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Hardware for deep neural network (DNN) inference often suffers from insufficient on-chip memory, thus requiring accesses to
separate memory-only chips. Such off-chip memory accesses incur considerable costs in terms of energy and execution time.
Fitting entire DNNs in on-chip memory is challenging due, in particular, to the physical size of the technology. Here, we report
a DNN inference system—termed lllusion—that consists of networked computing chips, each of which contains a certain mini-
mal amount of local on-chip memory and mechanisms for quick wakeup and shutdown. An eight-chip lllusion system hardware
achieves energy and execution times within 3.5% and 2.5%, respectively, of an ideal single chip with no off-chip memory.
lllusion is flexible and configurable, achieving near-ideal energy and execution times for a wide variety of DNN types and sizes.
Our approach is tailored for on-chip non-volatile memory with resilience to permanent write failures, but is applicable to several
memory technologies. Detailed simulations also show that our hardware results could be scaled to 64-chip lllusion systems.

to create integrated circuits with large amounts of on-chip

memory—memory that is densely connected to processing
elements (PEs) on the same chip. Instead, systems typically rely on
off-chip memory that is physically separate from the computing
chips, and accessing this memory contributes to, and often domi-
nates, the overall energy and execution time'?. This remains a key
bottleneck for deep neural network (DNN) inference hardware,
particularly as data and model sizes continue to grow (despite the
use of sparsity and quantization techniques)’~’. On-chip memory
capacity is therefore a limiting factor in the energy, execution time
and combined energy-delay product (EDP; product of energy and
execution time) of today’s DNN hardware'*-'>. Moreover, applica-
tions often require the use of several DNNs”'¢, further compound-
ing the on-chip memory challenge.

This challenge, known as the ‘memory wall} is critical, regard-
less of the computing architecture. Indeed, embedded micro-
controllers, multicore processors, graphics processing units,
field-programmable gate arrays (FPGAs) and domain-specific
accelerators (including in-memory computing) all face on-chip
memory challenges when used for DNNs">'"-**. Specialized archi-
tectures that maximize on-chip data reuse'*'*"', massive wafer-scale
chips'', dense memory technologies and multiple-bits-per-cell stor-
age®'”?%% and chip stacking methods attempt to address this mem-
ory challenge. However, DNNs continue to require higher memory
capacity with higher bandwidths and lower energies>'>'**"

A hypothetical ideal chip (Fig. 1a) for fast, energy-efficient
DNN inference requires that the DNN fit entirely in a large on-chip
memory (volatile or non-volatile) that is dense, low-energy and
accessible at high bandwidth. Such a chip gives the PEs fast and
low-energy access to the data needed for inference, and only DNN
inputs and final outputs are communicated externally. The memory
wall is thus minimized, leading to both energy and execution time

D espite decades of technological advances, it remains difficult

benefits. However, owing to the limitations of current technology
(predominantly due to size constraints), this approach cannot be
used for existing state-of-the-art DNNs (which can approach tril-
lions of parameters). As DNN model sizes continue to grow, it
becomes increasingly difficult to realize an ideal chip, in spite of
memory technology advances®.

In this Article we report a system, which we call Illusion, that
consists of a network of multiple computing chips, each with a cer-
tain minimal amount of local on-chip memory and mechanisms for
quick wakeup and shutdown (that is, the system contains no sepa-
rate memory-only chips; Fig. 1b). For DNN inference tasks, Illusion
performs like an ideal chip, with near-ideal energy, execution time
and EDP. In hardware, we demonstrate an Illusion system consist-
ing of eight computing chips, and the energy, execution time and
EDP of this eight-chip Illusion system are measured to be within
1.035%, 1.025% and 1.06X, respectively, of the values of the ideal chip
(which correspondingly contains eight times more memory than
the individual chips used in the demonstration). We demonstrate
Ilusion’s effectiveness for convolutional neural networks (CNNs),
long-short-term memory (LSTM) and dynamic deep neural nets
(D2NNs). Illusion does not require modifications to the DNNs
themselves and provides configurability and flexibility in achieving
near-ideal energy, delay and EDP for a wide range of DNN sizes,
from those fitting in the memory of a single chip to those requiring
the use of the entire memory capacity across all chips in the system.

Our approach can use several on-chip memory technologies,
including non-volatile memories (NVMs) such as resistive RAM
(RRAM), which allow quick wakeup and shutdown of the indi-
vidual computing chips through fine-grained temporal power gat-
ing. Although volatile static RAM (SRAM) can also be used (where
on-chip computing elements are power-gated and volatile SRAM
contents are held in retention mode separately), our approach
is tailored to on-chip NVM through resilience techniques that
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Fig. 1| Anideal chip and our lllusion system with nearly identical performance. a, A hypothetical ideal chip for fast, yet energy-efficient DNN inference.
This requires that the DNN entirely fits in a large on-chip memory accessible by PEs at high bandwidth and low energy. Nearly no off-chip accesses are
needed, providing major energy, execution time and energy-delay product (EDP) benefits compared with traditional systems that require off-chip memory.
ENDURER? provides write endurance resilience if needed by the on-chip memory technology. For a given DNN inference, an ideal chip will have execution
time D, and consume energy E,, with an EDP of £,D,. b, Our Illusion system consists of a network of multiple DNN chips on an inter-chip network, each

with a certain minimal amount (labelled M) of local on-chip memory and mechanisms for quick wakeup and shutdown. Each chip can access its on-chip
memory at high bandwidth and low energy. With appropriate DNN mapping and scheduling to the Illusion system (Figs. 2 and 3), a DNN inference will
have execution time D, and consume energy E,, with EDP E,D,. Our Illusion system achieves a performance nearly identical (for example, we demonstrate
(E,D,) <1.06 x (E\D))) to that of the ideal chip, which in total is N times larger than the individual lllusion component chips. Like the ideal chip, our
Distributed ENDURER provides multi-chip write endurance resilience if needed by the on-chip memory technology. Our inter-chip network is depicted as a

ring for simplicity.

overcome technology-specific issues such as the permanent write
failures associated with some NVM technologies. (We outline how
Illusion is distinct from existing parallelization techniques targeting
multi-chip systems in Supplementary Section 2.)

Using detailed simulations of memory- and compute-intensive
DNNss (up to gigabytes of weights and thousands of PEs), we show
that our hardware results scale for large-scale Illusion systems
(up to 64 chips). We also derive additional insights through ana-
lytical models for (conservative) estimates of energy, execution
time and EDP for Illusion systems. These models are critical to
understanding the interplay between on-chip memory capacity
and inter-chip network efficiency in an Illusion system. This is par-
ticularly important for major technology trends such as advanced
2.5-dimensional (2.5D) integration of chiplets”***~** and ultra-dense

(for example, monolithic) 3D integration>”, which amplify the
effectiveness of Illusion.

lllusion system overview

Our hardware chips monolithically and heterogeneously integrate
RRAM on commercial silicon complementary metal-oxide-semi-
conductor (CMOS) technology. We have chosen RRAM because
it is a dense, low-energy/latency, on-chip memory technology
with demonstrated benefits for applications such as the Internet of
Things edge DNN inference>”*. RRAM allows fine-grained tem-
poral power gating”” (where compute and memory can be turned on
and off rapidly), which is attractive for edge applications and is a key
component of our approach. RRAM also provides multiple bits per
cell capabilities for further increased density”. Compared to other
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Fig. 2 | DNN mapping onto our lllusion system for sparse inter-chip messages. a, An example DNN input to the lllusion mapping algorithm. Each layer
has input, output and weight tensors as listed. The sum of the weights must fit into the total Illusion system weight memory capacity (that is, N x M from
Fig. 1. b, lllusion mapping algorithm example output depicting the weight assignment and corresponding inter-chip data flow. When the Illusion system
has sufficient memory capacity per chip, inter-chip messages will be sufficiently small to preserve near-ideal chip energy, execution time and EDP.

¢, Another representation of b, depicting the weight assignment onto Illusion’s component chips’ memories and the input, output and intermediate

activation tensor data communicated as messages on the inter-chip network.

NVM-based (such as Flash) computing chips, Illusion’s component
chips enable DNN inference with 11 times lower energy and a simi-
lar execution time? (chip details are provided in the Methods).

Mlusion consists of three interdependent components (Figs. 2
and 3): the Illusion mapping algorithm, the Illusion scheduling algo-
rithm and the Distributed ENDURER technique. For the Illusion
mapping algorithm, we map DNN weights to the component chips
in the system during compile time, while ensuring sparse inter-chip
messages. For the Illusion scheduling algorithm, from the map-
ping algorithm output we schedule inter-chip communication and
fine-grained (quick) wakeup and shutdown for each chip (that is,
create a system schedule). Finally, the Distributed ENDURER tech-
nique is designed to overcome RRAM write endurance challenges:
that is, the limited number of set-(writing a ‘1”)-reset-(writing a ‘0’)
cycles a memory cell can undergo before permanent write failure
(stuck at the ‘1’ or ‘0’ state).

lllusion mapping and scheduling

The first step for Illusion system inference is mapping the DNN onto
the Illusion system hardware. At compile time, the Illusion map-
ping algorithm is invoked. Algorithm inputs include the number
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of chips in the Illusion system, per-chip memory capacity to store
weights and the DNN architecture (input, output and weight tensor
dimensions and bit width per DNN layer). A key input is the max
message count, labelled MM. This message count limit can be com-
puted from the desired energy, execution time or EDP (for example,
we desire an Illusion energy that is <1.05X that of the ideal chip).
The inter-chip network efficiency determines how many messages
(that is, MM bytes) equate to 5% of the ideal chip inference energy.
Supplementary Section 4 provides more details on derivation based
on the inter-chip network characteristics. The Illusion mapping
algorithm we provide in Supplementary Fig. 3 is based on two map-
ping heuristics. We have also formulated a binary integer linear
program (BILP, Supplementary Section 1) that produces provably
optimal mappings. However, our heuristic-based Illusion mapping
algorithm is highly scalable for large Illusion systems.

Our algorithm maps each DNN weight to be stored uniquely on
one chip in the Illusion system. Once a weight has been mapped,
associated computations are correspondingly assigned to the
same chip. We assume that the chips have sufficient on-chip buf-
fer to store layer inputs and activations for each DNN layer being
computed. This is to avoid activation write-back to the weight
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Fig. 3 | Inference scheduling with quick wakeup and shutdown and Distributed ENDURER. a, An Illusion system schedule, corresponding to the example
in Fig. 2, that utilizes the quick wakeup and shutdown (implemented via fine-grained temporal power gating (FGTPG)) of each chip in the lllusion system
for energy efficiency. The mapping in Fig. 2 generates sparse inter-chip communication, resulting in minimal additional overhead during inference
execution. As mapped, layers can be parallelized across chips for a single inference and multiple inferences pipelined to improve execution time and
throughput beyond a serialized execution. FGTPG is used both in the single inference case and within the multi-inference pipeline to eliminate idle energy
during pipeline stage stalls. b, Distributed ENDURER provides write endurance resilience if needed by the on-chip memory technology. Normally, DNN
inferences are performed as described in a; periodically (in time, but infrequently) the on-chip ENDURER? primitives perform a remapping procedure

on the local on-chip RRAM to distribute write wear evenly across all words in the on-chip memory?. A Distributor primitive (details are provided in
Supplementary Section 5) evaluates write wear across the component chips in the lllusion system. If needed, it performs a chip-to-chip memory swap
between the most written (red) and least written (blue) chips’ memories. By design, we can ensure this occurs only rarely throughout the lifetime of the

Illusion system.

memory (desirable for non-volatile weight memory with limited
write endurance; Supplementary Section 5). For large activations
(and weight memory technology with sufficient write endurance),
the algorithm can be modified to provision memory capacity for
activations in addition to weights (versus weights only, as described).

Two heuristics guide our mapping to minimize inter-chip mes-
sages at runtime (and satisfy the message limit, MM). First, we map
sequential DNN layers to the same chip if possible (Supplementary
Fig. 3). Second, if a layer does not fit in the remaining on-chip
capacity, we partition its weights along the dimension that results
in the fewest inter-chip messages (DNN layer type-specific;
Supplementary Fig. 3 presents fully connected layers, while other
types are given in Supplementary Section 1). These heuristics yield
an algorithm that is applicable to any DNN. Additional mapping
optimizations can utilize excess system capacity to further reduce
messages (for example, by allowing duplicated weights). Our BILP
enables such use and can help explore such trade-offs.

The Illusion scheduling algorithm (given in Supplementary
Fig. 3) is then applied to the mapping output (Figs. 2 and 3). The
algorithm determines (for each chip in the Illusion system) the
timing of inter-chip messages, chip wakeup, on-chip computation
and chip shutdown, as required to properly perform inference for

the mapped DNN (wakeup and shutdown details are provided in
the Methods). Our fine-grained wakeup and shutdown mecha-
nisms ensure the desired near-ideal energy (because idle energy is
avoided). For NVM Illusion systems, both compute and memory
can be power-gated. Illusion systems with volatile memory can
power-gate just the compute and put memory into retention mode.
The on-chip scheduling heuristic maintains the same on-chip data
flow (for example, systolic row stationary, weight stationary and so
on) as the ideal chip, even when a layer is partitioned by our map-
ping algorithm. This keeps the overall computation energy similar
for the ideal chip and the Illusion system.

Our scheduling algorithm provides two additional optimizations
to further reduce execution time and increase throughput. Our
mappings often split a layer inter-chip (for an example see Fig. 3a).
This allows concurrent computation of the layer partitions (model
parallelism). Similarly, the mappings naturally form an inter-chip
pipeline (pipelined parallelism), whereby each chip can concur-
rently compute its portion of the computation for different infer-
ences. Our scheduling capitalizes on both parallelization to improve
the execution time and pipelining to increase the throughput (for
example, model pipeline parallelism). Combining these, Illusion
thus achieves high throughput for a given mapping. If the inter-chip
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Fig. 4 | lllusion system performance summary. a, A breakdown of the measured energy and execution times for the ideal chip, our four-chip lllusion
system and our eight-chip Illusion system across three DNNs (details are provided in the Methods). The four-chip and eight-chip lllusion system energy
is within 1.035x, execution time within 1.025x and EDP within 1.06x those of the ideal chip across all DNNs. To account for chip-to-chip performance
variations, all values reported are the mean value across 64 measurement samples, with 95% confidence intervals (error bars) for the relative
performance as shown. The KWS LSTM performs a single inference on a sequence of 40 inputs, and the prediction is performed on the last input. The
D2NN has two data paths: high accuracy (H) and low energy (L). An inference only executes one path depending on the input data. The energy and
execution time reported are for the average path executed. In shutdown mode, a small on-chip scheduler idles, consuming energy. The time to enter/
exit shutdown mode is <0.1ms. b, Photograph of the hardware test set-up (see Methods for details). ¢, The lllusion scheduling algorithm can provide
additional execution time reduction through parallelization and increased multiple-inference throughput via pipelining. These values are computed from

the schedules measured in a.

network or the power management scheme limits Illusion opera-
tion to a single computing chip at any given time, our scheduling
algorithm allows parallelization and/or pipelining to be turned off.
The two-step mapping and scheduling algorithms can be merged
using heuristics that jointly optimize both inter-chip messages and
throughput. Alternatively, an updated BILP with an updated cost
function can be used.

lllusion hardware performance

We measured the energy and execution time of our Illusion sys-
tem hardware for various DNN types: a large CNN (whose weights
require the total memory across all eight chips), a large LSTM and
a large D2NN. The Illusion system hardware (Fig. 4b), measure-
ment methodology and DNN details are described in the Methods
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(including Illusion system measurements for a smaller DNN whose
weights fit on a single chip). These DNNs represent workloads in
computer vision (for example, CNNs for object recognition such as
on the Street View House Numbers (SVHN) dataset’) and natural
language processing (for example, a LSTM for Keyword Spotting
(KWS)*). The D2NN** executes either a high-energy/high-accuracy
or a low-energy/low-accuracy path, depending on the input data, to
exploit trade-offs between energy and accuracy, thus highlighting
the configurability and flexibility of Illusion. Each DNN was anal-
ysed for an ideal chip, a four-chip Illusion system and an eight-chip
Ilusion system. The ideal chip and four-chip system are measured
using one and four of the hardware chips, respectively. Weights are
mapped to the chips as if they have full capacity (for example, all
weights to one chip for the ideal chip), but are overlapped in the
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Fig. 5 | Measured ideal chip and Illusion system total power and per-chip power. a, Comparison of the total measured power during inference for the
three DNNs summarized in Fig. 4 with the Ideal chip, the four-chip lllusion system and the eight-chip lllusion system. The KWS LSTM performs a single
inference on a sequence of 40 inputs. The prediction is performed on the last input; here we separate and show the first and last inputs. The D2NN

has two data paths, high accuracy (H) and low energy (L). An inference only executes one path. We show both paths. b, A per-chip breakdown of the
measured power for the eight-chip lllusion system. As a result of the quick wakeup and shutdown, chips are in very low power shutdown mode when not

actively computing.

physical address space using a software-defined data structure. This
yields similar instruction sequences and memory accesses (and
therefore system execution time) as if the full capacity were pres-
ent (further details are provided in the Methods). All systems—
ideal, four-chip and eight-chip Illusion—have the same wakeup
and shutdown behaviour to provide an apples-to-apples compari-
son. Figures 4 and 5 provide key results, with additional data and
a discussion on the Illusion mappings and schedules provided in
Supplementary Section 1.

Across all DNNGs (Fig. 4a), our eight-chip Illusion system EDPs
are within 1.06x of the ideal chip EDPs, and the energy and execu-
tion time are within 1.035X and 1.025X, respectively. As we go from
an eight-chip to a four-chip Illusion system (that is, each chip in
the four-chip Illusion system with twice the on-chip RRAM capac-
ity versus the eight-chip Illusion system), our Illusion improves to
below 1.02x of the ideal chip EDP. These results also agree with

our detailed simulations (Supplementary Section 3) and analytical
models (Supplementary Section 4). The corresponding message
sizes are very small compared to the DNN size—the key to Illusion
(Supplementary Table 1). Illusion thus maintains the large benefits
of an ideal chip versus a traditional system with off-chip memory.
As expected, the inter-chip message counts increase as we go from a
four-chip to an eight-chip Illusion system. This raises the following
question: what minimum memory capacity per chip is required to
achieve near-ideal energy, execution time and/or EDP? We answer
this question below.

Our Iusion scheduling algorithm increases inference through-
put beyond a desired single-inference Illusion in two ways: concur-
rent execution of a DNN layer split inter-chip by our mapping (that
is, model parallelism) and concurrent execution of multiple inputs
through the Illusion system (that is, pipelined parallelism), when
combined yielding model pipeline parallel execution. In Fig. 5, we
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focus our measurements on the conservative use case—a single
inference with serial execution of split layers—to show that both
energy and execution time (and therefore EDP) are near the ideal
chip values (for example, within 1.06x EDP). This ensures that
we do not obfuscate the per-inference energy and execution time
results by increasing the multiple inference throughput (for exam-
ple, via pipelining). Instead, we achieve near-ideal energy, execution
time and EDP and thus our Illusion system has created the illusion
of an ideal chip with large on-chip memory. With parallelism and
pipelining, our scheduling can provide an up to 7.6X increase in
throughput (Fig. 4c) versus a single-input inference. Supplementary
Section 1 discusses the heuristics used in our mapping and schedul-
ing algorithms and their impact on throughput.

In addition to our hardware demonstrations, we also simulate a
variety of well-known DNNs for larger-scale Illusion systems: CNNs
based on ResNet-50", VGG-Net* and AlexNet” (on the ImageNet
Dataset*’) and an LSTM language model*' (on the One Billion Word
Benchmark*). Our simulations use an end-to-end framework?® that
has been calibrated/validated using hardware data (for example, a
multicore processor or DNN accelerator). Our results demonstrate
(as detailed in Supplementary Section 3) strong agreement with our
hardware results (for DNNs run on Illusion hardware). Our Illusion
systems for large-scale DNN inference provide <1.1x EDP versus
an ideal chip, which is up to 44X (depending on the DNN) better
than a comparable baseline with off-chip memory (DRAM). Our
scheduling algorithm provides additional throughput benefits (up to
5.5X on an eight-chip Illusion system) while maintaining near-ideal
energy. Illusion is effective across a sweep of design points (memory
capacity per chip, inter-chip network characteristics), demonstrat-
ing its broad applicability. In Supplementary Section 3 we provide a
brief discussion on the Illusion system’s PE count versus that of the
ideal chip for various inference scenarios.

Next, we analytically modelled (Supplementary Section 4) the
Ilusion system to derive estimates for inter-chip messages (based
on the DNN type, size, average activation size and the memory
capacity per chip). The estimates are conservative (that is, our map-
ping algorithm generates mappings with fewer inter-chip messages
versus our model) for the systems analysed using hardware mea-
surements and simulations (Supplementary Section 4 provides a
comparison). Using these estimates and the inter-chip network
characteristics (for example, bandwidth and energy per byte), we
calculate the degree (for example, 1.1X) of near-ideal energy, execu-
tion time and EDP achievable.

As Fig. 6a shows, for a desired degree of near-ideal EDP, each
DNN has a different minimum-memory-per-chip point (or, equiv-
alently, a maximum number of chips in the Illusion system). We
derived the critical insight that Illusion systems can be character-
ized by the sizing ratio: the ratio of DNN model size (that is, the
total memory capacity required to store the DNN weights) to
memory capacity per chip in the Illusion system. This sizing ratio is
similar across DNN types studied in this Article and depends on the
inter-chip network characteristics. For a desired near-ideal perfor-
mance (for example, 1.1X ideal chip EDP), the sizing ratio bounds
the maximum number of chips allowed in an Illusion system
(Fig. 6b). Our analytical model and the sizing ratio help derive use-
ful guidelines for Illusion system design, especially in the context
of emerging technology trends. Advanced inter-chip networks, for
example, with 2.5D chiplet integration®>**~*>**, result in larger sizing
ratios (that is, more and smaller chips can now support the same
near-ideal EDP). This is critical in scaling DNN sizes on Illusion
systems. For a given inter-chip network, larger DNNs demand
increased on-chip memory integration (to preserve the sizing ratio),
which has profound implications for memory technologies (effi-
cient and dense NVM (including multiple bits per cell storage) and
dense integration with logic, for example through ultra-dense (for
example, monolithic) 3D integration">*). With improvements in
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compute energy efficiency—for example, through energy-efficient
logic devices" or SRAM/NVM-based in-memory comput-
ing?*?"*"—further on-chip memory integration and/or better
inter-chip networks are required to preserve Illusion’s near-ideal
performance.

A multi-chip write endurance resilience technique
Emerging NVM technologies such as RRAM promise energy effi-
ciency, high density and dense (for example, monolithic) 3D inte-
gration. However, Illusion must overcome the write endurance
challenges of RRAM because of Illusion’s frequent chip wakeup and
shutdown, and some DNNs have persistent states (for example, the
LSTM ‘cell’ and ‘hidden’ states) to maintain through shutdown in
the Illusion system. This requires sending the state to the system
host (additional message cost) or writing the state to the on-chip
NVM (that is, checkpointing). Similarly, for Illusion system flexibil-
ity, if a DNN layer’s inputs and activations do not fit fully into the
on-chip SRAM buffer, inference might require some activations to
be written to the on-chip NVM.

We present Distributed ENDURER, a new multi-chip write
endurance resilience technique enabling the use of Illusion in
emerging memory technologies with write endurance limitations.
Distributed ENDURER increases the Illusion system lifetime from
months to 10 years, while maintaining its energy, execution time
and EDP near those of the ideal chip. Distributed ENDURER is
inspired by our previous work—single-chip ENDURER*—which
filters and redistributes writes evenly across all NVM words, achiev-
ing a 10-year single-chip lifetime*. Single-chip ENDURER cannot
be used directly for Illusion, because our mapping and schedul-
ing algorithms rely on a specific mapping; applying single-chip
ENDURER across the entire Illusion system randomizes this
mapping and drastically increases inter-chip messages. Moreover,
applying single-chip ENDURER locally on each chip may not be
sufficient, because writes may not occur evenly across all chips.

Distributed ENDURER consists of two hardware primitives, a
new Distributor primitive and our existing single-chip ENDURER
primitive?, implemented on each chip of the Illusion system.
Single-chip ENDURER filters writes to frequently written words
via a write buffer, and distributes writes intra-chip to the NVM
through a local remap procedure that periodically (in time) remaps
the NVM address space (intra-chip) by an offset (constant random
number for each entire period). Our new Distributor counts the
total number of on-chip NVM words written. The counter values
from all chips are broadcast via inter-chip messages at the end of
every ENDURER remap period. When the counter values indicate
imbalance (detailed in Supplementary Section 5), the Distributor
uses the inter-chip network to perform a chip-to-chip memory
swap, swapping out the entire NVM contents of the most-written
chip with that of the least-written.

Combining these two primitives, we have demonstrated 10 years
of continuous inference across SVHN CNN, KWS LSTM and D2NN
workloads on our Illusion system hardware. Distributed ENDURER
incurs minimal additional energy and execution time impact—Iless
than 0.1% extra—resulting from chip-level ENDURER opera-
tions and inter-chip messages generated by chip-to-chip swaps
and write counter broadcasts. Without Distributed ENDURER,
endurance-induced permanent write failures considerably degrade
inference within a year (Fig. 6c). Supplementary Section 5 pro-
vides bounds on the Distributed ENDURER lifetime, the required
chip-to-chip swaps and the testing methodology.

Conclusions

Our Illusion system overcomes one of the key challenges facing
DNN systems—the need for large on-chip memory capacity acces-
sible at high bandwidth in an energy-efficient manner. Hardware
results demonstrate the effectiveness and practicality of our Illusion
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Fig. 6 | lllusion’s minimum capacity per chip and Distributed ENDURER performance. a, Given a desired lllusion system performance (for example, 1.1x
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Supplementary Section 3 provides the DNN specifications. The derivation of the conservative analytical model is provided in Supplementary Section 4.
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improves from ICN1 to ICN3, our sizing ratio increases and thus more, smaller chips achieve the same lllusion system EDP (shown here relative to

the ideal chip). €, Ten-year continuous inference is demonstrated using Distributed ENDURER for the SVHN CNN, KWS LSTM and D2NN. Without
Distributed ENDURER, all DNNs suffer inference accuracy degradation within a year due to limited write endurance. Supplementary Section 5 provides the

measurement methods.

system, which achieves energy, execution time and EDP within
3.5%, 2.5% and 6%, respectively, of the values for a single ideal chip
when used in several DNN inference applications. Illusion also
offers a scalable path for DNN hardware advances in the future. In
particular, its effectiveness can be amplified with emerging tech-
nologies, such as 2.5D chiplet integration, dense NVM and new
logic devices, in-memory computing and ultra-dense (for example,
monolithic) 3D integration of logic and memory. At the same time,
Ilusion can play a critical role in guiding the progress of these tech-
nologies themselves. Beyond the DNNs explored in this work, our
approach is also applicable for emerging DNN workloads such as
deep learning recommendation models and transformers. Beyond
inference, Illusion-based approaches for DNN training are also pos-
sible with modifications to our mapping and scheduling algorithms.

Methods

Hardware demonstration of Illusion. Our Illusion demonstration hardware

is presented in Supplementary Fig. 1. Eight identical chips are used in the

Illusion system. Each chip?” monolithically and heterogeneously integrates two
technologies: RRAM on top of commercial 130-nm silicon CMOS. Ideal chips and
Tllusion systems both require a host (Fig. 1). The host is responsible for wakeup
(and shutdown) of each DNN chip, sending DNN inputs to the first chip and

receiving final outputs via the inter-chip network. An FPGA serves as the host for
our hardware demonstration.

The inter-chip network is realized as a bus, with the FPGA serving as the
bus host. Each chip sends/receives messages via its peripheral port to the FPGA
host, and first-in-first-out (FIFOs) buffers implemented on the FPGA are used as
network buffers. Each chip has wakeup and reset external interrupts. However, in
our demonstration system, only one chip can be active at a time (that is, wakeup
asserted, actively computing and not in reset), otherwise there is contention for
the inter-chip bus. Inter-chip messages contain a single destination header. No
other control is required as the Illusion mapping specifies the message length,
and the DNN software on-chip is compiled with input/output message lengths.
The network operates as follows. With an active chip, the FPGA buffers incoming
messages, waits for the active chip to safely shut down, reads the message
destination header, transfers the messages to an output FIFO, and wakes up the
destination chip, which then consumes the messages. After software completion,
chips self-shutdown by flagging the on-chip scheduler.

We drop the FPGA’s energy in our measurements. As the host, it is active
during the entire inference for both the ideal chip and Illusion systems.
Furthermore, the FPGA buffering and intermediation are only required because
of a lack of externalized interrupts (our chips were not initially designed
to communicate chip-to-chip); otherwise, we could directly send messages
chip-to-chip with an external interrupt scheme to determine bus control. The
chip-side power needed to drive and read the bus is measured through the chip’s
power rails. The on-chip scheduler is critical to implement the fine-grained chip
power gating specified by the Illusion schedule.
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Applications under test. To demonstrate the functionality of the Illusion
approach, we used four different DNNG: a small (~4kByte) CNN and a large
(~32kByte) high-low topology D2NN** trained on the MNIST dataset’’, a large
(~32kByte) CNN trained on the SVHN" dataset and a large (~32kByte) LSTM
trained on Google’s KWS dataset*” with 10 mel-frequency cepstrum™ input
features extracted. These datasets are common use cases for small DNNs. Using
arange of DNN types and sizes allows us to demonstrate Illusion’s generality.
Supplementary Table 2 summarizes the networks used. Note that quantization
is not required for Illusion; rather, we do so to ensure fast operation on our
limited hardware (an integer 16-bit MAC unit). Our Illusion approach is the same
regardless of data bit width.

Data pre-processing. All images in the SVHN and MNIST datasets were
normalized to pixel values in [—1,1] and quantized to signed 8 bits with 4 bits of
fractional precision. The KWS spotting audio dataset was pre-processed using a
mel-frequency cepstrum (MFCC)* model to extract 10 features per input. These
features were also quantized to values in [—1,1], to signed 8bits with 7 bits of
fractional precision.

Quantized training. To train quantized weights that would translate well to
hardware, we used the low-precision simulation package QPyTorch*’. QPyTorch
provides a low-precision optimizer and handles low-precision weight, gradient,
momentum and error accumulation updates. This package allows us to perform
training and inference using fixed-point quantized weights and activations. During
training, the forward pass is fixed-point-quantized to 8-bit weights and 16-bit
accumulation, while the backward pass (that is, the gradients, momenta and errors)
is left in floating point.

Native C implementation and Illusion system implementations. QPyTorch uses
floating-point operations in the back-end (with results forced to fixed-point
values). There are slight differences between this approach and a native C
implementation (in particular with the accumulation and rounding). To imitate
inference on our hardware, we tested the final accuracy by implementing the
quantized network in C and compiling natively (Supplementary Table 2 provides
details of inference accuracy). This code was then modified to properly use our test
hardware (for example, linking data to the right memory segments, ensuring the
correct use of the multiplier on-chip) and the message passing code was added. We
ran this compiled code™ on a cycle-accurate chip register-transfer level simulation
to estimate the execution time as a check of our measurement results.

Illusion system and ideal chip execution time and energy measurement. We
measured the voltage across a 1% shunt resistor for the supplies of each chip.

The resistor nominals were chosen to provide voltages within the 0.1-V range

of the 0.5kSamples™ 12-bit analog-to-digital converter (a LabJack T7Pro; the
KWS LSTM was measured at 1 kSamples™). The shunt resistors were measured
independently to account for variations from nominal to accurately determine the
current. The measured power alternated between distinct active and shutdown
modes; thresholding these modes was used to determine the execution time.
Three supplies (V,, for the digital logic, Vs, for the RRAM sense amplifier and
Ve for the RRAM controller) were measured independently, time-multiplexed.
The bias current for the RRAM sense amplifier (generated off-chip) was not
power-gated by the on-chip scheduler, and we removed this bias power during
the shutdown mode. The eight-chip Illusion system was measured chip by chip,
time-multiplexed (for each of the three channels). Communication energy was
accounted for by the increased chip power draw. Measurements continued for the
total Illusion runtime to measure the shutdown mode power of the chips (due

to cell leakage and the scheduler). Our hardware has chip-to-chip variations in
performance. To reduce the impact of this variation we measured each mapped
DNN segment for each of the eight chips in our hardware (that is, weights for
Illusion system ‘chip 0’ can be mapped to any one of physical chips 0, 1, 2 and so
on). We sampled 64 possible permutations of these configurations and computed
the mean energy and execution time, along with the 95% confidence interval as
reported in Fig. 4.

For the SVHN CNN, KWS LSTM and D2NN, we mimicked our ideal chip and
four-chip Illusion systems on one and four of our hardware chips, respectively.
The physical measurement techniques were the same as described above. The
weight mapping to the chips assumed the full capacity was available (for example,
32kBytes for the ideal chip on one chip). This resulted in more weights than can
be compiled into the physical memory (4 kBytes capacity). These excess weights
were overlapped (addresses modulo 4kBytes) in the same physical address space
using a software-defined data structure. Owing to the simple instruction set in
our hardware, this mimicked the same instruction execution and memory access
patterns as an ideal chip or four-chip Illusion system.

Our corresponding energy measurements are optimistic for our ideal chip and
four-chip Illusion systems for two reasons. First, larger RRAM on-chip requires
additional idle power during computation. Second, per read, additional logic
would be activated, yielding more expensive memory accesses. As we use smaller
hardware chips in our energy measurements, we are most optimistic for the ideal
chip and optimistic for the four-chip Illusion system, with hardware-accurate
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measurements for the eight-chip Illusion system. The Illusion system EDP values
we achieve (relative to the ideal chip measurement) are thus conservative estimates.
Our small CNN (inference on MNIST; results are provided in Supplementary
Fig. 2) requires none of this treatment, as it fits on each on-chip memory for all
the systems (for the four-chip and eight-chip Illusions, we map as if we had only
1 kByte or 0.5kBytes of RRAM per chip). As we measure on physically larger
hardware chips, the four-chip Illusion system is pessimistic and the eight-chip
Illusion system is even more pessimistic (for the same two reasons as above). The
Tllusion system EDPs we achieve (relative to the ideal chip measurement) are thus
conservative estimates. For the three DNNs discussed above and the small MNIST
CNN, the results are consistent across scales, confirming that our measurement
techniques for the four-chip Illusion system and ideal chip are valid on the large
DNNeG, as one chip is already an ideal chip for the small CNN. In addition, by using
exactly the same hardware for workloads requiring one chip (MNIST CNN) up to
eight chips (SVHN CNN, KWS LSTM, D2NN), we show that our Illusion systems
are configurable and flexible. We achieve near-ideal EDP, regardless of the number
of chips used by the DNN in the Illusion system.

Data availability
The data that support the findings of this work are available at https://github.com/
robust-systems-group/illusion_system.

Code availability
The code that supports the findings of this work is available at https://github.com/
robust-systems-group/illusion_system.

Received: 17 May 2020; Accepted: 18 November 2020;
Published online: 11 January 2021

References

1. Aly, M. M. S. et al. Energy-efficient abundant-data computing: the N3XT
1,000. Computer 48, 24-33 (2015).

2. Aly, M. M. S. et al. The N3XT approach to energy-efficient abundant-data
computing. Proc. IEEE 107, 19-48 (2019).

3. Donato, M. et al. On-chip deep neural network storage with multi-level
eNVM. In Proc. 55th Design Automation Conference (DAC) https://doi.
org/10.1145/3195970.3196083 (IEEE, 2018).

4. Li, H., Bhargava, M., Whatmough, P. N. & Wong, H.-S. P. On-chip memory
technology design space explorations for mobile deep neural network
accelerators. In Proc. 56th Design Automation Conference (DAC) https://doi.
org/10.1145/3316781.3317874 (IEEE, 2019).

5. Hestness, J. et al. Deep learning scaling is predictable, empirically. Preprint at
https://arxiv.org/abs/1712.00409 (2017).

6. Xu, X. et al. Scaling for edge inference of deep neural networks. Nat. Electron.
1, 216-222 (2018).

7. Wu, C. J. et al. Machine learning at Facebook: understanding inference at the
edge. In Proc. International Symposium on High Performance Computer
Architecture (HPCA) 331-344 https://doi.org/10.1109/
HPCA.2019.00048(IEEE, 2019).

8. Sun, G., Zhao, J., Poremba, M., Xu, C. & Xie, Y. Memory that never forgets:
emerging nonvolatile memory and the implication for architecture design.
Natl Sci. Rev. 5, 577-592 (2018).

9. Yarotsky, D. Error bounds for approximations with deep ReLU networks.
Neural Netw. 94, 103-114 (2017).

10. Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing
unit. In Proc. International Symposium on Computer Architecture (ISCA)
1-12 (ACM, 2017).

11. Lie, S. Wafer-scale deep learning (Hot Chips 2019 Presentation) https://www.
hotchips.org/hc31/HC31_1.13_Cerebras.SeanLie.v02.pdf (Cerebras, 2019).

12. Chen, Y. H.,, Emer, J. & Sze, V. Eyeriss: a spatial architecture for
energy-efficient dataflow for convolutional neural networks. In 2016 ACM/
IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)
https://doi.org/10.1109/ISCA.2016.40 (2017).

13. Gao, M., Pu, J., Yang, X., Horowitz, M. & Kozyrakis, C. TETRIS: scalable and
efficient neural network acceleration with 3D memory. In Proc. 22nd
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) 751-764 (ACM, 2017).

14. Gao, M., Yang, X., Pu, J., Horowitz, M. & Kozyrakis, C. Tangram: optimized
coarse-grained dataflow for scalable NN accelerators. In Proc. 24th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) 807-820 (ACM, 2019).

15. Yang, X. et al. Interstellar: using Halide’s scheduling language to analyze
DNN accelerators. In Proc. 25th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS)
369-383 (ACM, 2020).

16. Rabii, S. et al. Computational directions for augmented reality systems. In
VLSI Symposium Circuits 102-106 (IEEE, 2019).


https://github.com/robust-systems-group/illusion_system
https://github.com/robust-systems-group/illusion_system
https://github.com/robust-systems-group/illusion_system
https://github.com/robust-systems-group/illusion_system
https://doi.org/10.1145/3195970.3196083
https://doi.org/10.1145/3195970.3196083
https://doi.org/10.1145/3316781.3317874
https://doi.org/10.1145/3316781.3317874
https://arxiv.org/abs/1712.00409
https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1109/HPCA.2019.00048
https://www.hotchips.org/hc31/HC31_1.13_Cerebras.SeanLie.v02.pdf
https://www.hotchips.org/hc31/HC31_1.13_Cerebras.SeanLie.v02.pdf
https://doi.org/10.1109/ISCA.2016.40
http://www.nature.com/natureelectronics

ARTICLES

NATURE ELECTRONICS

17. Wong, H.-S. P. & Salahuddin, S. Memory leads the way to better computing.
Nat. Nanotechnol. 10, 191-194 (2015).

18. Jung, M. et al. Driving into the memory wall: the role of memory for
advanced driver assistance systems and autonomous driving. In Proc.
International Symposium on Memory Systems https://doi.
org/10.1145/3240302.3240322 (ACM, 2018).

19. Dazzi, M. et al. 5 Parallel Prism: a topology for pipelined implementations of
convolutional neural networks using computational memory. Preprint at
https://arxiv.org/abs/1906.03474 (2019).

20. Song, L., Qian, X,, Li, H. & Chen, Y. PipeLayer: a pipelined ReRAM-based
accelerator for deep learning. In Proc. International Symposium on
High-Performance Computer Architecture (HPCA) 541-552 (IEEE, 2017).

21. Ankit, A. et al. PUMA: a programmable ultra-efficient memristor-based
accelerator for machine learning inference. In Proc. International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS) https://doi.org/10.1145/3297858.3304049 (ACM, 2019).

22. Narayanan, D. et al. PipeDream: generalized pipeline parallelism for DNN
training. In ACM Symposium on Operating Systems Principles https://doi.
org/10.1145/3341301.3359646 (SOSP, 2019).

23. Shao, Y. S. et al. Simba: scaling deep-learning inference with
multi-chip-module-based architecture. In Proc. Annual International
Symposium on Microarchitecture, MICRO 14-27 (IEEE, 2019).

24. Wei, X,, Liang, Y. & Cong, J. Overcoming data transfer bottlenecks in
FPGA-based DNN accelerators via layer conscious memory management. In
Proc. 56th Annual Design Automation Conference https://doi.
org/10.1145/3316781.3317875 (ACM, 2019).

25. Huang, Y. et al. GPipe: efficient training of giant neural networks using
pipeline parallelism. In Advances in Neural Information Processing Systems
(NeurIPS) 32 (NIPS, 2019).

26. Le, B. Q. et al. Resistive RAM with multiple bits per cell: array-level
demonstration of 3bits per cell. IEEE Trans. Electron Devices 66,

641-646 (2019).

27. Wu, T. E. et al. 14.3-A 43-p]J/cycle non-volatile microcontroller with 4.7-ps
shutdown/wake-up integrating 2.3-bit/cell resistive RAM and resilience
techniques. In Proc. IEEE International Solid-State Circuits Conference (ISSCC)
226-228 (IEEE, 2019).

28. Hsieh, E. R. et al. High-density multiple bits-per-cell 1T4R RRAM array with
gradual SET/RESET and its effectiveness for deep learning. In Proc.
International Electron Devices Meeting (IEDM) https://doi.org/10.1109/
IEDM19573.2019.8993514 (IEEE, 2019).

29. Chen, A. A review of emerging non-volatile memory (NVM) technologies
and applications. Solid State Electron. 125, 25-38 (2016).

30. Naffziger, S., Lepak, K., Paraschou, M. & Subramony, M. AMD chiplet
architecture for high-performance server and desktop products. In Proc. IEEE
International Solid-State Circuits Conference (ISSCC) 44-45 (IEEE, 2020).

. Vivet, P. et al. A 220GOPS 96-core processor with 6 chiplets 3D-stacked on
an active interposer offering 0.6-ns/mm latency, 3-Tb/s/mm? inter-chiplet
interconnects and 156-mW/mm?* @ 82%-peak-dfficiency DC-DC converters.
In Proc. IEEE International Solid-State Circuits Conference (ISSCC)

46-48 (IEEE, 2020).

32. Greenhill, D. et al. A 14-nm 1-GHz FPGA with 2.5D transceiver integration.

In Proc. IEEE International Solid-State Circuits Conference (ISSCC)
54-55 (IEEE, 2017).

33. Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for
computing and data storage on a single chip. Nature 547, 74-78 (2017).

34. Netzer, Y. & Wang, T. Reading digits in natural images with unsupervised
feature learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning http://ufldl.stanford.edu/housenumbers (NIPS, 2011).

35. Zhang, Y., Suda, N,, Lai, L. & Chandra, V. Hello Edge: keyword spotting on
microcontrollers. Preprint at https://arxiv.org/abs/1711.07128 (2017).

36. Liu, L. & Deng, J. Dynamic deep neural networks: optimizing
accuracy-efficiency trade-offs by selective execution. In Proc. 32nd AAAI
Conference on Artifical Intelligence 3675-3682 (AAAI, 2018).

37. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. In Proc. IEEE Computer Society Conference on Computer Vision
and Pattern Recognition 770-778 (IEEE, 2016).

38. Simonyan, K. & Zisserman, A. Very deep convolutional networks for
large-scale image recognition. In 3rd International Conference on Learning
Representations, ICLR 2015—Conference Track Proceedings (ICLR, 2015).

39. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with
deep convolutional neural networks. Neural Inf. Process. Syst. https://doi.
org/10.1145/3065386 (2012).

40. Deng, J. et al. ImageNet: a large-scale hierarchical image database. In

Proc. 2009 IEEE Conference on Computer Vision and Pattern Recognition
248-255 (IEEE, 2009).

. Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N. & Wu, Y. Exploring the

limits of language modeling. Preprint at https://arxiv.org/abs/1602.02410 (2016).

3

—

4

—_

42. Chelba, C. et al. One billion word benchmark for measuring progress in
statistical language modeling. In Proc. Annual Conference of the International
Speech Communication Association, INTERSPEECH 2635-2639 (International
Speech and Communication Association, 2014).

43. Turner, W. J. et al. Ground-referenced signaling for intra-chip and short-reach
chip-to-chip interconnects. In Proc. 2018 IEEE Custom Integrated Circuits
Conference, CICC 2018 https://doi.org/10.1109/CICC.2018.8357077
(IEEE, 2018).

. Hills, G. et al. Understanding energy efficiency benefits of carbon nanotube
field-effect transistors for digital VLSL. IEEE Trans. Nanotechnol. 17,
1259-1269 (2018).

. Le Gallo, M. et al. Mixed-precision in-memory computing. Nat. Electron. 1,
246-253 (2018).

46. Dong, Q. et al. A 351TOPS/W and 372.4GOPS compute-in-memory

SRAM macro in 7-nm FinFET CMOS for machine-learning applications.
In Proc. IEEE International Solid-State Circuits Conference (ISSCC)
242-244 (IEEE, 2020).

47. Shafiee, A. et al. ISAAC: a convolutional neural network accelerator with
in-situ analog arithmetic in crossbars. In Proc. 43rd Annual International
Symposium on Computer Architecture (ISCA) 14-26 (IEEE, 2016).

48. Qiao, X., Cao, X., Yang, H., Song, L. & Li, H. AtomLayer: a universal
ReRAM-based CNN accelerator with atomic layer computation. In 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC) https://doi.
org/10.1109/DAC.2018.8465832 (IEEE, 2018).

49. Guo, R. et al. A 5.1-pJ/neuron 127.3-us/inference RNN-based speech
recognition processor using 16 computing-in-memory SRAM macros in
65-nm CMOS. In Proc. 2019 IEEE Symposium on VLSI Circuits C120-C121
(IEEE, 2019).

50. Wan, W. et al. A 74 TMACS/W CMOS-RRAM neurosynaptic core with
dynamically reconfigurable dataflow and in-situ transposable weights for
probabilistic graphical models. In Proc. IEEE International Solid-State Circuits
Conference (ISSCC) 498-500 (IEEE, 2020).

. LeCun, Y., Cortes, C. & Burges, C. . C. MNIST Handwritten Digit Database
(2010); http://yann.lecun.com/exdb/mnist/

52. Warden, P. Speech commands: a dataset for limited-vocabulary speech

recognition. Preprint at https://arxiv.org/abs/1804.03209 (2018).

53. Zhang, T, Lin, Z., Yang, G. & De Sa, C. QPyTorch: a low-precision arithmetic
simulation framework. Preprint at https://arxiv.org/abs/1910.04540 (2019).

54. MSP430-GCC-OPENSOURCE GCC - Open Source Compiler for MSP
Microcontrollers (Texas Instruments, accessed 5 August 2020); https://www.
ti.com/tool/MSP430-GCC-OPENSOURCE

4

~

4

w

5

—

Acknowledgements

We acknowledge the Defense Advanced Research Projects Agency (DARPA) 3DSoC
programme, the NSF/NRI/GRC E2CDA programme, Intel Corporation, CEA-LETI

and the Stanford SystemX Alliance. M.M.S.A. is supported in part by the Singapore
AME programmatic fund titled Hardware-Software Co-optimization for Deep Learning
(project no. A1892b0026). We would also like to acknowledge S. Taheri and the Stanford
Prototyping Facility for assistance with the design, test and debugging of the test harness
printed circuit boards.

Author contributions

R.M.R. developed the Illusion approach, the system architectural design and the Illusion
scheduling and mapping algorithms, and performed all measurements. P.C.J. led DNN
implementation and training. R M.R. and P.T. developed the BILP. T.EW. and B.Q.L.
designed the test chips, under the guidance of E.V,, P.V,, EN,, E.B. and H.-S.P.W. The test
harness was developed by R M.R. and TEW. Y.X., A.B. and R.M.R. performed Illusion
system simulations under the guidance of M.M.S.A. The modelling of Illusion was
performed by Z.EK. and R.M.R. Distributed ENDURER was developed by Z.EK., who
performed analysis and simulations with M.M.S.A., with M.W. providing guidance. S.M.
was in charge, advised and led on all aspects of the project.

Competing interests

The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
$41928-020-00515-3.

Correspondence and requests for materials should be addressed to R.M.R.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

NATURE ELECTRONICS | www.nature.com/natureelectronics


https://doi.org/10.1145/3240302.3240322
https://doi.org/10.1145/3240302.3240322
https://arxiv.org/abs/1906.03474
https://doi.org/10.1145/3297858.3304049
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3316781.3317875
https://doi.org/10.1145/3316781.3317875
https://doi.org/10.1109/IEDM19573.2019.8993514
https://doi.org/10.1109/IEDM19573.2019.8993514
http://ufldl.stanford.edu/housenumbers
https://arxiv.org/abs/1711.07128
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://arxiv.org/abs/1602.02410
https://doi.org/10.1109/CICC.2018.8357077
https://doi.org/10.1109/DAC.2018.8465832
https://doi.org/10.1109/DAC.2018.8465832
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1804.03209
https://arxiv.org/abs/1910.04540
https://www.ti.com/tool/MSP430-GCC-OPENSOURCE
https://www.ti.com/tool/MSP430-GCC-OPENSOURCE
https://doi.org/10.1038/s41928-020-00515-3
https://doi.org/10.1038/s41928-020-00515-3
http://www.nature.com/reprints
http://www.nature.com/natureelectronics

	Illusion of large on-chip memory by networked computing chips for neural network inference

	Illusion system overview

	Illusion mapping and scheduling

	Illusion hardware performance

	A multi-chip write endurance resilience technique

	Conclusions

	Methods

	Hardware demonstration of Illusion
	Applications under test
	Data pre-processing
	Quantized training
	Native C implementation and Illusion system implementations

	Illusion system and ideal chip execution time and energy measurement

	Acknowledgements

	Fig. 1 An ideal chip and our Illusion system with nearly identical performance.
	Fig. 2 DNN mapping onto our Illusion system for sparse inter-chip messages.
	Fig. 3 Inference scheduling with quick wakeup and shutdown and Distributed ENDURER.
	Fig. 4 Illusion system performance summary.
	Fig. 5 Measured ideal chip and Illusion system total power and per-chip power.
	Fig. 6 Illusion’s minimum capacity per chip and Distributed ENDURER performance.




