LFGCN: Levitating over Graphs
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Abstract—We propose a new Lévy Flights Graph Convolu-
tional Networks (LFGCN) method for semi-supervised learning,
which casts the Lévy Flights into random walks on graphs and, as
a result, allows both to accurately account for the intrinsic graph
topology and to substantially improve classification performance,
especially for heterogeneous graphs. Furthermore, we propose
a new preferential P-DropEdge method based on the Girvan-
Newman argument. That is, in contrast to uniform removing of
edges as in DropEdge, following the Girvan-Newman algorithm,
we detect network periphery structures using information on edge
betweenness and then remove edges according to their between-
ness centrality. Our experimental results on semi-supervised node
classification tasks demonstrate that the LFGCN coupled with P-
DropEdge accelerates the training task, increases stability and
further improves predictive accuracy of learned graph topology
structure. Finally, in our case studies we bring the machinery of
LFGCN and other deep networks tools to analysis of power grid
networks — the area where the utility of GDL remains untapped.

Index Terms—graph-based  semi-supervised  learning,
convolutional networks, Lévy flights, local graph topology

I. INTRODUCTION

Adaptation of deep learning (DL) to graphs and other
non-Euclidean objects has recently witnessed an ever
increasing interest, leading to the new subfield of geometric
deep learning (GDL). GDL is an emerging direction in
machine learning which generalizes DL concepts for data in
non-Euclidean spaces, e.g., graphs and manifolds, by bridging
the gap between graph theory and deep neural networks [, 2].

Further advancing the localized approaches in GDL, we
propose a new fractional generalized graph-based convolutional
filter for semi-supervised learning which casts the Lévy
Flights into random walks on graphs. As a result, our new
Lévy Flights Graph Convolutional Network (LFGCN) method
allows one to more accurately account for the intrinsic local
graph topology and to substantially improve classification
performance, especially for heterogeneous graphs.

To fly or not to fly, and if to fly, why take a Lévy
Flight? Lévy Flight is a random process with a scale-free,
Lévy stable jump length distribution. Due to the scale-free
character, throughout the graph exploration we move randomly
according to a power-law distribution for hops, rather than
with one-by-one hops as in a standard random walk. As a
result, Lévy Flight delivers more accurate and efficient search
strategies, especially, in sparse environments, comparing to
other types of random walks [3| i4]. While superiority of Lévy
Flights as a primary search strategy has been proven in a
broad range of settings, utility of Lévy Flights in graph-based
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learning remains unexplored. Hence, Lévy Flights offer a new
learning perspective with multiple advantages comparing to the
currently available architectures. First, due to a fractal character,
Lévy Flights combines both local graph exploration and long-
range excursions, which reduces oversampling comparing to a
normal random walk (i.e., lower probability to revisit the nodes
we have already seen). Second, Lévy Flights allow to directly
reach long-distance nodes without intervention of intermediate
nodes. Third, contrary to the high-order schemes, e.g., [3, 6],
which are based on integer powers of Laplacian and associated
standard random walks describing only larger scale graph
structures, LFGCN allows for exploring both local and global
graph structures with no computational overhead. Forth, Lévy
Flights average return probability is lower than average return
probability of a normal random walk, implying more efficient
graph exploration. Fifth, Lévy Flights are known to exhibit
a particularly high utility for unbalanced and directed data
which can explain higher LFGCN accuracy we have obtained
in directed networks.

To abate over-fitting and over-smoothing in GDL, we also de-
velop a new preferential P-DropEdge method based on censor-
ing edge order statistics at each training epoch. Our P-DropEdge
idea is inspired by the recent DropEdge algorithm of [7] and is
rooted in nonparametric methods, specifically, various censoring
schemes, for statistical inference on order statistics. In contrast
to uniformly removing edges as in DropEdge [7], we follow
the Girvan-Newman argument and target edges that tend to
contribute more to the intrinsic graph topology. That is, we ran-
domly remove edges with higher betweenness centrality, or the
corresponding higher edge order statistics. Intuitively, in both
P-DropEdge and DropEdge the goal is to introduce randomness
in the network structure. If we are to learn international
political networks with GDL, DropEdge largely tends to remove
connections among individual citizens while P-DropEdge
randomly censors collaboration links among Presidents and
Prime Ministers. Removal of such targeted connection is likely
to lead to higher perturbation effects. We investigate utility of
the new P-DropEdge approach vs. DropEdge in conjunction
with LFGCN and GMMN (the best performing baseline) of [8].

Significance of our contributions can be summarized as:

« We propose a new fractional generalized graph-based con-
volutional filter for semi-supervised learning which casts the
Lévy Flights into random walks on graphs and, as a result,
provides a more efficient exploration of graph structures. We
develop a new Lévy Flights Graph Convolutional Network



(LFGCN) method that substantially improves accuracy of
node classification for graphs, outperforming 12 State-of-the-
Art (SOTA) methods on 2 out of 3 considered undirected net-
works and 10 SOTAs on all 4 considered directed networks.

o The proposed architecture of LFGCN uses three state-of-
the-art operations — gated max-average pooling, residual
block, and P-DropEdge. We provide an ablation study and
investigate contribution of each component to the resulting
classification accuracy as well as explore sensitivity of the
overall system architecture to (hyper)parameter settings.

o We provide theoretical foundations behind the proposed
LFGCN architecture and show that the proposed LFGCN
architecture leads to significant gains in the training
convergence and model output stability.

o The developed preferential P-DropEdge based on censoring
of higher edge betweenness order statistics is shown to
exhibit utility in other GCN methods and, hence, might be
applicable in broader GDL settings.

o Last but not the least, while validating our LFGCN
methodology, we bring the GDL concepts to the analysis
of power grid networks, i.e., the area of critical societal
importance where to the best of our knowledge, the GDL
machinery has never been yet applied.

II. RELATED WORK

One of the first formulations of convolutional neural networks
(CNN) based on spectral graph theory is ChebNet [9]. ChebNet
employs approximation via finite order polynomials and is
based on the Chebyshev expansion for fast filtering instead
of the expensive eigen-decomposition. Graph Convolutional
Networks (GCN) of [10] simplifies ChebNet while further
addressing the gradient vanishing problem and reducing the
number of optimization. Other related approaches to graph
learning with deep neural networks include, for instance,
mixture model networks (MoNet) [2], graph attention networks
(GAT) [IL1], graph convolutional recurrent networks [12], dual
graph convolutional networks [[13]], and simplified version of
GCN [14]. By directly powering the graph Laplacian, GCN
based on random walks such as approximate personalized
propagation of neural predictions (APPNP) [15]], variable
power network (VPN) [5], and MixHop [6]] can learn the
relationships between multiple-hops neighborhood.

To extend the success of GCN on undirected graphs to
directed graphs, MotifNet of [16]] replaces the normalized
Laplacian with the motif Laplacian in a multivariate polynomial
filter, where the motifs information can help capture the
network structure. Finally, the most recent approach of [17]]
provides more flexible responses than GCN by using parallel
and periodic concatenations of the convolutional kernel
via the ARMA filter. As a result, ARMA-GCN of [17]
which is applicable to both directed and undirected networks
allows to more accurately incorporate the underlying local
graph structure into the graph learning process. For a recent
comprehensive overview of GCNs see [18].

I[II. METHODOLOGY

Consider a graph structure G = {V, &, W}, where V is
a node set with cardinality [V| of N, and £ CV x V is an

edge set. An N x N-matrix W with entries {w;;}i<ij<n
represents the adjacency matrix of G, that is, w;; #0 for any
e;j € € and w;; = 0, otherwise. For an undirected graph G,
W=WT. In reality, however, undirected graphs are often
simplified representations of complex directed networks. If
G is directed, we substitute W with W' = (W T +W)/2.

Let ), Q € Z~( be the number of different node features asso-
ciated each node v€ V. Then, a NV x Q feature matrix X serves
as an input to an semi-supervised learning algorithm. To classify
N data points into K classes (communities), we define a N x K
label matrix Y such that Y;; =1 if vertex 7 is labeled as class k,
and 0 otherwise. Here we refer to each column Y., of matrix Y
as a labeling function. Finally, we define an N x K matrix F'
whose columns F'j, are referred to as classification functions.

A. Graph signal processing

Given W of G, let D be a degree matrix where
di; = E;.V:lwij and L = UTAU be a Standard Laplacian
matrix. Here A=diag(),...,Axy—1) and U =[ug,...,un—_1] is
the matrix of eigenvectors.

In the following, we will revisit three popular semi-
supervised learning methods - graph-based semi-supervised
learning, fractional graph-based semi-supervised learning,
and graph convolutional networks and gain new insights for
improving their modeling capabilities.

Graph-based semi-supervised learning Graph-based
semi-supervised learning (G-SSL) has received much attention
as an alternative approach to the population paradigm of
supervised learning in recent years. G-SSL develops a
generalized optimization framework, which has three particular
cases (i) the Standard Laplacian (SL); (ii) Normalized
Laplacian (NL); (iii) PageRank (PR). The general idea of
graph-based semi-supervised learning (G-SSL) is based on two
widely used optimization frameworks. The first formulation,
the SL based formulation [[19] as follows:

mln ZZU}”HF —F; || +MZd | F;.—Y; || )

i=1j5=1

where d;; is (i, ¢)-element in degree matrix D and wj;
represents the edge weight for edge e;; in adjacency matrix W.
For the second formulation, the NL based formulation [20],
is as follows:
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The following lemma [21]] asserts that the generalized
optimization framework, i.e., G-SSL, which has as particular
cases the two above mentioned formulations:

Lemma 1. Let o denote an alternative parameter on the
power of degree matrix D whose entries are the degrees d;;;
and let 0<o<1. Then
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The classification functions
semi-supervised learning are
(1—a)(I—aD="WD"~1) "'y,
Proof of Lemma [I] is in Appendix VII (see [22]). The
optimization formulation S(F') with the following expression:

generalized
Fy =

S(F) = m}n{QF?,;D"lLD"lF.k (1)

+ p(F=Yx)" D> (Fy, Y.k)},

where p is a regularization parameter. Minimization of the
Ist term in corresponds to the idea that if two nodes are
close in graph with respect to some metric, they should belong
to the same class; and by minimizing the 2nd term we aim
to bring the classification function F'j as close as possible
to the labeling function Y.;. Eq. (I) allows us to obtain the
Standard Laplacian based formulation (o =1), the Normalized
Laplacian formulation (o =0.5), and PageRank formulation
(o0 =0). Objective of the generalized optimization framework
for G-SSL is a convex classification function for 1<k < K:
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Parameter « controls the strength of the ground truth label

matrix Y in the generalized optimization framework.
Fractional graph-based semi-supervised learning To im-
prove classification performance (in particular, fuzzy graphs
and unbalanced labeled data) of G-SSL, fractional graph-based
semi-supervised learning [23|] embeds Lévy Flights into random
walks on graphs by constructing from powers of the Laplacian
matrix, i.e., the operator L”. This operation can be used to
generate different transition probabilities (i.e., corresponding
to stochastic adjacency matrix) based on different + values.
Intuitively, embedding Lévy Flights into random walks allows
for better capturing mixing properties (i.e., dependence) in
the data. Based on a fractional Laplacian matrix, 0 <~ <1,
the anomalous (fractional) diffusion processes on networks
can be constructed from the spectra data and eigenvectors of
the Laplacian matrix. The fractional powers of L allows Lévy
random walks with long-range navigation on a network. For
example, the long-range transitions on a network can directly

move node v and node v with the transition probability mq(fﬂw

through a random walker, where mSjﬁU is an element in the
fractional transition matrix M(?). Transition probability for the
Lévy Flights mgf’_)w between any two nodes whose geodesic dis-
tance is not infinite is m,&’gv =0uv— (L) .,/ k&ﬂy), where J,,, is
the Kronecker delta, kq(ﬁ) is the fractional degree of the node u
and kfﬂ) =(L"),,- Unlike the standard random walk, the Lévy
Flights can jump immediately over several hops in a graph.
This feature enables Lévy Flights to be a very effective graph
exploratory process. Lemma [2] makes this statement formal.

a=2/(2+u).

Lemma 2. The Lévy flight defined by the normalized
Laplacian has a shorter relaxation time (measure of the
transience) in comparison with the original random walk.

Proof of Lemma 2 is in Appendix VIII (see [22]). There is
a price to pay for this: the typically sparse transition probability

matrix becomes non-sparse. We can mitigate non-sparsity by
taking a reasonable number of principal singular eigenvectors
or limiting the number of terms in the Taylor expansion.
By replacing L with LY = UTA U, the new optimization
formulation S*(F') yields:

§*(F)  =min{2FL DI L DITF,
+u(Fe=Yr) " D2 (Fr—Yy)},

where (D) =(L7);.

Let 0 < <1, then the closed form solution fog (E]) can
be obtain as: Fly = (1 —a) (I—aD;°W,D3™') " Yy, for
k=1,... K.
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B. Proposed Lévy Flights Graph Convolutional Network for
semi-supervised node classification

Next, we turn to discussing on how the idea of Lévy Flights
can be incorporated to GCN, leading to the new Lévy Flights
Graph Convolutional Network (LFGCN) for semi-supervised
node classification.

Lévy Flights Graph Convolutional Network (LFGCN)
The key idea behind our proposed method is Fractional
Generalized Sigma-based (FGS) filter:

11—« -«
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To avoid the inverse computations, we insert the Taylor
series expansion into the FGS filter, resulting in:
gres(a,o,7) = (1 —a) Yigy(al)’, 0 < a,0,v < 1.
Empirically, we find that ¢ = [4«] is a sufficient order of
approximation. We then obtain the general classification
function by multiplying grgs by the feature matrix X:

X =gpas(a,07)X =(1-a)(X ),

where (X');=X+aL(X )i 1, (X )o=X, i €Zi>0.
Convolutional layer During LFGCN training, the convolu-
tional model needs to train parameters (W ,b) of the graph filter,
where the trainable graph filter scan the given input feature
matrix into a series of feature maps with neurons. Thereby, we
provide an implementation of (4) as a FGS convolutional layer:

HFD =4 ((1 a)Z(aZ)iH(t)W(t)> ,

=0

gFGS(ava-a’Y) =

4)

®)

where H(**1 is the hidden layer output matrix of activations
in the ¢-th layer and H(®) = X, o(-) is the adopted activation
function, and W®) is the trainable weight in the ¢-th layer. Fur-
thermore, we bring the concept of the parallel system (PS) from
the reliability theory to improve the consistency of our proposed
method. A parallel system is a configuration such that the entire
system functions as long as not all involved components in the
system fail. Hence, the parallel system structure is more robust
against noisy inputs, compared to a single system structure.
The introduced concept of a parallel system allows for
enhancing stability and reducing estimation variance up to
order of n (i.e., Var(Xpgs) = O(S?/n)). In this way, we
establish both theoretical and practical guarantees for our
proposed model to reach stable classification over a large set



of hyperparameters, small datasets, and noisy labels based on
this parallel implementation.

Pooling layer When implementing the form of pooling
operation to aggregate information from the outputs of parallel
FGS convolutional layer, instead of using some popular
pooling functions such as max and average pooling, we apply
the SOTA pooling operation - gated max-average pooling [24]
to capture the local and global information from all the
nodes and graph structure. The rationale behind the gated
max-average pooling, is that it considers “responsive” strategy
(i.e., improving translation invariance and scale invariance via
considering input in each gating mask) based on the mixed
max-average pooling equation. That is,

fgated(XFGS) = U(WTXFG.S')fmax(XFGS)
+ (1-0(W'Xras)) fave(Xras),

where W is the trainable weight matrix, X pgg is the output
matrix from the parallel FGS convolutional layer after
concatenation operation.

Residual building block Inspired by the seminal works
of [250 [26] that implemented residual learning in a graph
convolutional network, we apply a residual block (RB) by
adding the skip connection after the pooling layer. One of the
advantages of the residual learning is the identity mapping
which provides a “direct” path for propagating information.
When using the residual building block, we adopt a similar
scheme as [27] to deal with the output of the pooling layer.
Let H(x) be an underlying mapping and we cast it as
H(z)=F(x)+z, where F(x) is the residual mapping, defined
by H(x)—x. That is, optimizing the residual mapping F(x) is
easier than optimizing the direct mapping H(z) and helps to
avoid the gradient vanishing problem during training. We use
an exponential linear unit (ELU) in direct mapping and place
a rectified linear unit (ReLLU) after addition in our model.

P-DropEdge Motivated by the recent idea of message
passing inference [i.e., DropEdge of [7], we develop a new
preferential DropEdge approach called the P-DropEdge which
is based on censoring higher edge betweenness order statistics.
In particular, DropEdge of [7] uniformly randomly removes a
certain proportion of edges from the input graph at each training
epoch and as a result allows to better prevent against over-fitting
and to reduce the effect of over-smoothing. The rationale behind
DropEdge on introducing more randomness and deformation
into the data is intrinsically linked and complementary to the
Dropout ideas of [28]. Our approach further advances DropE-
dge by targeting and randomly removing edges proportionally
to their betweenness centrality, i.e., preferential edge dropout of
higher edge betweenness order statistics. That is, first, our idea
is based on the Girvan-Newman argument of focusing on edges
which tend to play a higher role in the underlying network
topology [29]. Second, dropout of higher edge betweenness
order statistics may be viewed as a variant of recently proposed
non-uniform censoring schemes for generalized order statistics
in reliability theory which are shown to deliver more robust
parameter estimates in heterogeneous probability distributions.

Note that the Girvan-Newman algorithm on edge between-
ness infers the edges connecting communities, that is, the edges

exhibiting a more profound role in the network organization. As
a result, P-DropEdge offers multi-fold benefits: (i) it constrains
direction of a random walk and acts as a “self-avoiding”
random walk, e.g., reduces the chance of moving back to the
already visited graph structure; (ii) increases variability among
randomly deformed copies of the original graph. That is, let
us consider, e.g., an international political network. Randomly
removing connections among Mr. and Mrs. Smith or even
US Senators from Texas and California will tend to deliver a
more similar resulting graph structure than randomly removing
collaboration links between Trump, Macron, Putin and Johnson.

Algorithm 1 P-DropEdge Algorithm

Input: Data adjacency matrix W, Parameter pppg, 7
for i=1to |£| do
caleulate Cg, (€)i =", ey Tuv(€)i/ouv for the edge e;

end for

> Find order statistics of {Cp,(e);}, i=1,2,....E
Cg,.(e)1)<CB.(€)(2) < <Cr.(€)(¢)

> Draw edges which correspond to the top order statistics
Cp.(e)(1-m)gp < <Ch.(€)(e))

> Assign weights to the selected edges 1n Ist-round as

BOG G (1-7)|E],... €],

Py =
. L‘i‘(l—‘r)\éﬁcBe(e)(j)
) Y={Y(a-nenYent
> Weighted sampling without replacement
randsample((1—7)|€|: |€].pp-og. x 7 x |E],8).
obtain sample s with size pp.pg. X7 X |E|
Output new adjacency matrix Wpppp =W —=Wey (eyes

P-DropEdge method is presented in Algorithm [I] Given
a resulting adjacency matrix W, . upon P-DropEdge

application, a new fractional Laplacian takes the form L
-0 o—1
YpppE  VPP-DE. " _YPpDE.

Laplacian L in with E,,P,D'EO for propagation and training.
In validation and testing steps, P-DropEdge is not utilized.

DPDE —
. Finally, we replace the fractional

IV. EXPERIMENTAL SETTINGS

Directed and Undirected Datasets Joining the previous
works’ practice, we use 3 undirected citation networks bench-
mark datasets Cora-ML, CiteSeer, and PubMed. We also
evaluate our method on 4 directed networks — Cora, IEEE
118-bus system (IEEE bus), Texas 2000-bus system (TX bus),
and South Carolina 500-bus system (SC bus). The dataset
statistics are summarized in Table V (see [22], Appendix X).

Baseline Methods On undirected networks, we compare
LFGCN with the following semi-supervised classification
SOTAs: LP [30]]; DeepWalk (DW) [31]], GAT [11], ChebNet [9],
ARMA-GCN [17]], GMNN [8], LGCNs [32], SPAGAN [33],
APPNP [15], VPN [3], and MixHop [6]. On directed graphs,
we use MotifNet, ChebNet, GCN, ARMA-GCN, GMNN,
LGCNs, SPAGAN, APPNP, VPN, and MixHop.

Training Settings Training is done by using Adam
optimizer with learning rates [r; =0.01 and lro ={0.1;0.001}
for for undirected and directed networks, respectively. To
prevent over-fitting, we consider both adding dropout layer
before two graph convolutional layers and kernel regularizers
(¢2) in each layer. Parameters pp.pg. and 7 largely depend on
the distributional properties of a network and can be estimated,
e.g., via cross-validation. As a rule of thumb, we recommend
pppE and 7 of 5% and 6%, respectively, in larger networks
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Fig. 1: Ilustration Lévy Flights Graph Convolutional Network model. The input is the feature matrix X and the graph within
dotted circle represents embedding Lévy Flights into random walks on graph (where L” is the Laplacian matrix L to a power
7). LEGCN architecture consists of three main components: (i) FGS convolutional layer with parallel structure; (ii) gated
max-average pooling layer; (iii) activation block for residual learning.

of more than 2,000 nodes, and pp.pg. and 7 of 1% and 2%,
respectively, in smaller network of less than 1,000 nodes.

V. RESULTS

1. Performance analysis Tables |I| reports the average
accuracy delivered by LFGCN and competing methods. The
best performance for each dataset is marked in bold. We find
that LFGCN outperforms all competing approaches in all
datasets, except for PubMed (LFGCN delivers the 2nd best
accuracy result). The improvement gain of LFGCN over the
next most accurate method ranges from 0.29% (for CiteSeer
over GMNN) to 4.27% (for directed IEEE bus over GMNN).
Remarkably, methods that are applicable both to undirected
and directed networks (i.e., [5 16, 18, 9, [10, [15} 17} 132, 133])
tend to deliver noticeably lower accuracy results for a directed
networks (especially on weighted-directed networks), while
LFGCN yields a more stable performance across both directed
and undirected networks. In turn, in PubMed (unweighted-
undirected), GMNN outperforms LFGCN up to 2.63%. Note
that PubMed has the lightest tails for the degree distribution
and a weak structural info (i.e., with very few links per node
on average), hence, LFGCN is not the best exploration choice.
These results suggest that LFGCN tends to be the most
competitive and, hence, preferred node classification method for
sparser networks with higher label rates. Furthermore, the IEEE
bus dataset is the smallest among the considered data, and we
might expect to observe lower accuracy results for this dataset
due to a limited training set. However, the accuracy yielded
by LFGCN is among the highest ones across all datasets.

2. P-DropEdge vs. DropEdge We now evaluate our
P-DropEdge and regular DropEdge of [7] based on the
LFGCN and GMNN (i.e., the best performing baseline).
Table |lI] presents comparison between LFGCN and GMNN
with regular DropEdge and P-DropEdge on CiteSeer and SC
500-bus. We find that while a sufficiently sampling-based
edge-removing is helpful for performance enhancement,
regular randomly removing edges do not always improve
performance. Note that this finding is in contrast to the regular
DropEdge where both LFGCN and baseline equipped with
P-DropEdge achieve consistently better performance than
others. These findings prove the effectiveness of employing
preferential approach of P-DropEdge before the learning task.

VI. CONCLUSION

We have proposed a new LFGCN model for semi-supervised
learning on graphs that enables to better capture the intrinsic
local graph topology. Our studies have indicated that LFGCN
tends to outperform all competing DL models on both directed
and undirected graphs, especially in sparser regimes.
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Table I: Average classification accuracy (%) and standard deviation (%) in () for undirected and directed networks.
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ARMA-GCN [17] 82.80 (0.63)  72.30 (0.44)  78.80 (0.30) 58.99 (0.52) 70.55 (2.23) 81.20 (0.23)  94.33 (0.47)
GAT [L1] 83.11 (0.70)  70.85 (0.70)  78.56 (0.31) - - - -
GMNN [8] 83.72 (0.90) 73.10 (0.79) 81.80 (0.53) 61.20 (0.50) 78.88 (2.50) 86.21 (0.29) 96.57 (0.52)
LGCNs [32] 83.35 (0.51)  73.08 (0.63)  79.51 (0.22) 60.72 (0.43) 71.43 (2.20) 85.57 (0.25) 95.14 (0.45)
SPAGAN [33] 83.63 (0.55)  73.02 (0.41) 79.60 (0.40) 61.00 (0.45) 78.55 (2.25) 86.00 (0.26)  96.19 (0.40)
APPNP [135] 83.31 (0.53)  72.30 (0.51) 80.12 (0.20)  61.00 (0.44) 82.05 (2.24) 86.77 (0.30)  96.11 (0.45)
VPN [3] 81.89 (0.57)  71.40 (0.32) 79.60 (0.39) 60.53 (0.43) 82.19 (2.20) 86.87 (0.33) 96.23 (0.50)
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