0 of 500 observations,

indexed by n + 1, . . . , n + 500 in each replication as follows. In the sth replication, after generating the predictor
X (s)
n+i (1 ≤ i ≤ 500) for each simulation model, the class label Y (s)

n+i (1 ≤ i ≤ 500) is derived according to (1), and the
network links between this particular testing sample and the existing n training subjects are generated by (2). Note that
an index r1 = S−1 ∑S

s=1 r
(s)
1 is provided to illustrate the case of unbalanced classes, where r (s)1 is the proportion of class 1

in training set for the sth replication. We compare performance of DNC in respect to LR which ignores the impact of the
relational structure throughout classification process and to a network-based logistic regression model (NLR) [40] which
similarly to the DNC approach explicitly accounts for relational effects in the observed data. Comparison of DNC to NLR
allows to assess the contribution of underlying geometric properties of the data into classification performance.

The area under the receiver operating characteristic curve (AUC) value is used to derive index IR = (AUCDNC/AUCLR −

1) ∗ 100%, which evaluates the prediction accuracy improvement ratio of DNC and NLR with respect to LR. The detailed
simulation results are summarized in Figs. 1–2 and Table 1.

3.2. Simulation results

As Fig. 1 indicates, the IR values are positive for all sample sizes and depth functions for each model, implying that the
AUC values for the DNC and NLR models are greater than the respective LR values in all considered scenarios. As sample
sizes increase, the IR values tend to increase, implying a higher gain in performance delivered by DNC and NLR in respect
to LR for higher observational sample size. The results show that incorporating network structure indeed improves the
classification accuracy. Moreover the DNC outperforms NLR in all cases, which indicates the advantage of using data depth.
Performance gains of DNC appear to be highest, i.e., highest IR values, in Models 4 and 5, corresponding to uniform and
binomial distributions.

As we can see from Fig. 2, among the three considered depth functions, MhD and TD tend to deliver stable performance
across all six models, and the yielded prediction accuracy among MhD and TD is comparable. In turn, RPD appears to be less
competitive than MhD and TD, especially for Model 5, i.e., binomial distribution, and Model 6, i.e., the mixed distribution,
6
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Fig. 2. The classification performance of DNC with three depth functions, i.e., MhD, RPD and TD, in respect to LR for the six simulation models,
measured in terms of IR values, where IR = (AUCDNC/AUCLR − 1) ∗ 100%.

Table 1
The RMSE of parameters estimation results as well as the unbalanced index r1 for six simulation models
with three depth functions, i.e., MhD, RPD and TD, for sample size from 300 to 1500 are given.

n r1 RMSE

β φMhD φRPD φTD ωMhD ωRPD ωTD

Model 1

300 0.577 0.496 0.329 0.528 0.661 0.074 0.119 0.101
600 0.503 0.330 0.156 0.239 0.325 0.041 0.064 0.052
900 0.507 0.258 0.114 0.185 0.247 0.025 0.042 0.038
1200 0.512 0.256 0.093 0.133 0.153 0.021 0.032 0.028
1500 0.501 0.222 0.078 0.126 0.117 0.019 0.028 0.024

Model 2

300 0.870 0.574 0.373 0.588 0.801 0.114 0.175 0.125
600 0.835 0.366 0.193 0.266 0.386 0.048 0.089 0.065
900 0.839 0.324 0.134 0.199 0.251 0.037 0.055 0.046
1200 0.833 0.269 0.103 0.172 0.170 0.028 0.039 0.036
1500 0.819 0.232 0.092 0.158 0.134 0.023 0.036 0.030

Model 3

300 0.537 0.482 0.309 0.435 0.718 0.077 0.107 0.091
600 0.507 0.349 0.165 0.255 0.335 0.034 0.050 0.050
900 0.518 0.290 0.116 0.185 0.222 0.028 0.037 0.044
1200 0.514 0.243 0.093 0.144 0.155 0.021 0.030 0.030
1500 0.510 0.203 0.080 0.126 0.116 0.018 0.027 0.026

Model 4

300 0.537 0.898 0.630 0.926 0.628 0.064 0.126 0.101
600 0.492 0.626 0.352 0.495 0.333 0.038 0.075 0.056
900 0.478 0.492 0.220 0.355 0.234 0.026 0.048 0.044
1200 0.485 0.467 0.180 0.275 0.174 0.017 0.033 0.027
1500 0.487 0.397 0.155 0.267 0.156 0.014 0.028 0.026

Model 5

300 0.497 0.580 0.659 2.337 0.531 0.260 0.629 0.732
600 0.528 0.451 0.373 2.403 0.308 0.150 0.696 0.447
900 0.480 0.341 0.290 2.348 0.226 0.139 0.675 0.319
1200 0.498 0.300 0.221 2.331 0.180 0.109 0.643 0.247
1500 0.523 0.258 0.172 2.234 0.146 0.082 0.628 0.223

Model 6

300 0.523 0.527 0.490 1.793 0.682 0.104 0.576 0.200
600 0.512 0.337 0.215 1.471 0.345 0.057 0.495 0.108
900 0.528 0.285 0.173 1.415 0.274 0.044 0.539 0.088
1200 0.483 0.248 0.124 1.762 0.211 0.032 0.540 0.066
1500 0.505 0.204 0.101 1.338 0.157 0.026 0.548 0.050
7
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Table 2
The estimation of the model (2) for the Sina Weibo data set, where θ = (ω00, ω11 − ω00, ω10 − ω00, ω01 −

ω00, φ1, φ2, φ3, φ4)⊤ , ‘‘ ∗ ∗ ∗ ‘‘ indicates p-value ≤ 0.001 and ‘‘ ∗ ∗
′′ indicates 0.001 < p-value ≤ 0.01.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

Estimate −3.67 1.62 0.16 0.03 2.26 −2.39 −0.07 0.51
S.E. 0.01 0.02 0.01 0.01 0.05 0.07 0.05 0.06
p-value ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.176 ∗ ∗ ∗

which both contain discrete covariates. From Model 1 to Model 4, all three data depth functions deliver similar accuracy
gains over the benchmark LR.

We now turn to assessing estimation accuracy for parameters β , φ and ω based on the data depth approach. As Table 1
mplies, the RMSE values for β , φ and ω decrease as n increases under all simulation settings except for the RPD case,
hich is corresponding to the results in Fig. 2. The most accurate estimations of φ and ω tend to be delivered by the
hD. In particular, for Model 1 RMSE values for φ decrease from 0.329 to 0.078, i.e., improvement of 76% for n of 300
nd 1500, respectively; and RMSE values for ω decrease from 0.074 for n of 300 to 0.019 for n of 1500, i.e., improvement

of 74%. The results are similar across other five models, except that the most accurate estimator of φ is delivered by the
TD in Model 5, which suggests the TD may be a preferred estimator in the discrete predictor case. Finally, the obtained
finite sample performance for Model 2 is comparable to other models implying robustness of the depth-based method
for a case of unbalanced classes (r1 > 0.8 in Model 2).

These findings indicate that incorporating relational information and accounting for its underlying geometric structure
can lead to substantial gains in classification performance and robust conclusions in a broad range of scenarios.

3.3. Classification of the Sina Weibo users

We now illustrate application of the proposed depth-based approach to classification of users of Sina Weibo which
is the one of the largest online social media platforms in China. Sina Weibo allows different users to follow each other
and share various types of information between the connected users. Our data set contains 2000 users. Each user has
multiple attributes which are authentication (1 for authenticated users and 0 otherwise), number of Weibo posts, number
of personal labels, number of days the user has been registered, number of personal collections, gender (1 for male and
0 for female), and the Master of Business Administration (MBA) community label (1 for being a member of the MBA
community and 0 otherwise). Here, we regard the MBA attribute as class label, and our goal is to predict whether a
Weibo user has an MBA degree based on his/her connections, i.e., the followers and followees of each user, and personal
attributes. Accurate user classification assists the social platform in developing more efficient recommender systems and
to implement personalized marketing strategy. In this case study, incorporating the relational information, i.e., a network
structure is intuitive, as the MBA users of Weibo are more likely to share similar online behavior and personal preferences;
in turn, adopting a data depth may assist in recovering latent geometric patterns among Weibo MBA users, for instance,
hidden community substructures of users who are alumni of the same University, employed within the same industry
sector, or share other professional interests — that is, geometrically enhanced depth-based classification can assist in
revealing information which is not explicitly provided in the observed data set.

To test utility of the proposed DNC models with MhD, RPD and TD functions, we randomly split the data set into two
parts. The first 1000 observations are regarded as training set and the remaining 1000 observations are used for testing.
We compare the AUC values for the DNC with competing LR and NLR models on the testing set over 200 random splits.
In addition, we compare the AUC values with the results delivered by support vector machine method (SVM) and random
forest method (RF).

Fig. 3 illustrates the obtained results. In particular, we find that the DNC approach with all the considered depth
functions, i.e., MhD, RPD, and TD, outperforms its competitors. First, the median AUC values delivered by methods with
network information are greater than 0.76, while the AUC values of methods without using network are less than 0.72.
Second, the average AUC values of the network contained methods are 0.746 (NLR), 0.754 (DNC with MhD), 0.749 (DNC
with RPD) and 0.756 (DNC with TD), which shows that the DNC method tends to outperform NLR.

In summary, we can conclude that incorporation of dependency among entities and geometrically enhanced data depth
analysis into the classification process may lead to substantial gains in prediction accuracy in relational data. The model
fitting results for (2) are summarized in Table 2, and show that most model coefficients are found to be statistically
significant, i.e., the p-value of all coefficients except θ7 is less than 0.05, which also reflect contributions of the underlying
relational and geometric information to the classification process.

4. Discussion

We have proposed a new probabilistic model, i.e., depth-based network classification model (DNC), which integrates
dependency among observations and accounts for intrinsic data geometric structure via a data depth concept, into
classification tasks for relational data. More specifically, we have modeled the observed relational data as a complex
8
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Fig. 3. Prediction performance of DNC with three depth functions, i.e., MhD, RPD and TD, and four competitors (SVM, RF, LR and NLR) for the Sina
Weibo user classification.

network with multiple node attributes. The relationship between the class label and attributes of each node is described
by logistic regression (LR) model, and the link probability between any two nodes is assumed to be dependent on their
class labels and the data depths of the nodes in two classes. The proposed new geometrically-enhanced classification
method has shown to outperform the benchmarks approaches such as LR which ignores the impact of the relational
structure throughout classification process and the network-based logistic regression model (NLR) [40] which similarly to
the DNC approach explicitly accounts for relational effects in the observed data, in all considered finite sample scenarios
which include continuous, discrete and mixed type distributions, unbalanced designs and a case of outliers. Furthermore,
the DNC method has delivered competitive performance in predicting membership labels in a binary classification task
of the Sina Weibo users — that is, the one of the largest Chinese online social media platforms.

In the future, we plan to advance the proposed data depth approach to multi-class classification beyond LR and
ntegrate DNC with tree-based methods and neural networks. Furthermore, the DNC models can be extended to an
nsupervised case, i.e., community detection based on geometric structure and data shape of node attributes [9,21]. Finally,
e will evaluate utility of the proposed DNC approaches for risk scoring in blockchain transaction graphs, particularly, in
onjunction with whale detection and anti-money laundering efforts [1,2].
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ppendix

etailed derivation of (3). First, we introduce the continuity of depth functions, i.e., MhD, RPD and TD, on the distribution
unction, without loss of generality, denoted as F , which is useful in the derivations to follow. The continuity of a depth
function on F means that, for any fixed x, D(x, F )−D(x, Fn) = op(1), if Fn converges to F , where Fn is empirical distribution
function. For MhD and TD, by [30], we have for any fixed x, MhDF (x) − MhDFn (x) = op(1) and TDF (x) − TDFn (x) = op(1),
as Fn converges to F . As for RPD, by [41], we have RPDF (x) − RPDFn (x) = op(1), as Fn converges to F , under some mild
onditions.
Second, the posterior probability of Yn+1 given all observed information is as follows

P(Yn+1|Y , X, Xn+1, An+1) = {P(Y , An+1|X, Xn+1)}−1P(Y , Yn+1, An+1|X, Xn+1)
∝ P(Y , Y |X, X )P(A |Y , Y , X, X )
n+1 n+1 n+1 n+1 n+1

9
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=

n+1∏
i=1

P(Yi|Xi)
n+1∏
i̸=j

P(aij|Y , Yn+1, X, Xn+1)

∝

{
exp(X⊤

n+1β)
}Yn+1

1 + exp(X⊤

n+1β)

n+1∏
i̸=j

{
exp(ωYiYj + φ⊤Dij

n+1)
}aij

1 + exp(ωYiYj + φ⊤Dij
n+1)

.

Here symbol ‘‘∝’’ means ‘‘be proportional to’’. That is, the part which is independent on Yn+1 is omitted. Hence,

ln
{
P(Yn+1|Y , X, Xn+1, An+1)

}
∝ Yn+1X⊤

n+1β − ln{1 + exp(X⊤

n+1β)}

+

n+1∑
i̸=j

[
aij(ωYiYj + φ⊤Dij

n+1) − ln{1 + exp(ωYiYj + φ⊤Dij
n+1)}

]
.
= H(Yn+1,Dn+1).

Note that because Yn+1 is unknown, we cannot acquire the quantity Dij
n+1. To fill the gap, we substitute Dij

n+1 with Dij
n,

which results in the approximation as follows

H(Yn+1,Dn+1) ≈ Yn+1X⊤

n+1β − ln{1 + exp(X⊤

n+1β)}

+

n+1∑
i̸=j

[
aij(ωYiYj + φ⊤Dij

n) − ln{1 + exp(ωYiYj + φ⊤Dij
n)}

]
.
= H(Yn+1,Dn).

Hence, under the assumption of continuity of data depth, the impact of approximation on the prediction rule is
negligible.

Finally, we obtain the following approximate prediction rule

ln
{
P(Yn+1 = 1|Y , X, Xn+1, An+1)
P(Yn+1 = 0|Y , X, Xn+1, An+1)

}
≈ X⊤

n+1β +

n∑
i=1

[
ai(n+1)(ωYi1 + φ⊤Di(n+1)

n ) − ln
{
1 + exp(ωYi1 + φ⊤Di(n+1)

n )
}]

−

n∑
i=1

[
ai(n+1)(ωYi0 + φ⊤Di(n+1)

n ) − ln
{
1 + exp(ωYi0 + φ⊤Di(n+1)

n )
}]

+

n∑
j=1

[
a(n+1)j(ω1Yj + φ⊤D(n+1)j

n ) − ln
{
1 + exp(ω1Yj + φ⊤D(n+1)j

n )
}]

−

n∑
j=1

[
a(n+1)j(ω0Yj + φ⊤D(n+1)j

n ) − ln
{
1 + exp(ω0Yj + φ⊤D(n+1)j

n )
}]

.

Proof of Theorem 1. We divide this proof into two steps as follows.

Step 1. According to the approximate prediction rule (3), the n+1th node will be labeled as 1 if X⊤

n+1β+Q1−Q2+Q3−Q4 > 0,
which is equivalent to

g(θ ) = X⊤

n+1β +

n∑
i=1

ai(n+1) ln
π

Yi1
i(n+1)

π
Yi0
i(n+1)

+

n∑
i=1

{1 − ai(n+1)} ln
1 − π

Yi1
i(n+1)

1 − π
Yi0
i(n+1)

+

n∑
j=1

a(n+1)j ln
π

1Yj
(n+1)j

π
0Yj
(n+1)j

+

n∑
j=1

{1 − a(n+1)j} ln
1 − π

1Yj
(n+1)j

1 − π
0Yj
(n+1)j

> 0,

where θ = (β⊤, φ⊤, ω⊤)⊤. Furthermore, g(θ ) can be rewritten as

X⊤

n+1β +

n∑
i=1

[
ai(n+1)Yi ln

π11
i(n+1)

π10
i(n+1)

+ {1 − ai(n+1)}Yi ln
1 − π11

i(n+1)

1 − π10
i(n+1)

]

+

n∑
i=1

[
ai(n+1)(1 − Yi) ln

π01
i(n+1)

π00
i(n+1)

+ {1 − ai(n+1)}(1 − Yi) ln
1 − π01

i(n+1)

1 − π00
i(n+1)

]

10
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N

N

+

n∑
i=1

[
a(n+1)iYi ln

π11
(n+1)i

π01
(n+1)i

+ {1 − a(n+1)i}Yi ln
1 − π11

(n+1)i

1 − π01
(n+1)i

]

+

n∑
i=1

[
a(n+1)i(1 − Yi) ln

π10
(n+1)i

π00
(n+1)i

+ {1 − a(n+1)i}(1 − Yi) ln
1 − π10

(n+1)i

1 − π00
(n+1)i

]
.

Hence, the probability P(Ŷn+1 = 1|Yn+1 = 1, X, Xn+1) is equal to P
(
g(θ̂ ) > 0|Yn+1 = 1, X, Xn+1

)
. Denote g(θ̂ ) =

X⊤

n+1β̂ + F1 + F2 + F3 + F4, where

F1 =

n∑
i=1

[
ai(n+1)Yi ln

π̂11
i(n+1)

π̂10
i(n+1)

+ {1 − ai(n+1)}Yi ln
1 − π̂11

i(n+1)

1 − π̂10
i(n+1)

]
,

F2 =

n∑
i=1

[
ai(n+1)(1 − Yi) ln

π̂01
i(n+1)

π̂00
i(n+1)

+ {1 − ai(n+1)}(1 − Yi) ln
1 − π̂01

i(n+1)

1 − π̂00
i(n+1)

]
,

F3 =

n∑
i=1

[
a(n+1)iYi ln

π̂11
(n+1)i

π̂01
(n+1)i

+ {1 − a(n+1)i}Yi ln
1 − π̂11

(n+1)i

1 − π̂01
(n+1)i

]
,

F4 =

n∑
i=1

[
a(n+1)i(1 − Yi) ln

π̂10
(n+1)i

π̂00
(n+1)i

+ {1 − a(n+1)i}(1 − Yi) ln
1 − π̂10

(n+1)i

1 − π̂00
(n+1)i

]
.

hus, the proof is equivalent to prove that g(θ̂ ) tends to infinity in probability one, as n → ∞. By [29] and Assumption C1,
e know that X⊤

n+1β̂ = X⊤

n+1(β̂ − β) + X⊤

n+1β is bounded in probability. Because the mathematical forms of F1, F2, F3 and
F4 are similar, we only need to prove F1 tends to positive infinity in probability one as n → ∞.

Step 2. First, denote pi = exp(x⊤

i β)/{1 + exp(x⊤

i β)}, hence the boundedness of X and β guarantees the boundedness of
i. Write F1 = F1 − F0 + F0, where

F0 =

n∑
i=1

pi

[
π11
i(n+1) ln

π11
i(n+1)

π10
i(n+1)

+ {1 − π11
i(n+1)} ln

1 − π11
i(n+1)

1 − π10
i(n+1)

]
.

Next, by Assumption C2, it is easy to derive that there exist some finite positive constants ν < 1/3, γ , such that
π kl
ij ∝ n−γ , νn−γ

≤ π kl
ij ≤ 1 − νn−γ for k, l ∈ {0, 1}. Then with Assumption C1 and the result of lemma 3 in Guan et al.

2018 [11], we have

F0 ≥
3
2

n∑
i=1

piν2n−2γ
≥

3
2
min{pi}ν2n1−2γ

= O(n1−2γ ).

ext, we need to derive the order of |F1 − F0|. First, we have

F1 − F0 =

n∑
i=1

{
ai(n+1)Yi ln

π̂11
i(n+1)

π̂10
i(n+1)

− piπ11
i(n+1) ln

π11
i(n+1)

π10
i(n+1)

}

+

n∑
i=1

[
{1 − ai(n+1)}Yi ln

1 − π̂11
i(n+1)

1 − π̂10
i(n+1)

− pi{1 − π11
i(n+1)} ln

1 − π11
i(n+1)

1 − π10
i(n+1)

]
.
= H1 + H2,

where

H1 =

n∑
i=1

{
ai(n+1)Yi ln

π̂11
i(n+1)

π̂10
i(n+1)

− piπ11
i(n+1) ln

π11
i(n+1)

π10
i(n+1)

}
,

H2 =

n∑
i=1

[
{1 − ai(n+1)}Yi ln

1 − π̂11
i(n+1)

1 − π̂10
i(n+1)

− pi{1 − π11
i(n+1)} ln

1 − π11
i(n+1)

1 − π10
i(n+1)

]
.

ext,

H1 =

n∑
i=1

{
ai(n+1)Yi ln

π̂11
i(n+1)

π̂10
i(n+1)

− ai(n+1)Yi ln
π11
i(n+1)

π10
i(n+1)

}
,

+

n∑{
ai(n+1)Yi ln

π11
i(n+1)

π10 − piπ11
i(n+1) ln

π11
i(n+1)

π10

}

i=1 i(n+1) i(n+1)

11
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|

H

∑
c

=

n∑
i=1

ai(n+1)Yi

{
ln

π̂11
i(n+1)

π̂10
i(n+1)

− ln
π11
i(n+1)

π10
i(n+1)

}

+

n∑
i=1

{ai(n+1)Yi − piπ11
i(n+1)} ln

π11
i(n+1)

π10
i(n+1)

.
= H11 + H12.

For H11, by Assumptions C1 and C2, the asymptotic normality properties of logistic regression and the ∆-method, we have

π̂11
i(n+1) − π11

i(n+1)
d

→ N(0, Σ),

where Σ = {π11
i(n+1)(1 − π11

i(n+1))}
2z⊤

i {
∑n

i=1 π11
i(n+1)(1 − π11

i(n+1))ziz
⊤

i }
−1zi, and zi = (ω11, φ1, φ2, φ3, φ4)⊤. Hence

π̂11
i(n+1) − π11

i(n+1)| = Op(n−
γ+1
2 ). Moreover,⏐⏐⏐⏐ ln π̂11

i(n+1) − lnπ11
i(n+1)

⏐⏐⏐⏐ =

⏐⏐⏐⏐ ln{1 +
π̂11
i(n+1) − π11

i(n+1)

π11
i(n+1)

}

⏐⏐⏐⏐ ≤

∞∑
k=1

1
k
|
π̂11
i(n+1) − π11

i(n+1)

π11
i(n+1)

|

k

= Op

( ∞∑
k=1

1
k
nk(γ−1)

)
= Op(n

γ−1
2 ).

ence,⏐⏐⏐⏐ ln π̂11
i(n+1)

π̂10
i(n+1)

− ln
π11
i(n+1)

π10
i(n+1)

⏐⏐⏐⏐ =

⏐⏐⏐⏐ ln π̂11
i(n+1) − lnπ11

i(n+1) − ln π̂10
i(n+1) + lnπ10

i(n+1)

⏐⏐⏐⏐
≤

⏐⏐⏐⏐ ln π̂11
i(n+1) − lnπ11

i(n+1)

⏐⏐⏐⏐ +

⏐⏐⏐⏐ ln π̂10
i(n+1) − lnπ10

i(n+1)

⏐⏐⏐⏐ = Op(n
γ−1
2 ).

For
∑n

i=1 ai(n+1)Yi, given Yn+1 = 1, its conditional expectation is
∑n

i=1 π11
i(n+1)pi = Op(n1−γ ), and its variance is

n
i=1[π

11
i(n+1)pi − {π11

i(n+1)pi}
2
] = Op(n1−γ ). As a result, we have H11 = Op(n

1−γ
2 ).

For H12, by Assumption C2, ln{π11
i(n+1)/π

10
i(n+1)} = Op(1). That is, H12 = Op(n

1−γ
2 ). Hence, H1 = Op(n

1−γ
2 ). Similarly, we

an derive that H2 = Op(n
1−γ
2 ). Now, we have |F1 − F0| = Op(n

1−γ
2 ). Hence, compared to the order of F0, if 0 < γ < 1/3,

we have g(θ̂ ) tends to ∞ with probability one, as n → ∞, which completes the proof.
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