Security Analysis of NIST CTR-DRBG

Viet Tung Hoang' and Yaobin Shen?

! Dept. of Computer Science, Florida State University
2 Dept. of Computer Science & Engineering, Shanghai Jiao Tong University, China

Abstract. We study the security of CTR-DRBG, one of NIST’s recom-
mended Pseudorandom Number Generator (PRNG) designs. Recently,
Woodage and Shumow (Eurocrypt’ 19), and then Cohney et al. (S&P’ 20)
point out some potential vulnerabilities in both NIST specification and
common implementations of CTR-DRBG. While these researchers do sug-
gest counter-measures, the security of the patched CTR-DRBG is still
questionable. Our work fills this gap, proving that CTR-DRBG satisfies
the robustness notion of Dodis et al. (CCS’13), the standard security
goal for PRNGs.

1 Introduction

Cryptography ubiquitously relies on the assumption that high-quality random-
ness is available. Violation of this assumption would often lead to security disas-
ters |94|12L[20], and thus a good Pseudorandom Number Generator (PRNG) is a
fundamental primitive in cryptography, in both theory and practice. In this work
we study the security of CTR-DRBG, the most popular standardized PRNGE

A TROUBLED HISTORY. CTR-DRBG is one of the recommended designs of NIST
standard SP 800-90A, which initially included the now infamous Dual-EC. While
the latter has received lots of scrutiny [8|9], the former had attracted little
attention until Woodage and Shumow [31] point out vulnerabilities in a NIST-
compliant version. Even worse, very recently, Cohney et al. |[12] discover that
many common implementations of CTR-DRBG still rely on table-based AES and
thus are susceptible to cache side-channel attacks [5}/18}24}25].

While the attacks above are catastrophic, they only show that (i) some insecure
options in the overly flexible specification of CTR-DRBG should be deprecated,
and (ii) developers of CTR-DRBG implementation should be mindful of mis-
uses such as leaky table-based AES, failure to refresh periodically, or using low-
entropy inputs. Following these counter-measures will thwart the known attacks,

1 A recent study by Cohney et al. |[12] finds that CTR-DRBG is supported by 67.8%
of validated implementations in NIST’s Cryptographic Module Validation Program
(CMVP). The other recommended schemes in NISP SP 800-90A, Hash-DRBG and
HMAC-DRBG, are only supported by 36.3% and 37.0% of CMVP-certified uses, re-
spectively.

but security of CTR-DRBG remains questionable. A full-fledged provable-security
treatment of CTR-DRBG is therefore highly desirable—Woodage and Shumow
consider it an important open problem [31].

PRIOR PROVABLE SECURITY. Most prior works [7,[30] only consider a simplified
variant of CTR-DRBG that takes no random input, and assume that the initial
state is truly random. These analyses fail to capture scenarios where the PRNG’s
state is either compromised or updated with adversarial random inputs. Conse-
quently, their results are limited and cannot support security claims in NIST SP
800-90A.

A recent PhD thesis of Hutchinson [22] aims to do better, analyzing security of
CTR-DRBG via the robustness notion of Dodis et al. [15]. But upon examining
this work, we find numerous issues, effectively invalidating the results. A detailed
discussion of the problems in Hutchinson’s analysis can be found in Appendix[A]

CONTRIBUTIONS. In this work, we prove that the patched CTR-DRBG satis-
fies the robustness security of Dodis et al. [15]. Obtaining a good bound for
CTR-DRBG requires surmounting several theoretical obstacles, which we will
elaborate below.

An important stepping stone in proving robustness of CTR-DRBG is to analyze
the security of the underlying randomness extractor that we name Condense-
then-Encrypt (CtE); see Fig. [2| for the code and an illustration of CtE. The
conventional approach [15,29,/31] requires that the extracted outputs be pseu-
dorandom. However, CtE oddly applies CBCMAC multiple times on the same
random input (with different constant prefixes), foiling attempts to use existing
analysis of CBCMAC [14].

To address the issue above, we observe that under CTR-DRBG, the outputs of
CtE are used for deriving keys and IVs of the CTR mode. If we model the
underlying blockcipher of CTR as an ideal cipher then the extracted outputs
only need to be unpredictable. In other words, CtE only needs to be a good
randomness condenser [27]. In light of the Generalized Leftover Hash Lemma [1],
one thus needs to prove that CtE is a good almost-universal hash function, which
is justified by the prior CBCMAC analysis of Dodis et al. [14]. As an added plus,
aiming for just unpredictability allows us to reduce the min-entropy threshold
on random inputs from 280 bits to 216 bits.

Still, the analysis above relies on the CBCMAC result in [14], but the latter im-
plicitly assumes that each random input is sampled from a set of equal-length
strings. (Alternatively, one can view that each random input is sampled from a
general universe, but then its exact length is revealed to the adversary.) This
assumption may unnecessarily limit the choices of random sources for CtE or
squander entropy of random inputs, and thus removing it is desirable. Unfortu-
nately, one cannot simply replace the result of [14] by existing CBCMAC analysis
for variable-length inputs [4], as the resulting unpredictability bound for CtE
will be poor. Specifically, we would end up with an inferior term /g - p/2% in
bounding the unpredictability of p extracted outputs against g guesses.

To circumvent the obstacle above, we uncover a neat idea behind the seemingly
cumbersome design of CtE. In particular, given a random input I, CtE first
condenses it to a key K < CBCMAC(0 || I) and an initialization vector IV <
CBCMAC(1 || I), and then uses CBC mode to encrypt a constant string under K
and I'V. To predict the CBC ciphertext, an adversary must guess both K and IV
simultaneously. Apparently, the designers of CtE intend to use the iteration of
CBCMAC to undo the square-root effect in the Leftover Hash Lemma [14,19] that
has plagued existing CBCMAC analysis [14]. Still, giving a good unpredictability
bound for (K,IV) is nontrivial, as (i) they are derived from the same random
input I, and (ii) prior results [4], relying on analysis of ordinary collision on
CBCMAC, can only be used to bound the marginal unpredictability of either K
or IV. We instead analyze a multi-collision property for CBCMAC, and thus can
obtain a tighter bound on the unpredictability of (K,IV). Concretely, we can
improve the term /g - p/25* above to v/qL - o /2'?®, where L is the maximum
block length of the random inputs, and o is their total block lengthﬂ

Even with the good security of CtE, obtaining a strong robustness bound for
CTR-DRBG is still challenging. The typical approach [15,[17,[31] is to decompose
the complex robustness notion into simpler ones, preserving and recovering. But
this simplicity comes with a cost: if we can bound the recovering and preserving
advantage by € and €' respectively, then we only obtain a loose bound p(e + €’)
in the robustness advantage, where p is the number of random inputs. In our
context, the blowup factor p will lead to a rather poor bound.

Even worse, as pointed out by Dodis et al. [15], there is an adaptivity issue
in proving recovering security of PRNGs that are built on top of a universal
hash H. In particular, here an adversary, given a uniform hash key K, needs
to pick an index ¢ € {1,...,p} to indicate which random input I; that it wants
to attack, and then predicts the output of Hg (I;) via ¢ guesses. The subtlety
here is that the adversary can adaptively pick the index 7 that depends on the
key K, creating a situation similar to selective-opening attacks [3,[16]. Dodis et
al. [15] give a simple solution for this issue, but their treatment leads to another
blowup factor p in the security bound. In Section we explore this problem
further, showing that the blowup factor p is inherent via a counter-example. Our
example is based on a contrived universal hash function, so it does not imply
that CTR-DRBG has inferior recovering security per se. Still, it shows that if one
wants to prove a good recovering bound for CTR-DRBG, one must go beyond
treating CtE as a universal hash function.

Given the situation above, instead of using the decomposition approach, we give
a direct proof for the robustness security via the H-coefficient technique [10}/26].

2 For a simple comparison of the two bounds, assume that o < 218 ., meaning that a
random input is at most 4MB on average, which seems to be a realistic assumption
for typical applications. The standard NIST SP 800-90A dictates that L < 228, Then
our bound /qL - 0'/2128 is around /q - p/296. If we instead consider the worst case
where o & Lp, then our bound is around /g - p/2%°.

We carefully exercise the union bound to sidestep pesky adaptivity pitfalls and
obtain a tight boundE|

LiMITATIONS. In this work, we assume that each random input has sufficient min
entropy. This restriction is admittedly limited, failing to show that CTR-DRBG
can slowly accumulate entropy in multiple low-entropy inputs, which is an impor-
tant property in the robustness notion. Achieving full robustness for CTR-DRBG
is an important future direction. Still, our setting is meaningful, comparable to
the notion of Barak and Halevi [2]. This is also the setting that the standard
NIST SP 800-90A assumes. We note that Woodage and Shumow [31] use the
same setting for analyzing HMAC-DRBG, and Hutchinson [22] for CTR-DRBG.

SEED-DEPENDENT INPUTS. Our work makes a standard assumption that the
random inputs are independent of the seed of the randomness extractorﬁ This
assumption seems unavoidable as deterministic extraction from a general source
is impossible [11]. In a recent work, Coretti et al. [13] challenge the conventional
wisdom with meaningful notions for seedless extractors and PRNGs, and show
that CBCMAC is insecure in their model. In Section [7] we extend their ideas to
attack CTR-DRBG. We note that this is just a theoretical attack with a contrived
sampler of random inputs, and does not directly translate into an exploit of real-
world CTR-DRBG implementations.

Ruhault [28] also considers attacking CTR-DRBG with a seed-dependent sampler.
But his attack, as noted by Woodage and Shumow [31], only applies to a variant
of CTR-DRBG that does not comply with NIST standard. It is unclear how to
use his ideas to break the actual CTR-DRBG.

2 Preliminaries

NOTATION. Let € denote the empty string. For an integer i, we let [i]; denote
a t-bit representation of . For a finite set S, we let x <—s .S denote the uniform
sampling from S and assigning the value to x. Let |z| denote the length of the
string x, and for 1 < i < j < |z|, let x[i : j] denote the substring from the i-th
bit to the j-th bit (inclusive) of z. If A is an algorithm, we let y < A(x1,...;7)
denote running A with randomness r on inputs 1, ... and assigning the output
to y. We let y<—s A(z1,...) be the result of picking r at random and letting
Yy A(xy,...;57).

CONDITIONAL MIN-ENTROPY AND STATISTICAL DISTANCE. For two random
variables X and Y, the (average-case) conditional min-entropy of X given Y is

Ho(X |Y) = —log(z PrY =] maxPr[X =z | Y = y]) :

3 Using the same treatment for recovering security still ends up with the blowup
factor p, as it is inherent.

4 In the context of CtE, the seed is the encoding of the ideal cipher. In other words,
we assume that the sampler of the random inputs has no access to the ideal cipher.

The statistical distance between X and Y is

SD(X,Y) = %Z!PY[X =z]-PrlY =2]| .

z

The statistical distance SD(X,Y) is the best possible advantage of an (even
computationally unbounded) adversary in distinguishing X and Y.

SYSTEMS AND TRANSCRIPTS. Following the notation from [21], it is conve-
nient to consider interactions of a distinguisher A with an abstract system S
which answers A’s queries. The resulting interaction then generates a transcript
7= ((X1,Y1),...,(Xq,Yy)) of query-answer pairs. It is known that S is entirely
described by the probabilities pg(7) that correspond to the system S responding
with answers as indicated by 7 when the queries in 7 are made.

We will generally describe systems informally, or more formally in terms of a
set of oracles they provide, and only use the fact that they define corresponding
probabilities pg(7) without explicitly giving these probabilities. We say that a
transcript 7 is valid for system S if pg(7) > 0.

THE H-COEFFICIENT TECHNIQUE. We now describe the H-coefficient technique
of Patarin [10,[26]. Generically, it considers a deterministic distinguisher A that
tries to distinguish a “real” system S; from an “ideal” system Sg. The adversary’s
interactions with those systems define transcripts X; and X, respectively, and
a bound on the distinguishing advantage of A is given by the statistical distance
SD(X1, Xo).

Lemma 1. [10,26] Suppose we can partition the set of valid transcripts for the
ideal system into good and bad ones. Further, suppose that there exists € > 0

such that 1 — ,22175:; < € for every good transcript 7. Then,
0

SD(X1, Xo) < e+ Pr[Xg is bad] .

3 Modeling Security of PRNGs

In this section we recall the syntax and security notion of Pseudorandom Number
Generator (PRNG) from Dodis et al. [15].

SyNTAX. A PRNG with state space State and seed space Seed is a tuple of deter-
ministic algorithms G = (setup, refresh, next). Under the syntax of [15], setup is
instead probabilistic: it takes no input, and returns seed <—s Seed and S <—s State.
However, as pointed out by Shrimpton and Terashima [29], this fails to capture
real-world PRNGs, where the state may include, for example, counters. More-
over, real-world setup typically gets its coins from an entropy source, and thus
the coins may be non-uniform. Therefore, following [29,/31], we instead require

that the algorithm setup(seed, I) take as input a seed seed € Seed and a string I,
and then output an initial state S € State; there is no explicit requirement on
the distribution of S.

Next, algorithm refresh(seed, S, I) takes as input a seed seed, a state S, and a
string I, and then outputs a new state. Finally algorithm next(seed, S, ¢) takes
as input a seed seed, a state S, and a number ¢ € N, and then outputs a new
state and an ¢-bit output string. Here we follow the recent work of Woodage and
Shumow [31] to allow variable output length.

DISTRIBUTION SAMPLERS. A distribution sampler D is a stateful, probabilistic
algorithm. Given the current state s, it will output a tuple (s',I,~, z) in which
s’ is the updated state, I is the next randomness input for the PRNG G, v > 0
is a real number, and z is some side information of I given to an adversary
attacking G. Let p be an upper bound of the number of calls to D in our security
games. Let so be the empty string, and let (s;, I;, s, 2;) <3 D(s;—1) for every
i€ {l,...,p}. For each i < p, let

Ip,i: (11,...,Ii_l,IH_l,...,Ip,"}/l,...7’)/1,721,...,2’1,) .

We say that sampler D is legitimate if Hoo(I; | Z,;) > v; for every i € {1,...,p}.
A legitimate sampler is A-simple if v; > A for every 1.

In this work, we will consider only simple samplers for a sufficiently large min-
entropy threshold A. In other words, we will assume that each random input
has sufficient min entropy. This setting is somewhat limited, as it fails to show
that the PRNG can slowly accumulate entropy in multiple low-entropy inputs.
However, it is still meaningful—this is actually the setting that the standard
NIST SP 800-90A assumes. We note that Woodage and Shumow [31] also analyze
the HMAC-DRBG construction under the same setting.

ROBUSTNESS. Let A > 0 be a real number, A be an adversary attacking G, and
D be a legitimate distribution sampler. Define

AdvR (4, D) = 2Pr|GER(4,D)| - 1,

where game Grgof)’\(A,’D) is defined in Fig.

Informally, the game picks a challenge bit b <—s {0, 1} and maintains a counter ¢
of the current estimated amount of accumulated entropy that is initialized to 0.
It runs the distribution sampler D on an empty-string state to generate the first
randomness input I. It then calls the setup algorithm on a uniformly random
seed to generate the initial state S, and increments ¢ to . The adversary A,
given the seed and the side information z and entropy estimation v of I, has
access to the following:

(i) An oracle REF() to update the state S via the algorithm refresh with the
next randomness input I. The adversary learns the corresponding side in-
formation z and the entropy estimation « of I. The counter c is incremented

by 7.

Game G5 (A, D) procedure REF()

b+<+s{0,1}; s+ ¢; seed +s Seed (s,1,7,2) < D(s)

¢ 0; (s,1,7,2) s D(s); S < refresh(seed, S,I); c<+ c+~
S « setup(seed, I); ¢ + c+ 7 return (7, 2)

b/ s ARF}F,ROR,GE']‘,SET(Seed’77Z)
return (b’ =)

procedure RoR(1%) procedure GET() |procedure SET(S™)
(R1,S) « next(seed, S, ¥) c+ 0 S+ 5% ¢+ 0
if (¢ < A) then ¢ « 0; return R return S

Ro +5{0,1}%; return R,

Fig.1: Game defining robustness for a PRNG § = (setup, refresh, next) against
an adversary A and a distribution sampler D, with respect to an entropy
threshold M.

(ii) An oracle GET() to obtain the current state S. The counter c is reset to 0.

(iii) An oracle SET() to set the current state to an adversarial value S*. The
counter c is reset to 0.

(iv) An oracle ROR(1%) to get the next ¢-bit output. The game runs the next
algorithm on the current state S to update it and get an ¢-bit output Ry, and
also samples a uniformly random string Ry < {0,1}%. If the accumulated
entropy is insufficient (meaning ¢ < \) then c¢ is reset to 0 and Ry is returned
to the adversary. Otherwise, Ry, is given to the adversary.

The goal of the adversary is to guess the challenge bit b, by outputting a bit b’.
rob

The advantage Advg y (A, D) measures the normalized probability that the ad-
versary’s guess is correct.

EXTENSION FOR IDEAL MODELS. In many cases, the PRNG is based on an ideal
primitive IT such as an ideal cipher or a random oracle. One then can imagine
that the PRNG uses a huge seed that encodes I1. In the robustness notion, the
adversary A would be given oracle access to II but the distribution sampler D
is assumed to be independent of the seed, and thus has no access to II. This
extension for ideal models is also used in prior work [6}31].

Some PRNGs, such as CTR-DRBG or the Intel PRNG [29], use AES with a
constant key K. For example, Ko < AES(012%,0'27||1) for the Intel PRNG, and
Ky + 0x00010203 - - - for CTR-DRBG. An alternative treatment for ideal models
in this case is to let both D and A have access to the ideal primitive, but pretend
that Ky is truly random, independent of D. This approach does not work well in
our situation because (i) the constant key of CTR-DRBG does not look random
at all, and (ii) allowing D access to the ideal primitive substantially complicates
the robustness proof of CTR-DRBG. We therefore avoid this approach to keep
the proof simple.

4 The Randomness Extractor of CTR-DRBG

A PRNG is often built on top of an internal (seeded) randomness extractor
Ext : Seed x {0,1}* — {0,1}° that takes as input a seed seed € Seed and a
random input I € {0,1}* to deterministically output a string V' € {0,1}*. For
example, the Intel PRNG [29] is built on top of CBCMAC, or HMAC-DRBG
on top of HMAC. In this section we will analyze the security of the randomness
extractor of CTR-DRBG, which we call Condense-then-Encrypt (CtE). We shall
assume that the underlying blockcipher is AESE|

4.1 The CtE Construction

The randomness extractor CtE is based on two standard components: CBCMAC
and CBC encryption. Below, we first recall the two components of CtE, and then
describe how to compose them in CtE.

THE CBCMAC CONSTRUCTION. Let 7 : {0,1}™ — {0,1}™ be a permutation.
For the sake of convenience, we will describe CBCMAC with a general IV; one
would set IV < 0™ in the standard CBCMAC algorithm. For an initialization
vector IV € {0,1}" and a message M = M --- My, with each |M;| = n, we
recursively define

CBCMACY [x](M; - - - My) = CBCMACE[x](My - - - M)

where R < 7(IV @ M), and in the base case of the empty-string message, let
CBCMAC"Y[x](¢) = IV. In the case that IV = 0™, we simply write CBCMAC[x](M)
instead of CBCMAC™Y [x](M).

THE CBC ENCRYPTION CONSTRUCTION. In the context of CtE, the CBC en-
cryption is only used for full-block messages. Let E : {0, 1}* x {0,1}™ — {0,1}"
be a blockcipher. For a key K € {0,1}*, an initialization vector IV € {0,1}",
and a message M = M - - M, with each |M;| = n, let

CBCY[E)(M, - M) =C,---C, ,

where C1, ..., Cy are defined recursively via Cy < IV and C; <+ Ex (C;—1 & M;)
for every 1 < ¢ < t. In our context, since we do not need decryptability, the IV
is excluded in the output of CBC.

THE CtE CONSTRUCTION. Let F : {0,1}* x {0,1}" — {0,1}" be a blockcipher,
such that k£ and n are divisible by 8, and n < k < 2n—this captures all choices
of AES key length. Let pad : {0,1}* — ({0,1}")™ be the padding scheme that
first appends the byte 0x08, and then appends 0’s until the length is a multiple

> While CTR-DRBG does support 3DES, the actual deployment is rare: among the
CMVP-certified implementations that support CTR-DRBG, only 1% of them use
3DES [12].

procedure CtE[E, m|(I)
X+ pad([|1]/8]s2 || [(k +n)/8]s2 || 1)
for i <~ 0 to 2 do

IV, < 7([i]32 || 0"73%); T; + CBCMACY[x](X)
YT ||T2||T5; K+ Y[1:k]; IV« Y[k+1:k+n]
C + CBCY[E](0°™); return C[1:m)]

[1718 | (B+n)s8 | I [pad |

1V, —| CBé'quc| IV, —>| CBCMAC | IV,—>{ CBCMAC |

y

N v~

k n

I 0 |

[oso]
|j
v N

m

Fig. 2: The CtE[E,m] construction, built on top of a blockcipher E : {0,1}* x
{0,1}™ — {0,1}". Here the random input I is a byte string. For an integer 7, we let [i]:
denote a t-bit representation of 7, and the permutation 7 is instantiated from E with
the k-bit constant key 0x00010203- - -.

of n. Note that pad(X) # pad(Y) for any X # Y. For the sake of convenience,
we shall describe a more generalized construction CtE[E,m], with m < 3n.
The code of this construction is shown in Fig. [2} The randomness extractor of
CTR-DRBG corresponds to CtE[E, k + n]; we also write CtE[E] for simplicity.

4.2 Security of CtE

SECURITY MODELING. In modeling the security of a randomness extractor Ext,
prior work [141/29,31] usually requires that Ext(seed, I') be pseudorandom for an
adversary that is given the seed S, provided that (i) the random input I has
sufficiently high min entropy, and (ii) the seed S is uniformly random. In our
situation, following the conventional route would require each random input to
have at least 280 bits of min entropy for CTR-DRBG to achieve birthday-bound
security. However, for the way that CtE is used in CTR-DRBG, we only need the

Game GZi°(A,S)
(I,z) +sS; seed < Seed; V «+ Cond(seed, I)
(Y1,...,Yy) s A(seed, z); return (V € {Y1,...,Y,})

Fig. 3: Game defining security of a condenser Cond against an adversary A
and a source S.

n-bit prefix of the output to be unpredictable, allowing us to reduce the min-
entropy threshold to 216 bits. In other words, we only need CtE[E, n] to be a
good condenser [27].

We now recall the security notion for randomness condensers. Let Cond : Seed x
{0,1}* — {0,1}™ be a deterministic algorithm. Let S be a A-source, meaning a
stateless, probabilistic algorithm that outputs a random input I and some side
information z such that Ho, (I | z) > A. For an adversary A, define

AdvE (A, S) = Pr[GE (A, S))]

as the guessing advantage of A against the condenser Cond on the source S,
where game Ggorg (A, S) is defined in Fig. [3| Informally, the game measures the
chance that the adversary can guess the output Cond(seed,I) given the seed
seed s Seed and some side information z of the random input 7.

When the condenser Cond is built on an ideal primitive II such as a random
oracle or an ideal cipher, we only consider sources independent of II. Follow-
ing [14], instead of giving A oracle access to II, we will give the adversary A
the entire (huge) encoding of IT, which can only help the adversary. In other
words, we view the encoding of IT as the seed of Cond, and as defined in game
G (A, S), the adversary A is given the seed.

To show that CtE[E,n] is a good condenser, we will first show that it is an
almost universal (AU) hash, and then apply a Generalized Leftover Hash Lemma
of Barak et al. [1]. Below, we will recall the notion of AU hash.

AU HasH. Let Cond : Seed x Dom — {0,1}" be a (keyed) hash function.
For each string X, define its block length to be max{l,|X|/n}. For a function
0 : N — [1,00), we say that Cond is a d-almost universal hash if for every distinct
strings X7, Xo whose block lengths are at most ¢, we have

Pr [Cond(seed, X1) = Cond(seed, X3)] < % :

seed <% Seed

The following Generalized Leftover Hash Lemma of Barak et al. [1] shows that
an AU hash function is a good condenser.

Lemma 2 (Generalized Leftover Hash Lemma). [I] Let Cond : Seed x
Dom — {0,1}" be a §-AU hash function, and let A > 0 be a real number. Let S

10

be a \-source whose random input I has at most £ blocks. For any adversary A
making at most q guesses,

AdVERT (A, 8) < o= + \/ L

DiscussIiON. A common way to analyze CBCMAC-based extractors is to use a
result by Dodis et al. [14]. However, this analysis is restricted to the situation
in which either (i) the length of the random input is fixed, or (ii) the side in-
formation reveals the exact length of the random input. On the one hand, while
the assumption (i) is true in Linux PRNG where the kernel entropy pool has
size 4,096 bits, it does not hold in, say Intel PRNG where the system keeps
collecting entropy and lengthening the random input. On the other hand, the
assumption (ii) may unnecessarily squander entropy of random inputs by inten-
tionally leaking their lengths. Given that CTR-DRBG is supposed to deal with
a generic source of potentially limited entropy, it is desirable to remove the
assumptions (i) and (ii) in the analysis.

At the first glance, one can deal with variable input length by using the following
analysis of Bellare et al. [4] of CBCMAC. Let Perm(n) be the set of permutations
on {0,1}™. Then for any distinct, full-block messages X; and X5 of at most
¢ < 2"/% blocks, Bellare et al. show that

2V 640!
P CBCMAC(C[r](X1) = CBCMAC[n|(X3)] < — 1
b [ml(X1) T < o+ g - (1)
However, this bound is too weak for our purpose due to the square root in
Lemma |2} In particular, using this formula leads to an inferior term ‘2/,?/'5 in

bounding the unpredictability of p extracted outputs against g guesses.

To improve the concrete bound, we observe that to guess the output of CtE[E, n],
the adversary has to guess both the key and IV of the CBC encryption simulta-
neously. Giving a good bound for this joint unpredictability is nontrivial, since
the key and the IV are derived from the same source of randomness (but with
different constant prefixes). This requires us to handle a multi-collision property
of CBCMAC.

SECURITY ANALYSIS OF CtE. The following Lemma [3] gives a multi-collision
property of CBCMAC that CtE needs; the proof is in Appendix

Lemma 3 (Multi-collision of CBCMAC). Let n > 32 be an integer. Let
X1, ..., X4 be distinct, non-empty, full-block messages such that

(i) X1 and X have the same first block, and X35 and X4 have the same first
block, but these two blocks are different, and
(ii) the block length of each message is at most £, with 4 < £ < 27/34,

11

Then for a truly random permutation w <s Perm(n), the probability that both
CBCMAC]x](X;) = CBCMAC[n]|(X2) and CBCMAC[r](X3) = CBCMAC[n](X4)
happen is at most 6443 /22",

Armed with the result above, we now can show in Lemmabelovv that CtE[E, n]
is a good AU hash. Had we used the naive bound in Equation , we would have

obtained an inferior bound 22—‘? + 6242@: .
Lemma 4. Letn > 32 and k € {n,n+1,...,2n} be integers. Let E : {0,1}* x
{0,1}" — {0,1}" that we model as an ideal cipher. Let CtE[E,n| be described

as above. Let I, I, be distinct strings of at most £ blocks, with £ + 2 < 27/3—4,
Then

Pr[CtE[E, n](I;) = CtE[E, n|(5)] < 2% + 64%2712)3 ,

where the randomness is taken over the choices of E.

Proof. Recall that in CtE[E,n|(I,), with b € {1,2}, we first iterate through
CBCMAC three times to derive a key K}, and an IV Jy,, and then output E(Ky, Jp).
Let Y, and Z, be the first block and the second block of Kj || Jp, respectively.
We consider the following cases:

Case 1: (Y1, 7Z1) # (Ya, Z2). Hence (K1, J1) # (K2, J3). If K1 = K then since
E is a blockcipher, E(K7, J1) # E(Ks, J2). Suppose that K1 # K. Without loss
of generality, assume that K; is not the constant key in CBCMAC. Since E is
modeled as an ideal cipher, F (K7, J1) is a uniformly random string, independent
of E(Ka, J3), and thus the chance that E(K7, J;) = E(K3, J2) is 1/2™. Therefore,
in this case, the probability that CtE[E, n](I;) = CtE[E, n|(I3) is at most 1/2".

Case 2: (Y1,71) = (Yo, Z3). It suffices to show that this case happens with
probability at most 64(¢ + 2)3/2%". For each a € {0,1}, let P, < [a]s2 || 07732 .
For b € {1,2}, let

Uy = pad([|1y]/8]s2 || [(k +n)/8]s2 || 1) -

Let 7 be the permutation in CBCMAC. Note that Y3, < CBCMAC[n|(Fy || Up)
and Z;, + CBCMAC[x](Py || Up) for every b € {1,2}. Applying Lemma [3| with
X1 = PO || Ul, XQ = P() H UQ, X3 = P1 || (]17 and X4 = P1 || U2 (note that these
strings have block length at most £ + 2), the chance that Y7 = Y5 and Z; = Z»
is at most 64(¢ + 2)3 /22", i

Combining Lemma [2] and Lemma [d] we immediately obtain the following result,
establishing that CtE[F,n] is a good condenser.

Theorem 1. Letn > 32 and k € {n,n+1,...,2n} be integers. Let E : {0,1}* x
{0,1}™ — {0,1}™ that we model as an ideal cipher. Let CtE[E,n] be described as
above. Let S be a A-source that is independent of E and outputs random inputs
of at most £ blocks. Then for any adversary A making at most q guesses,

‘ 8vq(l +2)3
Advguess (A,S) S i+ \/a + q(+) .

CtE[E,n] on 92A/2 on

12

procedure XP[E]|(I)
X« pad ([[11/8]a2 || [(k +n) /)2 || 1)
for i < 0 to 2 do

IV, < m([i]s2 || 0"732); T; + CBCMACYi[x](X)
YT ||T2||T5; K+ Y[1:k]; IV« Y[k+1:k+n]
C + E(K,IV) //Output of CtE[E,n](I)
return C @ K[1 : nj

Fig.4: The XP[E] construction, built on top of a blockcipher E : {0,1}* x
{0,1}™ — {0,1}". Here the random input I is a byte string. For an integer ¢, we let [i];
denote a t-bit representation of 7, and the permutation w is instantiated from E with
the k-bit constant key 0x00010203- - -.

ANOTHER REQUIREMENT OF CtE. In proving security of CTR-DRBG, one would
encounter the following situation. We first derive the key J < CtE[E](I) on a
random input I, and let K be the key of CBC encryption in CtE[E](I). The
adversary then specifies a mask P. It wins if K = J & P; that is, the adversary
wins if it can predict K & J. To bound the winning probability of the adversary,
our strategy is to show that even the n-bit prefix of K & J is hard to guess.
In particular, we consider a construction Xor-Prefiz (XP) such that XP[E](I)
outputs the n-bit prefix of K@ J, and then show that XP[E] is a good condenser.

The code of XP[E] is given in Fig. 4] Informally, XP[E](I) first runs CtE[E, n|(I)
to obtain an n-bit string C', and then outputs C' & K1 : n|, where K is the key
of CBC encryption in CtE[E, n](I).

The following result shows that XP[E] is a good AU hash.
Lemma 5. Letn > 32 and k € {n,n+1,...,2n} be integers. Let E : {0, 1}* x

{0,1}™ — {0,1}"™ that we model as an ideal cipher. Let XP[E] be described as
above. Let I1, I, be distinct strings of at most € blocks, with {+2 < 2"/3=% Then

1 64 +2)°
Pr[XP[E|(I)) = XP[E|(I,)] < TR
where the randomness is taken over the choices of E.
Proof. Recall that in XP[E|(I},), with b € {1, 2}, we first iterate through CBCMAC
to derive a key K} and an IV J,, and then output E(Kp, Jp) @ Kp[l : n]. Let

Y, and Z; be the first block and the second block of K} || Jp, respectively. We
consider the following cases:

Case 1: (Y1, Z1) # (Ys, Zs). Hence (K1, J1) # (Ka, J2). If K1 = K5 then since E
is a blockcipher, E(Ky, J1) # E(Ka, J2) and thus

E(Kl,Jl) D Kl[]. : n} 75 E(KQ,JQ) @Kz[l : TL] .

Suppose that K7 # Ks. Without loss of generality, assume that K7 is not the
constant key in CBCMAC. Since E is modeled as an ideal cipher, the string

13

E(Ky,J1)®K;[1 : n] is uniformly random, independent of E (K3, J2)® K3[1 : n],
and thus the chance that these two strings are the same is 1/2™. Therefore, in
this case, the probability that XP[E](I[;) = XP[E](I2) is at most 1/2™.

Case 2: (Y1,71) = (Y2, Z2). It suffices to show that this case happens with
probability at most 64(¢ + 2)3/2%". For each a € {0,1}, let P, < [b]sz || 0732,
For b € {1,2}, let

Up < pad([|1]/8]s2 || [(k +n)/8s2 || Ib) -

Let 7 be the permutation in CBCMAC. Note that Y, - CBCMAC[x|(F, || Up)
and Z, < CBCMAC[7|(Py || Uy) for every b € {1,2}. Applying Lemma [3| with
X1 = P() || Ul; X2 = PO H UQ, X3 = Pl || []17 and X4 = Pl || U2 (note that these
strings have block length at most ¢ + 2), the chance that Y7 = Y5 and Z; = Z»
is at most 64(¢ + 2)3/22". O

Combining Lemma [2] and Lemma [5] we immediately obtain the following result,
establishing that XP[E] is a good condenser.

Lemma 6. Letn > 32 and k € {n,n+1,...,2n} be integers. Let E : {0,1}* x
{0,1}" — {0,1}" that we model as an ideal cipher. Let XP[E] be described as
above. Let S be a A-source that is independent of E and outputs random inputs
of at most £ blocks. Then for any adversary A making at most q guesses,

uess q \/a 8 q(f + 2)3

5 The CTR-DRBG Construction

The CTR-DRBG construction is based on the randomness extractor CtE in Sec-
tion [4 and the Counter (CTR) mode of encryption. Below, we will first recall
the CTR mode before describing CTR-DRBG.

Tue COUNTER MODE. Let E : {0,1}* x {0,1}" — {0,1}" be a blockcipher. For
akey K € {0,1}* an IV € {0,1}", and a message M, let r < [|M|/n], and let
CTRY[E|(M)=M®Y[1:|M]] ,
in which Y < Y1 || --- || Y and each Y; + E(K,IV +i mod 2™). Since we do not

need decryptability, the IV is ezcluded in the output of CTR.

THE CTR-DRBG CONSTRUCTION. The code of CTR-DRBG|E] is given in Fig.
Recall that here we model F as an ideal cipher, and thus the algorithms of
CTR-DRBG are given oracle access to E instead of being given a seed.

REMARKS. The specification of CTR-DRBG in NIST 800-90A is actually very
flexible, allowing a wide range of options that do not conform to the specification

in Fig.

14

procedure setup” (1)
X + CtE[E](1)

K« 0% TV«o0"
S« CTRY[E](X)
return S

procedure refresh® (S, I)
X « CtE[E](I)

K < S[1:K

V<« Sk+1:k+n]
S« CTRE[E](X)

procedure next”(S, /)

K+ S[1:k]; V+ Slk+1: k+n]
r<mn-[€/n]

P < CTRY[E](0"TF+™)

R+« P[1:4

return S S« Plr+1:r+k+n

return (R, S)

A 4

CTR

Nxlv]

(K.V)

Fig.5: The CTR-DRBG construction. Each picture illustrates the algorithm right on
top of it. The state S consists of an n-bit string V' and a k-bit string K.

— Bypassing randomness extraction: The use of CtE to extract random-

ness is actually optional, but if CtE is not used then the random inputs are
required to be uniformly random. In practice, it is unclear how to enforce
the full-entropy requirement. In fact, as Woodage and Shumow [31] point
out, OpenSSL implementation of CTR-DRBG allows one to turn off the use
of CtE, yet directly use raw random inputs. Bypassing CtE, coupled with
the negligence of properly sanitizing random inputs, may lead to security
vulnerabilities, as demonstrated via an attack of Woodage and Shumow. We
therefore suggest making the use of CtE mandatory.

Use of nonces: Procedures setup and refresh may take an additional nonce
as input. This extension allows one to run multiple instances of CTR-DRBG
on the same source of randomness, provided that they are given different
nonces. In this work we do not consider multi-instance security.

Use of additional inputs: Procedure next may take an additional random
input. If CtE is used, this extension is simply a composition of refresh and the
basic next (without additional inputs). Therefore, without loss of generality,
we can omit the use of addition inputs in next.

15

6 Security Analysis of CTR-DRBG

6.1 Results and Discussion

Consider an adversary A attacking CTR-DRBG that makes at most g oracle
queries (including ideal-cipher ones) in which each next query is called to output
at most B blocks, and the total block length of those outputs is at most s. Let D
be a A-simple distribution sampler. Assume that under A’s queries, D produces
at most p random inputs, in which the i-th random input has maximum block
length ¢;. Let

L = max{ly,...,¢,}

be the maximum block length of the random inputs, and let
o=b+--+4

be their maximum total block length. The following Theorem [2] gives a bound
on the robustness of CTR-DRBG on simple samplers.

Theorem 2. Let E : {0,1}* x {0,1}" — {0,1}" be a blockcipher. Let G be the
construction CTR-DRBG[E] as described above. Let D be a A-simple distribution
sampler and A be an adversary attacking G whose accounting of queries is given
above. Then

2(B+3)(s+3p) N 6g(qg+1) N 6p(qg+1) N 12p-\/q
on 2k on 2X/2
A/ +1) VIT2- (0 +2)
on :

Advg} (A, D) <

INTERPRETING OUR BOUND. Under NIST SP 800-90A, L < 22 and B < 22,
Assuming that ¢,p < 2%° and 5,0 < 2%, if the min-entropy threshold X is at
least 216, the adversary’s advantage is at most 2732, This is comparable to what
conventional blockcipher-based constructions (such as CBCMAC) offerﬁ

CAVEAT. Under our security notion, if an adversary can learn the state of
CTR-DRBG, the outputs of next are compromised until refresh is called. Thus
Theorem |2| does not contradict the recent (side-channel) attack of Cohney et
al. [12] on common implementations of CTR-DRBG. Our results indicate that
such an attack can be mitigated by calling refresh frequently, assuming that
each random input has sufficient min entropy. This is consistent with the recom-
mendation of Cohney et al., and thus our work can be viewed as a theoretical
justification for their counter-measures.

5 We choose the bound 2732 in this example because this is a failure probability
that NIST standards usually accept. For instance, NIST 800-38B requires CMAC
implementation to rekey after 2*® messages so that the probability of collision in
CMAC under a single key is below 2732

16

SECURITY RECOMMENDATION. NIST SP 800-90A only requires that random
inputs have min entropy of at least 128 bits. This threshold is too low, even for
the modest goal of using CtE to extract randomness from p random inputs. We
therefore recommend increasing the min-entropy threshold to at least 216 bits.
On the other hand, the standard only requires calling refresh after producing
248 bits for the outputs. We suggest reducing this limit to, say 22 to force
implementations to refresh more frequently.

OBSTACLES IN THE PROOF OF THEOREM [2] A common way to prove robustness
of a PRGN is to decompose the complex notion of robustness into two simpler
notions: preserving and recovering [15,/17,[31]. In particular, if we can bound the
recovering and preserving advantages by € and €' respectively, then this gives a
bound p(e + €') on robustness. However, if one uses the decomposition approach
above to deal with CTR-DRBG then one would run into the following issues.

First, at best one can only obtain a birthday bound B2/2" for the preserving
and recovering security: a birthday security is unavoidable since under these two
notions, the adversary has to distinguish a CTR output with a truly random
string. Combining this birthday bound with the blowup factor p leads to an
inferior bound B2p/2".

Next, there lies a trap in proving recovering security of any PRNG that is built
on top of an AU hash function H. In particular, under the recovering notion, the
adversary needs to pick an index i € {1, ..., p} to indicate which random input I;
that it wants to attack, and then predicts the output of Hx (I;) via ¢ guesses. At
the first glance, one can trivially use the Generalized Leftover Hash Lemma to
bound the guessing advantage of each I; as d; the recovering advantage should
be also at most §. However, this argument is wrong, because here the adversary
can adaptively pick the index i after seeing the hash key K. The correct bound
for the recovering advantage should be p - §. This subtlety is somewhat similar
to selective-opening security on encryption schemes [3}/16].

To understand the adaptivity issue above, consider the following counter-example.
Let H : {0,1} x Dom — {0,1}" be a hash function, and let p = 2'. Let
Domy,...,Dom, be a partition of Dom. Suppose that we have p random inputs
I, € Domy,..., I, € Dom,, each of at least A min entropy. Assume that if the
key K is a t-bit encoding of an integer ¢ and the input X belongs to Dom; then H
misbehaves, outputting 0™; otherwise it is a good cryptographic hash function
that we can model as a (keyed) random oracle. Then H is still a good condenser:
for each fixed i € {1,...,p} and for a uniformly random key K <s {0,1}!, the
chance that one can predict H (I;) after ¢ guesses is at most 57 + 5% + o&.
Now, under the recovering notion, the adversary can choose the index i after
seeing the key K. If the adversary chooses 7 as the integer that K encodes, then
H(K,I;) = 0", and thus the adversary can trivially predict H(K, I;).

The subtlety above also arises in the proof of a theoretical PRNG by Dodis
et al. [15]. These authors are aware of the adaptivity issue, and give a proper
treatment of the recovering bound at the expense of a blowup factor p. The

17

procedure CTRY[E](M)
m [|M]/n]
if ¢ > X then Keys < Keys U {K}
for ¢ + 1 to m do
P+ E(K,V +1)
if ¢ > X then Queries <— Queries U {(K,V + 1, P;)}
P+ P---Ppn; C<« P[1:|M|®M; return C

Fig.6: The extended code of procedures CTR of S;c.i. The code maintains two
lists Keys and Queries that are initialized to (). Here c is the global counter estimating
min entropy of the state of Syeal.

counter-example above suggests that this factor p is inherent, and there is no
hope to improve the recovering advantage.

To cope with the issues above, instead of using the decomposition approach, we
give a direct proof for the robustness security via the H-coefficient technique.
By considering all CTR outputs at once, we can replace the term B?p/2" by a
better one Bs/2". Likewise, a direct proof helps us to avoid the blowup factor p
in bounding the guessing advantage of the extracted randomness CtE(I;).

TIGHTNESS OF THE BOUND. Qur bound is probably not tight. First, the term
P-\/q/ 222 is from our use of the Generalized Leftover Hash Lemma to analyze
the guessing advantage of CtE[E, n]. It is unclear if a dedicated analysis of the
guessing advantage of CtE can improve this term. Next, the term pg/2" is an
artifact of our analysis in which we only consider the unpredictability of the n-
bit prefix of each CTR key instead of the entire key. It seems possible to improve
this to pg/2F, leading to a better security bound if the underlying blockcipher
is either AES-192 or AES-256. Finally, the term /gL - 0/2" is the result of our
multi-collision analysis of CBCMAC, but the bound in Lemma [3]is rather loose.
We leave this as an open problem to improve our bound.

6.2 Proof of Theorem [2

SETUP. Since we consider computationally unbounded adversaries, without loss
of generality, assume that A is deterministic. Let S;ea and Sigea; be the systems
that model the oracles accessed by A in game Grgo’kj\ (A, D) with the challenge bit
b =1 and b = 0 respectively. For bookkeeping purpose, the system S;ea; also
maintains two ordered lists Keys and Queries that are initialized to be (). Those
lists shall be updated within procedure CTR of S,ea1; the extended code of CTR
is shown in Fig. [6] Informally, Keys keeps track of CTR keys whose min-entropy
counter is at least A, and Queries maintains the corresponding ideal-cipher queries
of CTR.

A HyBRID ARGUMENT. We will now create a hybrid system Syypria. The hybrid
system will implement S,c,, but each time it’s asked to run CTR, if the min-

18

procedure CTRY[E](M)

m [|M]/n]

if ¢ > X then Keys < Keys U {K}

for ¢ + 1 to m do
if ¢ > X then P, «s{0,1}"; Queries + Queries U {(K,V + i, P;)}
else P, + E(K,V +1)

P« Py---Ppn; C<« P[1:|M|®M; return C

Fig.7: The extended code of procedures CTR of Syybria-

entropy level ¢ is at least the threshold A, our hybrid system will use a fresh,
uniformly random string instead of the CTR output. In particular, the outputs
of ROR of Spybrid, when ¢ > A, are uniformly random strings. The code of
procedure CTR of Syyhriq is shown in Fig. m It also maintains the lists Keys and
Queries. To avoid confusion, we shall write Keys(S) and Queries(S) to refer to
the corresponding lists of system S € {Syeal, Shybrid }-

For any systems S; and Sy, let A4(S1,Sp) denote the distinguishing advantage
of the adversary A against the “real” system S; and “ideal” system Sy. We now
construct an adversary A* of about the same efficiency as A such that

AA* (Sreah Shybrid) = AA(Sideah Shybrid) .

Adversary A* runs A and provides the latter with access to its oracles. However,
for each ROR query, if ¢ > X\ (which A* can calculate), instead of giving A
the true output, A* will instead give A a uniformly random string of the same
length. Finally, when A outputs its guess b, adversary A* will output the same
guess. Adversary A* perfectly simulates the systems Sjqea) (in the real world) and
Shybrid (in the hybrid world) for A, and thus achieves the same distinguishing
advantage.

Below, we will show that

(B+3)(s+3p) , 3q(q+1) +3p(q+1) +6p~\/§
n 2k on 2A/2
+24(\/6—1- 1)-vVL+2-(0+2p)

2TL

A 4(Sreal; Shybrid) <

(2)

Since this bound applies to any adversary of the same accounting of queries, it
applies to adversary A* as well, meaning that

(B +3)(s+3p) n 3q(g+1) | 3plg+1) N 6p - \/q
on 2k on 2>\/2
+24(\/?1+1)-VL+2~(0+2p)
on :

AA* (Sreala Shybrid) S

3)

19

By the triangle inequality,

Advrgof))\ (A’ D) - AA(Sreala Sideal)
< AA(Sreah Shybrid) + AA(Shybrid7 Sideal)
= Aa(Sreal, Shybrid) + Aa«(Sreals Shybrid) . (4)

From Equations (2)), (3), and (4)),

2(B+3)(s+3p) N 6g(g+1) N 6p(qg+1) N 12p-\/q
on 2k om 2A/2
+48(\/(j—|- 1)-vVL+2-(c+2p)
on '

AdviR (A, D) <

We now justify Equation by the H-coefficient technique.

DEFINING BAD TRANSCRIPTS. Recall that when A interacts with a system S €
{Sreal; Shybria}, the system S maintains a (k + n)-bit state S = (K, V). This
state starts as (Ko, Vo) = (0%,0"), and then setup is called to update the state
to (K1, V1). The queries of A will cause it to be updated to (K3, V2), (K3, V3), and
so on. When the adversary A finishes querying S, we’ll grant it all states (K, V;),
all random inputs I; and their extracted randomness CtE[E](];), the list Queries,
and triples (J, X, E(J, X)) for any J € {0,1}*\Keys(S) and X € {0,1}". This
extra information can only help the adversary. A transcript is bad if one of the
following conditions happens:

(i) There are different triples (J, X1, Y1), (J, X2,Y2) € Queries(S) that are gen-
erated under the same call of CTR (meaning that X; # X5) such that
Y = ng This cannot happen in S,e. but may happen in Spypria-

(ii) The transcript contains a query (J, X) of A to E/E~! such that J € Keys(S).
In other words, the adversary somehow managed to guess a secret key of the
CTR mode before it is granted extra information.

(iii) There are distinct ¢ and j, with K; € Keys(S), such that K; = K. That is,
there is a collision between the keys K; and Kj, in which K is the secret
keys for CTR mode that we want to protect. The other key K; may either
be a secret CTR key, or a compromised key that the adversary knows.

(iv) There is some key K; € Keys(S) that is also the constant key in CBCMAC.

(v) There is some key J € Keys(S) that is derived from I; and there is an index
i # j such that J is also the key of CBC encryption in CtE[E](I;).

(vi) There is some key J € Keys(S) that is derived from I; such that J is also
the key of CBC encryption in CtE[E](I}).

If a transcript is not bad then we say that it’s good. Let Tieal and Tnybria be the
random variables of the transcript for S;eca1 and Spyhria respectively.

" One can tell whether two triples in Queries(S) belong to the same call of CTR since
the list Queries(S) is ordered, and the lengths of the messages of CTR are known.

20

PROBABILITY OF BAD TRANSCRIPTS. We now bound the chance that Thybiq is
bad. Let Bad; be the event that Tnynrig violates the i-th condition. By the union
bound,

6
Pr[Thybria is bad] = Pr[Bad; U--- UBadg] <> Pr[Bad,] .
i=1

We first bound Pr[Bad;]. Suppose that Queries(Shybria) are generated from @
calls of CTR, and let Py, ..., Pg be the corresponding CTR outputs. Let 71, ..., Tg
be the block length of P, ..., Pg. Note that Q,T1,...,T¢ are random variables,
but since k < 2n, we have T; < B 4 3 for every ¢, and T + --- + Ty < s+ 3p.
The event Bad; happens if among T; blocks of some P;, there are two duplicate
blocks. Since the blocks of each P; are uniformly random,

Q 9 Q
T: T;- (B+3) (B +3)(s+3p)
Pr[Bad <E(—1><E<)< .
Next, we shall bound Pr[Bads]. Note that the keys in Keys(Snynrid) can be cat-
egorized as follows.

— Strong keys: Those keys are picked uniformly at random.
— Weak keys: Those keys K; are generated via

K; « CTR " [E](CtE[E](I))[1 : k]
for a random input I of D.

For a strong key, the chance that the adversary can guess it using g ideal-cipher
queries is at most ¢/2*. Since there are at most ¢ strong keys, the chance that
one of the strong keys causes Bads to happen is at most ¢?/2*. For each j < p,
let Hit2(j) be the event that the key derived from the random input I; is a weak
key, and it causes Bady to happen. From the union bound,

2 p
Pr[Bad,] < % + Pr[Hito(1) U+ - - U Hita(p)] < % Z r[Hits(j

We now bound each Pr[Hita(j)]. Let J be the key derived from the random
input I; and assume that J is weak. Since J € Keys(Shybrid), the next state of
Shybrid is generated (as shown in Fig. [7]) by picking a uniformly random string,
and thus subsequent queries give no information on J. In addition, recall that
the n-bit prefix of J is the xor of CtE[E, n](l;) with a mask P;. If we grant P;
to the adversary then it only increases Pr[Hit2(j)]. The event Hita(j) happens
only if the adversary can somehow guess CtE[E, n|(I;) via ¢ choices of its ideal-
cipher queries. But anything that the adversary receives is derived from the
blockcipher F, the side information z; and the entropy estimation ; of I;, the

21

other (I;,7;, z;) with i # j. Thus from Theorem [}

PrfHity(j)] < 4 4 YO 4 8valli 27

=~ 2n 2)\/2 2n
a Vi &/ﬁ (4; +2)
< -+
AL 2A/2
Summing up over all events Hita(1), ..., Hita(p),
° : 8/a(L+2) - (042
Pr[Bads] < g—k + ;LZ + p}\f + \/Q(T?)z (o +2p)

We now bound Pr[Bads]. For a strong key, the chance that it collides with one of
the other ¢ keys in the system in at most ¢/2*. Since there are at most ¢ strong
keys, the chance that some strong key causes Bads to happen is at most ¢2/2F.
For each j < p, let Hit3(j) be the event that the key derived from the random
input I; is a weak key, and it causes Bads to happen. From the union bound,

2

p
Pr[Bads] < % + Pr[Hits(1) U - - - U Hits (p)] < ik Z r[Hit3(j

We now bound each Pr[Hit3(j)]. The event Hits(j) happens only if the environ-
ment somehow can “guess” CtE[E, n|(I;) via ¢ choices of its other keys, using
just information from the blockcipher F, the side information z; and the entropy
estimation v; of I;, the other (I;,7;, z;) with ¢ # j. Thus from Theorem

o V2 8yl +2)3
Pr[Hit3(5)] < — 2n + Y + on
L+ NG 8\/ L+2

— 2n 2>\/2

Summing up over all events Hits(1),. .., Hits(p),

q? Va4 o 8v/«q L+2 (o + 2p)
Pr[Bad3]<27+27+ 2}\/2 +

Bounding Pr[Bady] is similar to handling Bads, but now the environment has
just a single choice, instead of ¢ choices. Thus

P 8V (L+2) (o+2p)
Pr[Bady] < 27 + = 2 + Y on .

Bounding Pr[Bads] is similar to handling Bads, but now the environment has p
choices instead of ¢ ones. Thus

15 8 /p(L+2)- (042
Pr[Bads]<Z2LZ+%+§A/2 VP(L+2) - (0+2p)

22

Finally, consider Badg. Again, the chance that some strong key causes Badg to
happen is at most ¢/2*. For each j < p, let Hitg(j) be the event that the key
derived from the random input I; is a weak key, and it causes Bads to happen.
From the union bound,

P
Pr[Badg] < 2% + Pr[Hits(1) U - - U Hitg(p)] < % Z r[Hitg (j

We now bound each Pr[Hits(j)]. The event Hits(j) happens only if the environ-
ment somehow can “guess” XP[E](I;) via a single choice of the CTR mask, using
just information from the blockcipher E, the side information z; and the entropy
estimation y; of I;, the other (I;,v;, ;) with ¢ # j. From Lemma@ with a single
guess,

o) < 4 Ly WVEFD 8y/TF2) - (4+2)
Pr[Hits ()] < o7 + 55 + o <ot 2A/2 + o .
Summing up over all events Hitg(1), ..., Hits(p),

8V I(L+2)- 2
Pr[Badg < L 4 L 4 P SVILH2) (o p)

2k on 2/\/2 on
Summing up, and taking into account that ¢ > p,
(B+3)(s+3p) | 3qla+l) 3pla+l) 6p Va4
on 2k on 2A/2
24(\/q+1)- VL +2- (0 +2p)

21’L

Pr{Thybria is bad] <

()

TRANSCRIPT RATIO. Let 7 be a good transcript such that Pr{Thypria = 7] > 0.
We now prove that
Pr[ﬂeal = T]

Pr{Thybria = 7]
If Trear is good then Queries(S;ea1) and the granted triples (K, X,Y") at the end of
the game (with all K € {0,1}"™\Keys(S;eca1) and X € {0,1}"), would contain all
adversary’s queries to E/E~! and S,ea’s queries to E in its setup, next, refresh
procedures. Since A is deterministic, when Tiea is good, it is completely de-
termined from D’s outputs, Queries(S;eal), and the granted triples (K, X,Y) at
the end of the game. Let Queries(7) and Keys(7) be the value of Queries(S) and
Keys(S) for S € {S;ca1, Shybria} indicated by 7. Thus the event that Treal = 7
can be factored into the following sub-events:

1- <0 . (6)

— Inputs: The distribution sampler D outputs as instructed in 7.

— Prim: The blockcipher E agrees with the granted queries (K, X,Y) in T,
with K € {0,1}™\Keys(7). That is, for any such triple (K, X,Y), if we query
E(K, X), we'll get the answer Y.

— Collyear: The blockcipher E agrees with the triples in Queries(7). Note that
for any (K, X,Y) € Queries(7), we have K € Keys(T).

23

Due to the key separation in Prim and Coll.., and due to the fact that D has
no access to F,

Pr[T;cal = 7] = Pr[Inputs] - Pr[Prim] - Pr[Collyea] -

Likewise, if Thybria is good then the granted triples (K, X,Y") at the end of the
game (with all K € {0,1}"\Keys(Shybria) and X € {0,1}"), would contain all
adversary’s queries to E/E~! and Shybria’s queries to E in its setup, next, refresh
procedures. Thus if Tyybria is good then it is completely determined from D’s
outputs, Queries(Shybrid), and the granted triples (K, X,Y’) at the end of the
game. Hence the event that Thybria = 7 can be factored into Inputs, Prim and the
following sub-event:

— Colligear: For any triple (K, X,Y) € Queries(7), if we pick Z <—s{0,1}", we’ll
have Z =Y. This random variable Z stands for the uniformly random block
that Shybria samples when it is supposed to run E(K, X) (but actually does
not do) under procedure CTR on key K € Keys(7).

Then
Pr[Thybria = 7] = Pr[Inputs| - Pr[Prim] - Pr[Colligeal] -
Therefore,
Pr[Tica = 7] Pr[Collca]
Pr[ﬂlybrid = T] B Pr[co”ideal] '
Now, suppose that Queries(7) contains exactly r keys, and the i-th key contains
exactly ¢; tuples. Since 7 is good, for any two tuples (K, X,Y) and (K, X', Y”)
of the i-th key, we have X # X’ and Y # Y”’. Thus on the one hand,

T

1
PI’[CO“real] - H 2n(2n _ 1) e (27l — tl _|_ 1) .

i=1

On the other hand,

Pr[Colligeat] = [| ! .

i (2
Hence
Pr[CoIIideal] S Pr[CoIIreal] s
and thus
Pr[Treal = 7] _ Pr[Coll;eal] 51
Pr[’ﬁlybrid = 7'] Pr[CoIIideal] -
as claimed.

WRAPPING IT UP. From Lemma |l|and Equations and @, we conclude that
(B +3)(s+ 3p) i 3q(q+1) n 3p(g+1) N 6p - \/q

on 92k on 2N/2
+24(\/§+ 1)-vVL+2-(o+2p)

27L

A 4(Sreal; Shybrid) <

as claimed.

24

Game Gg'y(A) procedure REF(I) |procedure RoR(1%)
et =g\ g !
b+s{0,1}; s+ (I,s)<«s AH(S) S < refresh™ (S,1) |(R1,S) + ne[xt (S,0)
S+ setup! (I); b’ s ARFRORI () Ro s {0,1}

return (b’ =1b) return R

Fig.8: Game defining resilience for a seedless PRNG G = (setup, refresh, next)
that is built on top of an ideal primitive II.

7 Breaking CTR-DRBG with a Seed-dependent Sampler

In this section, we show that if the underlying blockcipher is AES-128 then
CTR-DRBG is insecure in the new security model of Coretti et al. [13].

SEEDLESS PRNGS. A seedless PRNG that is built on top of an ideal primitive 17
is a tuple of deterministic algorithms G = (setup, refresh, next), any of which has
oracle access to IT. Algorithm setup’/ (I), on a random input I, outputs a state S.
Next, algorithm refresh’ (S, I) takes as input a state S and a string I and then
outputs a new state. Finally algorithm next’ (S, £) takes as input a state S and
a number ¢ € N, and then outputs a new state and an ¢-bit output string. Note
that the description of CTR-DRBG in Fig. |5 also conforms to this syntax.

SECURITY MODELING. Instead of using the full notion of Coretti et al. [13], we
levy some additional restrictions on the adversary to simplify the definition and
to make our attack more practical. In particular, we (i) strip away the adversary’s
ability to read or modify the PRNG’s state, (ii) require that each random input
must have sufficient min entropy, and (iii) forbid the adversary from calling next
when the accumulated entropy is insufficient. The simplified notion, which we
call resilience, is described in Fig. [§] Define

AdvVE (4) = 2Pr | GE(4)] - 1

as the advantage of A breaking the resilience of G. Informally, the game begins
by picking a challenge bit b <—s {0, 1}. In the first phase, the adversary A, given
just oracle access to II, outputs a random input I and keeps some state s. The
game then runs setup’” () to generate an initial state S for the PRNG. In the
second phase, the adversary, in addition to I7, is given the following oracles:

(i) An oracle REF(I) to update the state S via S < refresh’ (I).

(i) An oracle ROR(1%) to get the next £-bit output. The game runs the next
algorithm on the current state S to update it and get an ¢-bit output R,
and also samples a uniformly random string Ry < {0, 1}¢. It then returns Ry,
to the adversary.

The goal of the adversary is to guess the challenge bit b, by outputting a bit &'

To avoid known impossibility results [11], one needs to carefully impose restric-
tions on the adversary A. Consider game Gg3;(A) in which the challenge bit

25

b = 0. Note that this game is independent of the construction G: one can
implement the oracle REF(I) to do nothing, and oracle ROR(1Y) to return
R +s{0,1}*. Let s; and L; be the random variables for the adversary’s state
and its current list of queries/answers to IT right before the adversary makes
the i-th query to ROR, respectively. Let Z; be the list of random inputs before
the adversary makes the i-th query to ROR. We say that A is A-legitimate if
Hoo(I|s;,L;) >)\, for any ¢ € N and any I € Z;.

THE ATTACK. We adapt the ideas of the CBCMAC attack in [13] to attack
CTR-DRBG, assuming that the key length and block length of the underlying
blockcipher are the same. In other words, our attack only applies if the underlying
blockcipher is AES-128. Still, it works for any fixed entropy threshold A > 0.

Let E: {0,1}* x {0,1}" — {0,1}" be the underlying blockcipher of CTR-DRBG,
and let 7 be the permutation in CBCMAC. Pick an arbitrary integer m > \. For
each a € {0,1}, let

Ua < lals2 [0" || [(mn + n — 64) /8]s2 || [n/4]s2

and let
B, CBCMAC[w](Ua I 0"_64) .

For each integer i > 0 and any string z € {0,1}", define 7’(x) recursively via
7l (x) + 7(7""(x)) and 7°(x) < x. In the first phase, for each i € {0,...,m—1},
the adversary A picks M; s {n*(By) @ n*(B1),0m}. It then outputs

I 0" [Mo| -+ || Myn—1

and also outputs the empty string as its state s. In the second phase, A queries
ROR(1™) to get an answer Y. Next, recall that in the real world (where the
challenge bit b = 1), to set up the initial state, setup(I) first derives

K «+ CBCMAC[x](Uy || T || P); IV < CBCMAC[x|(Uy || I || P) ,

where P «+ pad(e), and then runs CBCY [E](0?"). Our adversary aims to predict
two possible pairs (Ko, V) and (K1, V;) for (K,IV), and then compare Y with
the corresponding ROR outputs Zy and Z;. Specifically, A runs the following
code

for a € {0,1} do
P+ pad(e); Ko < m(7™(Ba) ® P); Vo < 7(n™(B1-a) ® P)
R, + CBC}/(‘; [E](02"); J, < Ru[l:n], VF < Ry[n+1:2n]
Zq + CTR®(J,, V07

if Y € {Zy, Z,} then return 1 else return 0

In summary, A makes 2m queries to m in the first phase, and 2m + 4 queries
to m and 6 queries to F in the second phase. Let L be the list of queries and
answers to m and E. Since the state s of A right before it queries ROR is the

26

empty string, in the ideal world, we have Ho (I | s,L) = m > A, and thus the
adversary is \-legitimate.

We now analyze the adversary’s advantage. In the ideal world, the answer Y
is a uniformly random string, independent of Zy and Z;, and thus the chance
that Y € {Zy, 71} is 217™. As a result, the chance that A outputs 1 in the
ideal world is 217", In the real world, we claim that A’s prediction of (K, V) is
correct. Consequently, the chance that it outputs 1 in the real world is 1, and
thus Advg®y(A) =1 —2'"".

To justify the claim above, note that K + CBCMAC[x|(By, My -+ Mp,—1 || P)
and IV + CBCMAC[r|(By, My - - My—1 || P). From the definition of CBCMAC,
the two CBCMAC calls above can be rewritten as follows:

Xo(*Bo; Yo(*Bl
fori=0tom—1do XiJrl(—’IT(Xi@Mi); Y;+1<—7T(Y;€BMZ)
K+ (X, ®P); IV« n(Y,, ®P)

We will prove by induction that in the code above, {X;,Y;} = {7%(Bo), 7 (B1)}
for every i € {0,...,m}; the claim above corresponds to the special case i = m.
The statement is true for the base case i = 0, from the definition of X and Yj.
Assume that our statement is true for i« < m, we now prove that it also holds
for i + 1. Since M; € {n*(By) ® 7*(B1),0"}, from the inductive hypothesis,
{Xz (&) M“}/z (%) Mz} = {ﬂ'i(BQ),ﬂ'i(Bl)}. As Xi-l—l — 7T(X1 (5] Ml) and }/H‘l —
m(X; ® M;), our statement also holds for i 4 1.

DiscussioN. The key idea of the attack above is to craft a random input I such
that it is easy to learn both the key K and the initialization vector IV of CBC in
CtE[E](I). This attack can be extended for a general key length k € {n,...,2n},
but now the adversary can only learn just K and the (2n — k)-bit prefix of IV.
Still, the adversary can make 2~ guesses to determine the remaining k —n bits
of IV. This leads to a theoretical attack of about 2% operations for AES-192,
but for AES-256, the cost (2128 operations) is prohibitive. We leave it as an open
problem to either extend our attack for CTR-DRBG with AES-256, or to prove
that it is actually resilient.

Acknowledgments

We thank Stefano Tessaro for insightful discussions, Yevgeniy Dodis for suggest-
ing the study of CTR-DRBG in the seedless setting, and CRYPTO reviewers for
useful feedback. Viet Tung Hoang was supported in part by NSF grants CICI-
1738912 and CRII-1755539. Yaobin Shen was supported in part by National
Key Research and Development Program of China (No. 2019YFB2101601, No.
2018YFB0803400), 13th five-year National Development Fund of Cryptography
(MMJJ20170114), China Scholarship Council (No. 201806230107). Much of this
work was done while Yaobin Shen was visiting Florida State University.

27

References

1.

10.

11.

12.

13.

14.

15.

B. Barak, Y. Dodis, H. Krawczyk, O. Pereira, K. Pietrzak, F.-X. Standaert, and
Y. Yu. Leftover hash lemma, revisited. In P. Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 1-20. Springer, Heidelberg, Aug. 2011.

. B. Barak and S. Halevi. A model and architecture for pseudo-random generation

with applications to /dev/random. In V. Atluri, C. Meadows, and A. Juels, editors,
ACM CCS 05, pages 203-212. ACM Press, Nov. 2005.

M. Bellare, D. Hotheinz, and S. Yilek. Possibility and impossibility results for
encryption and commitment secure under selective opening. In A. Joux, editor,
EUROCRYPT 2009, volume 5479 of LNCS, pages 1-35. Springer, Heidelberg, Apr.
20009.

M. Bellare, K. Pietrzak, and P. Rogaway. Improved security analyses for CBC
MAGCs. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 527—
545. Springer, Heidelberg, Aug. 2005.

D. J. Bernstein. Cache-timing attacks on AES, 2005.

G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge-based pseudo-
random number generators. In S. Mangard and F.-X. Standaert, editors,
CHES 2010, volume 6225 of LNCS, pages 33—47. Springer, Heidelberg, Aug. 2010.
M. Campagna. Security bounds for the NIST codebook-based deterministic ran-
dom bit generator. Cryptology ePrint Archive, Report 2006/379, 2006. https:
//eprint.iacr.org/2006/379.

S. Checkoway, J. Maskiewicz, C. Garman, J. Fried, S. Cohney, M. Green,
N. Heninger, R.-P. Weinmann, E. Rescorla, and H. Shacham. A systematic analysis
of the Juniper Dual EC incident. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 468-479. ACM, 2016.
S. Checkoway, R. Niederhagen, A. Everspaugh, M. Green, T. Lange, T. Ristenpart,
D. J. Bernstein, J. Maskiewicz, H. Shacham, and M. Fredrikson. On the practical
exploitability of dual EC in TLS implementations. In Proceedings of the 23rd
USENIX Security Symposium, pages 319-335, August 2014.

S. Chen and J. P. Steinberger. Tight security bounds for key-alternating ciphers. In
P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS,
pages 327-350. Springer, Heidelberg, May 2014.

B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity (extended abstract). In 26th FOCS, pages
429-442. IEEE Computer Society Press, Oct. 1985.

S. Cohney, A. Kwong, S. Paz, D. Genkin, N. Heninger, E. Ronen, and Y. Yarom.
Pseudorandom black swans: Cache attacks on CTR DRBG. In IEEFE Security and
Privacy 2020, 2020.

S. Coretti, Y. Dodis, H. Karthikeyan, and S. Tessaro. Seedless fruit is the sweetest:
Random number generation, revisited. In CRYPTO 2019, pages 205-234, 2019.
Y. Dodis, R. Gennaro, J. Hastad, H. Krawczyk, and T. Rabin. Randomness extrac-
tion and key derivation using the CBC, cascade and HMAC modes. In M. Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 494-510. Springer, Heidelberg,
Aug. 2004.

Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergnaud, and D. Wichs. Security analysis
of pseudo-random number generators with input: /dev/random is not robust. In
A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM CCS 18, pages 647—-658.
ACM Press, Nov. 2013.

28

https://eprint.iacr.org/2006/379
https://eprint.iacr.org/2006/379

16. C. Dwork, M. Naor, O. Reingold, and L. J. Stockmeyer. Magic functions. In 40th
FOCS, pages 523-534. IEEE Computer Society Press, Oct. 1999.

17. P. Gazi and S. Tessaro. Provably robust sponge-based PRNGs and KDFs. In
M. Fischlin and J.-S. Coron, editors, FUROCRYPT 2016, Part I, volume 9665 of
LNCS, pages 87-116. Springer, Heidelberg, May 2016.

18. D. Gullasch, E. Bangerter, and S. Krenn. Cache games - bringing access-based
cache attacks on AES to practice. In 2011 IEEE Symposium on Security and
Privacy, pages 490-505. IEEE Computer Society Press, May 2011.

19. J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364-1396, 1999.

20. N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining your Ps
and Qs: Detection of widespread weak keys in network devices. In Proceedings of
the 21st USENIX Security Symposium, pages 205-220, August 2012.

21. V. T. Hoang and S. Tessaro. Key-alternating ciphers and key-length extension:
Exact bounds and multi-user security. In M. Robshaw and J. Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 3-32. Springer, Heidelberg,
Aug. 2016.

22. D. Hutchinson. Randomness in Cryptography: Theory Meets Practice. PhD thesis,
Royal Holloway, University of London, 2018.

23. A. Jha and M. Nandi. Revisiting structure graphs: Applications to CBC-MAC and
EMAC. Journal of Mathematical Cryptology, 10(3-4):157-180, 2016.

24. M. Neve and J.-P. Seifert. Advances on access-driven cache attacks on AES. In
E. Biham and A. M. Youssef, editors, SAC 2006, volume 4356 of LNCS, pages
147-162. Springer, Heidelberg, Aug. 2007.

25. D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: The
case of AES. In D. Pointcheval, editor, CT-RSA 2006, volume 3860 of LNCS, pages
1-20. Springer, Heidelberg, Feb. 2006.

26. J. Patarin. The “coefficients H” technique (invited talk). In R. M. Avanzi, L. Keli-
her, and F. Sica, editors, SAC 2008, volume 5381 of LNCS, pages 328-345. Springer,
Heidelberg, Aug. 2009.

27. R. Raz and O. Reingold. On recycling the randomness of states in space bounded
computation. In 31st ACM STOC, pages 159-168. ACM Press, May 1999.

28. S. Ruhault. SoK: security models for pseudo-random number generators. TACR
Transactions on Symmetric Cryptology, pages 506544, 2017.

29. T. Shrimpton and R. S. Terashima. A provable-security analysis of Intel’s secure
key RNG. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 77—-100. Springer, Heidelberg, Apr. 2015.

30. T. Shrimpton and R. S. Terashima. Salvaging weak security bounds for blockcipher-
based constructions. In J. H. Cheon and T. Takagi, editors, ASTACRYPT 2016,
Part I, volume 10031 of LNCS, pages 429-454. Springer, Heidelberg, Dec. 2016.

31. J. Woodage and D. Shumow. An analysis of NIST SP 800-90A. In EUROCRYPT
2019, pages 151-180, 2019.

A Problems in Hutchinson’s Analysis of CTR-DRBG

In this section, we describe the issues in Hutchinson’s analysis of CTR-DRBG [22].
For convenience, we shall use the notation and terminology in Section [4

29

First, under CTR-DRBG, one uses CBCMAC to extract randomness multiple
times from basically the same random input (with different constant prefixes).
Conventional analysis of CBCMAC [14] via the Leftover Hash Lemma [19] only
implies that each of the corresponding outputs is marginally pseudorandom, but
in the proof of his Lemma 5.5.4, Hutchinson incorrectly concludes that they are
jointly pseudorandom.

Next, in the proof of his Lemma 5.5.14, Hutchinson considers a multicollision
CBCMAC|x](M;) = CBCMAC[x|(M7), ..., CBCMAC[x](M,) = CBCMAC[x] (M)

with » € {2,3} and a truly random permutation = : {0,1}" — {0,1}". As-
sume that each individual collision CBCMAC[r](M;) = CBCMAC[x](M}) hap-
pens with probability at most e. Hutchinson claims (without proof) that the
multicollision happens with probability at most €3, but this is obviously wrong
for r = 2. While one may try to salvage the proof by changing the multicollision
probability to €, proving such a bound is difficult.

Next, in several places, his probabilistic reasoning is problematic. For instance,
in the proof of his Lemma 5.5.14, he considers X; + CBCIKVI1 [E](03") and X5 <
CBCIKVz2 [E](0%"), for Ky # Ko and IV # IV, and E : {0,1}Fx{0,1}" — {0,1}"
is modeled as an ideal cipher. He claims that

1 1843
px =01 < 5 (1)
but this collision probability is actually around 2%, which is much bigger than
the claimed bound.

In addition, while Hutchinson appears to consider random inputs of a general
block length L, he actually uses L = 3 in the proof of his Lemma 5.5.4, and the
resulting incorrect bound propagates to other places.

Finally, even if all the bugs above are fixed, Hutchinson’s approach is doomed
to yield a weak bound
P ap

2(A—=n)/2 + on/2 7’
assuming that we have p random inputs, each of at least A\ > n bits of min en-
tropy, and their total block length is at most . This poor bound is due to: (i) the
decomposition of robustness to two other notions (preserving and recovering)
that leads to a p-blowup, and (ii) the unnecessary requirement that CBCMAC
on random inputs yield pseudorandom (instead of just unpredictable) outputs.

B Proof of Lemma [3

B.1 A graph representation of CBCMAC

In this section, for the sake of completeness, we recall the concept of structure
graphs of CBCMAC, and their known combinatorial properties [4,[23]. Let n be

30

A A<
-~ N ™
(&) [m] L] (2] 3]
Tt Tt 18 i Tt
el el [e] [a] [s]

Fig. 9: Illustration of the blocks Ci,...,C,, for the case of two messages M;
and M, and there are m = 5 blocks.

the block length and let t > 1 be an integer. Fix t distinct, full-block messages
My, ..., M; (meaning that each |M;| is a multiple of n). Let M = My || - - || M,
and parse it as By - - - B,,, where each B; is a single n-bit block. For each ¢ < t,
let m; denote the total block length of the first ¢ messages My,..., M;, and
thus m = my. Let M be the list {My, ..., M;}. Let Perm(n) denote the set of
permutations 7 : {0,1}" — {0,1}".

STRUCTURE GRAPHS. Given the list M and a permutation m € Perm(n), the
corresponding structure graph GM = (V,E, L) is a directed graph, with node
set V' C {0,...,m}, and an edge-labeling function L : E — {B;,...,B;,}. Let
Co = 0", and for each ¢ € {1,...,m}, define
C = 7T(Ci71 @B» if i & {m1 +1,...,me1 + 1}
‘ m(B;) otherwise .

See Fig. [9] for an illustration. Then, for every i € {0,...,m}, define post(i) =
min{k : Cy = C;}, and let pre(i) = post(:) if ¢ & {0,mq,...,m:}, and let
pre(i) = 0 otherwise. Now the structure graph GM = (V, E, L) is defined via
V = {post(i) | 1 <i < m}, E = {e; = (pre(i — 1),post(i)) | 1 < i < m}, and
L(e;) = B. See Fig. 10| for an illustration.

We shall adopt standard graph terminology in dealing with structure graphs.
Note that in the structure graph G, it is possible that at two different steps 4
and j, the corresponding edges e; and e; point from the same tail to the same
head. In that case we consider them a single edge. Computing CBCMAC|r] (M)

can be viewed as a walk from node 0 that follows the edges corresponding to the
blocks of M.

31

Fig. 10: The structure graph for the example in Fig. EI, assuming that the
blocks C1,...,Cy are distinct, but somehow C5 = Cs.

By B,

By

Fig. 11: Illustration of induced collisions and accidents.

COLLISIONS AND ACCIDENTS. Suppose that the graph GM is revealed edge by
edge, meaning that at step 7, the edge e; is shown to us. We say that G has a
collision at step 17 if the revealed edge e; points to a node that is already in the
graph. (However, if this edge e; is the same as a prior edge e; then this does not
count.) Collisions are categorized into two types: (i) induced collisions and (ii)
accidents. Informally, an induced collision in step 4 is a collision that is implied
by the collisions of the first ¢ — 1 steps, whereas an accident is a “surprising”
collision. A rigorous treatment of induced collisions and accidents can be found
in the paper of Bellare et al. [4].

For example, consider Fig. [T} This is the structure graph of four messages
Ml = B1B2, M2 = BgB4, M3 = B5Bﬁ with B5 = Bl, and M4 = B7Bg with
B; = B3 and By = By ® B4 ® Bg. We assume that somehow C4 = Cs, and thus

Ci®By=C3® B,
since the left-hand side is 7~!(C3) whereas the right-hand side is 7=1(Cy). Then
Cs :71'(03@38) =7T(Cl @32@34@38) :77(01@B6) =Cs .

Thus the collision Cy = C4 is an accident, whereas the collision Cg = Cg is an
induced collision.

Of course the number of collisions is always greater than or equal to the number
of accidents. If the structure graph has no accident then the graph is a tree

32

rooted at node 0, and there is no collision. Let G(M) denote the set of structure
graphs of M for all choices of 7 € Perm(n), and let Acc(G2") denotes the set of
accidents of G2, Bellare et al. [4] show that given just M and the accident set
Acc(G2), one can fully reconstruct the structure graph GM.

Lemma 7. [4] Any graph G € G(M) is uniquely determined from Acc(QG)
and M alone.

A collision formed by an edge e; pointing to a prior node j can be specified via
a pair (z, 7). If there is no prior edge ey, pointing to j then j must be node 0, and
thus the edge e; is the first incoming edge of node 0. Otherwise this collision is
formed by two edges e; = (u,j) and e = (v, j) pointing to the same node j.
We say that this is a true collision. For example, in Fig. both collisions are
true ones. A true collision formed by e; = (u,j) and ex = (v,j) implies that
Cy ® B; = C, & By, since both of them are 7~!(C;). This leads to the linear
equation
Cu ©® Cv - Bz ©® Bk

in which we view C, and C, as variables, and B; and Bj as constants. Let

rank(G) be the rank of the system of linear equations formed by the true
collisions of GM. Then

rank(GM) if there is no incoming edge to node 0
rank(GM) +1 otherwise

|Acc(GM)| = { (7)

In fact, this is the definition of Jha and Nandi |23] for the number of accidents
in a structure graph. We immediately obtain the following result.

Lemma 8. If GM has just one accident and there is an incoming edge to node 0
then it has no true collision.

Proof. Since |Acc(GM)| = 1 and G2 has an incoming edge to node 0, from
Equation @, rank(GM) = 0. Hence this graph must have no true collision,
otherwise its rank must be at least 1. O

COMBINATORIAL RESULTS ON STRUCTURE GRAPHS. We now recall the known
combinatorial results on structure graphs.

Lemma 9. [4] For a given M = {My,..., M} of totally m blocks and for any
graph G € G(M) of a accidents,

1
P M_Gl< ——— .
T <$ Peﬁm(n)[Gﬂ- G] - (2” — m)a

Lemma 10. [4[23] For a given M = {My, ..., M} of totally m blocks and for
any integer a > 0,
2\ a
PrAcc(GX = a] < (55) -

m +$ Perm(n) AL

33

Fig.12: Characterization of structure graphs in Coll(M) of one accident
for two suffix-free messages M; and Ms: rho-shaped (top), forked (mid-
dle) and convoluted (bottom). The solid lines represent the walk corresponding
to CBCMAC[r](M1), whereas the dashed ones represent the walk corresponding to
CBCMAC(7](M2). Each path with an asterisk label may collapse into a single node in
degenerate cases.

STRUCTURE GRAPHS OF TWO SUFFIX-FREE MESSAGES. Suppose that we have
two distinct, full-block messages M; and M, with |My| > |Mz|. Assume that
these messages are suffiz-free, meaning that either (i) My is the empty string, or
(if) My is non-empty, but its last block is different from the last block of M;. Let
Coll(M) denote the set of structure graphs G2 for all choices of 7 € Perm(n)
such that CBCMAC[r](M;) = CBCMAC[x](M3). The following result gives a
bound on the number of elements of Coll(M) of one accident.

Lemma 11. [4,123] Fiz M = {My, M>} as above, and assume that M has
totally m blocks. Then there are at most v/2m graphs G € Coll(M) of exactly
one accident.

Jha and Nandi 23] show that any G € Coll(M) of exactly one accident must
have one of the following forms:

— Rho-shaped: The graph, as illustrated in the top panel of Fig. consists of
a simple directe path P from node 0 to another node d, and a simple directed
cycle C' going through d. Except for the common node d, the path P and
the cycle C' are node-disjoint. In degenerate cases, the path P may be just
the node 0.

34

In the walk CBCMAC[r](M;), one first goes from 0 to d via P, and then
loops through C' several times, and finally stops at the destination d. In the
walk CBCMAC[r](M3), one directly goes from 0 to d via P and stops there.

— Forked: The graph, as illustrated in the middle panel of Fig. consists
of a simple directed path P; from node 0 to another node v, and two other
simple directed paths P, and P3 from v to another node d. Except for the
common nodes v and d, the paths P> and P; are node-disjoint. Moreover,
except for the common node v, each of P, and Pj is node-disjoint with P;.
In degenerate cases, the path P; may be just the node 0.

In the walk CBCMAC[r](M7), one first goes from 0 to v via P;, and then
goes to the destination d via path P,. In the walk CBCMAC[r](M>), one first
goes from 0 to v via P;, and then goes to the destination d via path Pj.

— Convoluted: The graph, as illustrated in the bottom panel of Fig. con-
sists of a simple directed path P (of at least one edge) from node 0 to another
node d, and another simple directed cycle C' that contains a directed edge
(w,v). The cycle C' and the path P are node-disjoint. Let u be the prior
node of d in P. (Note that in degenerate cases, u may be node 0.) The graph
also includes another directed edge (u,v) and another directed edge (w,d).

In the walk CBCMAC[7](M7), one first goes from 0 to u via P, and then takes
the edge (u,v), and then loops through C multiple times before pausing at w,
and finally takes the edge (w,d) to stop at the destination d. In the walk
CBCMAC]7](Mz), one directly goes from 0 to d via the path P.

B.2 The proof

Without loss of generality, assume that |X;]| > |X3| and |X35| > |X4|. Let R
be the longest common full-block suffix of X; and Xs. Let M; and M; be the
messages obtained by removing R from X; and X5 respectively; these messages
M and Ms are suffix-free. Moreover, since CBCMAC|x](X;) = CBCMAC|r](X2),
we will have CBCMAC|x|(M;) = CBCMAC|r|(Ms). Define M3 and My for X;
and X4 accordingly. Again M3 and Mj are suffix-free, and CBCMAC[r](M3) =
CBCMAC|n](My). Note that My and Mj are still non-empty, but My and My
might be empty.

Let M be the list {My, My, M3, My} and let M* be the list {M;, Ms}. Hence
M* has at most m = 2/ blocks, and M has at most 2m blocks. From Lemma
with a = 3, the chance that the structure graph G2 has three or more accidents

3
is at most (4’”2) . Assume that G has at most two accidents. Note that

271
[Acc(G2Y)] > [Acc(G2) > 1,

since CBCMAC(r](M;) = CBCMAC[r](Mz). We will consider three cases accord-
ing to the number of accidents of the structure graphs GM™ and GM.

CASE 1: |Acc(GM)| = 2 and |Acc(GM7)| = 2. Let S be the system of linear
equations induced by all collisions of GM”, and let the two accidents of GM be

35

(i0, jo) and (i1, 41). In this case, GM" has exactly two accidents, and when we
extend this graph with messages M3 and My to obtain the graph G2, there is

no other accident. We now consider two sub-cases.

Case 1.1: GM has some incoming edge to node 0. Thus, there must be some
b € {0,1} such that j, = 0. Now, there are two choices for b, and m choices
for iy, and m(m — 1) < m? choices for (iy_p,j1_p). Hence this case has at
most 2m? choices for the two accidents. On the other hand, from Lemma m
GM is uniquely determine from its two accidents and M, and thus there are at
most 2m? choices G for the graph GM. For each such G, from Lemma |§| with
a=2,

p GM =G < s .
7r<—$Pe£m(n)[B } - (2” — 2m)2

Thus from the union bound, the chance this case happens is at most

o2m?

(27 —2m)2 °

Case 1.2: GM has no incoming edge to node 0. Let e and e* be the edge
corresponding to the first block of M; and M3z in GX; they both start from
node 0. Note that these edges exist, because M; and M3 are non-empty. Since
the first block of M3 (which is also the first block of X3) is different from that
of M, (which is also the first block of X;), we must have e* # e. Since GM™ has
no incoming edge to node 0, thus e is the only outgoing edge in G,TM*, and thus
e* is not an edge of GM”.

In the extension of Gﬁ/ﬁ, when we reveal edge by edge, sooner or later we will
have to hit a prior node, as CBCMAC[r](M3) = CBCMAC[r](My). Let v be the
first such node, and let’s say that it is hit by an edge ex = (u,v). If u is not
a node in GM" then this is a new accident, which is a contradiction. Thus u
must be a node in GM | but since we are looking at the first hit after Gﬁ/l* is
revealed, we must have e, = e*.

Now, since e* is not an edge of Gﬁ/‘*, this hitting is in fact a true collision. In
other words, one of the two the accidents (ig,jo) and (i1, 71), say (ip,jp), must
introduce the variable Cj to the system S. Since e is the only outgoing edge of
node 0 in GM™ and e is the very first edge when we reveal the edges of GM™,
this accident must be caused by some edge hitting the node 1, the head of e. In
other words, j, = 1.

Now, there are two choices for b, and m choices for iy, and m(m—1) < m? choices
for (i1—p, j1—p). Hence this case has at most 2m3 choices for the two accidents.
Again, from Lemma [7} GM is uniquely determine from its two accidents and M,
and thus there are at most 2m? choices G for the graph G. For each such G,
from Lemma [9 with a = 2,

Pr [GM=G] <

7 <$ Perm(n)

Thus from the union bound, the chance this case happens is at most

2m3

(27 —2m)2 -’

CASE 2: |Acc(GM)| = 2 and |Acc(GM7)| = 1. Recall that an accident formed by
an edge e; and a prior node j is fully specified by the pair (i, j). In this case, GM"
has exactly one accident (ig,jo), and when we extend this graph with messages
M3 and M, to obtain the graph G, we add an additional accident (iy, 51).

First, from Lemma there are at most v/2m choices for the graph G| and
thus there are at most v/2m choices for the pair (ig,jo) of the first accident.
Next, there are at most 2m(2m — 1) < 4m? choices for the pair (iy,j1) of the
second accident. Hence totally there are at most v/2m - 4m? < 6m?® ways to
specify these two accidents. On the other hand, from Lemma [7, GM is uniquely
determine from its two accidents and M. Hence there are at most 6m?-5 choices G
for GM in this case. For each such G, from Lemma |§| with a = 2,

1
P GM =@ < ——— .
I <—$Pe£m(n)[B } - (2" — 2m)2

Thus from the union bound, the chance this case happens is at most

6m?2°
(2n —2m)2 °

CASE 3: |Acc(GM)| = 1 and |Acc(GM7)| = 1. In this case, G has exactly one
accident, and when we extend this graph with messages M3 and My to obtain
the graph GM, there is no other accident.

Let e and e* be the edges corresponding to the first block of M; and M3 respec-
tively. Since M7 and M3 have different first blocks, e # e*. Now, in the extension
of Gﬁ/‘*, when we reveal edge by edge, sooner or later we will have to hit a prior
node, as CBCMAC[r](M3) = CBCMAC[r](My). Let v be the first such node, and
let’s say that it is hit by an edge ej, = (u,v). If u is not a node in GM" then this
is a new accident, which is a contradiction. Thus u must be a node in Gﬁ/l*, but
since we are looking at the first hit after GM” is revealed, we must have e, = e*.

‘We now consider two sub-cases.

Case 3.1: GM has some incoming edge to node 0. We now prove that Mo
must be empty, and similarly, M4 must be empty. Assume to the contrary that
M is non-empty. Let f and f’ be the edges corresponding to the last block of
M, and M respectively. Since M7 and My are suffix-free, f # f’. But since
CBCMAC|r](M;) = CBCMAC[r]|(Ms), the two edges f and f’ form a true colli-
sion, contradicting Lemma

Since My is the empty string, CBCMAC([r](Mz) = 0™, and thus CBCMAC[r](M;)
is also 0™. In other words, in the walk of CBCMAC|[7](Mj), one starts from node 0

37

e*

Fig. 13: Illustration for Case 3.2 of the proof of Lemma

and ends up at node 0 as well. Since GM" has one accident, it follows Jha and
Nandi’s characterization in Fig. As the destination in G2 is node 0, this
graph must be a simple directed cycle, a special case of the rho-shaped form.

Now, as e is the only outgoing edge of node 0 in GWM* and e* is also an outgoing
edge of node 0, the edge e* is not an edge in GWM*. Since e* does not point to
node 0 and it hits a node v of GM" as shown above, this hitting creates a true
collision, contradicting Lemma [8| Hence this sub-case cannot happen.

Case 3.2: GM has no incoming edge to node 0. Thus e is also the only outgoing
edge of node 0 in Gﬁ’l*. As e is the only outgoing edge of node 0 in Gﬁ’l* and e*
is also an outgoing edge of node 0, the edge e* is not an edge in Gfrw. Since e*
does not point to node 0 and it hits a node v of GWM* as shown above, this hitting
creates a true collision.

Now, suppose that the only accident in G,TM* (which is a true collision, from
Lemma is formed by two edges e; and e; meeting each other at their common
head. The tail of one of them must be the node 0; otherwise the true collision
created by e* above creates a new accident, which is a contradiction. Since the
only outgoing edge of node 0 in GM” is e, the only accident of Gﬁ"* is formed
by e’s hitting another edge. On the other hand, since G,TM* has one accident, it
follows Jha and Nandi’s characterization in Fig. Note that since G has no
incoming edge to node 0, My must be nonempty, otherwise CBCMAC[r](M;) =
0™, which is a contradiction. Hence Mj also contains the edge e. As the walks of
CBCMAC[7](M;) and CBCMAC[x](My) share the first edge e, the graph GM”
will not fall into a degenerate case. Among the 3 forms (rho-shaped, forked, and
convoluted), the only non-degenerate form whose accident is created by the first
edge is the rho-shaped one. Moreover, the length of the path in this rho shape
is just 1.

Now, recall that the edge e* hits a node v of the rho shape above. Since e* # e
and e* starts from node 0, the node v is not the destination d of the rho shape.
Let w and r be the prior node of v and d in the directed cycle of the rho
shape, respectively. See Fig. [[3] for an illustration. The accident of the rho shape
introduces a linear equation involving Cy and C,., whereas the collision created
by e* introduces another linear equation involving Cy and C,,. Thus rank(CM)
is at least 2, which is a contradiction. Hence this sub-case also cannot happen.

38

WRAPPING THINGS UP. Summing over all cases, the chance that CBCMAC|x](M;) =
CBCMAC]x](M3) and CBCMAC[r|(M3) = CBCMAC]x](M,), with 7 <—s Perm(n),

is at most
64mS 4m?> + 6m??°

23n + (2n —2m)2

On the one hand, since m < 2"/3=3 the first term in the sum above is at most
3
QmT On the other hand, as 8 < m < 278 the second term in the sum above is

3 .
at most 72% The sum above is therefore at most

8m3 64¢°
22n - 22n

39

	Security Analysis of NIST CTR-DRBG
	1 Introduction
	2 Preliminaries
	3 Modeling Security of PRNGs
	4 The Randomness Extractor of CTR-DRBG
	4.1 The CtE Construction
	4.2 Security of CtE

	5 The CTR-DRBG Construction
	6 Security Analysis of CTR-DRBG
	6.1 Results and Discussion
	6.2 Proof of Theorem 2

	7 Breaking CTR-DRBG with a Seed-dependent Sampler
	A Problems in Hutchinson's Analysis of CTR-DRBG
	B Proof of Lemma 3
	B.1 A graph representation of CBCMAC
	B.2 The proof

