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Despite decades of technological advances, it remains difficult 
to create integrated circuits with large amounts of on-chip 
memory—memory that is densely connected to processing 

elements (PEs) on the same chip. Instead, systems typically rely on 
off-chip memory that is physically separate from the computing 
chips, and accessing this memory contributes to, and often domi-
nates, the overall energy and execution time1,2. This remains a key 
bottleneck for deep neural network (DNN) inference hardware, 
particularly as data and model sizes continue to grow (despite the 
use of sparsity and quantization techniques)3–9. On-chip memory 
capacity is therefore a limiting factor in the energy, execution time 
and combined energy-delay product (EDP; product of energy and 
execution time) of today’s DNN hardware10–15. Moreover, applica-
tions often require the use of several DNNs7,16, further compound-
ing the on-chip memory challenge.

This challenge, known as the ‘memory wall’, is critical, regard-
less of the computing architecture. Indeed, embedded micro-
controllers, multicore processors, graphics processing units, 
field-programmable gate arrays (FPGAs) and domain-specific 
accelerators (including in-memory computing) all face on-chip 
memory challenges when used for DNNs1,2,17–25. Specialized archi-
tectures that maximize on-chip data reuse10,12–14, massive wafer-scale 
chips11, dense memory technologies and multiple-bits-per-cell stor-
age3,17,26–28 and chip stacking methods attempt to address this mem-
ory challenge. However, DNNs continue to require higher memory 
capacity with higher bandwidths and lower energies2,13,14,27,29.

A hypothetical ideal chip (Fig. 1a) for fast, energy-efficient 
DNN inference requires that the DNN fit entirely in a large on-chip 
memory (volatile or non-volatile) that is dense, low-energy and 
accessible at high bandwidth. Such a chip gives the PEs fast and 
low-energy access to the data needed for inference, and only DNN 
inputs and final outputs are communicated externally. The memory 
wall is thus minimized, leading to both energy and execution time 

benefits. However, owing to the limitations of current technology 
(predominantly due to size constraints), this approach cannot be 
used for existing state-of-the-art DNNs (which can approach tril-
lions of parameters). As DNN model sizes continue to grow, it 
becomes increasingly difficult to realize an ideal chip, in spite of 
memory technology advances6.

In this Article we report a system, which we call Illusion, that 
consists of a network of multiple computing chips, each with a cer-
tain minimal amount of local on-chip memory and mechanisms for 
quick wakeup and shutdown (that is, the system contains no sepa-
rate memory-only chips; Fig. 1b). For DNN inference tasks, Illusion 
performs like an ideal chip, with near-ideal energy, execution time 
and EDP. In hardware, we demonstrate an Illusion system consist-
ing of eight computing chips, and the energy, execution time and 
EDP of this eight-chip Illusion system are measured to be within 
1.035×, 1.025× and 1.06×, respectively, of the values of the ideal chip 
(which correspondingly contains eight times more memory than 
the individual chips used in the demonstration). We demonstrate 
Illusion’s effectiveness for convolutional neural networks (CNNs), 
long–short-term memory (LSTM) and dynamic deep neural nets 
(D2NNs). Illusion does not require modifications to the DNNs 
themselves and provides configurability and flexibility in achieving 
near-ideal energy, delay and EDP for a wide range of DNN sizes, 
from those fitting in the memory of a single chip to those requiring 
the use of the entire memory capacity across all chips in the system.

Our approach can use several on-chip memory technologies, 
including non-volatile memories (NVMs) such as resistive RAM 
(RRAM), which allow quick wakeup and shutdown of the indi-
vidual computing chips through fine-grained temporal power gat-
ing. Although volatile static RAM (SRAM) can also be used (where 
on-chip computing elements are power-gated and volatile SRAM 
contents are held in retention mode separately), our approach 
is tailored to on-chip NVM through resilience techniques that  
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overcome technology-specific issues such as the permanent write 
failures associated with some NVM technologies. (We outline how 
Illusion is distinct from existing parallelization techniques targeting 
multi-chip systems in Supplementary Section 2.)

Using detailed simulations of memory- and compute-intensive 
DNNs (up to gigabytes of weights and thousands of PEs), we show 
that our hardware results scale for large-scale Illusion systems  
(up to 64 chips). We also derive additional insights through ana-
lytical models for (conservative) estimates of energy, execution 
time and EDP for Illusion systems. These models are critical to 
understanding the interplay between on-chip memory capacity 
and inter-chip network efficiency in an Illusion system. This is par-
ticularly important for major technology trends such as advanced 
2.5-dimensional (2.5D) integration of chiplets23,30–32 and ultra-dense 

(for example, monolithic) 3D integration1,2,33, which amplify the 
effectiveness of Illusion.

Illusion system overview
Our hardware chips monolithically and heterogeneously integrate 
RRAM on commercial silicon complementary metal–oxide–semi-
conductor (CMOS) technology. We have chosen RRAM because 
it is a dense, low-energy/latency, on-chip memory technology 
with demonstrated benefits for applications such as the Internet of 
Things edge DNN inference2,27,29. RRAM allows fine-grained tem-
poral power gating27 (where compute and memory can be turned on 
and off rapidly), which is attractive for edge applications and is a key 
component of our approach. RRAM also provides multiple bits per 
cell capabilities for further increased density27. Compared to other 
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Fig. 1 | An ideal chip and our Illusion system with nearly identical performance. a, A hypothetical ideal chip for fast, yet energy-efficient DNN inference. 
This requires that the DNN entirely fits in a large on-chip memory accessible by PEs at high bandwidth and low energy. Nearly no off-chip accesses are 
needed, providing major energy, execution time and energy–delay product (EDP) benefits compared with traditional systems that require off-chip memory. 
ENDURER2 provides write endurance resilience if needed by the on-chip memory technology. For a given DNN inference, an ideal chip will have execution 
time D1 and consume energy E1, with an EDP of E1D1. b, Our Illusion system consists of a network of multiple DNN chips on an inter-chip network, each 
with a certain minimal amount (labelled M) of local on-chip memory and mechanisms for quick wakeup and shutdown. Each chip can access its on-chip 
memory at high bandwidth and low energy. With appropriate DNN mapping and scheduling to the Illusion system (Figs. 2 and 3), a DNN inference will 
have execution time D2 and consume energy E2, with EDP E2D2. Our Illusion system achieves a performance nearly identical (for example, we demonstrate 
(E2D2) ≤ 1.06 × (E1D1)) to that of the ideal chip, which in total is N times larger than the individual Illusion component chips. Like the ideal chip, our 
Distributed ENDURER provides multi-chip write endurance resilience if needed by the on-chip memory technology. Our inter-chip network is depicted as a 
ring for simplicity.
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NVM-based (such as Flash) computing chips, Illusion’s component 
chips enable DNN inference with 11 times lower energy and a simi-
lar execution time27 (chip details are provided in the Methods).

Illusion consists of three interdependent components (Figs. 2 
and 3): the Illusion mapping algorithm, the Illusion scheduling algo-
rithm and the Distributed ENDURER technique. For the Illusion 
mapping algorithm, we map DNN weights to the component chips 
in the system during compile time, while ensuring sparse inter-chip 
messages. For the Illusion scheduling algorithm, from the map-
ping algorithm output we schedule inter-chip communication and 
fine-grained (quick) wakeup and shutdown for each chip (that is, 
create a system schedule). Finally, the Distributed ENDURER tech-
nique is designed to overcome RRAM write endurance challenges: 
that is, the limited number of set-(writing a ‘1’)–reset-(writing a ‘0’) 
cycles a memory cell can undergo before permanent write failure 
(stuck at the ‘1’ or ‘0’ state).

Illusion mapping and scheduling
The first step for Illusion system inference is mapping the DNN onto 
the Illusion system hardware. At compile time, the Illusion map-
ping algorithm is invoked. Algorithm inputs include the number 

of chips in the Illusion system, per-chip memory capacity to store 
weights and the DNN architecture (input, output and weight tensor 
dimensions and bit width per DNN layer). A key input is the max 
message count, labelled MM. This message count limit can be com-
puted from the desired energy, execution time or EDP (for example, 
we desire an Illusion energy that is ≤1.05× that of the ideal chip). 
The inter-chip network efficiency determines how many messages 
(that is, MM bytes) equate to 5% of the ideal chip inference energy. 
Supplementary Section 4 provides more details on derivation based 
on the inter-chip network characteristics. The Illusion mapping 
algorithm we provide in Supplementary Fig. 3 is based on two map-
ping heuristics. We have also formulated a binary integer linear 
program (BILP, Supplementary Section 1) that produces provably 
optimal mappings. However, our heuristic-based Illusion mapping 
algorithm is highly scalable for large Illusion systems.

Our algorithm maps each DNN weight to be stored uniquely on 
one chip in the Illusion system. Once a weight has been mapped, 
associated computations are correspondingly assigned to the 
same chip. We assume that the chips have sufficient on-chip buf-
fer to store layer inputs and activations for each DNN layer being 
computed. This is to avoid activation write-back to the weight  
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memory (desirable for non-volatile weight memory with limited 
write endurance; Supplementary Section 5). For large activations 
(and weight memory technology with sufficient write endurance), 
the algorithm can be modified to provision memory capacity for 
activations in addition to weights (versus weights only, as described).

Two heuristics guide our mapping to minimize inter-chip mes-
sages at runtime (and satisfy the message limit, MM). First, we map 
sequential DNN layers to the same chip if possible (Supplementary 
Fig. 3). Second, if a layer does not fit in the remaining on-chip 
capacity, we partition its weights along the dimension that results 
in the fewest inter-chip messages (DNN layer type-specific; 
Supplementary Fig. 3 presents fully connected layers, while other 
types are given in Supplementary Section 1). These heuristics yield 
an algorithm that is applicable to any DNN. Additional mapping 
optimizations can utilize excess system capacity to further reduce 
messages (for example, by allowing duplicated weights). Our BILP 
enables such use and can help explore such trade-offs.

The Illusion scheduling algorithm (given in Supplementary 
Fig. 3) is then applied to the mapping output (Figs. 2 and 3). The 
algorithm determines (for each chip in the Illusion system) the 
timing of inter-chip messages, chip wakeup, on-chip computation 
and chip shutdown, as required to properly perform inference for 

the mapped DNN (wakeup and shutdown details are provided in 
the Methods). Our fine-grained wakeup and shutdown mecha-
nisms ensure the desired near-ideal energy (because idle energy is 
avoided). For NVM Illusion systems, both compute and memory 
can be power-gated. Illusion systems with volatile memory can 
power-gate just the compute and put memory into retention mode. 
The on-chip scheduling heuristic maintains the same on-chip data 
flow (for example, systolic row stationary, weight stationary and so 
on) as the ideal chip, even when a layer is partitioned by our map-
ping algorithm. This keeps the overall computation energy similar 
for the ideal chip and the Illusion system.

Our scheduling algorithm provides two additional optimizations 
to further reduce execution time and increase throughput. Our 
mappings often split a layer inter-chip (for an example see Fig. 3a). 
This allows concurrent computation of the layer partitions (model 
parallelism). Similarly, the mappings naturally form an inter-chip 
pipeline (pipelined parallelism), whereby each chip can concur-
rently compute its portion of the computation for different infer-
ences. Our scheduling capitalizes on both parallelization to improve 
the execution time and pipelining to increase the throughput (for 
example, model pipeline parallelism). Combining these, Illusion 
thus achieves high throughput for a given mapping. If the inter-chip 
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network or the power management scheme limits Illusion opera-
tion to a single computing chip at any given time, our scheduling 
algorithm allows parallelization and/or pipelining to be turned off. 
The two-step mapping and scheduling algorithms can be merged 
using heuristics that jointly optimize both inter-chip messages and 
throughput. Alternatively, an updated BILP with an updated cost 
function can be used.

Illusion hardware performance
We measured the energy and execution time of our Illusion sys-
tem hardware for various DNN types: a large CNN (whose weights 
require the total memory across all eight chips), a large LSTM and 
a large D2NN. The Illusion system hardware (Fig. 4b), measure-
ment methodology and DNN details are described in the Methods 

(including Illusion system measurements for a smaller DNN whose 
weights fit on a single chip). These DNNs represent workloads in 
computer vision (for example, CNNs for object recognition such as 
on the Street View House Numbers (SVHN) dataset34) and natural 
language processing (for example, a LSTM for Keyword Spotting 
(KWS)35). The D2NN36 executes either a high-energy/high-accuracy 
or a low-energy/low-accuracy path, depending on the input data, to 
exploit trade-offs between energy and accuracy, thus highlighting 
the configurability and flexibility of Illusion. Each DNN was anal-
ysed for an ideal chip, a four-chip Illusion system and an eight-chip 
Illusion system. The ideal chip and four-chip system are measured 
using one and four of the hardware chips, respectively. Weights are 
mapped to the chips as if they have full capacity (for example, all 
weights to one chip for the ideal chip), but are overlapped in the 
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physical address space using a software-defined data structure. This 
yields similar instruction sequences and memory accesses (and 
therefore system execution time) as if the full capacity were pres-
ent (further details are provided in the Methods). All systems— 
ideal, four-chip and eight-chip Illusion—have the same wakeup 
and shutdown behaviour to provide an apples-to-apples compari-
son. Figures 4 and 5 provide key results, with additional data and 
a discussion on the Illusion mappings and schedules provided in 
Supplementary Section 1.

Across all DNNs (Fig. 4a), our eight-chip Illusion system EDPs 
are within 1.06× of the ideal chip EDPs, and the energy and execu-
tion time are within 1.035× and 1.025×, respectively. As we go from 
an eight-chip to a four-chip Illusion system (that is, each chip in 
the four-chip Illusion system with twice the on-chip RRAM capac-
ity versus the eight-chip Illusion system), our Illusion improves to 
below 1.02× of the ideal chip EDP. These results also agree with 

our detailed simulations (Supplementary Section 3) and analytical 
models (Supplementary Section 4). The corresponding message 
sizes are very small compared to the DNN size—the key to Illusion 
(Supplementary Table 1). Illusion thus maintains the large benefits 
of an ideal chip versus a traditional system with off-chip memory. 
As expected, the inter-chip message counts increase as we go from a 
four-chip to an eight-chip Illusion system. This raises the following 
question: what minimum memory capacity per chip is required to 
achieve near-ideal energy, execution time and/or EDP? We answer 
this question below.

Our Illusion scheduling algorithm increases inference through-
put beyond a desired single-inference Illusion in two ways: concur-
rent execution of a DNN layer split inter-chip by our mapping (that 
is, model parallelism) and concurrent execution of multiple inputs 
through the Illusion system (that is, pipelined parallelism), when 
combined yielding model pipeline parallel execution. In Fig. 5, we 
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focus our measurements on the conservative use case—a single 
inference with serial execution of split layers—to show that both 
energy and execution time (and therefore EDP) are near the ideal 
chip values (for example, within 1.06× EDP). This ensures that 
we do not obfuscate the per-inference energy and execution time 
results by increasing the multiple inference throughput (for exam-
ple, via pipelining). Instead, we achieve near-ideal energy, execution 
time and EDP and thus our Illusion system has created the illusion 
of an ideal chip with large on-chip memory. With parallelism and 
pipelining, our scheduling can provide an up to 7.6× increase in 
throughput (Fig. 4c) versus a single-input inference. Supplementary 
Section 1 discusses the heuristics used in our mapping and schedul-
ing algorithms and their impact on throughput.

In addition to our hardware demonstrations, we also simulate a 
variety of well-known DNNs for larger-scale Illusion systems: CNNs 
based on ResNet-5037, VGG-Net38 and AlexNet39 (on the ImageNet 
Dataset40) and an LSTM language model41 (on the One Billion Word 
Benchmark42). Our simulations use an end-to-end framework2 that 
has been calibrated/validated using hardware data (for example, a 
multicore processor or DNN accelerator). Our results demonstrate 
(as detailed in Supplementary Section 3) strong agreement with our 
hardware results (for DNNs run on Illusion hardware). Our Illusion 
systems for large-scale DNN inference provide <1.1× EDP versus 
an ideal chip, which is up to 44× (depending on the DNN) better 
than a comparable baseline with off-chip memory (DRAM). Our 
scheduling algorithm provides additional throughput benefits (up to 
5.5× on an eight-chip Illusion system) while maintaining near-ideal 
energy. Illusion is effective across a sweep of design points (memory 
capacity per chip, inter-chip network characteristics), demonstrat-
ing its broad applicability. In Supplementary Section 3 we provide a 
brief discussion on the Illusion system’s PE count versus that of the 
ideal chip for various inference scenarios.

Next, we analytically modelled (Supplementary Section 4) the 
Illusion system to derive estimates for inter-chip messages (based 
on the DNN type, size, average activation size and the memory 
capacity per chip). The estimates are conservative (that is, our map-
ping algorithm generates mappings with fewer inter-chip messages 
versus our model) for the systems analysed using hardware mea-
surements and simulations (Supplementary Section 4 provides a 
comparison). Using these estimates and the inter-chip network 
characteristics (for example, bandwidth and energy per byte), we 
calculate the degree (for example, 1.1×) of near-ideal energy, execu-
tion time and EDP achievable.

As Fig. 6a shows, for a desired degree of near-ideal EDP, each 
DNN has a different minimum-memory-per-chip point (or, equiv-
alently, a maximum number of chips in the Illusion system). We 
derived the critical insight that Illusion systems can be character-
ized by the sizing ratio: the ratio of DNN model size (that is, the 
total memory capacity required to store the DNN weights) to 
memory capacity per chip in the Illusion system. This sizing ratio is 
similar across DNN types studied in this Article and depends on the 
inter-chip network characteristics. For a desired near-ideal perfor-
mance (for example, 1.1× ideal chip EDP), the sizing ratio bounds 
the maximum number of chips allowed in an Illusion system  
(Fig. 6b). Our analytical model and the sizing ratio help derive use-
ful guidelines for Illusion system design, especially in the context 
of emerging technology trends. Advanced inter-chip networks, for 
example, with 2.5D chiplet integration23,30–32,43, result in larger sizing 
ratios (that is, more and smaller chips can now support the same 
near-ideal EDP). This is critical in scaling DNN sizes on Illusion 
systems. For a given inter-chip network, larger DNNs demand 
increased on-chip memory integration (to preserve the sizing ratio), 
which has profound implications for memory technologies (effi-
cient and dense NVM (including multiple bits per cell storage) and 
dense integration with logic, for example through ultra-dense (for 
example, monolithic) 3D integration1,2,33). With improvements in  

compute energy efficiency—for example, through energy-efficient 
logic devices44 or SRAM/NVM-based in-memory comput-
ing20,21,45–50—further on-chip memory integration and/or better 
inter-chip networks are required to preserve Illusion’s near-ideal 
performance.

A multi-chip write endurance resilience technique
Emerging NVM technologies such as RRAM promise energy effi-
ciency, high density and dense (for example, monolithic) 3D inte-
gration. However, Illusion must overcome the write endurance 
challenges of RRAM because of Illusion’s frequent chip wakeup and 
shutdown, and some DNNs have persistent states (for example, the 
LSTM ‘cell’ and ‘hidden’ states) to maintain through shutdown in 
the Illusion system. This requires sending the state to the system 
host (additional message cost) or writing the state to the on-chip 
NVM (that is, checkpointing). Similarly, for Illusion system flexibil-
ity, if a DNN layer’s inputs and activations do not fit fully into the 
on-chip SRAM buffer, inference might require some activations to 
be written to the on-chip NVM.

We present Distributed ENDURER, a new multi-chip write 
endurance resilience technique enabling the use of Illusion in 
emerging memory technologies with write endurance limitations. 
Distributed ENDURER increases the Illusion system lifetime from 
months to 10 years, while maintaining its energy, execution time 
and EDP near those of the ideal chip. Distributed ENDURER is 
inspired by our previous work—single-chip ENDURER2—which 
filters and redistributes writes evenly across all NVM words, achiev-
ing a 10-year single-chip lifetime27. Single-chip ENDURER cannot 
be used directly for Illusion, because our mapping and schedul-
ing algorithms rely on a specific mapping; applying single-chip 
ENDURER across the entire Illusion system randomizes this 
mapping and drastically increases inter-chip messages. Moreover, 
applying single-chip ENDURER locally on each chip may not be 
sufficient, because writes may not occur evenly across all chips.

Distributed ENDURER consists of two hardware primitives, a 
new Distributor primitive and our existing single-chip ENDURER 
primitive2, implemented on each chip of the Illusion system. 
Single-chip ENDURER filters writes to frequently written words 
via a write buffer, and distributes writes intra-chip to the NVM 
through a local remap procedure that periodically (in time) remaps 
the NVM address space (intra-chip) by an offset (constant random 
number for each entire period). Our new Distributor counts the 
total number of on-chip NVM words written. The counter values 
from all chips are broadcast via inter-chip messages at the end of 
every ENDURER remap period. When the counter values indicate 
imbalance (detailed in Supplementary Section 5), the Distributor 
uses the inter-chip network to perform a chip-to-chip memory 
swap, swapping out the entire NVM contents of the most-written 
chip with that of the least-written.

Combining these two primitives, we have demonstrated 10 years 
of continuous inference across SVHN CNN, KWS LSTM and D2NN 
workloads on our Illusion system hardware. Distributed ENDURER 
incurs minimal additional energy and execution time impact—less 
than 0.1% extra—resulting from chip-level ENDURER opera-
tions and inter-chip messages generated by chip-to-chip swaps 
and write counter broadcasts. Without Distributed ENDURER, 
endurance-induced permanent write failures considerably degrade 
inference within a year (Fig. 6c). Supplementary Section 5 pro-
vides bounds on the Distributed ENDURER lifetime, the required 
chip-to-chip swaps and the testing methodology.

Conclusions
Our Illusion system overcomes one of the key challenges facing 
DNN systems—the need for large on-chip memory capacity acces-
sible at high bandwidth in an energy-efficient manner. Hardware 
results demonstrate the effectiveness and practicality of our Illusion 
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system, which achieves energy, execution time and EDP within 
3.5%, 2.5% and 6%, respectively, of the values for a single ideal chip 
when used in several DNN inference applications. Illusion also 
offers a scalable path for DNN hardware advances in the future. In 
particular, its effectiveness can be amplified with emerging tech-
nologies, such as 2.5D chiplet integration, dense NVM and new 
logic devices, in-memory computing and ultra-dense (for example, 
monolithic) 3D integration of logic and memory. At the same time, 
Illusion can play a critical role in guiding the progress of these tech-
nologies themselves. Beyond the DNNs explored in this work, our 
approach is also applicable for emerging DNN workloads such as 
deep learning recommendation models and transformers. Beyond 
inference, Illusion-based approaches for DNN training are also pos-
sible with modifications to our mapping and scheduling algorithms.

Methods
Hardware demonstration of Illusion. Our Illusion demonstration hardware 
is presented in Supplementary Fig. 1. Eight identical chips are used in the 
Illusion system. Each chip27 monolithically and heterogeneously integrates two 
technologies: RRAM on top of commercial 130-nm silicon CMOS. Ideal chips and 
Illusion systems both require a host (Fig. 1). The host is responsible for wakeup 
(and shutdown) of each DNN chip, sending DNN inputs to the first chip and 

receiving final outputs via the inter-chip network. An FPGA serves as the host for 
our hardware demonstration.

The inter-chip network is realized as a bus, with the FPGA serving as the 
bus host. Each chip sends/receives messages via its peripheral port to the FPGA 
host, and first-in–first-out (FIFOs) buffers implemented on the FPGA are used as 
network buffers. Each chip has wakeup and reset external interrupts. However, in 
our demonstration system, only one chip can be active at a time (that is, wakeup 
asserted, actively computing and not in reset), otherwise there is contention for 
the inter-chip bus. Inter-chip messages contain a single destination header. No 
other control is required as the Illusion mapping specifies the message length, 
and the DNN software on-chip is compiled with input/output message lengths. 
The network operates as follows. With an active chip, the FPGA buffers incoming 
messages, waits for the active chip to safely shut down, reads the message 
destination header, transfers the messages to an output FIFO, and wakes up the 
destination chip, which then consumes the messages. After software completion, 
chips self-shutdown by flagging the on-chip scheduler.

We drop the FPGA’s energy in our measurements. As the host, it is active 
during the entire inference for both the ideal chip and Illusion systems. 
Furthermore, the FPGA buffering and intermediation are only required because 
of a lack of externalized interrupts (our chips were not initially designed 
to communicate chip-to-chip); otherwise, we could directly send messages 
chip-to-chip with an external interrupt scheme to determine bus control. The 
chip-side power needed to drive and read the bus is measured through the chip’s 
power rails. The on-chip scheduler is critical to implement the fine-grained chip 
power gating specified by the Illusion schedule.
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Applications under test. To demonstrate the functionality of the Illusion 
approach, we used four different DNNs: a small (~4 kByte) CNN and a large 
(~32 kByte) high–low topology D2NN36 trained on the MNIST dataset51, a large 
(~32 kByte) CNN trained on the SVHN34 dataset and a large (~32 kByte) LSTM 
trained on Google’s KWS dataset52 with 10 mel-frequency cepstrum35 input  
features extracted. These datasets are common use cases for small DNNs. Using 
a range of DNN types and sizes allows us to demonstrate Illusion’s generality. 
Supplementary Table 2 summarizes the networks used. Note that quantization 
is not required for Illusion; rather, we do so to ensure fast operation on our 
limited hardware (an integer 16-bit MAC unit). Our Illusion approach is the same 
regardless of data bit width.

Data pre-processing. All images in the SVHN and MNIST datasets were 
normalized to pixel values in [−1,1] and quantized to signed 8 bits with 4 bits of 
fractional precision. The KWS spotting audio dataset was pre-processed using a 
mel-frequency cepstrum (MFCC)35 model to extract 10 features per input. These 
features were also quantized to values in [−1,1], to signed 8 bits with 7 bits of 
fractional precision.

Quantized training. To train quantized weights that would translate well to 
hardware, we used the low-precision simulation package QPyTorch53. QPyTorch 
provides a low-precision optimizer and handles low-precision weight, gradient, 
momentum and error accumulation updates. This package allows us to perform 
training and inference using fixed-point quantized weights and activations. During 
training, the forward pass is fixed-point-quantized to 8-bit weights and 16-bit 
accumulation, while the backward pass (that is, the gradients, momenta and errors) 
is left in floating point.

Native C implementation and Illusion system implementations. QPyTorch uses 
floating-point operations in the back-end (with results forced to fixed-point 
values). There are slight differences between this approach and a native C 
implementation (in particular with the accumulation and rounding). To imitate 
inference on our hardware, we tested the final accuracy by implementing the 
quantized network in C and compiling natively (Supplementary Table 2 provides 
details of inference accuracy). This code was then modified to properly use our test 
hardware (for example, linking data to the right memory segments, ensuring the 
correct use of the multiplier on-chip) and the message passing code was added. We 
ran this compiled code54 on a cycle-accurate chip register-transfer level simulation 
to estimate the execution time as a check of our measurement results.

Illusion system and ideal chip execution time and energy measurement. We 
measured the voltage across a 1% shunt resistor for the supplies of each chip. 
The resistor nominals were chosen to provide voltages within the 0.1-V range 
of the 0.5 kSample s–1 12-bit analog-to-digital converter (a LabJack T7Pro; the 
KWS LSTM was measured at 1 kSample s–1). The shunt resistors were measured 
independently to account for variations from nominal to accurately determine the 
current. The measured power alternated between distinct active and shutdown 
modes; thresholding these modes was used to determine the execution time. 
Three supplies (VDD for the digital logic, VDDSA for the RRAM sense amplifier and 
VCC for the RRAM controller) were measured independently, time-multiplexed. 
The bias current for the RRAM sense amplifier (generated off-chip) was not 
power-gated by the on-chip scheduler, and we removed this bias power during 
the shutdown mode. The eight-chip Illusion system was measured chip by chip, 
time-multiplexed (for each of the three channels). Communication energy was 
accounted for by the increased chip power draw. Measurements continued for the 
total Illusion runtime to measure the shutdown mode power of the chips (due 
to cell leakage and the scheduler). Our hardware has chip-to-chip variations in 
performance. To reduce the impact of this variation we measured each mapped 
DNN segment for each of the eight chips in our hardware (that is, weights for 
Illusion system ‘chip 0’ can be mapped to any one of physical chips 0, 1, 2 and so 
on). We sampled 64 possible permutations of these configurations and computed 
the mean energy and execution time, along with the 95% confidence interval as 
reported in Fig. 4.

For the SVHN CNN, KWS LSTM and D2NN, we mimicked our ideal chip and 
four-chip Illusion systems on one and four of our hardware chips, respectively. 
The physical measurement techniques were the same as described above. The 
weight mapping to the chips assumed the full capacity was available (for example, 
32 kBytes for the ideal chip on one chip). This resulted in more weights than can 
be compiled into the physical memory (4 kBytes capacity). These excess weights 
were overlapped (addresses modulo 4 kBytes) in the same physical address space 
using a software-defined data structure. Owing to the simple instruction set in 
our hardware, this mimicked the same instruction execution and memory access 
patterns as an ideal chip or four-chip Illusion system.

Our corresponding energy measurements are optimistic for our ideal chip and 
four-chip Illusion systems for two reasons. First, larger RRAM on-chip requires 
additional idle power during computation. Second, per read, additional logic 
would be activated, yielding more expensive memory accesses. As we use smaller 
hardware chips in our energy measurements, we are most optimistic for the ideal 
chip and optimistic for the four-chip Illusion system, with hardware-accurate 

measurements for the eight-chip Illusion system. The Illusion system EDP values 
we achieve (relative to the ideal chip measurement) are thus conservative estimates.

Our small CNN (inference on MNIST; results are provided in Supplementary 
Fig. 2) requires none of this treatment, as it fits on each on-chip memory for all 
the systems (for the four-chip and eight-chip Illusions, we map as if we had only 
1 kByte or 0.5 kBytes of RRAM per chip). As we measure on physically larger 
hardware chips, the four-chip Illusion system is pessimistic and the eight-chip 
Illusion system is even more pessimistic (for the same two reasons as above). The 
Illusion system EDPs we achieve (relative to the ideal chip measurement) are thus 
conservative estimates. For the three DNNs discussed above and the small MNIST 
CNN, the results are consistent across scales, confirming that our measurement 
techniques for the four-chip Illusion system and ideal chip are valid on the large 
DNNs, as one chip is already an ideal chip for the small CNN. In addition, by using 
exactly the same hardware for workloads requiring one chip (MNIST CNN) up to 
eight chips (SVHN CNN, KWS LSTM, D2NN), we show that our Illusion systems 
are configurable and flexible. We achieve near-ideal EDP, regardless of the number 
of chips used by the DNN in the Illusion system.

Data availability
The data that support the findings of this work are available at https://github.com/
robust-systems-group/illusion_system.

Code availability
The code that supports the findings of this work is available at https://github.com/
robust-systems-group/illusion_system.
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