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Abstract. We analyze the multi-user security of the streaming encryption in Google’s Tink library
via an extended version of the framework of nonce-based online authenticated encryption of Hoang et
al. (CRYPTO’15) to support random-access decryption. We show that Tink’s design choice of using
random nonces and a nonce-based key-derivation function indeed improves the concrete security bound.
We then give two better alternatives that are more robust against randomness failure. In addition, we
show how to efficiently instantiate the key-derivation function via AES, instead of relying on HMAC-
SHA256 like the current design in Tink. To accomplish this we give a multi-user analysis of the XOR-
of-permutation construction of Bellare, Krovetz, and Rogaway (EUROCRYPT’98).

1 Introduction

This paper reconsiders the problem of building nonce-based online authenticated encryption (nOAE)
schemes [15]. Under this problem, one needs to encrypt potentially huge messages as soon as they
arrive using constant-sized states. This kind of situation arises when Netflix sends its movie streams
to users. This is what troubles memory-constrained devices when they have to deal with data that
they cannnot load entirely. This also happens when interactive applications, such as SSH, need to
send immediately each character they receive from the keyboard.
Specifically, we need to encrypt a message 𝑀 that is represented as a tuple (𝑀1, . . . , 𝑀𝑚) of
segments, with an associated data (AD) 𝐴 = (𝐴1, . . . , 𝐴𝑚). Each time one is given a pair (𝑀𝑖, 𝐴𝑖)
to encrypt, and can only keep a small state at the end. The size of each segment can range from a
character (for SSH) to a few MB (for Netflix), or even bigger. Directly encrypting each (𝑀𝑖, 𝐴𝑖) via a
conventional AE scheme such as OCB [21,29] or GCM [24] is problematic, because an adversary can
drop some of the ciphertext segments or reorder the ciphertext segments without being detected.

A gap between theory and practice. The nOAE problem already receives a formal treatment
by Hoang et al. [15], with a practical construction STREAM that is built on top of the OCB
authenticated-encryption scheme [21,29]. The idea is simple. Assume that at the beginning we are
given a nonce 𝑁 for each message 𝑀 . Assume further that we have a conventional AE scheme
𝛱 = (K, E, D), for example one can instantiate 𝛱 as OCB. To encrypt (𝑀𝑖, 𝐴𝑖) under key 𝐾 and
the base nonce 𝑁 , we run E𝐾(𝑁*, 𝐴𝑖, 𝑀𝑖), where the derived nonce 𝑁* is an encoding of (𝑁, 𝑖, 𝑎),
and the flag 𝑎 indicates whether 𝑀𝑖 is the last segment, meaning that 𝑎 = 1 if 𝑖 = 𝑚, and 𝑎 = 0
otherwise. See Fig. 6 for the code and an illustration of STREAM.
At the first glance, the problem seems solved. However, underneath the elegant design of STREAM
lies a troubling usability issue, which comes to light when Google developers try to include a
streaming encryption scheme in the Tink library [12]. Under their design, 𝛱 is instantiated via
GCM [24], the most popular conventional AE scheme. For a triple (𝑁, 𝑖, 𝑎) that will be encoded



as a 12-byte GCM nonce, Tink uses four bytes to encode 𝑖, and one byte to encode 𝑎. This means
that nonces of STREAM[GCM] will be only 7-byte long, and thus the only viable option is to
implement them as counters. Yet there are situations when random nonces are desirable:

– Routers are booted frequently, and its counters will therefore be reset often. Implementing
nonces as counters in this environment will result in lots of nonce repetition.

– Synchronizing counters among busy distributed servers might be impractical.

Google developers therefore deviate from the STREAM design. Tink’s streaming encryption does
not take nonces from users. Instead, it picks a 16-byte random salt 𝑅 and a 7-byte random nonce
prefix 𝑃 , and derive a subkey 𝐿 ← KD(𝐾, 𝑅), where KD is a key-derivation function that will be
instantiated via HMAC-SHA256. It then runs STREAM[GCM] with key 𝐿 and “nonce” 𝑃 . Such
short nonces will repeat, but under different subkeys, and thus will cause no harm to security.

Given that Tink’s streaming encryption deviates from the original STREAM design, it does not
benefit from the security proof in [15]. On the other hand, Tink’s choice of random nonces and
a nonce-based key-derivation may actually increase security, as in the case of the AES-GCM-SIV
scheme [6, 13]. The goal of our paper is to analyze the security of Tink’s streaming encryption,
and find ways to improve its security and efficiency, subject to the constraints that (i) 𝛱 is still
instantiated via GCM, and (ii) the scheme should support flexible choices of nonce generation,
including random nonces.

Security of Tink’s streaming encryption. One can view Tink’s streaming encryption as an
online AE scheme SE1[KD, 𝛱] where a nonce is a pair (𝑅, 𝑃 ), and Tink chooses to pick nonces at
random. See Fig. 8 for the code and an illustration of SE1.

We analyze security of SE1 under a strengthened notion of nOAE, where an adversary can attack en
masse instead of targeting a specific victim. In other words, security is now in the multi-user setting.
There is a growing recognition that cryptographic primitives should be analyzed in the multi-
user setting [4, 16], and it is therefore natural to put nOAE under the multi-user lens. Moreover,
our notion allows random-access decryption, whereas the treatment of Hoang et al. assumes that
decryption is in order. Random-access decryption is needed for situations where one encrypts a
huge file and later want to read just a portion of the file.

Our work confirms that SE1 is indeed secure, provided that 𝛱 is a good conventional AE scheme
and KD is a good PRF. This is true for any proper choice of nonce generation. When 𝛱 is instan-
tiated as GCM, using the recent GCM analysis of Hoang, Tessaro, and Thiruvengadam [18], picking
nonces at random does indeed improve the concrete security bound. However, this is not the only
good way of generating nonces for SE1. One can, for example, implement the salt 𝑅 as a counter,
but the nonce prefix 𝑃 should still be picked at random.

Still, the story here is not entirely satisfactory. First, SE1 is not robust against randomness failure,
which happens frequently [11,14,22]. In particular, its security would degrade if 𝑅 is still random,
but 𝑃 is a constant string. In this work, we identify two alternative constructions SE2 and SE3
that offer the same concrete security bound as SE1, but are robust to randomness failure, meaning
that they only need nonces to be unique. Next, Tink’s streaming encryption uses AES for GCM,
and HMAC-SHA256 for KD. It is desirable to find an AES-based instantiation of KD (for both
AES-128 and AES-256) to reduce the code complexity, and improve the speed of KD.
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An AES-based KD. Let 𝐸 : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 be a blockcipher with 𝑘 ∈ {𝑛, 2𝑛} (which
we would instantiate directly via AES). Our goal is to give a construction of KD on top of 𝐸 that
offers 𝑛-bit multi-user PRF security. To achieve this concrete security bound, KD should have 2𝑛-
bit key length to resist attacks like Biham’s key-collision attack on DES [5]. We now elaborate on
how to build KD, step by step.
Step 1: Our first step is to build a blockcipher 𝐺 : {0, 1}2𝑛 × {0, 1}𝑛 → {0, 1}𝑛. If 𝑘 = 2𝑛 then we
can directly use 𝐸 as our 𝐺. If 𝑘 = 𝑛 then we extend the key length of 𝐸. In particular, for a key
𝐾 = 𝐽 ‖ 𝐿, with |𝐽 | = |𝐿| = 𝑛, let

𝐺𝐾(𝑋) = 𝐸𝐽(𝑋 ⊕ 𝐿)⊕ 𝐿 .

This is a variant of Rivest’s classic DESX construction. The design of DESX uses different keys
in pre-whitening and post-whitening 𝐸, whereas the variant above, which we call DESX1, uses
the same key. This is now folklore knowledge that DESX1 offers 𝑛-bit multi-user PRP security.
However, to the best of our knowledge, there is no explicit proof in the literature. In fact, Kilian
and Rogaway [20] are the first to study the security of DESX and DESX1, but they only consider the
single-user setting. Hoang and Tessaro [16] investigate the security of the xor-cascade construction,
a multi-round generalization of DESX. They give a tight multi-user security bound for the xor-
cascade, and claim that their technique can be recast to work for the multi-round generalization of
DESX1, but there is no explicitly proof in their paper. Bellare and Tackmann [4] directly consider
the multi-user security of DESX1, but they can only show that DESX1 has 2𝑛/3-bit security.
For the sake of completeness, in this work, we give a proof in the ideal-cipher model to confirm
that DESX1 indeed has 𝑛-bit multi-user PRP security.
Step 2: Our next step is to build a PRF 𝐹 : 𝒦 × {0, 1}𝑛−1 → {0, 1}𝑛. In particular,

𝐹𝐾(𝑋) = 𝐺𝐾(𝑋 ‖ 0)⊕𝐺𝐾(𝑋 ‖ 1) .

This is the XOR-or-permutation construction of Bellare, Krovetz, and Rogaway [2], which has a
long line of work for just the single-user security. Lucks [23] proves that it can withstand to nearly
𝑞 = 22𝑛/3 queries. Bellare and Impagliazzo [1] give an asymptotic bound 𝑂(𝑛)·𝑞/2𝑛, but they provide
only a proof sketch. Patarin [28] claims the optimal bound 𝑞/2𝑛 via an approach that he refers to
as “mirror theory”, but his proof is extremely complex with several unverifiable gaps [10, 19]. Dai,
Hoang, and Tessaro [10] finally find a relatively simple proof for a bound 𝑞/2𝑛 + 3𝑞1.5/21.5𝑛 via
their Chi-Squared method.
In the multi-user setting, a recent paper by Cogliati [9] claims the optimal bound 𝑞/2𝑛, but his proof
relies on Patarin’s (unverifiable) mirror theory. Here we use the Chi-Squared method and Azuma’s
inequality for a bound 8

√
𝑛 · 𝑞/2𝑛. It is a theoretically interesting open question to improve our

bound to 𝑞/2𝑛 (with a simple, verifiable proof).
Step 3: Our KD only takes 15-byte inputs, namely the salt length of Tink’s streaming encryption
has to be shortened a bit, but this does not affect its concrete security bound. For a string 𝑥, let
𝑥 ‖ 0* denote the string obtained by padding 0’s to 𝑥 until the total bit length is 𝑛− 1. If KD needs
to output an 𝑛-bit key then

KD(𝐾, 𝑋) = 𝐹𝐾(𝑋 ‖ 0*) .

If KD needs to output a 2𝑛-bit key then

KD(𝐾, 𝑋) = 𝐹𝐾(𝑋 ‖ 0 ‖ 0*) ‖ 𝐹𝐾(𝑋 ‖ 1 ‖ 0*) .
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Thus our instantiation for KD needs 2–4 parallelizable AES calls, which is much faster than HMAC-
SHA256.

A better nOAE scheme: SE2. To resist randomness failure in nonce generation, the most
natural approach is to feed the entire nonce 𝑁 to KD to generate a subkey 𝐿 and a nonce prefix 𝑃 .
Note that here 𝑃 is a part of KD’s output, instead of a part of the nonce. See Fig. 11 for the code
and an illustration of SE2. We show that SE2 with any proper nonce-generation mechanism has
the same security as SE1 with random nonces.
For applications that can tolerate 15-byte nonces, one can instantiate KD via the XOR construction.
Depending on the subkey size, it will need 2 or 3 calls to the XOR construction, meaning 4–6
parallelizable AES calls. This is on par with the key-derivation function of AES-GCM-SIV [13].
For applications that demand long nonces, it is unclear how to find a good AES-based instantiation
of KD, which we leave as an open problem. We instead propose another nOAE scheme SE3 that
has the best of both worlds: (i) its nOAE security is as good as SE2, and (ii) it supports long
nonces, say 22 bytes, and (iii) its key-derivation can be built via the XOR construction.

An even better nOAE scheme: SE3. In SE3, we treat a nonce 𝑁 as a pair (𝑅, 𝑃 ) as in SE1.
We then run KD(𝐾, 𝑅) to derive a subkey 𝐿 and a mask 𝑋 to whiten 𝑃 , obtaining an effective
nonce prefix 𝑃 * ← 𝑃 ⊕𝑋. Nonces for GCM are based on 𝑃 * instead.
We show that SE3 enjoys the same security as SE2. Moreover, it is possible to instantiate KD
via the XOR construction, provided that the salt length is 15 bytes, and the nonce prefix length
is still 7 bytes. Depending on the subkey size, KD will need 2 or 3 calls to the XOR construction,
getting the same speed as the key-derivation function of AES-GCM-SIV.

Recommendations. Based on the analysis above, we recommend Tink developers to use SE3
with 256-bit key length and instantiate KD via the XOR construction. Note that using 256-bit key
still allows one to use AES-128 for both KD (via the DESX1 paradigm) and GCM (by deriving a
128-bit subkey 𝐿).

2 Preliminaries

Notation. For a finite set 𝑆, we let 𝑥←$ 𝑆 denote the uniform sampling from 𝑆 and assigning
the value to 𝑥. Let |𝑥| denote the length of the string 𝑥, and for 1 ≤ 𝑖 < 𝑗 ≤ |𝑥|, let 𝑥[𝑖 : 𝑗]
denote the substring from the 𝑖th bit to the 𝑗th bit (inclusive) of 𝑥. For a vector 𝑋 of strings,
we let |𝑋| denote the number of components, and 𝑋[𝑖] be the 𝑖-th component. Indexing starts
from 1, and thus 𝑋 =

(︀
𝑋[1], . . . , 𝑋[𝑚]

)︀
, where 𝑚 = |𝑋|. If 𝐴 is a probabilistic algorithm, we

let 𝑦←$ 𝐴(𝑥1, . . .) denote running 𝐴 on inputs 𝑥1, . . . with truly random coins and assigning the
output to 𝑦. For a domain Dom and a range Rng, we let Func(Dom, Rng) denote the set of all
functions 𝑓 : Dom→ Rng. Let Perm(𝑛) denote the set of all permutations on {0, 1}𝑛.

Games. We use the game-playing framework of [3]. (See Fig. 1 for an example.) A game begins
with a procedure Initialize, ends with a procedure Finalize, and has named oracles. When the
adversary terminates with an output, we will feed this output to Finalize. We write 𝐺(𝒜)⇒ 𝑏 to
denote the event of running game 𝐺 with an adversary 𝒜 that results in 𝑏 by Finalize. We also
write 𝐺(𝒜) to abbreviate 𝐺(𝒜)⇒ true.
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procedure Initialize
𝐾1, 𝐾2, . . . , ←$𝒦; 𝑏←$ {0, 1}
𝑓1, 𝑓2, . . . , ←$ Func(ℳ, {0, 1}𝑛)

procedure Finalize(𝑏′)
return (𝑏′ = 𝑏)

procedure Eval(𝑖, 𝑀)
𝑌1 ← 𝐹 (𝐾𝑖, 𝑀); 𝑌0 ← 𝑓𝑖(𝑀)
return 𝑌𝑏

Fig. 1: Game Gprf
𝐹 defining multi-user prf security of a function 𝐹 .

procedure Initialize
𝐾1, 𝐾2, . . . ←$𝒦; 𝑏←$ {0, 1}
𝜋1, 𝜋2, . . . ←$ Perm(𝑛)

procedure Finalize(𝑏′)
return (𝑏′ = 𝑏)

procedure Eval(𝑖, 𝑀)
𝑌1 ← 𝐸(𝐾𝑖, 𝑀); 𝑌0 ← 𝜋𝑖(𝑀)
return 𝑌𝑏

Fig. 2: Game Gprp
𝐸 defining multi-user prp security of a blockcipher 𝐸.

Systems and Transcripts. Following the notation from [16], it is convenient to consider inter-
actions of a distinguisher 𝒜 with an abstract system S which answers 𝒜’s queries. The resulting
interaction then generates a transcript 𝜏 = ((𝑋1, 𝑌1), . . . , (𝑋𝑞, 𝑌𝑞)) of query-answer pairs. It is
known that S is entirely described by the probabilities pS(𝜏) that correspond to the system S
responding with answers as indicated by 𝜏 when the queries in 𝜏 are made.
We will generally describe systems informally, or more formally in terms of a set of oracles they
provide, and only use the fact that they define corresponding probabilities pS(𝜏) without explicitly
giving these probabilities.

Multi-user PRF. Let 𝐹 : 𝒦 ×ℳ→ {0, 1}𝑛 be a function. For an adversary 𝒜, let

Advprf
𝐹 (𝒜) = 2 Pr[Gprf

𝐹 (𝒜)]− 1 ,

be the advantage of the adversary against the multi-user PRF security of 𝐹 , where game Gprf
𝐹 is

defined in Fig. 1.
For any function 𝐹 of key length 𝑘, by adapting Biham’s key-collision attack on DES [5], one can
obtain PRF advantage 𝑝𝑞/2𝑘+2 using 𝑂(𝑞) queries and 𝑂(𝑝) calls to 𝐹 . See Appendix B for a
description and a rigorous analysis of this attack.

Multi-user PRP. Let 𝐸 : 𝒦 × {0, 1}𝑛 → {0, 1}𝑛 be a blockcipher. For an adversary 𝒜, let

Advprp
𝐸 (𝒜) = 2 Pr[Gprp

𝐸 (𝒜)]− 1 ,

be the advantage of the adversary against the multi-user PRP security of 𝐸, where game Gprp
𝐸 is

defined in Fig. 2. This game is written as a standard-model notion; in the ideal-cipher model, the
adversary will be given oracle access to 𝐸 and its inverse as well.

3 Nonce-based Online AE

In this section, we will recall the syntax and security notion for (nonce-based) online AE of Hoang
et al. [15]. We however present a single, unified security notion nOAE instead of giving separate
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procedure Initialize
𝐾1, 𝐾2, · · · ←$𝒦
𝑏←$ {0, 1}

procedure Enc(𝑖, 𝑁, 𝐴, 𝑀)
𝐶1 ← E(𝐾𝑖, 𝑁, 𝐴, 𝑀); 𝐶0←$ {0, 1}|𝐶1|

return 𝐶𝑏

procedure Dec(𝑖, 𝑁, 𝐴, 𝐶)
if 𝑏 = 0 then return false
𝑀 ← D(𝐾𝑖, 𝑁, 𝐴, 𝐶)
return (𝑀 ̸= ⊥)

procedure Finalize(𝑏)
return (𝑏′ = 𝑏)

Fig. 3: Game Gae
𝛱 (𝒜) that defines the (multi-user) security of a conventional AE scheme 𝛱 =

(K, E, D).

privacy and authenticity definitions. In addition, compared to the notion of Hoang et al., ours is
stronger, as (i) the adversary can target multiple users, and (ii) for each user, it is allowed to make
multiple forgery attempts.
The treatment in [15] however assumes that a receiver will perform decryption in an in-order fashion,
but there are applications that demand random-access decryption. We identify a class of online AE
schemes that can support random-access decryption, formalize a corresponding (multi-user) notion
nOAE2, and explore the relationship between nOAE and nOAE2.
As a warm-up, we will begin with the multi-user version of the classical security notion of conven-
tional AE schemes.

Conventional AE. A conventional AE scheme 𝛱 is a triple of algorithms (K, E, D); the last two
are deterministic. The key-generation algorithm K samples a key 𝐾 at random. The encryption
algorithm E takes as input a key 𝐾, a message 𝑀 , a nonce 𝑁 , and an associated data (AD) 𝐴
to produce a ciphertext 𝐶. Given a key 𝐾, a nonce 𝑁 , an AD 𝐴, and a ciphertext 𝐶, the decryp-
tion algorithm D either produces a message 𝑀 , or outputs a symbol ⊥ indicating invalidity. For
correctness, we require that decryption reverses encryption, meaning that if 𝐶 ← E(𝐾, 𝑁, 𝐴, 𝑀)
then 𝑀 ← D(𝐾, 𝑁, 𝐴, 𝐶). In this paper, we assume that there is a constant 𝜏 that a ciphertext is
always 𝜏 -bit longer than its plaintext. For example, in GCM, 𝜏 = 128.
Given an adversary 𝒜, define

Advae
𝛱 (𝒜) = 2 Pr[Gae

𝛱 (𝒜)]− 1

as the advantage of the adversary against the (multi-user) nonce-based security of a conventional
AE scheme 𝛱, where game Gae

𝛱 is defined in Fig. 3. The adversary is given an encryption oracle and
a decryption one. For encryption queries Enc(𝑖, 𝑁, 𝐴, 𝑀), we require that the adversary be nonce-
respecting, meaning that each pair (𝑖, 𝑁) must never repeat. The adversary may repeat nonces in
decryption queries, but to avoid trivial wins, if the adversary queries Enc(𝑖, 𝑁, 𝐴, 𝑀) to receive 𝐶,
subsequently it is prohibited from querying Dec(𝑖, 𝑁, 𝐴, 𝐶). We note that the decryption oracle
only tells the adversary whether a query succeeds, but does not return the decrypted message.
For any conventional AE scheme of key length 𝑘, by adapting Biham’s key-collision attack on
DES [5], one can obtain advantage 𝑝𝑞/2𝑘+2 by making 𝑂(𝑞) encryption queries and 𝑂(𝑝) calls to
the encryption scheme. See Appendix B for a description and a rigorous analysis of this attack. Still,
this attack requires that some particular nonce is used for all users, which is a realistic scenario
if one implements nonces via a counter. However, if there is some variation in choosing nonces
among users—for example, if one picks nonces at random—then this attack can be mitigated.
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Following Bose, Hoang, and Tessaro [6], we say that an adversary is 𝑑-repeating if among its
encryption queries, each nonce is used for at most 𝑑 users. Note that we levy no restriction on
nonces of decryption queries. If we restrict to 𝑑-repeating adversaries then the key-collision attack
only achieves advantage 𝑑𝑞/2𝑘+2.

Online AE. An online AE scheme 𝛱 is a triple (𝒦, ℰ ,𝒟). The key-generation algorithm 𝒦, as
usual, samples a key 𝐾 at random. Messages, AD, and ciphertexts are vectors of strings. We
speak of segmented messages, segmented AD, and segmented ciphertexts to refer to those vectors,
and message segments, AD segments, and ciphertext segments when we refer to their components.
Nonces however are still short strings.
The encryption scheme ℰ consists of three deterministic algorithms (ℰ .init, ℰ .next, ℰ .last).
– Algorithm ℰ .init takes as input a key 𝐾 and a nonce 𝑁 to produce a state 𝑆. This is used to

initiate the encryption of a segmented message with a segmented AD.
– Algorithm ℰ .next takes as input a state 𝑆, an AD segment 𝐴, and a message segment 𝑀 , to

produce a ciphertext segment 𝐶 and an updated state 𝑆*.
– Algorithm ℰ .last takes as input a state, an AD segment, and a message segment, to produce

a ciphertext segment. This is used for the last AD segment and message segment, closing
the encryption.

In particular, to encrypt a segmented message 𝑀 = (𝑀1, . . . , 𝑀𝑚) and a segmented AD 𝐴 =
(𝐴1, . . . , 𝐴𝑚) under a nonce 𝑁 and a key 𝐾, one runs the following code, resulting in a segmented
ciphertext 𝐶 = (𝐶1, . . . , 𝐶𝑚).

𝑆0 ← ℰ .init(𝐾, 𝑁)
for 𝑖← 1 to 𝑚− 1 do (𝐶𝑖, 𝑆𝑖)← ℰ .next(𝑆𝑖−1, 𝐴𝑖, 𝑀𝑖)
𝐶𝑚 ← ℰ .last(𝑆𝑚−1, 𝐴𝑚, 𝑀𝑚)
return (𝐶1, . . . , 𝐶𝑚)

The decryption scheme 𝒟 likewise consists of three deterministic algorithms (𝒟.init,𝒟.next,𝒟.last).
To decrypt a segmented ciphertext 𝐶 = (𝐶1, . . . , 𝐶𝑚) and a segmented AD 𝐴 = (𝐴1, . . . , 𝐴𝑚)
under a nonce 𝑁 and a key 𝐾, one runs the following code, resulting in a (possibly partial)
segmented message.

𝑆0 ← 𝒟.init(𝐾, 𝑁)
for 𝑖← 1 to 𝑚− 1 do

(𝑀𝑖, 𝑆𝑖)← 𝒟.next(𝑆𝑖−1, 𝐴𝑖, 𝐶𝑖)
if 𝑀𝑖 = ⊥ then return (𝑀1, . . . , 𝑀𝑖−1)

𝑀𝑚 ← 𝒟.last(𝑆𝑚−1, 𝐴𝑚, 𝐶𝑚)
if 𝑀𝑚 = ⊥ then return (𝑀1, . . . , 𝑀𝑚−1)
return (𝑀1, . . . , 𝑀𝑚)

Note that in the code above, if some (𝐴𝑖, 𝐶𝑖) is invalid and consequently 𝑀𝑖 = ⊥, then we immedi-
ately terminate the decryption process, returning the partial segmented message (𝑀1, . . . , 𝑀𝑖−1).
For correctness, we require that decryption reverses encryption.

The nOAE notion. Given an adversary 𝒜, define

Advnoae
𝛱 (𝒜) = 2 Pr[Gnoae

𝛱 (𝒜)]− 1
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procedure Initialize
𝐾1, 𝐾2, · · · ←$𝒦; 𝐽1, 𝐽2, · · · ← 0; 𝑏←$ {0, 1}

procedure Enc.init(𝑖, 𝑁)
𝐽𝑖 ← 𝐽𝑖 + 1; 𝑗 ← 𝐽𝑖; 𝑆𝑖,𝑗 ← ℰ .init(𝐾𝑖, 𝑁); return 𝐽𝑖

procedure Enc.next(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
(𝐶1, 𝑆𝑖,𝑗)← ℰ .next(𝑆𝑖,𝑗 , 𝐴, 𝑀); 𝐶0←$ {0, 1}|𝐶1|

return 𝐶𝑏

procedure Enc.last(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
𝐶1 ← ℰ .last(𝑆𝑖,𝑗 , 𝐴, 𝑀); 𝐶0←$ {0, 1}|𝐶1|; 𝑆𝑖,𝑗 ← ⊥
return 𝐶𝑏

procedure Dec(𝑖, 𝑁, 𝐴, 𝐶, 𝑎)
if 𝑏 = 0 or |𝐴| ̸= |𝐶| then return false
𝑆 ← 𝒟.init(𝐾𝑖, 𝑁); 𝑚← |𝐶|
for 𝑗 ← 1 to 𝑚− 𝑎 do

(𝑀, 𝑆)← 𝒟.next(𝑆, 𝐴[𝑗], 𝐶[𝑗])
if 𝑀 =⊥ then return false

return (𝑎 = 0 or 𝒟.last(𝑆, 𝐴[𝑚], 𝐶[𝑚]) ̸= ⊥)

procedure Finalize(𝑏′)
return (𝑏′ = 𝑏)

Fig. 4: Game defining the (multi-user) nOAE security of an online AE scheme 𝛱 =
(𝒦, ℰ ,𝒟).

as the advantage of the adversary against the (multi-user) nonce-based security of an online AE
scheme 𝛱, where game Gnoae

𝛱 is defined in Fig. 4. In this game, the adversary is given access to
four oracles Enc.init, Enc.next, Enc.last, and Dec.
In Enc.init(𝑖, 𝑁), the adversary indicates that it wants to encrypt a new segmented message for
user 𝑖 under nonce 𝑁 , and receives an index 𝑗 of the segmented message. Again we require that the
adversary be nonce-respecting, meaning that each pair (𝑖, 𝑁) never repeats. Each user may encrypt
concurrently multiple segmented messages; when the adversary calls Enc.next or Enc.last, it has to
specify the indices of the user and segmented message that it wants to attack. Once the adversary
terminates the encryption of a segmented message via Enc.last, subsequent queries of Enc.next or
Enc.last on that particular index will be rejected.
To use the decryption oracle, the adversary needs to provide a (possibly partial) segmented AD 𝐴
and a segmented ciphertext 𝐶 of the same length, and a bit 𝑎 to indicate whether those are full. If
the challenge bit 𝑏 is 1 then the oracle indicates whether the entire (𝐴, 𝐶) is successfully decrypted
(but does not return the decrypted partial segmented message), otherwise it will always return
false. To prevent a trivial win, the adversary is prohibited from the following behaviors:
– Calling 𝑗 ← Enc.init(𝑖, 𝑁), and 𝐶𝑘 ← Enc.next(𝑖, 𝑗, 𝐴𝑘, 𝑀𝑘) for 𝑘 = 1, . . . , 𝑚, and then querying

Dec(𝑖, 𝑁, 𝐴, 𝐶, 0), where 𝐴 = (𝐴1, . . . , 𝐴𝑚) and 𝐶 = (𝐶1, . . . , 𝐶𝑚).
– Calling 𝑗 ← Enc.init(𝑖, 𝑁), and 𝐶𝑘 ← Enc.next(𝑖, 𝑗, 𝐴𝑘, 𝑀𝑘) for 𝑘 = 1, . . . , 𝑚 − 1, and 𝐶𝑚 ←

Enc.last(𝑖, 𝑗, 𝐴𝑚, 𝑀𝑚), and then querying Dec(𝑖, 𝑁, 𝐴, 𝐶, 1), where 𝐴 = (𝐴1, . . . , 𝐴𝑚) and 𝐶 =
(𝐶1, . . . , 𝐶𝑚).

Random-Access Decryption. The treatment above of online AE assumes that a receiver will
perform decryption in an in-order fashion. However, there are applications that demand random-
access decryption. For example, suppose that one encrypts a huge file, where each segment is a
few MB. Later, when one needs to read some portion of a file, it would be very time-consuming if
one has to decrypt from the beginning to the needed location. It is therefore desirable to decrypt
just the ciphertext segments containing the part of the file one wants to read.

We now identify a class of online AE scheme that can be used for random-access decryption.
Specifically, we say that an online AE scheme 𝛱 = (𝒦, ℰ ,𝒟) is canonical if (i) when we call
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𝒟.init(𝐾, 𝑁), we get back a state of the form (1, 𝜎), and (ii) for each call 𝒟.next(𝑆, 𝐴, 𝐶) with
𝑆 = (𝑖, 𝜎), the updated state 𝑆* is (𝑖 + 1, 𝜎). Thus a receiver can first run 𝒟.init(𝐾, 𝑁) to store
the sub-state 𝜎. Subsequently, each time when she needs to decrypt the 𝑖-th ciphertext segment 𝐶
and its corresponding AD segment 𝐴, she will call 𝒟.next(𝑆, 𝐴, 𝐶), where 𝑆 ← (𝑖, 𝜎).

The nOAE2 notion. By adapting the nOAE notion, we can define an nOAE2 notion for canonical
online AE schemes such that decryption queries can have random access. In particular, let 𝛱 =
(𝒦, ℰ ,𝒟) be a canonical online AE scheme. For an adversary 𝒜, define

Advnoae2
𝛱 (𝒜) = 2 Pr[Gnoae2

𝛱 (𝒜)]− 1 ,

where game Gnoae2
𝛱 is defined in Fig. 5. This game is essentially the same as game Gnoae

𝛱 (𝒜), except
that for each decryption query, the adversary has to provide a list ℐ of indices of the segments in 𝐶
and 𝐴, and the oracle only attempts to decrypt those segments. Again the adversary is required
to be nonce-respecting. To prevent a trivial win, the adversary is prohibited from the following
behaviors:

– Calling 𝑗 ← Enc.init(𝑖, 𝑁), and 𝐶𝑘 ← Enc.next(𝑖, 𝑗, 𝐴𝑘, 𝑀𝑘) for 𝑘 = 1, . . . , 𝑚, and then querying
Dec(𝑖, 𝑁, 𝐴, 𝐶, ℐ, 0) such that 𝐴[𝑗] = 𝐴𝑗 and 𝐶[𝑗] = 𝐶𝑗 for every 𝑗 ∈ ℐ.

– Calling 𝑗 ← Enc.init(𝑖, 𝑁), and 𝐶𝑘 ← Enc.next(𝑖, 𝑗, 𝐴𝑘, 𝑀𝑘) for 𝑘 = 1, . . . , 𝑚, and then querying
Dec(𝑖, 𝑁, 𝐴, 𝐶, ℐ, 1) such that |𝐶| ̸∈ ℐ and 𝐴[𝑗] = 𝐴𝑗 and 𝐶[𝑗] = 𝐶𝑗 for every 𝑗 ∈ ℐ.

– Calling 𝑗 ← Enc.init(𝑖, 𝑁), and 𝐶𝑘 ← Enc.next(𝑖, 𝑗, 𝐴𝑘, 𝑀𝑘) for 𝑘 = 1, . . . , 𝑚 − 1, and 𝐶𝑚 ←
Enc.last(𝑖, 𝑗, 𝐴𝑚, 𝑀𝑚), and then querying Dec(𝑖, 𝑁, 𝐴, 𝐶, ℐ, 1) such that 𝐴[𝑗] = 𝐴𝑗 and 𝐶[𝑗] =
𝐶𝑗 for every 𝑗 ∈ ℐ.

We can view nOAE2 as a way to generalize nOAE by using an adversarial list ℐ to allow random-
access decryption instead of fixing ℐ = (1, . . . , |𝐶|) for sequential decryption. In Appendix A, we
show a contrived canonical online AE scheme that is nOAE-secure, but trivially broken under the
nOAE2 notion. Thus for canonical online AE schemes, nOAE2 is strictly stronger than nOAE.
Since all online AE schemes in this paper are canonical, we will focus on the nOAE2 notion.

4 Tink’s Streaming Encryption

In this section we describe the streaming encryption in Google’s Tink library, and analyze its
security. We begin by recalling the STREAM paradigm of Hoang et al. [15] that Tink’s streaming
encryption loosely follows.

4.1 The STREAM Construction

The scheme. Hoang et al. [15] give a construction STREAM that turns a conventional AE scheme
to an nOAE-secure canonical online AE one. In particular, let 𝛱 = (K, E, D) be a conventional
AE scheme. The construction STREAM[𝛱] = (𝒦, ℰ ,𝒟) has the same key-generation algorithm
as 𝛱, meaning that 𝒦 = K. Its specification is given in Fig. 6.

Security of the STREAM construction. Hoang et al. [15] only provide a single-user analysis
of the nOAE security of STREAM. Below, we will give a multi-user nOAE2 bound.
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procedure Initialize
𝐾1, 𝐾2, · · · ←$𝒦; 𝐽1, 𝐽2, · · · ← 0; 𝑏←$ {0, 1}

procedure Enc.init(𝑖, 𝑁)
𝐽𝑖 ← 𝐽𝑖 + 1; 𝑗 ← 𝐽𝑖; 𝑆𝑖,𝑗 ← ℰ .init(𝐾𝑖, 𝑁); return 𝐽𝑖

procedure Enc.next(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
(𝐶1, 𝑆𝑖,𝑗)← ℰ .next(𝑆𝑖,𝑗 , 𝐴, 𝑀); 𝐶0←$ {0, 1}|𝐶1|

return 𝐶𝑏

procedure Enc.last(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
𝐶1 ← ℰ .last(𝑆𝑖,𝑗 , 𝐴, 𝑀); 𝐶0←$ {0, 1}|𝐶1|; 𝑆𝑖,𝑗 ← ⊥
return 𝐶𝑏

procedure Dec(𝑖, 𝑁, 𝐴, 𝐶, ℐ, 𝑎)
if 𝑏 = 0 or |𝐴| ̸= |𝐶| then return false
(1, 𝜎)← 𝒟.init(𝐾𝑖, 𝑁); 𝑚← |𝒞|
for 𝑟 ← 1 to |ℐ| do

if ℐ[𝑟] > 𝑚 or ℐ[𝑟] < 1 then return false
if (𝑎 = 0 or ℐ[𝑟] < 𝑚) then

𝑗 ← ℐ[𝑟]; 𝑆 ← (𝑗, 𝜎)
(𝑀, 𝑆)← 𝒟.next(𝑆, 𝐴[𝑗], 𝐶[𝑗])

else 𝑆 ← (𝑚, 𝜎); (𝑀, 𝑆)← 𝒟.last(𝑆, 𝐴[𝑚], 𝐶[𝑚])
if 𝑀 = ⊥ then return false

return true
procedure Finalize(𝑏′)
return (𝑏′ = 𝑏)

Fig. 5: Game defining the (multi-user) nOAE2 security of a canonical online AE scheme
𝛱 = (𝒦, ℰ ,𝒟).

procedure ℰ .init(𝐾, 𝑁)
return (𝐾, 𝑁, 1)

procedure ℰ .next(𝑆, 𝐴, 𝑀)
(𝐾, 𝑁, 𝑖)← 𝑆; 𝑆 ← (𝐾, 𝑁, 𝑖 + 1)
𝐶 ← E𝐾(⟨𝑁, 𝑖, 0⟩, 𝐴, 𝑀)
return (𝐶, 𝑆)

procedure ℰ .last(𝑆, 𝐴, 𝑀)
(𝐾, 𝑁, 𝑖)← 𝑆

return E𝐾(⟨𝑁, 𝑖, 1⟩, 𝐴, 𝑀)

procedure 𝒟.init(𝐾, 𝑁)
return (𝐾, 𝑁, 1)

procedure 𝒟.next(𝑆, 𝐴, 𝐶)
(𝐾, 𝑁, 𝑖)← 𝑆; 𝑆 ← (𝐾, 𝑁, 𝑖 + 1)
𝑀 ← D𝐾(⟨𝑁, 𝑖, 0⟩, 𝐴, 𝐶)
return (𝑀, 𝑆)

procedure 𝒟.last(𝑆, 𝐴, 𝐶)
(𝐾, 𝑁, 𝑖)← 𝑆

return D𝐾(⟨𝑁, 𝑖, 1⟩, 𝐴, 𝐶)

E
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Fig. 6: The STREAM construction STREAM[𝛱] = (𝒦, ℰ ,𝒟), built on top of a conventional AE
scheme 𝛱 = (K, E, D). Here ⟨·⟩ is a string encoding of a triple (𝑁, 𝑖, 𝑎), where 𝑁 is a nonce, 𝑖 is a
counter, and 𝑎 is a bit.

Proposition 1. Let 𝛱 be a conventional AE scheme. For any adversary 𝒜 attacking STREAM[𝛱],
we can construct another adversary ℬ such that

Advnoae2
STREAM[𝛱](𝒜) = Advae

𝛱 (ℬ) .
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procedure Enc.init(𝑖, 𝑁)
if 𝐽𝑖 = ⊥ then 𝐽𝑖 ← 0
𝐽𝑖 ← 𝐽𝑖 + 1; 𝑗 ← 𝐽𝑖; 𝑆𝑖,𝑗 ← (𝑁, 1); return 𝐽𝑖

procedure Enc.next(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
(𝑁, ℓ)← 𝑆𝑖,𝑗 ; 𝑆𝑖,𝑗 ← (𝑁, ℓ + 1); 𝑁* ← ⟨𝑁, ℓ, 0⟩
𝐶 ← Enc(𝑖, 𝑁*, 𝐴, 𝑀); Tab[𝑖, 𝑁*, 𝐴, 𝐶]← true
return 𝐶

procedure Enc.last(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
(𝑁, ℓ)← 𝑆𝑖,𝑗 ; 𝑆𝑖,𝑗 ← ⊥; 𝑁* ← ⟨𝑁, ℓ, 1⟩
𝐶 ← Enc(𝑖, 𝑁*, 𝐴, 𝑀); Tab[𝑖, 𝑁*, 𝐴, 𝐶]← true
return 𝐶

procedure Dec(𝑖, 𝑁, 𝐴, 𝐶, ℐ, 𝑎)
if |𝐴| ̸= |𝐶| then return false
for 𝑟 ← 1 to |ℐ| do

𝑚← |𝐶|; 𝑗 ← ℐ[𝑟]
if 𝑗 > 𝑚 or 𝑗 < 1 then return false
if (𝑎 = 0 or 𝑗 < 𝑚) then

if Look(𝑖, ⟨𝑁, 𝑗, 0⟩, 𝐴[𝑗], 𝐶[𝑗]) = false then return false
elsif Look(𝑖, ⟨𝑁, 𝑚, 1⟩, 𝐴[𝑚], 𝐶[𝑚])

)︀
= false then

return false
return true
private procedure Look(𝑖, 𝑁*, 𝐴, 𝐶)
if Tab[𝑖, 𝑁*, 𝐴, 𝐶] ̸= ⊥ then return true
return Dec(𝑖, 𝑁*, 𝐴, 𝐶)

Fig. 7: Constructed adversary ℬ in the proof of Proposition 1. It is given two oracles Enc and Dec,
and maintains an internal procedure Look.

Adversary ℬ uses about the same running time and makes as many encryption queries as 𝒜. It
also makes at most as many decryption queries as the total number of ciphertext segments in 𝒜’s
decryption queries.

Proof. Given an adversary 𝒜 attacking STREAM[𝛱], we construct an adversary ℬ attacking 𝛱
as follows. Adversary ℬ runs 𝒜 and simulates game Advnoae2

STREAM[𝛱](𝒜) with challenge bit 𝑏 = 1,
but the oracles are implemented as shown in Fig. 7. Informally, for each call E𝐾(𝑖, 𝑁*, 𝐴, 𝑀),
adversary ℬ will make the corresponding query (𝑖, 𝑁*, 𝐴, 𝑀) to its oracle Enc to get the an-
swer 𝐶, and stores the tuple (𝑖, 𝑁*, 𝐴, 𝐶). For each call D𝐾(𝑖, 𝑁*, 𝐴, 𝐶), if there is no prior tuple
(𝑖, 𝑁*, 𝐴, 𝐶) then the adversary will query Dec(𝑖, 𝑁*, 𝐴, 𝐶). However, if there is already such a
tuple then querying Dec is prohibited; in that case the adversary returns true instead. Since 𝒜 is
nonce-respecting and since we include a counter in creating the nonces of STREAM, adversary ℬ
is also nonce-respecting. When 𝒜 finishes and outputs a bit 𝑏′, adversary ℬ outputs the same bit.

Due to the restriction on the behavior of 𝒜, any call to the Dec oracle of 𝒜 must eventually
end up with a call to the oracle Dec of ℬ instead of looking up prior tuples from the encryption
queries. As a result, if the challenge bit of game Gae

𝛱 (ℬ) is 0 then the Dec oracle will always return
false. Hence ℬ perfectly simulates game Advnoae2

STREAM[𝛱](𝒜), and thus

Advae
𝛱 (ℬ) = Advnoae2

STREAM[𝛱](𝒜)

as claimed.

Discussion. In STREAM[𝛱], a nonce in the conventional AE scheme 𝛱 is formed from a base
nonce 𝑁 of STREAM[𝛱], a counter 𝑖 (to indicate the position of the message segment within
the segmented message), and a bit 𝑎 (to indicate whether the segment is the last one). Because
the range of the counter 𝑖 limits the size of segmented messages, a practical encoding choice would
be to use 4 bytes for 𝑖 and one byte for 𝑎, as in Tink’s implementation. This approach is fine if
(i) the scheme 𝛱 supports somewhat long nonces—for example OCB [21] allows nonces to be up
to 15 bytes, and (ii) one implements nonces as counters. However, the most popular conventional
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AE scheme, GCM [24], dictates that its nonces must be exactly 12-byte long, leaving only 7-byte
space for nonces of STREAM[GCM]. In addition, there are situations when it is desirable to use
random nonces:

– Routers are booted frequently, and its counters will therefore be reset often. Implementing
nonces as counters in this environment will result in lots of nonce repetition.

– Synchronizing counters among busy distributed servers might be impractical.

Thus the STREAM construction, while simple and elegant, may be unusable in some settings. In
fact, the implementation in Tink library does not closely follow the STREAM paradigm.

4.2 Online AE in Tink Library

The scheme. Tink’s streaming encryption deviates from the syntax of online AE in several ways:

– First, under Tink’s streaming encryption, there is no segmented AD. A user instead needs to
provide a (possibly empty) header 𝐻 when she initiates encryption/decryption. This header
serves the same role as AD.

– Next, the API does not let users provide nonces. Instead, the encryption scheme will pick up a
7-byte nonce prefix 𝑃 and a 16-byte salt 𝑆* at random. It then uses HMAC-SHA256 to derive
an internal subkey 𝐿 from 𝑅 ← 𝑆* ‖𝐻, and runs STREAM[GCM] (without segmented AD)
under the key 𝐿 and nonce 𝑃 . The string 𝑆* ‖ 𝑃 is added to the first ciphertext segment.

At the first glance, there are several issues in Tink’s streaming encryption.

– First, as it does not even follow the syntax of an online AE scheme, it is unclear what kind of
security Tink’s streaming encryption offers.

– Next, relying on true randomness (instead of uniqueness of nonces) is a step backward in
robustness towards randomness failure, which is quite common [11, 14,22].

– Finally, requiring users to provide the entire associated data at the beginning in a header 𝐻
reduces the usability of the scheme.

To understand the security of Tink’s streaming encryption, we consider a generalized canonical
scheme SE1 that supports segmented AD—Tink’s streaming encryption corresponds to the special
case in which the adversary only pick AD segments as the empty string. To cast SE1 into the
framework of online AE, we view the pair (𝑅, 𝑃 ), with 𝑅 = 𝑆* ‖ 𝐻, as a nonce. Under this
viewpoint, Tink’s streaming encryption ensures the uniqueness of nonces by incorporating some
contextualization information 𝐻, and at the same time also authenticates 𝐻. By only requiring
a mild condition that (𝑅, 𝑃 ) is unique, SE1 is robust to randomness failure. The code of SE1 is
shown in Fig. 8. This scheme makes use of a generic key-derivation function KD and a conventional
AE scheme that Tink instantiates via HMAC-SHA256 and GCM respectively.

Analysis of SE1. The following result shows that SE1[KD, 𝛱] meets the nOAE2 notion, provided
that KD is a good PRF and 𝛱 is a good conventional AE scheme. The proof is in Section 4.3.

Theorem 1. Let 𝛱 = (K, E, D) be a conventional AE scheme, and let KD : 𝒦×{0, 1}* → 𝒦 be a
key-derivation function of the same key space. For any adversary 𝒜 attacking SE1[KD, 𝛱], we can
construct adversaries ℬ and ℬ′ of about the same efficiency as 𝒜 such that

Advnoae2
SE1[KD,𝛱](𝒜) ≤ Advae

𝛱 (ℬ) + Advprf
KD(ℬ′) .
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procedure ℰ .init(𝐾, 𝑁)
(𝑅, 𝑃 )← 𝑁 ; 𝐿← KD(𝐾, 𝑅)
return (𝐿, 𝑁, 1)

procedure ℰ .next(𝑆, 𝐴, 𝑀)
(𝐿, 𝑁, 𝑖)← 𝑆; (𝑅, 𝑃 )← 𝑁

𝐶 ← E𝐿(⟨𝑃, 𝑖, 0⟩, 𝐴, 𝑀)
𝑆 ← (𝐿, 𝑁, 𝑖 + 1)
return (𝐶, 𝑆)

procedure ℰ .last(𝑆, 𝐴, 𝑀)
(𝐿, 𝑁, 𝑖)← 𝑆; (𝑅, 𝑃 )← 𝑁

𝐶 ← E𝐿(⟨𝑃, 𝑖, 1⟩, 𝐴, 𝑀)
return 𝐶

procedure 𝒟.init(𝐾, 𝑁)
(𝑅, 𝑃 )← 𝑁 ; 𝐿← KD(𝐾, 𝑅)
return (𝐿, 𝑁, 1)

procedure 𝒟.next(𝑆, 𝐴, 𝐶)
(𝐿, 𝑁, 𝑖)← 𝑆; (𝑅, 𝑃 )← 𝑁

𝑀 ← D𝐿(⟨𝑃, 𝑖, 0⟩, 𝐴, 𝐶)
if 𝑀 = ⊥ then return (⊥,⊥)
𝑆 ← (𝐿, 𝑁, 𝑖 + 1); return (𝑀, 𝑆)

procedure 𝒟.last(𝑆, 𝐴, 𝐶)
(𝐿, 𝑁, 𝑖)← 𝑆; (𝑅, 𝑃 )← 𝑁

𝑀 ← D𝐿(⟨𝑃, 𝑖, 1⟩, 𝐴, 𝐶)
return 𝑀
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Fig. 8: The canonical online AE scheme SE1[KD, 𝛱] = (𝒦, ℰ ,𝒟), where 𝛱 = (K, E, D) is a
conventional AE scheme of the same key-generation algorithm, and KD : 𝒦×{0, 1}* → 𝒦
is a key-derivation function.

Adversary ℬ makes the same number of encryption queries as 𝒜, and at most as many decryption
queries as the total number of ciphertext segments in 𝒜’s decryption queries. Adversary ℬ′ makes
the same number of queries as the number of (partial) streams that 𝒜 encrypts or decrypts.

Effect of nonce randomization. Suppose that in SE1[KD, 𝛱], we instantiate 𝛱 via GCM.
In modeling the nOAE2 notion, we assume that nonces are adversarially generated. However, in
practice, nonces in encryption queries are generated by legitimate users, although decryption queries
might be generated by an adversary. In that case, we can analyze the term Advae

GCM(ℬ) further based
on the implementation choice of the nonces. Assume that nonces for encryption queries of each user
are still distinct, which happens with probability at least 1− 𝑞2/2185, where 𝑞 is the number of 𝒜’s
streams.
For the constructed adversary ℬ in Theorem 1, if among the nonces 𝑁 = (𝑅, 𝑃 ) of the encryption
queries of the given adversary 𝒜, each component 𝑃 is used for at most 𝑑 users then ℬ is 𝑑-repeating.
(Here 𝒜 can still repeat 𝑃 as many times as it likes for each of the 𝑑 users.) Additionally, if among
the nonces 𝑁 = (𝑅, 𝑃 ) of the encryption queries for the same user of 𝒜, each value 𝑅 repeats at
most 𝑐 times, then ℬ encrypts at most 𝑐ℓ bits per user, where ℓ is maximum length of each (partial)
stream that 𝒜 encrypts.
Suppose that GCM is built on top of a blockcipher 𝐸 : {0, 1}𝑘×{0, 1}𝑛 → {0, 1}𝑛 that we model as an
ideal cipher. From a result of Hoang, Tessaro, and Thiruvengadam [18, Theorem 3.1], Advae

GCM[𝐸](ℬ)
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is in the order of (𝑑+𝑛)(𝑝+𝑞)+𝑛𝜎
2𝑘 + 𝜎𝑐ℓ

2𝑛 , where (i) 𝑝 is the number of ideal-cipher queries of ℬ, (ii) 𝑞 is
the number of Enc and Dec queries of ℬ, which is also the number of queries of 𝒜, and (iii) 𝜎 is
the total length of the Enc/Dec queries of ℬ, which is also the total length of the (partial) streams
that 𝒜 encrypts and decrypts.
For Tink’s streaming encryption, recall that a nonce 𝑁 = (𝑅, 𝑃 ) is generated as follows: (i) the
128-bit prefix of 𝑅 is picked uniformly at random, and (ii) the string 𝑃 is a 56-bit uniformly random
string. To bound the parameter 𝑐, we will use the following balls-into-bins result of Bose, Hoang,
and Tessaro [7].

Lemma 1. [7, Lemma 10] Fix 0 < 𝜖 < 1. Suppose that we throw 𝑞 balls uniformly at random to
2𝑚 bins, with 𝑞 ≤ 2(1−𝜖)𝑚−1. Then the chance that there is some bin of at least ⌈1.5/𝜖⌉ balls is at
most 2−𝑚/2.

If 𝒜 makes at most 𝑞 ≤ 295 queries, using Lemma 1 with 𝑚 = 128 and 𝜖 = 1/4, with probability
at least 1− 2−64, we have

𝑐 ≤ ⌈1.5/𝜖⌉ − 1 = 5 .

Note that randomization is not the only way to make 𝑐 small. For example, if one implements 𝑅
as a counter then 𝑐 = 1. To bound the parameter 𝑑, we will use the following balls-into-bins result
of Hoang and Tessaro [17].

Lemma 2. [17, Lemma 15] Suppose that we throw 𝑞 balls uniformly at random to 2𝑚 bins. With
probability at most 2−𝑚, there is some bin of at least max{4𝑚, 4𝑞/2𝑚} balls.

Using Lemma 2 with 𝑚 = 56, with probability at least 1 − 2−56, we have 𝑑 ≤ max{224, 4𝑞/256}.
Thus Tink’s implementation choice of nonce generation yields a very good bound for Advae

GCM[𝐸](ℬ).

Discussion. While incorporating a header 𝐻 into a nonce may provide some additional hedge
against randomness failure, it is unclear how much it helps. On the other hand, it is much faster
to authenticate 𝐻 via an AD segment. Specifically, in Tink’s streaming encryption, 𝐻 is digested
via HMAC-SHA256, whereas under our proposed alternative, 𝐻 will be processed by GHASH, the
underlying universal hash function of GCM. In most platforms, GHASH is several times faster than
HMAC-SHA256.
On the other hand, the bound in Theorem 1 contains the term Advprf

KD(ℬ′). If the key length is
short then the latter term only admits an adequate bound at best, due to a key-collision attack
as mentioned in Section 2. Using random nonces does not improve the PRF bound, because KD
is also used for adversarial nonces in decryption queries. This issue seems to be an artifact of a
standard-model analysis instead of a real attack. Nevertheless, it can be easily fixed if one uses a
256-bit key for KD; the derived subkeys can still be of 128-bit length if one wants to use AES-128
for GCM.
Next, recall that in Tink’s streaming encrytion, the conventional AE scheme 𝛱 is GCM, and the
latter is built on top of AES. It’s desirable to find an AES-based instantiation of KD (for both
AES-128 and AES-256) to reduce the code complexity, and improve the speed of KD. In Section 5,
we show how to build such a construction via the XOR construction of Bellare, Krovetz, and
Rogaway [2].
Finally, from the analysis above, the SE1 construction is not optimally designed to resist random-
ness failure. Security degrades if, for example, 𝑅 is uniformly random, but 𝑃 is a constant string,
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procedure Initialize//Games 𝐺1, 𝐺2

𝐾1, 𝐾2, · · · ←$𝒦; 𝐽1, 𝐽2, · · · ← 0
𝑓1, 𝑓2, · · · ←$ Func({0, 1}*,𝒦)

procedure Enc.init(𝑖, 𝑁)
(𝑅, 𝑃 )← 𝑁 ; 𝐽𝑖 ← 𝐽𝑖 + 1; 𝑗 ← 𝐽𝑖

𝐿← KD(𝐾𝑖, 𝑅) //For game 𝐺1 only
𝐿← 𝑓𝑖(𝑅) //For game 𝐺2 only
𝑆𝑖,𝑗 ← (𝐿, 𝑁, 1); return 𝐽𝑖

procedure Enc.next(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
(𝐿, 𝑁, 𝑟)← 𝑆𝑖,𝑗 ; (𝑅, 𝑃 )← 𝑁

𝐶 ← E𝐿(⟨𝑃, 𝑟, 0⟩, 𝐴, 𝑀)
𝑆𝑖,𝑗 ← (𝐿, 𝑁, 𝑟 + 1); return 𝐶

procedure Enc.last(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
(𝐿, 𝑁, 𝑟)← 𝑆𝑖,𝑗 ; (𝑅, 𝑃 )← 𝑁

𝐶 ← E𝐿(⟨𝑃, 𝑟, 1⟩, 𝐴, 𝑀); 𝑆𝑖,𝑗 ← ⊥
return 𝐶

procedure Dec(𝑖, 𝑁, 𝐴, 𝐶, ℐ, 𝑎)
if |𝐴| ≠ |𝐶| then return false
(𝑅, 𝑃 )← 𝑁 ; 𝑚← |𝐶|
𝐿← KD(𝐾𝑖, 𝑅) //For game 𝐺1 only
𝐿← 𝑓𝑖(𝑅) //For game 𝐺2 only
for 𝑟 ← 1 to |ℐ| do

𝑗 ← ℐ[𝑟]; if 𝑗 > 𝑚 or 𝑗 < 1 then return false
if (𝑎 = 0 or 𝑗 < 𝑚) then

if D𝐿(⟨𝑃, 𝑗, 0⟩, 𝐴[𝑗], 𝐶[𝑗]) = ⊥ then return false
elsif D𝐿(⟨𝑃, 𝑚, 1⟩, 𝐴[𝑚], 𝐶[𝑚]) = ⊥ then return false

return true
procedure Finalize(𝑏′)
return (𝑏′ = 1)

Fig. 9: Games 𝐺1 and 𝐺2 in the proof of Theorem 1. Each game maintains an internal
procedure Look.

since 𝑑 now can be as big as 𝑞. In Section 6, we give better canonical online AE designs that are
robust against such randomness failure.

4.3 Proof of Theorem 1

Consider games 𝐺1–𝐺4 in Fig. 9 and Fig. 10. Game 𝐺1 corresponds to game Gnoae2
SE1[KD,𝛱](𝒜) with

challenge bit 𝑏 = 1. In game 𝐺1, each user 𝑖 has a corresponding key 𝐾𝑖, but in game 𝐺2, we
sample a uniformly random function 𝑓𝑖 : {0, 1}* → 𝒦, and for each call to KD(𝐾𝑖, ·), we make a
corresponding call to 𝑓𝑖(·) instead.
Game 𝐺3 is similar to game 𝐺2, but in each encryption query for user 𝑖 and nonce 𝑁 = (𝑅, 𝑃 )
that results in a call 𝐶 ← E𝐿(𝑁*, 𝐴, 𝑀), we store the tuple (𝑖, 𝑅, 𝑁*, 𝐴, 𝐶) in a table. On the
other hand, each time we are supposed to check if D𝐿(𝑁*, 𝐴, 𝐶) ̸= ⊥ for a user 𝑖 under nonce
𝑁 = (𝑅, 𝑃 ), if there is already a prior tuple (𝑖, 𝑅, 𝑁*, 𝐴, 𝐶) then we simply return true. Otherwise
we will indeed call D𝐿(𝑁*, 𝐴, 𝐶).

Game 𝐺4 is similar to game 𝐺3, but for each call 𝐶 ← E𝐿(𝑁*, 𝐴, 𝑀), we instead pick a truly random
𝐶 of the same length. Moreover, for each call D𝐿(𝑁*, 𝐴, 𝐶), we instead use ⊥ as the answer. Thanks
to the restriction on the behavior of the adversary, any call to the Dec oracle must eventually end
up with a call to D instead of looking up prior tuples from encryption queries. As a result, any Dec
query will result in a false-answer. Hence game 𝐺4 coincides with game Gnoae2

SE1[KD,𝛱](𝒜) of challenge
bit 𝑏 = 0, and thus

Advnoae2
SE1[KD,𝛱](𝒜) = Pr[𝐺1(𝒜)]− Pr[𝐺4(𝒜)] .

We now bound the gap between each pair of consecutive games. Consider the following adversary
ℬ′ attacking the (muti-user) PRF security of KD. It runs 𝒜 and simulates game 𝐺1, but for each
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procedure Initialize//Games 𝐺3, 𝐺4

𝐽1, 𝐽2, · · · ← 0
𝑓1, 𝑓2, · · · ←$ Func({0, 1}*,𝒦)

procedure Enc.init(𝑖, 𝑁)
(𝑅, 𝑃 )← 𝑁 ; 𝐽𝑖 ← 𝐽𝑖 + 1
𝑗 ← 𝐽𝑖; 𝐿← 𝑓𝑖(𝑅)
𝑆𝑖,𝑗 ← (𝐿, 𝑁, 1); return 𝐽𝑖

procedure Enc.next(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
(𝐿, 𝑁, 𝑟)← 𝑆𝑖,𝑗 ; (𝑅, 𝑃 )← 𝑁

𝑁* ← ⟨𝑃, 𝑟, 0⟩; 𝐶 ← E𝐿(𝑁*, 𝐴, 𝑀)
𝐶←$ {0, 1}|𝐶| //For game 𝐺4 only
Tab[𝑖, 𝑅, 𝑁*, 𝐴, 𝐶]← true
𝑆𝑖,𝑗 ← (𝐿, 𝑁, 𝑟 + 1); return 𝐶

procedure Enc.last(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
(𝐿, 𝑁, 𝑟)← 𝑆𝑖,𝑗 ; (𝑅, 𝑃 )← 𝑁

𝑁* ← ⟨𝑃, 𝑟, 1⟩; 𝐶 ← E𝐿(𝑁*, 𝐴, 𝑀)
𝐶←$ {0, 1}|𝐶| //For game 𝐺4 only
Tab[𝑖, 𝑅, 𝑁*, 𝐴, 𝐶]← true; 𝑆𝑖,𝑗 ← ⊥
return 𝐶

procedure Dec(𝑖, 𝑁, 𝐴, 𝐶, ℐ, 𝑎)
if |𝐴| ≠ |𝐶| then return false
(𝑅, 𝑃 )← 𝑁 ; 𝑚← |𝐶|
for 𝑟 ← 1 to |ℐ| do

𝑗 ← ℐ[𝑟]; if 𝑗 > 𝑚 or 𝑗 < 1 then return false
if (𝑎 = 0 or 𝑗 < 𝑚) then

if Look(𝑖, 𝑅, ⟨𝑃, 𝑗, 0⟩, 𝐴[𝑗], 𝐶[𝑗]) = false then return false
elsif Look(𝑖, 𝑅, ⟨𝑃, 𝑚, 1⟩, 𝐴[𝑚], 𝐶[𝑚]) = false then return false

return true
private procedure Look(𝑖, 𝑅, 𝑁*, 𝐴, 𝐶)
if Tab[𝑖, 𝑅, 𝑁*, 𝐴, 𝐶] ̸= ⊥ then return true
𝐿← 𝑓𝑖(𝑅); 𝑀 ← D𝐿(𝑁*, 𝐴, 𝐶)
𝑀 ← ⊥ //For game 𝐺4 only
return (𝑀 ̸= ⊥)

procedure Finalize(𝑏′)
return (𝑏′ = 1)

Fig. 10: Games 𝐺3 and 𝐺4 in the proof of Theorem 1. Each game maintains an internal
procedure Look.

call to KD(𝐾𝑖, ·), it instead uses its oracle Eval(𝑖, ·). Thus

Pr[𝐺1(𝒜)]− Pr[𝐺2(𝒜)] = Advprf
KD(ℬ′) .

Next, in game 𝐺3, for each table look-up Look(𝑖, 𝑅, 𝑁*, 𝐴, 𝐶) with 𝑁* = ⟨𝑃, 𝑗, 𝑎⟩, the triple
(𝑖, 𝑅, 𝑁*) uniquely determines the user 𝑖, nonce 𝑁 = (𝑅, 𝑃 ), and counter 𝑗. Since 𝒜 is nonce-
respecting, the table look-ups do not return false positives. Thanks to the correctness of the con-
ventional AE scheme 𝛱,

Pr[𝐺2(𝒜)] = Pr[𝐺3(𝒜)] .

Finally, consider the following adversary ℬ attacking 𝛱. It runs 𝒜 and simulates game 𝐺3, but with
the following differences. First, instead of eagerly sampling a function 𝑓𝑖 for each user 𝑖, adversary ℬ
lazily implements 𝑓𝑖. That is, each time it has to evaluate 𝑓𝑖(𝑅), if this is the first time it has to
do this evaluation, it picks 𝐿←$𝒦, stores the pair (⟨𝑖, 𝑅⟩, 𝐿), and returns 𝐿 as the answer, where
⟨𝑖, 𝑅⟩ is a unique encoding of (𝑖, 𝑅) as an integer. Otherwise, if there is already some pair (⟨𝑖, 𝑅⟩, 𝐿)
then it simply returns 𝐿 as the answer. Next, for each call E𝐿(𝑁*, 𝐴, 𝑀) for a user 𝑖 under nonce
𝑁 = (𝑅, 𝑃 ), it instead calls Enc(⟨𝑖, 𝑅⟩, 𝑁*, 𝐴, 𝑀). Likewise, for each call D𝐿(𝑁*, 𝐴, 𝐶) for a user
𝑖 under nonce 𝑁 = (𝑅, 𝑃 ), it calls Dec(⟨𝑖, 𝑅⟩, 𝑁*, 𝐴, 𝐶).
Thanks to the table look-ups in game 𝐺3, adversary ℬ does not make prohibited queries to the
decryption oracle. Moreover, for each encryption query Enc(⟨𝑖, 𝑅⟩, 𝑁*, 𝐴, 𝑀) with 𝑁* = ⟨𝑃, 𝑗, 𝑎⟩,
the pair (⟨𝑖, 𝑅⟩, 𝑁*) uniquely determines the user 𝑖, nonce 𝑁 = (𝑅, 𝑃 ), and counter 𝑗. Since 𝒜 is
nonce-respecting, ℬ is nonce-respecting. Moreover,

Pr[𝐺3(𝒜)]− Pr[𝐺4(𝒜)] = Advae
𝛱 (ℬ) .
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Summing up

Advnoae2
SE1[KD,𝛱](𝒜) = Pr[𝐺1(𝒜)]− Pr[𝐺4(𝒜)]

=
3∑︁

𝑖=1
Pr[𝐺𝑖(𝒜)]− Pr[𝐺𝑖+1(𝒜)] = Advprf

KD(ℬ′) + Advae
𝛱 (ℬ) .

5 A Better Key-Derivation Function

In this section we show a better construction for the key-derivation KD of SE1. Our construction
is based on a blockcipher 𝐸 : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 with 𝑘 ∈ {𝑛, 2𝑛}. In practice one would
instantiate 𝐸 via AES, and thus 𝑛 = 128. Moreover, KD only needs to digest inputs of a fixed
length 𝑚, as the header will be processed as an AD segment. For our construction, we require that
𝑚 ≤ 𝑛− 2; in practice one can let 𝑚 = 120. This is a bit shorter than the current salt length (128
bits) in Tink, but from the analysis in Section 4.2, this does not affect the security bound of SE1.

Key length extension. From the discussion in Section 4.2, we want KD to take a 2𝑛-bit key
to avoid key-collision attacks. As a result, our construction of KD requires a blockcipher of 2𝑛-
bit keys. If 𝑘 = 2𝑛 then we can directly use 𝐸. Mouha and Luykx [26] show that if we model
𝐸 : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 as an ideal cipher then for any adversary 𝒜 making at most 𝑝

ideal-cipher queries and 𝑞 evaluation queries, Advprp
𝐸 (𝒜) ≤ 𝑞2+2𝑝𝑞

2𝑘+1 .
If 𝑘 = 𝑛 then the key length of 𝐸 is too short for our purpose. In that case, we construct from 𝐸 a
blockcipher 𝐺 : {0, 1}𝑘+𝑛×{0, 1}𝑛 → {0, 1}𝑛 via a variant of the classic DESX paradigm of Rivest.
In particular, on a key 𝐾 = 𝐽 ‖ 𝐿, with |𝐽 | = 𝑘 and |𝐿| = 𝑛, let

𝐺𝐾(𝑋) = 𝐸𝐽(𝑋 ⊕ 𝐿)⊕ 𝐿 .

The design of DESX uses different keys in pre-whitening and post-whitening 𝐸, whereas the variant
above, which we call DESX1, uses the same key. It is now folklore knowledge that DESX1 offers
(𝑘 + 𝑛)/2 bits of multi-user PRP security, but to the best of our knowledge, there is no explicit
proof for this claim. For completeness, in Lemma 3 below, we give a proof in the ideal-cipher model.
The proof, which is in Appendix C, is a canonical application of the H-coefficient technique [8,27].

Lemma 3. Let 𝐸 : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 be a blockcipher that we model as an ideal cipher,
and let 𝐺 be DESX1[𝐸]. Then for any adversary 𝒜 that makes at most 𝑝 ideal-cipher queries and
𝑞 evaluation queries,

Advprp
𝐺 (𝒜) ≤ 2𝑝𝑞 + 𝑞2

2𝑘+𝑛
.

The XOR construction. Our main building block is the XOR-of-permutation construction
of Bellare, Krovetz, and Rogaway [2]. Let 𝐺 : 𝒦 × {0, 1}𝑛 → {0, 1}𝑛 be a blockcipher. Then
XOR[𝐺] : 𝒦 × {0, 1}𝑛−1 → {0, 1}𝑛 is constructed via

XOR[𝐺](𝐾, 𝑋) = 𝐺𝐾(𝑋 ‖ 0)⊕𝐺𝐾(𝑋 ‖ 1) .

If 𝐺 is DESX1[𝐸] then under the XOR construction, the two post-whitenings will cancel each other
out. Thus one can drop the post-whitening of 𝐸 in this setting, saving two xor’s. Theorem 2 below
shows that the XOR construction has excellent PRF security; the proof is in Appendix D.
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Theorem 2. Let 𝑛 ≥ 8 be an integer. Let 𝐺 : 𝒦×{0, 1}𝑛 → {0, 1}𝑛 be a blockcipher. Then for any
adversary 𝒜 that makes 𝑞 ≤ 2𝑛/128 evaluation queries, we can construct an adversary ℬ of about
the same efficiency as 𝒜 and at most 2𝑞 queries such that

Advprf
XOR[𝐺](𝒜) ≤ Advprp

𝐺 (ℬ) + 8
√

𝑛 · 𝑞
2𝑛

.

Building KD. Assume that we have a good PRF construction 𝐹 : 𝒦 × {0, 1}𝑛−1 → {0, 1}𝑛 which
we can achieve via the XOR construction. We now show how to build KD : 𝒦× {0, 1}𝑚 → {0, 1}𝑘,
with 𝑘 ∈ {𝑛, 2𝑛}. For a string 𝑋 with |𝑋| < 𝑛− 1, let 𝑋 ‖ 0* denote 𝑋 ‖ 0𝑛−1−|𝑋|. If 𝑘 = 𝑛 then

KD(𝐾, 𝑋) = 𝐹𝐾

(︀
𝑋 ‖ 0*)︀

,

and if 𝑘 = 2𝑛 then
KD(𝐾, 𝑋) = 𝐹𝐾

(︀
𝑋 ‖ 0 ‖ 0*)︀

‖ 𝐹𝐾

(︀
𝑋 ‖ 1 ‖ 0*)︀

.

From the fact that 𝐹 is a good PRF and thanks to the use of the domain separation, KD is also a
good PRF.

6 Better Online AE Schemes

In this section, we give two alternative canonical online AE schemes that are better than SE1.

6.1 Scheme SE2

The scheme. Let 𝛱 = (K, E, D) be a conventional AE scheme of 𝑘-bit key length. We associate
to it an encoding mechanism ⟨·⟩ that turns a triple (𝑃, 𝑖, 𝑎) of a nonce prefix 𝑃 , a counter 𝑖, and a
flag 𝑎 into a nonce of 𝛱. Assume that under this encoding, a nonce prefix must have bit length ℓ.
For example, if we instantiate 𝛱 via GCM and use four bytes to encode a counter and one byte for
the flag as in Tink, then ℓ = 56. Let KD : 𝒦 ×𝒩 → {0, 1}𝑘 × {0, 1}ℓ be a key-derivation function.
The scheme SE2[KD, 𝛱] = (𝒦, ℰ ,𝒟) of the same key space as KD is specified in Fig. 11; it uses the
message space 𝒩 of KD as its nonce space.
Informally, SE2 is similar to SE1, but we use KD to digest the entire nonce. Moreover, each nonce
prefix 𝑃 is a part of KD’s output, instead of a part of the nonce 𝑁 .

Analysis of SE2. The following result shows that SE2[KD, 𝛱] meets the nOAE2 notion, provided
that KD is a good PRF and 𝛱 is a good conventional AE scheme. The proof, which is in Appendix E,
is similar to the proof of Theorem 1.

Theorem 3. Let 𝛱 = (K, E, D) be a conventional AE scheme, and let KD : 𝒦 × 𝒩 → {0, 1}𝑘 ×
{0, 1}ℓ be a key-derivation function. For any adversary 𝒜 attacking SE2[KD, 𝛱] that makes at most
𝑞 queries, we can construct adversaries ℬ and ℬ′ of about the same efficiency as 𝒜 such that

Advnoae2
SE2[KD,𝛱](𝒜) ≤ Advae

𝛱 (ℬ) + Advprf
KD(ℬ′) .

Adversary ℬ makes the same number of encryption queries as 𝒜, and at most as many decryption
queries as the total number of ciphertext segments in 𝒜’s decryption queries. Adversary ℬ′ makes the
same number of queries as the number of (partial) streams that 𝒜 encrypts or decrypts. Moreover,
with probability at least 1− 2−ℓ, adversary ℬ is max{4ℓ, 4𝑞/2ℓ}-repeating.
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procedure ℰ .init(𝐾, 𝑁)
(𝐿, 𝑃 )← KD(𝐾, 𝑁)
return (𝐿, 𝑃, 1)

procedure ℰ .next(𝑆, 𝐴, 𝑀)
(𝐿, 𝑃, 𝑖)← 𝑆; 𝑆 ← (𝐿, 𝑃, 𝑖 + 1)
𝐶 ← E𝐿(⟨𝑃, 𝑖, 0⟩, 𝐴, 𝑀)
return (𝐶, 𝑆)

procedure ℰ .last(𝑆, 𝐴, 𝑀)
(𝐿, 𝑃, 𝑖)← 𝑆

𝐶 ← E𝐿(⟨𝑃, 𝑖, 1⟩, 𝐴, 𝑀)
return 𝐶

procedure 𝒟.init(𝐾, 𝑁)
(𝐿, 𝑃 )← KD(𝐾, 𝑁)
return (𝐿, 𝑃, 1)

procedure 𝒟.next(𝑆, 𝐴, 𝐶)
(𝐿, 𝑃, 𝑖)← 𝑆; 𝑆 ← (𝐿, 𝑃, 𝑖 + 1)
𝑀 ← D𝐿(⟨𝑃, 𝑖, 0⟩, 𝐴, 𝐶)
return (𝑀, 𝑆)

procedure 𝒟.last(𝑆, 𝐴, 𝐶)
(𝐿, 𝑃, 𝑖)← 𝑆

𝑀 ← D𝐿(⟨𝑃, 𝑖, 1⟩, 𝐴, 𝐶)
return 𝑀
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Fig. 11: The canonical online AE scheme SE2[KD, 𝛱] = (𝒦, ℰ ,𝒟) that is built on top on a conven-
tional AE scheme 𝛱 = (K, E, D) and a key-derivation function KD.

Discussion. Note that in Theorem 3, the constructed adversary ℬ is max{4ℓ, 4𝑞/2ℓ}-repeating,
provided that nonces for each user are unique. This makes SE2 more robust to randomness failure
than SE1. However, this claim is under an implicit assumption (lying beneath the term Advprf

KD(ℬ′))
that the master key is 256-bit long, Note that derived subkeys 𝐿 can still be of 128-bit if one wants
to use AES-128 for GCM.
As Tink aims to support both AES-GCM-128 and AES-GCM-256, KD may have to produce 39
bytes. The simplest way is to instantiate KD via HMAC-SHA384. (If one wants to instantiate KD
via HMAC-SHA256 then it may require two hash calls.)
For applications that can tolerate 15-byte nonces then one can instantiate KD via the XOR con-
struction in Section 5. Specifically, suppose that we are given a PRF 𝐹 : 𝒦 × {0, 1}127 → {0, 1}128

which we can directly instantiate via the XOR construction. For a string 𝑋 with |𝑋| < 127, let
𝑋 ‖ 0* denote 𝑋 ‖ 0127−|𝑋|. If 𝑘 = 128 and ℓ = 56 then

KD(𝐾, 𝑋)← 𝐹𝐾(𝑋 ‖ 0 ‖ 0*) ‖ 𝐹𝐾(𝑋 ‖ 1 ‖ 0*)[1 : 56] . (1)

If 𝑘 = 256 and ℓ = 56 then we let KD(𝐾, 𝑋) to be

𝐹𝐾(𝑋 ‖ 00 ‖ 0*) ‖ 𝐹𝐾(𝑋 ‖ 01 ‖ 0*) ‖ 𝐹𝐾(𝑋 ‖ 10 ‖ 0*)[1 : 56] . (2)

Hence we would need 2 or 3 calls to the XOR construction, which amounts to 4 or 6 (fully paralel-
lizable) AES calls. Thus KD has the same speed as the key-derivation of AES-GCM-SIV [13].
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procedure ℰ .init(𝐾, 𝑁)
(𝑅, 𝑃 )← 𝑁 ; (𝐿, 𝑋)← KD(𝐾, 𝑅)
𝑃 * ← 𝑋 ⊕ 𝑃

return (𝐿, 𝑁, 𝑃 *, 1)

procedure ℰ .next(𝑆, 𝐴, 𝑀)
(𝐿, 𝑁, 𝑃 *, 𝑖)← 𝑆

𝑆 ← (𝐿, 𝑁, 𝑃 *, 𝑖 + 1)
𝐶 ← E𝐿(⟨𝑃 *, 𝑖, 0⟩, 𝐴, 𝑀)
return (𝐶, 𝑆)

procedure ℰ .last(𝑆, 𝐴, 𝑀)
(𝐿, 𝑁, 𝑃 *, 𝑖)← 𝑆

𝐶 ← E𝐿(⟨𝑃 *, 𝑖, 1⟩, 𝐴, 𝑀)
return 𝐶

procedure 𝒟.init(𝐾, 𝑁)
(𝑅, 𝑃 )← 𝑁 ; (𝐿, 𝑋)← KD(𝐾, 𝑅)
𝑃 * ← 𝑋 ⊕ 𝑃

return (𝐿, 𝑁, 𝑃 *, 1)

procedure 𝒟.next(𝑆, 𝐴, 𝐶)
(𝐿, 𝑁, 𝑃 *, 𝑖)← 𝑆

𝑆 ← (𝐿, 𝑁, 𝑃 *, 𝑖 + 1)
𝑀 ← D𝐿(⟨𝑃 *, 𝑖, 0⟩, 𝐴, 𝐶)
return (𝑀, 𝑆)

procedure 𝒟.last(𝑆, 𝐴, 𝐶)
(𝐿, 𝑁, 𝑃 *, 𝑖)← 𝑆

𝑀 ← D𝐿(⟨𝑃 *, 𝑖, 1⟩, 𝐴, 𝐶)
return 𝑀
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Fig. 12: The canonical online AE scheme SE3[KD, 𝛱] = (𝒦, ℰ ,𝒟) that is built on top of a conven-
tional AE scheme 𝛱 = (K, E, D) and a key-derivation function KD.

For applications that need longer nonces, it is unclear how to build a beyond-birthday-bound KD
efficiently via AES; we leave it as an open problem. In Section 6.2, we give an alternative canonical
online AE scheme SE3 that has the best of both worlds: (i) its nOAE2 security is as good as SE2,
and (ii) it supports long nonces, say 22 bytes, and (iii) its key-derivation can be built as indicated
in Eq. (1) and Eq. (2).

6.2 Scheme SE3

The scheme. Let 𝛱 = (K, E, D) be a conventional AE scheme of 𝑘-bit key length. We associate
to it an encoding mechanism ⟨·⟩ that turns a triple (𝑃, 𝑖, 𝑎) of a nonce prefix 𝑃 , a counter 𝑖, and a
flag 𝑎 into a nonce of 𝛱. Assume that under this encoding, a nonce prefix must have bit length ℓ.
For example, if we instantiate 𝛱 via GCM and use four bytes to encode a counter and one byte
for the flag as in Tink, then ℓ = 56. Let KD : 𝒦 × {0, 1}𝑠 → {0, 1}𝑘 × {0, 1}ℓ be a key-derivation
function. The scheme SE3[KD, 𝛱] = (𝒦, ℰ ,𝒟) of the same key space as KD is specified in Fig. 12;
its nonce space is {0, 1}𝑠 × {0, 1}ℓ.
Informally, a nonce 𝑁 in SE3 is still a pair (𝑅, 𝑃 ) and we feed only 𝑅 to KD, as in SE1. However, in
addition to a subkey 𝐿, we also derive a secret mask 𝑋, and use that to whiten the nonce prefix 𝑃 ,
obtaining an effective nonce prefix 𝑃 * ← 𝑃 ⊕ 𝑋. Nonces for the conventional AE scheme 𝛱 are
based on 𝑃 * instead.
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In instantiating KD, one can let 𝑠 = 120 and ℓ = 56, meaning that nonces of SE3 are 22-byte long.
One then can instantiate KD as indicated in Eq. (1) and Eq. (2). Again, we recommend using a
256-bit key for KD to resist key-collision attacks.

Analysis of SE3. Theorem 4 below confirms that SE3 is as good as SE2. Below, we sketch some
proof ideas; the full proof is in Appendix E.

Theorem 4. Let 𝛱 = (K, E, D) be a conventional AE scheme, and let KD : 𝒦 × {0, 1}𝑠 →
{0, 1}𝑘 × {0, 1}ℓ be a key-derivation function. For any adversary 𝒜 attacking SE3[KD, 𝛱] that
makes at most 𝑞 queries, we can construct adversaries ℬ and ℬ′ of about the same efficiency as 𝒜
such that

Advnoae2
SE3[KD,𝛱](𝒜) ≤ Advae

𝛱 (ℬ) + Advprf
KD(ℬ′) + 2−ℓ .

Adversary ℬ makes the same number of encryption queries as 𝒜, and at most as many decryption
queries as the total number of ciphertext segments in 𝒜’s decryption queries. Adversary ℬ′ makes the
same number of queries as the number of (partial) streams that 𝒜 encrypts or decrypts. Moreover,
adversary ℬ is max{4ℓ, 4𝑞/2ℓ}-repeating.

Proof ideas. It is tricky to prove that the constructed adversary ℬ is 𝑑-repeating, where 𝑑 =
max{4ℓ, 4𝑞/2ℓ}.
First, one can only use balls-into-bins analysis here if 𝒜 non-adaptively picks its queries. If the
adversary somehow can adaptively learn the effective nonce prefixes via its queries then it can
make ℬ’s nonces repeat among as many users as it likes. To deal with this issue, we employ a trick
in [18] for constructing ℬ. Specifically, ℬ keeps track of the max load of its bin, and terminates
prematurely with output 1 when some bin contains 𝑑 balls. In the real world, ℬ is supposed to
output 1, and thus the premature termination only increases the chance that its guess is correct. In
the ideal world of ℬ, whatever 𝒜 receives are independent of the effective nonce prefixes, and thus
its queries are non-adaptive. We will then use a balls-into-bins argument to bound the probability
of premature termination in the ideal world.
Next, we cannot immediately use Lemma 2 because in our situation, the throws are dependent. For
example, for two encryption queries of the same user with nonces 𝑁1 = (𝑅, 𝑃1) and 𝑁2 = (𝑅, 𝑃2)
such that 𝑃1 ̸= 𝑃2, their effective nonce prefixes 𝑃 *

1 and 𝑃 *
2 must be different, meaning that the

corresponding two balls must go to different bins. To resolve this issue, we observe that in this
setting, for any 𝑑 balls, the chance that they all go to the same bin is at most 2(1−𝑑)ℓ. This is
actually the only hypothesis that the proof of Lemma 2 in [17] needs, although its statement is
given for uniformly thrown balls.

7 Conclusions

We give a multi-user analysis of the streaming encryption in Google’s Tink library, by viewing it
as a canonical online AE scheme SE1. We show that SE1 is secure for any proper way to generate
nonces, but Tink’s choice of random nonces, coupled with a nonce-based key-derivation function KD,
indeed improves the concrete security bound. Motivated by the fact that SE1’s design is not robust
against randomness failure, we propose better designs SE2 and SE3. In addition, instead of relying
on HMAC-SHA256, we show how to efficiently instantiate KD from AES via the XOR construction.
Our instantiation of KD is as fast as the key-derivation function of AES-GCM-SIV.
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Based on our analysis, we recommend that Tink’s streaming encryption follows SE3 instead of
SE1 to resist randomness failure. Moreover, if one has a header to authenticate, one should treat it
as a segmented AD, instead of feeding it to the key-derivation function KD. This also allows one to
instantiate KD via AES, and thus improve both code complexity and efficiency. Finally, one should
use a 256-bit master key to avoid key-collision attacks, but internally, one can still use AES-128 for
both KD (via the DESX1 paradigm) and GCM (by deriving a 128-bit subkey).
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A nOAE Does Not Imply nOAE2

In this section, we will show a canonical online AE scheme 𝛱* that is nOAE-secure, but trivially
broken under the nOAE2 notion. In particular, 𝛱 is a variant of the STREAM construction;
its procedures ℰ .last and 𝒟.last are modified to preserve the nOAE security, but damage the
nOAE2 security. The code is given in Fig. 13. The change here is that in ℰ .last, in addition to
the ciphertext segment 𝐶0 ← E𝐾(⟨𝑁, 𝑖, 1⟩, 𝐴, 𝑀), we will release an additional ciphertext segment
𝐶1 ← E𝐾(⟨𝑁, 𝑖 + 1, 0⟩, 𝐴, 𝑀). Procedure 𝒟.last will attempt to decrypt both 𝐶0 and 𝐶1, and if
both ciphertexts are valid then it returns the decrypted message of 𝐶0.
Releasing 𝐶1 does no harm to nOAE security. Indeed, as 𝐶1 can only be decrypted properly under
nonce ⟨𝑁, 𝑖 + 1, 0⟩, the adversary can only use it in a decryption query Dec(𝑢, 𝑁, 𝐴, 𝐶, 𝑎) with
𝐶[𝑖+1] = 𝐶1, where 𝑢 is the user of the corresponding encryption query. But since decryption is in
order, the adversary will never pass the decryption of 𝐶[𝑖], as it does not know any valid ciphertext
segment under nonce ⟨𝑁, 𝑖, 0⟩ for user 𝑢.

23

http://eprint.iacr.org/2010/287


procedure ℰ .init(𝐾, 𝑁)
return (𝐾, 𝑁, 1)

procedure ℰ .next(𝑆, 𝐴, 𝑀)
(𝐾, 𝑁, 𝑖)← 𝑆; 𝑆 ← (𝐾, 𝑁, 𝑖 + 1)
𝐶 ← E𝐾(⟨𝑁, 𝑖, 0⟩, 𝐴, 𝑀)
return (𝐶, 𝑆)

procedure ℰ .last(𝑆, 𝐴, 𝑀)
(𝐾, 𝑁, 𝑖)← 𝑆

𝐶0 ← E𝐾(⟨𝑁, 𝑖, 1⟩, 𝐴, 𝑀)
𝐶1 ← E𝐾(⟨𝑁, 𝑖 + 1, 0⟩, 𝐴, 𝑀)
return (𝐶0, 𝐶1)

procedure 𝒟.init(𝐾, 𝑁)
return (𝐾, 𝑁, 1)

procedure 𝒟.next(𝑆, 𝐴, 𝐶)
(𝐾, 𝑁, 𝑖)← 𝑆; 𝑆 ← (𝐾, 𝑁, 𝑖 + 1)
𝑀 ← D𝐾(⟨𝑁, 𝑖, 0⟩, 𝐴, 𝐶)
return (𝑀, 𝑆)

procedure 𝒟.last(𝑆, 𝐴, 𝐶)
(𝐾, 𝑁, 𝑖)← 𝑆; (𝐶0, 𝐶1)← 𝐶

𝑀 ← D𝐾(⟨𝑁, 𝑖 + 1, 0⟩, 𝐴, 𝐶1)
if 𝑀 = ⊥ then return ⊥
else return D𝐾(⟨𝑁, 𝑖, 1⟩, 𝐴, 𝐶0)

Fig. 13: A variant 𝛱* of the STREAM construction that is nOAE-secure, but trivially broken
under nOAE2. It is built on top of a conventional AE scheme 𝛱 = (K, E, D).

In contrast, it is trivial to break the nOAE2 security of 𝛱*. The adversary first calls ℰ .init(1, 𝑁),
for an arbitrary nonce 𝑁 , to get an index 𝑗. It then calls ℰ .last(1, 𝑗, 𝐴, 𝑀) for an arbitrary
AD 𝐴 and message 𝑀 to get a ciphertext segment (𝐶0, 𝐶1). Finally, it makes a decryption query
Dec(1, 𝑁, 𝐴, 𝐶, ℐ, 0), with 𝐴 = (𝐴, 𝐴) and 𝐶 = (𝐶1, 𝐶1), and ℐ = (2), meaning that it only asks
for a decryption of the second ciphertext segment. The adversary then outputs 1 if the decryption
oracle returns true, and outputs 0 otherwise. Note that in the real world, the first segment of 𝐶 is
invalid but it never gets checked, and the second segment of 𝐶 is decrypted properly. Hence the
adversary wins with advantage 1.

B Key-Collision Attacks

In this section we show how to use Biham’s key-collision attack on DES [5] to break the (multi-user)
PRF and AE security.

B.1 PRF Attack

Let 𝐹 : {0, 1}𝑘 × ℳ → {0, 1}𝑛 be a keyed function. Let 𝑟 be an arbitrary integer such that
𝑟 ≥ ⌈(𝑘 + 2)/𝑛⌉. Let 𝑝, 𝑞 ≥ 1 be integers such that 𝑝𝑞 ≤ 2𝑘.

The attack. Adversary 𝒜 first picks arbitrary distinct messages 𝑀1, . . . , 𝑀𝑟 ∈ ℳ and then
queries 𝐶𝑖,1 ← Eval(𝑖, 𝑀1), . . . , 𝐶𝑖,𝑟 ← Eval(𝑖, 𝑀𝑟) for every 𝑖 = 1, . . . , 𝑞. It then picks arbitrary
distinct keys 𝐾1, . . . , 𝐾𝑝 ∈ {0, 1}𝑘, and computes 𝐶*

𝑗,1 ← 𝐹 (𝐾𝑗 , 𝑀1), . . . , 𝐶*
𝑗,𝑟 ← 𝐹 (𝐾𝑗 , 𝑀𝑟) for

every 𝑗 = 1, . . . , 𝑝. If there are 𝑖 ≤ 𝑞 and 𝑗 ≤ 𝑝 such that 𝐶𝑖,ℓ = 𝐶*
𝑗,ℓ for every ℓ = 1, . . . , 𝑟 then the

adversary outputs 1, otherwise the adversary outputs 0.

Real world’s analysis. In the real world, if there is an adversarial key 𝐾𝑗 that coincides with
the key of user 𝑖 then the adversary will output 1. Since the user keys are chosen uniformly at
random, this happens with probability

1−
(︁
1− 𝑝

2𝑘

)︁𝑞
.

To simplify this bound, we need the following technical result from [17].
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Lemma 4. [17] Let 𝑞 ≥ 1 be an integer and 0 < 𝑎 ≤ 1/𝑞. Then

(1− 𝑎)𝑞 ≤ 1− 𝑞𝑎/2 .

Using Lemma 4 with 𝑎 = 𝑝/2𝑘 indicates that in the real world, the chance that the adversary
outputs 1 is at least 𝑝𝑞

2𝑘+1 .

Ideal world’s analysis. Assume that there are no two keys 𝐾𝑖 and 𝐾𝑗 such that (𝐶*
𝑖,1, . . . , 𝐶*

𝑖,𝑟) =
(𝐶*

𝑗,1, . . . , 𝐶*
𝑗,𝑟). For real PRF constructions, this assumption is very likely to hold for an appro-

priately large 𝑟. In the ideal world, the oracle answers are independent, truly random strings, and
thus the chance that the adversary outputs 1 is at most

1−
(︁
1− 𝑝

2𝑛𝑟

)︁𝑞
≤ 1−

(︁
1− 𝑝

2𝑘+2

)︁𝑞
≤ 𝑝𝑞

2𝑘+2 ,

where the first inequality is due to the fact that 𝑛𝑟 ≥ 𝑘 + 2, and the second inequality is due to
Bernoulli’s inequality.

Wrapping up. Summing up, the adversary’s advantage is at least
𝑝𝑞

2𝑘+1 −
𝑝𝑞

2𝑘+2 = 𝑝𝑞

2𝑘+2 .

B.2 AE Attack

Let 𝛱 = (K, E, D) be a conventional AE scheme of 𝑘-bit key length and 𝑠-bit nonce length. Let
𝑝, 𝑞 ≥ 1 be integers such that 𝑝𝑞 ≤ 2𝑘.

The attack. Let 𝐴 be the empty-string AD. The adversary 𝒜 first picks an arbitrary message
𝑀 such that |𝑀 | ≥ 𝑘 + 2, and an arbitrary nonce 𝑁 . It then queries 𝐶𝑖 ← Enc(𝑖, 𝑁, 𝐴, 𝑀)
for every 𝑖 = 1, . . . , 𝑞. It then picks arbitrary distinct keys 𝐾1, . . . , 𝐾𝑝 ∈ {0, 1}𝑘, and computes
𝐶*

𝑗 ← E(𝐾𝑗 , 𝑁, 𝐴, 𝑀) for every 𝑗 = 1, . . . , 𝑝. If there are 𝑖 ≤ 𝑞 and 𝑗 ≤ 𝑝 such that 𝐶𝑖 = 𝐶*
𝑗 then

the adversary outputs 1, otherwise the adversary outputs 0.

Real world’s analysis. In the real world, if there is an adversarial key 𝐾𝑗 that coincides with
the key of user 𝑖 then the adversary will output 1. Since the user keys are chosen uniformly at
random, this happens with probability

1−
(︁
1− 𝑝

2𝑘

)︁𝑞
≥ 𝑝𝑞

2𝑘+1 .

where the last inequality is due to Lemma 4. Hence in the real world, the adversary outputs 1 with
probability at least 𝑝𝑞/2𝑘+1.

Ideal world’s analysis. Assume that there are no two keys 𝐾𝑖 and 𝐾𝑗 such that 𝐶*
𝑖 = 𝐶*

𝑗 . For
real AE schemes, this assumption is very likely to hold if 𝑀 is long enough. In the ideal world,
the oracle answers are independent, truly random strings, and thus the chance that the adversary
outputs 1 is at most

1−
(︁
1− 𝑝

2𝑘+2

)︁𝑞
≤ 𝑝𝑞

2𝑘+2 ,
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procedure Initialize
𝐾1, 𝐾2, . . . ←$𝒦; 𝑏←$ {0, 1}
𝜋1, 𝜋2, . . . ←$ Perm(𝑛)

procedure Finalize(𝑏′)
return (𝑏′ = 𝑏)

procedure Enc(𝑖, 𝑋)
𝑌1 ← 𝐸(𝐾𝑖, 𝑋); 𝑌0 ← 𝜋𝑖(𝑋)
return 𝑌𝑏

procedure Dec(𝑖, 𝑌 )
𝑋1 ← 𝐸−1(𝐾𝑖, 𝑌 ); 𝑋0 ← 𝜋−1

𝑖 (𝑌 )
return 𝑋𝑏

Fig. 14: Game G±prp
𝐸 defining multi-user prp security of a blockcipher 𝐸.

where the inequality is due to Bernoulli’s inequality.

Wrapping up. Summing up, the adversary’s advantage is at least
𝑝𝑞

2𝑘+1 −
𝑝𝑞

2𝑘+2 = 𝑝𝑞

2𝑘+2 .

C Proof of Lemma 3

Our proof is based on the H-coefficient technique of Patarin [8, 27] that we briefly review below.

The H-coefficient technique. The H-coefficient technique considers a deterministic distin-
guisher 𝒜 that tries to distinguish a “real” system S1 from an “ideal” system S0. The adversary’s
interactions with those systems define transcripts 𝒯1 and 𝒯0, respectivel. The following Lemma 5
bounds the statistical distance SD(𝒯1, 𝒯0) between 𝒯1 and 𝒯0, namely the best distinguishing ad-
vantage of 𝒜 between S1 and S0.

Lemma 5. [8, 27] Suppose we can partition the set of valid transcripts for the ideal system into
good and bad ones. Further, suppose that there exists 𝜖 ≥ 0 such that 1− pS1 (𝜏)

pS0 (𝜏) ≤ 𝜖 for every good
transcript 𝜏 . Then,

SD(𝒯1, 𝒯0) ≤ 𝜖 + Pr[𝒯0 is bad] .

Strong multi-user PRP. We will prove a better result that DESX1 is a (multi-user) strong
PRP. We now define the notion. Let 𝐸 : 𝒦 × {0, 1}𝑛 → {0, 1}𝑛 be a blockcipher. Let Perm(𝑛) be
the set of all permutations on {0, 1}𝑛. For an adversary 𝒜, let

Adv±prp
𝐸 (𝒜) = 2 Pr[G±prp

𝐸 (𝒜)]− 1 ,

be the advantage of the adversary against the multi-user strong PRP security of 𝐸, where game
G±prp

𝐸 is defined in Fig. 14. This game is written as a standard-model notion; in the ideal-cipher
model, the adversary will be given oracle access to 𝐸 and its inverse as well. The (ordinary) PRP
notion is simply a special case of the strong PRP notion where adversaries are not allowed to make
Dec queries.

Results. The following Proposition 2 shows that DESX1 is a good strong PRP, which implies
Lemma 3.
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Proposition 2. Let 𝐸 : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 be a blockcipher that we model as an ideal
cipher, and let 𝐺 ← DESX1[𝐸]. Then for any adversary 𝒜 that makes at most 𝑝 ideal-cipher
queries and 𝑞 Enc/Dec queries,

Adv±prp
𝐺 (𝒜) ≤ 2𝑝𝑞 + 𝑞2

2𝑘+𝑛
.

Proof. Our proof is based on the H-coefficient technique. We will consider even a computationally
unbounded adversary, and thus we can assume that the adversary is deterministic and never repeats
a prior query. Assume further that the adversary never makes a redundant query: (i) if it queries
𝑌 ← Enc(𝑖, 𝑋) then it won’t query Dec(𝑖, 𝑌 ) and vice versa, and (ii) if it queries 𝑌 ← 𝐸(𝐽, 𝑋)
then it won’t query 𝐸−1(𝐽, 𝑌 ) and vice versa. The real system corresponds to game G±prp

𝐺 with
challenge bit 𝑏 = 1, and the ideal system corresponds to game G±prp

𝐺 with challenge bit 𝑏 = 0.

Setup. In the real world, after the adversary finishes querying, we will give it the keys 𝐾𝑖 = (𝐽𝑖, 𝐿𝑖)
of all users 𝑖 that the adversary queries. In the ideal world, we instead give the adversary truly
random strings 𝐾𝑖←$ {0, 1}𝑘+𝑛, independent of the transcript. This key revealing only helps the
adversary. Thus a transcript consists of the revealed keys and the following information:

– Ideal-cipher queries: For each query 𝑌 ← 𝐸(𝐽, 𝑋) or 𝑋 ← 𝐸−1(𝐽, 𝑌 ), we associate it with
an entry (prim, 𝐽, 𝑋, 𝑌 ).

– Evaluation queries: For each query 𝑌 ← Enc(𝑖, 𝑋) or 𝑋 ← Dec(𝑖, 𝑌 ), we associate it with
an entry (eval, 𝑖, 𝑋, 𝑌 ).

Defining bad transcripts. We say that a transcript is bad if one of the following happens

– There are entries (prim, 𝐽, 𝑋, 𝑌 ) and (eval, 𝑖, 𝑋*, 𝑌 *) such that (i) 𝐽 = 𝐽𝑖 and (ii) either 𝑋* =
𝑋 ⊕ 𝐿𝑖 or 𝑌 * = 𝑌 ⊕ 𝐿𝑖, where 𝐾𝑖 = 𝐽𝑖 ‖ 𝐿𝑖 is the key of user 𝑖 as indicated by the transcript.
In the real world these entries must be consistent, but it is unlikely in the ideal world.

– There are entries (eval, 𝑖, 𝑋, 𝑌 ) and (eval, 𝑗, 𝑋*, 𝑌 *), with 𝑖 ̸= 𝑗, such that (i) 𝐽𝑖 = 𝐽𝑗 and (ii)
either 𝑋 ⊕ 𝐿𝑖 = 𝑋* ⊕ 𝐿𝑗 or 𝑌 ⊕ 𝐿𝑖 = 𝑌 * ⊕ 𝐿𝑗 , where 𝐾𝑖 = 𝐽𝑖 ‖ 𝐿𝑖 and 𝐾𝑗 = 𝐽𝑗 ‖ 𝐿𝑗 are the
keys of users 𝑖 and 𝑗 respectively as indicated by the transcript. In the real world these entries
must be consistent, but it is unlikely in the ideal world.

If a transcript is not bad then we say that it’s good.

Probability of bad transcripts. Let 𝒯0 be the random variable for the transcript in the ideal
system. We now bound the probability that 𝒯0 is bad. For each 𝑖 ∈ {1, 2}, let Bad𝑖 be the set of
transcripts that violates the 𝑖-th constraint of badness.
We first bound the probability that 𝒯0 ∈ Bad1. Consider a pair of entries (prim, 𝐽, 𝑋, 𝑌 ) and
(eval, 𝑖, 𝑋*, 𝑌 *). Recall that in the ideal world, 𝐽𝑖 and 𝐿𝑖 are uniformly random, independent of
those entries. Thus the chance that 𝐽 = 𝐽𝑖 and either 𝑋* = 𝑋 ⊕ 𝐿𝑖 or 𝑌 * = 𝑌 ⊕ 𝐿𝑖 is at most
2/2𝑘+𝑛. Summing that over 𝑝𝑞 pairs of such entries,

Pr[𝒯0 ∈ Bad1] ≤ 2𝑝𝑞

2𝑘+𝑛
.
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We next bound the probability that 𝒯0 ∈ Bad2. Consider a pair of entries (eval, 𝑖, 𝑋, 𝑌 ) and
(eval, 𝑗, 𝑋*, 𝑌 *), with 𝑖 ̸= 𝑗. Recall that in the ideal world, 𝐽𝑖, 𝐽𝑗 , 𝐿𝑖, 𝐿𝑗 are uniformly random,
independent of those entries. Thus the chance that 𝐽𝑖 = 𝐽𝑗 and either 𝑋 ⊕ 𝐿𝑖 = 𝑋* ⊕ 𝐿𝑗 or
𝑌 ⊕ 𝐿𝑖 = 𝑌 * ⊕ 𝐿𝑗 is at most 2/2𝑘+𝑛. Summing that over

(︀𝑞
2
)︀
≤ 𝑞2

2 pairs of such entries,

Pr[𝒯0 ∈ Bad2] ≤ 𝑞2

2𝑘+𝑛
.

Summing up,

Pr[𝒯0 is bad] ≤ Pr[𝒯0 ∈ Bad1] + Pr[𝒯0 ∈ Bad2] ≤ 2𝑝𝑞 + 𝑞2

2𝑘+𝑛
. (3)

Transcript ratio. Fix a good transcript 𝜏 . For a key 𝐽 ∈ {0, 1}𝑘, let 𝑉 (𝐽) be the number
of entries (prim, 𝐽, 𝑋, 𝑌 ), and let 𝑈(𝐽) be the number of entries (eval, 𝑖, 𝑋, 𝑌 ) such that 𝐽𝑖 = 𝐽 .
Suppose that the transcript 𝜏 contains exactly 𝑢 users. Then in the ideal world,

Pr[𝒯0 = 𝜏 ] ≤ 2−𝑢(𝑘+𝑛) ∏︁
𝐽∈{0,1}𝑘

𝑉 (𝐽)−1∏︁
𝑖=0

1
2𝑛 − 𝑖

𝑈(𝐽)−1∏︁
𝑗=0

1
2𝑛 − 𝑗

.

In the real world, since 𝜏 is good,

Pr[𝒯1 = 𝜏 ] = 2−𝑢(𝑘+𝑛) ∏︁
𝐽∈{0,1}𝑘

𝑉 (𝐽)−1∏︁
𝑖=0

1
2𝑛 − 𝑖

𝑈(𝐽)−1∏︁
𝑗=0

1
2𝑛 − 𝑉 (𝐽)− 𝑗

.

Hence
Pr[𝒯1 = 𝜏 ]
Pr[𝒯0 = 𝜏 ] ≥ 1 . (4)

Wrapping up. From Lemma 5 with 𝜖 = 0, Eq. (3), and Eq. (4),

Adv±prp
𝐺 (𝒜) ≤ 2𝑝𝑞 + 𝑞2

2𝑘+𝑛
.

as claimed.

D Proof of Theorem 2

Our proof relies on the Chi-Squared method of Dai, Hoang, and Tessaro [10], and the well-known
Azuma’s inequality, which we will review below.

The Chi-squared method. Suppose that we want to bound the advantage of a computationally
unbounded adversary 𝒜 in distinguishing a “real” system S1 from an “ideal” system S0. Without
loss of generality, assume that 𝒜 is deterministic and makes exactly 𝑞 queries. Since the adversary
is deterministic, for any 𝑖 ≤ 𝑞 − 1, the answers for the first 𝑖 queries completely determine the
first 𝑖 + 1 queries. For a system S ∈ {S1, S0} and strings 𝑧1, . . . , 𝑧𝑖, let pS,𝒜(𝑧1, . . . , 𝑧𝑖) denote the
probability that the answers for the first 𝑖 queries that 𝒜 receives when interacting with S are
𝑧1, . . . , 𝑧𝑖. If pS,𝒜(𝑧1, . . . , 𝑧𝑖) > 0, let pS,𝒜(𝑧𝑖+1 | 𝑧1, . . . , 𝑧𝑖) denote the conditional probability that
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the answer for the (𝑖 + 1)-th query when 𝒜 interacts with system S is 𝑧𝑖+1, given that the answers
for the first 𝑖 queries are 𝑧1, . . . , 𝑧𝑖 respectively.
For each 𝑍 = (𝑧1, . . . , 𝑧𝑞), let 𝑍𝑖 = (𝑧1, . . . , 𝑧𝑖) and let 𝑍0 be the empty string. We write pS,𝐴(· | 𝑍𝑖)
and pS,𝐴(· | 𝑍0) to refer to probabilities pS,𝐴(· | 𝑧1, . . . , 𝑧𝑖) and pS,𝐴(·) respectively. We require that
if pS1,𝒜(𝑍𝑖) > 0 then so is pS0,𝒜(𝑍𝑖). For each 𝑖 ≤ 𝑞 and each vector 𝑍𝑖−1 = (𝑧1, . . . , 𝑧𝑖−1), define

𝜒2(𝑍𝑖−1) =
∑︁
𝑧𝑖

(︀
pS1,𝒜(𝑧𝑖 | 𝑍𝑖−1)− pS0,𝒜(𝑧𝑖 | 𝑍𝑖−1)

)︀2

pS0,𝒜(𝑧𝑖 | 𝑍𝑖−1) ,

where the sum is taken over all 𝑧𝑖 such that pS0,𝒜(𝑧𝑖 | 𝑍𝑖−1) > 0. Lemma 6 below bounds the
statistical distance SD

(︀
pS0,𝐴(·), pS1,𝐴(·)

)︀
between pS0,𝐴(·) and pS1,𝐴(·), namely the best possible

distinguishing advantage of 𝒜 between S1 and S0.

Lemma 6 (The Chi-Squared Lemma). [10, Lemma 3] Suppose whenever pS1,𝒜(𝑍𝑖) > 0 then
pS0,𝒜(𝑍𝑖) > 0. Then

SD
(︀
pS0,𝐴(·), pS1,𝐴(·)

)︀
≤

(︁1
2

𝑞∑︁
𝑖=1

E[𝜒2(𝑋𝑖−1)]
)︁1/2

,

where the expectation is taken over vectors 𝑋𝑖−1 of the 𝑖− 1 first answers sampled according to the
interaction with S1.

Azuma’s inequality. We now briefly recall the Azuma’s inequality; a more detailed exposition
can be found in a standard textbook of probability theory, for example, [25, Chapter 4.4].
Let 𝑇0, 𝑇1, . . . , 𝑇𝑚 be a sequence of random variables. We say that (𝑇0, . . . , 𝑇𝑚) is a martingale if
E

[︀
|𝑇𝑖|

]︀
< ∞ and E[𝑇𝑖 | 𝑇1, . . . , 𝑇𝑖−1] = 𝑇𝑖−1 for every 𝑖 ∈ {1, . . . , 𝑚}. The following result is the

well-known Azuma’s inequality.

Lemma 7 (Azuma’s inequality). Let 𝑇0, . . . , 𝑇𝑚 be a martingale. Suppose that there is a con-
stant 𝑐 that |𝑇𝑖 − 𝑇𝑖−1| ≤ 𝑐 for every 𝑖 ∈ {1, . . . , 𝑚}. Then for any 𝜆 > 0,

Pr
[︀
|𝑇𝑚 − 𝑇0| ≥ 𝑐𝜆

√
𝑚

]︀
≤ 𝑒−𝜆2/2 .

The proof. Consider games 𝑃1–𝑃4 in Fig. 15. Game 𝑃1 corresponds to game Gprf
XOR[𝐸] with chal-

lenge bit 𝑏 = 1, and game 𝑃4 corresponds to game Gprf
XOR[𝐸] with challenge bit 𝑏 = 0. Game 𝑃2 is

similar to game 𝑃1, but it samples a truly random permutation 𝜋𝑖 for each user 𝑖, and for each
call to 𝐸(𝐾𝑖, ·), it calls 𝜋𝑖(·) instead. Game 𝑃3 is similar to game 𝑃4, but instead of picking a truly
random function 𝑓𝑖 for each user 𝑖, it imposes a constraint that 𝑓𝑖(𝑋) ̸= 0𝑛 for every 𝑥 ∈ {0, 1}𝑛−1.
To bound the gap between games 𝑃1 and 𝑃2, we construct an adversary ℬ attacking the PRP
security of 𝐺 as follows. Adversary ℬ runs 𝒜 and simulates game 𝑃1. However, for each call to
𝐺(𝐾𝑖, ·), it instead makes a corresponding query to its oracle Eval(𝑖, ·). Thus

Pr[𝑃1(𝒜)]− Pr[𝑃2(𝒜)] = Advprp
𝐺 (ℬ) .
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procedure Initialize//Game 𝑃1

𝐾1, 𝐾2, . . . ←$𝒦

procedure Eval(𝑖, 𝑀)
𝑌 ← 𝐺(𝐾𝑖, 𝑀 ‖ 0)⊕𝐺(𝐾𝑖, 𝑀 ‖ 1)
return 𝑌

procedure Initialize//Game 𝑃2

𝜋1, 𝜋2, . . . ←$ Perm(𝑛)

procedure Eval(𝑖, 𝑀)
𝑌 ← 𝜋𝑖(𝑀 ‖ 0)⊕ 𝜋𝑖(𝑀 ‖ 1)
return 𝑌

procedure Initialize//Games 𝑃3

Dom← {0, 1}𝑛−1

Rng← {0, 1}𝑛∖{0𝑛}
𝑓1, 𝑓2, · · · ←$ Func(Dom, Rng)

procedure Eval(𝑖, 𝑀)
𝑌 ← 𝑓𝑖(𝑀); return 𝑌

procedure Initialize//Games 𝑃4

Dom← {0, 1}𝑛−1

Rng← {0, 1}𝑛

𝑓1, 𝑓2, · · · ←$ Func(Dom, Rng)

procedure Eval(𝑖, 𝑀)
𝑌 ← 𝑓𝑖(𝑀); return 𝑌

Fig. 15: Games 𝑃1–𝑃4 in the proof of Theorem 2. The games share a common Finalize(𝑏′) that
returns (𝑏′ = 1).

procedure Eval(𝑖, 𝑀) //Games 𝑃3 , 𝑃4

𝑌 ←$ {0, 1}𝑛

if 𝑌 = 0𝑛 then bad←$ true; 𝑌 ←$ {0, 1}𝑛∖{0𝑛}
return 𝑌

Fig. 16: Rewritten games 𝑃3 and 𝑃4 in the proof of Theorem 2. Procedure Initialize is empty and
thus omitted. Game 𝑃3 contains the boxed statement but game 𝑃4 does not.

For games 𝑃2–𝑃4, we will consider even a computationally unbounded adversary 𝒜, and thus we
can assume that 𝒜 is deterministic and never repeats a prior query. We claim that

Pr[𝑃2(𝒜)]− Pr[𝑃3(𝒜)] ≤
√

50𝑛 · 𝑞
2𝑛

;

the proof is postponed until further below. For games 𝑃3 and 𝑃4, due to the assumption that 𝒜 does
not repeat a prior query, instead of sampling functions 𝑓𝑖 eagerly, we can sample them lazily, and
thus the two games can be rewritten as shown in Fig. 16. In particular, in game 𝑃4, each query will
receive a truly random answer, and in game 𝑃3, each query will receive a random, non-zero answer.
The two games are identical until the flag bad is set, and thus from the Fundamental Lemma of
Game Playing [3],

Pr[𝑃3(𝒜)]− Pr[𝑃4(𝒜)] ≤ Pr[𝑃4 sets bad] .

If 𝒜 makes 𝑞 queries then the chance that one of the truly random answers becomes 0𝑛 is at most
𝑞/2𝑛. Hence

Pr[𝑃3(𝒜)]− Pr[𝑃4(𝒜)] ≤ 𝑞

2𝑛
.

Summing up,

Advprf
XOR[𝐺](𝒜) = Pr[𝑃1(𝒜)]− Pr[𝑃4(𝒜)]

=
3∑︁

𝑖=1
Pr[𝑃𝑖(𝒜)]− Pr[𝑃𝑖+1(𝒜)] ≤ Advprp

𝐺 (ℬ) + 8
√

𝑛 · 𝑞
2𝑛

.
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We now bound the gap between 𝑃2 and 𝑃3 via the Chi-Squared method. Let S1 be the system that
implements game 𝑃2, and S0 be the system that implements game 𝑃3. Without loss of generality,
suppose that 𝒜 makes exactly 𝑞 queries. Let 𝑋 = (𝑋1, . . . , 𝑋𝑞) be the random variable for the 𝑞
answers in S1, and let 𝑋𝑖 = (𝑋1, . . . , 𝑋𝑖) for every 𝑖 ≤ 𝑞. Fix 𝑖 ≤ 𝑞 and fix 𝑥 ∈ {0, 1}𝑛∖{0𝑛}. Let
𝑌𝑖,𝑥 be the following random variable. If 𝑋𝑖−1 takes values (𝑧1, . . . , 𝑧𝑖−1) then 𝑌𝑖,𝑥 takes the value
pS1,𝐴(𝑥 | 𝑧1, . . . , 𝑧𝑖−1). Recall that

𝜒2(𝑋𝑖−1) =
∑︁

𝑥∈{0,1}𝑛∖{0𝑛}

(𝑌𝑖,𝑥 − 1/(2𝑛 − 1))2

1/(2𝑛 − 1) ≤
∑︁

𝑥∈{0,1}𝑛∖{0𝑛}
2𝑛 · (𝑌𝑖,𝑥 − 1/(2𝑛 − 1))2 . (5)

We claim that
E

[︁(︁
𝑌𝑖,𝑥 −

1
(2𝑛 − 1

)︁2]︁
≤ 100𝑖𝑛

24𝑛
. (6)

This claim will be justified later. From Eq. (5) and Eq. (6),

E[𝜒2(𝑋𝑖−1)] ≤
∑︁

𝑥∈{0,1}𝑛∖{0𝑛}
2𝑛 ·E

[︀
(𝑌𝑖,𝑥 − 1/(2𝑛 − 1))2]︀

≤ 100𝑖𝑛

22𝑛
.

By the Chi-Squared Lemma,(︀
Pr[𝑃2(𝒜)]− Pr[𝑃3(𝒜)]

)︀2 ≤ SD
(︀
pS0,𝐴(·), pS1,𝐴(·)

)︀2

≤ 1
2

𝑞∑︁
𝑖=1

E[𝜒2(𝑋𝑖−1)] ≤ 1
2

𝑞∑︁
𝑖=1

100𝑖𝑛

22𝑛
≤ 50𝑛𝑞2

22𝑛
.

We now will justify Eq. (6) above. In the real system S1, the first 𝑖 − 1 queries lead to 2(𝑖 − 1)
random-permutation calls, and let 𝑉 = (𝑉1, . . . , 𝑉2𝑖−2) be the list of the outputs of those calls. For
𝑣 ∈ ({0, 1}𝑛)2𝑖−2, we write pS1,𝐴(𝑥 | 𝑉 = 𝑣) to denote the conditional probability that the 𝑖-th
answer is 𝑥, given that 𝑉 = 𝑣. Let 𝑊 be the random variable that if 𝑉 takes value 𝑣 then 𝑊 takes
value pS1,𝐴(𝑥 | 𝑉 = 𝑣). Since 𝑉 uniquely determines 𝑋𝑖−1,

𝑌𝑖,𝑥 = E[𝑊 |𝑋𝑖−1] .

From the fact that the function 𝜌(𝑥) = (𝑥 − 1/(2𝑛 − 1))2 is convex, using Jensen’s inequality for
conditional expectation,(︁

𝑌𝑖,𝑥 −
1

(2𝑛 − 1
)︁2

= 𝜌
(︀
E[𝑊 |𝑋𝑖−1]

)︀
≤ E

[︀
𝜌(𝑊 ) |𝑋𝑖−1

]︀
= E

[︁(︁
𝑊 − 1

(2𝑛 − 1
)︁2
|𝑋𝑖−1

]︁
.

Taking expectation of both sides gives us

E
[︁(︁

𝑌𝑖,𝑥 −
1

2𝑛 − 1
)︁2]︁
≤ E

[︁(︁
𝑊 − 1

(2𝑛 − 1
)︁2]︁

.

What remains is to prove that

E
[︁(︁

𝑊 − 1
2𝑛 − 1

)︁2]︁
≤ 100𝑖𝑛

24𝑛
.
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Since (𝑊 − 1/(2𝑛 − 1))2 ≤ 1, it suffices to prove that

Pr
[︁(︁

𝑊 − 1
2𝑛 − 1

)︁2
≥ 99𝑖𝑛

24𝑛

]︁
≤ 𝑖𝑛

24𝑛
. (7)

The single-user case. It is instructive to first consider the case that the adversary 𝒜 targets
only a single user. In this case, we actually can give a much stronger concentration bound on 𝑊 .
In particular, we will show that

Pr
[︁(︁

𝑊 − 1
2𝑛 − 1

)︁2
≥ 99𝑖𝑛

24𝑛

]︁
≤ 2−5𝑛 . (8)

Note that in this single-user setting, 𝑉1, . . . , 𝑉2𝑖−2 are sampled uniformly without replacement from
{0, 1}𝑛. For each 𝑗 ≤ 2𝑖− 2, let 𝐵𝑗 be the Bernoulli random variable such that 𝐵𝑗 = 1 if and only
if 𝑉𝑗 ∈ {𝑉1 ⊕ 𝑥, . . . , 𝑉𝑗−1 ⊕ 𝑥}. Let 𝐷 = 2(𝐵1 + · · ·+ 𝐵2𝑖−2). We will use the following result that
is implicit in the work of Dai, Hoang, and Tessaro [10].

Lemma 8. [10] Define 𝐵1, . . . , 𝐵𝑖, and 𝑊 and 𝐷 as above. Then

(︁
𝑊 − 1

2𝑛 − 1
)︁2
≤

3
(︀
𝐷 − 4(𝑖− 1)2/2𝑛

)︀2 + 12(𝑖− 1)2/22𝑛

24𝑛
.

Moreover,

E[𝐵𝑖 | 𝐵1, . . . , 𝐵𝑖−1] = 𝑖− 1− 2(𝐵1 + · · ·+ 𝐵𝑖−1)
2𝑛 − (𝑖− 1) .

We now prove that for every 𝑗 ≤ 2𝑖− 2, with probability at least 1− 𝑗/𝑒4.5𝑛 ≥ 1− 2−5𝑛,⃒⃒
𝐵1 + · · ·+ 𝐵𝑗 − 𝑗2/2𝑛+1⃒⃒

≤ 4
√︀

𝑗𝑛 .

Combining this for 𝑗 = 2𝑖−2 and Lemma 8 leads to Eq. (8). We prove this claim by induction on 𝑗.
The base case 𝑗 = 1 obviously holds, since 𝐵1 = 0. Now, suppose that the claim holds for 𝑗− 1, we
shall prove that it holds for 𝑗 as well. Let 𝑇0 = 0 and 𝑇𝑟 = 𝑇𝑟−1 + 𝐵𝑟 − E[𝐵𝑟 | 𝐵1, . . . , 𝐵𝑟−1] for
every 1 ≤ 𝑟 ≤ 𝑗. Since 𝐵1, . . . , 𝐵𝑟−1 completely determine 𝑇1, . . . , 𝑇𝑟−1,

E[𝑇𝑟 | 𝑇1, . . . , 𝑇𝑟−1] = E
[︁
𝑇𝑟−1 + 𝐵𝑟 −E[𝐵𝑟 | 𝐵1, . . . , 𝐵𝑟−1] | 𝑇1, . . . , 𝑇𝑟−1

]︁
= 𝑇𝑟−1 + E[𝐵𝑟 | 𝑇1, . . . , 𝑇𝑟−1]−E[𝐵𝑟 | 𝑇1, . . . , 𝑇𝑟−1] = 𝑇𝑟−1 .

Moreover, for every 𝑟 ≤ 𝑗,

|𝑇𝑟 − 𝑇𝑟−1| =
⃒⃒⃒
𝐵𝑟 −E[𝐵𝑟 | 𝐵1, . . . , 𝐵𝑟−1]

⃒⃒⃒
≤ max{𝐵𝑟, E[𝐵𝑟 | 𝐵1, . . . , 𝐵𝑟−1]} ≤ 1 ,

where the first inequality is due to the fact that 𝐵𝑟 ≥ 0, and the second inequality is due to the
fact that 𝐵𝑟 ≤ 1. Thus |𝑇𝑟| ≤ 𝑟, and therefore E[|𝑇𝑟|] < ∞. Hence (𝑇0, . . . , 𝑇𝑗) is a martingale.
Using Azuma’s inequality with 𝑐 = 1, 𝜆 = 3

√
𝑛, and 𝑚 = 𝑗,

Pr
[︁
|𝑇𝑗 − 𝑇0| ≥ 3

√︀
𝑛𝑗

]︁
≤ 𝑒−4.5𝑛 . (9)
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Now suppose that |𝑇𝑗 − 𝑇0| ≤ 3
√

𝑛𝑗 and for every 𝑟 ≤ 𝑗 − 1,

|𝐵1 + · · ·+ 𝐵𝑟 − 𝑟2/2𝑛+1| ≤ 4
√

𝑟𝑛 . (10)

From Eq. (9) and the induction hypothesis, this happens with probability at least 1− 𝑗/𝑒4.5𝑛. We
now show that

|𝐵1 + · · ·+ 𝐵𝑗 − 𝑗2/2𝑛+1| ≤ 4
√︀

𝑗𝑛

with (conditional) probability 1, justifying the inductive case. From Lemma 8, for every 𝑟 ≤ 𝑗,

E[𝐵𝑟 | 𝐵1, . . . , 𝐵𝑟−1] = 𝑟 − 1− 2(𝐵1 + · · ·+ 𝐵𝑟−1)
2𝑛 − (𝑟 − 1) . (11)

Thus, from Eq. (11), for every 𝑟 ≤ 𝑗,⃒⃒⃒
E[𝐵𝑟 | 𝐵1, . . . , 𝐵𝑟−1]− (𝑟 − 1)/2𝑛

⃒⃒⃒
=

⃒⃒⃒𝑟 − 1− 2(𝐵1 + · · ·+ 𝐵𝑟−1)
2𝑛 − (𝑟 − 1) − (𝑟 − 1)/2𝑛

⃒⃒⃒
=

⃒⃒⃒−2
(︀
𝐵1 + · · ·+ 𝐵𝑟−1 − (𝑟 − 1)2/2𝑛+1)︀

2𝑛 − (𝑟 − 1)

⃒⃒⃒
≤ 8

√︀
(𝑟 − 1)𝑛

2𝑛 − (𝑟 − 1) ≤
8
√︀

(𝑟 − 1)𝑛
2𝑛 − 𝑗

,

where the second last inequality is due to the induction hypothesis. Since

𝑇𝑗 − 𝑇0 =
𝑗∑︁

𝑟=1
𝐵𝑟 −E[𝐵𝑟 | 𝐵1, . . . , 𝐵𝑟−1],

we have ⃒⃒⃒
𝐵1 + · · ·+ 𝐵𝑗 − 𝑗(𝑗 − 1)/2𝑛+1

⃒⃒⃒
=

⃒⃒⃒ 𝑗∑︁
𝑟=1

𝐵𝑟 − (𝑟 − 1)/2𝑛
⃒⃒⃒

=
⃒⃒⃒
𝑇𝑗 − 𝑇0 +

𝑗∑︁
𝑟=1

(︀
E[𝐵𝑟 | 𝐵1, . . . , 𝐵𝑟−1]− (𝑟 − 1)/2𝑛)︀⃒⃒⃒

≤ |𝑇𝑗 − 𝑇0|+
𝑗∑︁

𝑟=1

⃒⃒⃒
E[𝐵𝑟 | 𝐵1, . . . , 𝐵𝑟−1]− (𝑟 − 1)/2𝑛

⃒⃒⃒
≤ 3

√︀
𝑗𝑛 +

𝑗∑︁
𝑟=1

8
√︀

(𝑟 − 1)𝑛
2𝑛 − 𝑗

. (12)

On the other hand,
𝑗∑︁

𝑟=1

8
√︀

(𝑟 − 1)𝑛
2𝑛 − 𝑗

= 8𝑗
√

𝑗𝑛

2𝑛 − 𝑗
· 1

𝑗

𝑗∑︁
𝑟=1

√︁
(𝑟 − 1)/𝑗

≤ 8𝑗
√

𝑗𝑛

2𝑛 − 𝑗
·
∫︁ 1

0

√
𝑥𝑑𝑥 = 16𝑗

√
𝑗𝑛

3 · (2𝑛 − 𝑗) ≤
√︀

𝑗𝑛− 𝑗

2𝑛+1 , (13)

where the last inequality is due to the fact that 𝑛 ≥ 8 and 𝑗 ≤ 2𝑛

128 . From Eq. (12) and Eq. (13),⃒⃒⃒
𝐵1 + · · ·+ 𝐵𝑗 − 𝑗2/2𝑛+1

⃒⃒⃒
≤

⃒⃒⃒
𝐵1 + · · ·+ 𝐵𝑗 − 𝑗(𝑗 − 1)/2𝑛+1

⃒⃒⃒
+ 𝑗

2𝑛

≤ 3
√︀

𝑗𝑛 +
√︀

𝑗𝑛− 𝑗

2𝑛
+ 𝑗

2𝑛
= 4

√︀
𝑗𝑛 .
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procedure Initialize//Games 𝐺1, 𝐺2

𝐾1, 𝐾2, · · · ←$𝒦; 𝐽1, 𝐽2, · · · ← 0
𝑓1, 𝑓2, · · · ←$ Func(𝒩 , {0, 1}𝑘 × {0, 1}ℓ)

procedure Enc.init(𝑖, 𝑁)
𝐽𝑖 ← 𝐽𝑖 + 1; 𝑗 ← 𝐽𝑖

(𝐿, 𝑃 )← KD(𝐾𝑖, 𝑁) //For game 𝐺1 only
(𝐿, 𝑃 )← 𝑓𝑖(𝑁) //For game 𝐺2 only
𝑆𝑖,𝑗 ← (𝐿, 𝑃, 𝑁, 1); return 𝐽𝑖

procedure Enc.next(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
(𝐿, 𝑃, 𝑁, 𝑟)← 𝑆𝑖,𝑗 ; 𝐶 ← E𝐿(⟨𝑃, 𝑟, 0⟩, 𝐴, 𝑀)
𝑆𝑖,𝑗 ← (𝐿, 𝑃, 𝑁, 𝑟 + 1); return 𝐶

procedure Enc.last(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
(𝐿, 𝑃, 𝑁, 𝑟)← 𝑆𝑖,𝑗

𝐶 ← E𝐿(⟨𝑃, 𝑟, 1⟩, 𝐴, 𝑀); 𝑆𝑖,𝑗 ← ⊥
return 𝐶

procedure Dec(𝑖, 𝑁, 𝐴, 𝐶, 𝑎)
if |𝐴| ̸= |𝐶| then return false
𝑚← |𝐶|
(𝐿, 𝑃 )← KD(𝐾𝑖, 𝑁) //For game 𝐺1 only
(𝐿, 𝑃 )← 𝑓𝑖(𝑁) //For game 𝐺2 only
for 𝑟 ← 1 to |ℐ| do

𝑗 ← ℐ[𝑟]; if 𝑗 > 𝑚 or 𝑗 < 1 then return false
if (𝑎 = 0 or 𝑗 < 𝑚) then

if D𝐿(⟨𝑃, 𝑗, 0⟩, 𝐴[𝑗], 𝐶[𝑗]) = ⊥ then return false
elsif D𝐿(⟨𝑃, 𝑚, 1⟩, 𝐴[𝑚], 𝐶[𝑚]) = ⊥ then return false

return true
procedure Finalize(𝑏′)
return (𝑏′ = 1)

Fig. 17: Games 𝐺1 and 𝐺2 in the proof of Theorem 3. Each game maintains an internal
procedure Look.

The multi-user case. We now prove Eq. (7) for the general multi-user setting. Let Bad be the
event that (𝑊 − 1/(2𝑛− 1))2 ≥ 99𝑖𝑛/24𝑛. One can think of the adversary as playing a (multi-user)
game; it wins if Bad happens. Here the adversary has the adaptivity to pick the user 𝑈 for the 𝑖-th
query, and also the number 𝑄 ∈ {0, . . . , 𝑖 − 1} of queries, among the first 𝑖 − 1 queries, for this
user. By reindexing the user, we can assume that 𝑈 ∈ {1, . . . , 𝑖}. Note that Bad only depends the
queries and answers of user 𝑈 . Hence each fixed choice of (𝑈, 𝑄) corresponds to a single-user game
in which Bad happens with probability at most 2−5𝑛, thanks to Eq. (8). The adaptivity at best lets
the adversary play 𝑖2 single-user games simultaneously; if the adversary wins some of those games,
it wins its multi-user game. From the Union Bound, with probability at most 𝑖2/25𝑛 ≤ 𝑖/24𝑛, the
adversary can win the multi-user game.

E Proof of Theorem 3

Consider games 𝐺1–𝐺4 in Fig. 17 and Fig. 18. Game 𝐺1 corresponds to game Gnoae2
SE2[KD,𝛱](𝒜) with

challenge bit 𝑏 = 1. In game 𝐺1, each user 𝑖 has a corresponding key 𝐾𝑖, but in game 𝐺2, we sample
a uniformly random function 𝑓𝑖 : 𝒩 → {0, 1}𝑘 × {0, 1}ℓ, and for each call to KD(𝐾𝑖, ·), we make a
corresponding call to 𝑓𝑖(·) instead.
Game 𝐺3 is similar to game 𝐺2, but in each encryption query for user 𝑖 and nonce 𝑁 that results
in a call 𝐶 ← E𝐿(𝑁*, 𝐴, 𝑀), we store the tuple (𝑖, 𝑁, 𝑁*, 𝐴, 𝐶) in a table. On the other hand, each
time we are supposed to check if D𝐿(𝑁*, 𝐴, 𝐶) ̸= ⊥ for a user 𝑖 under nonce 𝑁 , if there is already a
prior tuple (𝑖, 𝑁, 𝑁*, 𝐴, 𝐶) then we simply return true. Otherwise we will indeed call D𝐿(𝑁*, 𝐴, 𝐶).

Game 𝐺4 is similar to game 𝐺3, but for each call 𝐶 ← E𝐿(𝑁*, 𝐴, 𝑀), we instead pick a truly
random 𝐶 of the same length. Moreover, for each call D𝐿(𝑁*, 𝐴, 𝐶), we instead use ⊥ as the
answer. Thanks to the restriction on the behavior of the adversary, any call to the Dec oracle must
eventually end up with a call to D instead of looking up prior tuples from encryption queries.
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procedure Initialize//Games 𝐺3, 𝐺4

𝐽1, 𝐽2, · · · ← 0
𝑓1, 𝑓2, · · · ←$ Func(𝒩 , {0, 1}𝑘 × {0, 1}ℓ)

procedure Enc.init(𝑖, 𝑁)
𝐽𝑖 ← 𝐽𝑖 + 1; 𝑗 ← 𝐽𝑖

(𝐿, 𝑃 )← 𝑓𝑖(𝑅); 𝑆𝑖,𝑗 ← (𝐿, 𝑃, 𝑁, 1)
return 𝐽𝑖

procedure Enc.next(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
(𝐿, 𝑃, 𝑁, 𝑟)← 𝑆𝑖,𝑗 ; 𝑁* ← ⟨𝑃, 𝑟, 0⟩
𝐶 ← E𝐿(𝑁*, 𝐴, 𝑀)
𝐶←$ {0, 1}|𝐶| //For game 𝐺4 only
Tab[𝑖, 𝑅, 𝑁*, 𝐴, 𝐶]← true
𝑆𝑖,𝑗 ← (𝐿, 𝑃, 𝑁, 𝑟 + 1); return 𝐶

procedure Enc.last(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
(𝐿, 𝑃, 𝑁, 𝑟)← 𝑆𝑖,𝑗 ; 𝑁* ← ⟨𝑃, 𝑟, 1⟩
𝐶 ← E𝐿(𝑁*, 𝐴, 𝑀)
𝐶←$ {0, 1}|𝐶| //For game 𝐺4 only
Tab[𝑖, 𝑅, 𝑁*, 𝐴, 𝐶]← true; 𝑆𝑖,𝑗 ← ⊥
return 𝐶

procedure Dec(𝑖, 𝑁, 𝐴, 𝐶, 𝑎)
if |𝐴| ̸= |𝐶| then return false
𝑚← |𝐶|; (𝐿, 𝑃 )← 𝑓𝑖(𝑁)
for 𝑟 ← 1 to |ℐ| do

𝑗 ← ℐ[𝑟]; if 𝑗 > 𝑚 or 𝑗 < 1 then return false
if (𝑎 = 0 or 𝑗 < 𝑚) then

if Look(𝑖, 𝑁, ⟨𝑃, 𝑗, 0⟩, 𝐴[𝑗], 𝐶[𝑗]) = false then return false
elsif Look(𝑖, 𝑁, ⟨𝑃, 𝑚, 1⟩, 𝐴[𝑚], 𝐶[𝑚]) = false then return false

return true
private procedure Look(𝑖, 𝑁, 𝑁*, 𝐴, 𝐶)
if Tab[𝑖, 𝑁, 𝑁*, 𝐴, 𝐶] ̸= ⊥ then return true
(𝐿, 𝑃 )← 𝑓𝑖(𝑁); 𝑀 ← D𝐿(𝑁*, 𝐴, 𝐶)
𝑀 ← ⊥ //For game 𝐺4 only
return (𝑀 ̸= ⊥)

procedure Finalize(𝑏′)
return (𝑏′ = 1)

Fig. 18: Games 𝐺3 and 𝐺4 in the proof of Theorem 3. Each game maintains an internal
procedure Look.

As a result, any Dec query will result in a false-answer. Hence game 𝐺4 coincides with game
Gnoae2

SE2[KD,𝛱](𝒜) of challenge bit 𝑏 = 0, and thus

Advnoae2
SE2[KD,𝛱](𝒜) = Pr[𝐺1(𝒜)]− Pr[𝐺4(𝒜)] .

We now bound the gap between each pair of consecutive games. Consider the following adversary ℬ′

attacking the (muti-user) PRF security of KD. It runs 𝒜 and simulates game 𝐺1, but for each call
to KD(𝐾𝑖, ·), it instead uses its oracle Eval(𝑖, ·). Thus

Pr[𝐺1(𝒜)]− Pr[𝐺2(𝒜)] = Advprf
KD(ℬ′) .

Next, in game 𝐺3, for each table look-up Look(𝑖, 𝑁, 𝑁*, 𝐴, 𝑀) with 𝑁* = ⟨𝑃, 𝑗, 𝑎⟩, the triple
(𝑖, 𝑁, 𝑁*) uniquely determines the user 𝑖, nonce 𝑁 , and counter 𝑗. Thus the table look-ups do not
return false positives. Thanks to the correctness of the conventional AE scheme 𝛱,

Pr[𝐺2(𝒜)] = Pr[𝐺3(𝒜)] .

Finally, consider the following adversary ℬ attacking 𝛱. It runs 𝒜 and simulates game 𝐺3, but with
the following differences. First, instead of eagerly sampling a function 𝑓𝑖 for each user 𝑖, adversary ℬ
lazily implements 𝑓𝑖. That is, each time it has to evaluate 𝑓𝑖(𝑁), if this is the first time it has to do
this evaluation, it picks 𝐿←$ {0, 1}𝑘 and 𝑃 ←$ {0, 1}ℓ, stores the triple (⟨𝑖, 𝑁⟩, 𝐿, 𝑃 ), and returns
(𝐿, 𝑃 ) as the answer, where ⟨𝑖, 𝑁⟩ is a unique encoding of (𝑖, 𝑁) as an integer. Otherwise, if there
is already some pair (⟨𝑖, 𝑁⟩, 𝐿, 𝑃 ) then it simply returns (𝐿, 𝑃 ) as the answer. Next, for each call
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E𝐿(𝑁*, 𝐴, 𝑀) for a user 𝑖 under nonce 𝑁 , it instead calls Enc(⟨𝑖, 𝑁⟩, 𝑁*, 𝐴, 𝑀). Likewise, for each
call D𝐿(𝑁*, 𝐴, 𝐶) for a user 𝑖 under nonce 𝑁 , it calls Dec(⟨𝑖, 𝑁⟩, 𝑁*, 𝐴, 𝐶).
Thanks to the table look-ups in game 𝐺3, adversary ℬ does not make prohibited queries to the
decryption oracle. Moreover, for each encryption query Enc(⟨𝑖, 𝑁⟩, 𝑁*, 𝐴, 𝑀) with 𝑁* = ⟨𝑃, 𝑗, 𝑎⟩,
the pair (⟨𝑖, 𝑁⟩, 𝑁*) uniquely determines the user 𝑖, nonce 𝑁 , and counter 𝑗. Hence ℬ is nonce-
respecting, as long as 𝒜 is nonce-respecting. Next, view each encryption of a (partial) stream as
throwing a ball into bin 𝑃 , where 𝑃 is the corresponding nonce prefix. The throws are uniformly
random. From Lemma 2, ℬ is max{4ℓ, 4𝑞/2ℓ}-repeating with probability at least 1 − 2−ℓ. On the
other hand,

Pr[𝐺3(𝒜)]− Pr[𝐺4(𝒜)] = Advae
𝛱 (ℬ) .

Summing up

Advnoae2
SE2[KD,𝛱](𝒜) = Pr[𝐺1(𝒜)]− Pr[𝐺4(𝒜)]

=
3∑︁

𝑖=1
Pr[𝐺𝑖(𝒜)]− Pr[𝐺𝑖+1(𝒜)] = Advprf

KD(ℬ′) + Advae
𝛱 (ℬ) .

F Proof of Theorem 4

Consider games 𝐺1–𝐺4 in Fig. 19 and Fig. 20. Game 𝐺1 corresponds to game Gnoae2
SE3[KD,𝛱](𝒜) with

challenge bit 𝑏 = 1. In game 𝐺1, each user 𝑖 has a corresponding key 𝐾𝑖, but in game 𝐺2, we sample
a uniformly random function 𝑓𝑖 : {0, 1}𝑠 → {0, 1}𝑘×{0, 1}ℓ, and for each call to KD(𝐾𝑖, ·), we make
a corresponding call to 𝑓𝑖(·) instead.
Game 𝐺3 is similar to game 𝐺2, but in each encryption query for user 𝑖 and nonce 𝑁 = (𝑅, 𝑃 )
that results in a call 𝐶 ← E𝐿(𝑁*, 𝐴, 𝑀), we store the tuple (𝑖, 𝑅, 𝑁*, 𝐴, 𝐶) in a table. On the
other hand, each time we are supposed to check if D𝐿(𝑁*, 𝐴, 𝐶) ̸= ⊥ for a user 𝑖 under nonce
𝑁 = (𝑅, 𝑃 ), if there is already a prior tuple (𝑖, 𝑅, 𝑁*, 𝐴, 𝐶) then we simply return true. Otherwise
we will indeed call D𝐿(𝑁*, 𝐴, 𝐶).

Game 𝐺4 is similar to game 𝐺3, but for each call 𝐶 ← E𝐿(𝑁*, 𝐴, 𝑀), we instead pick a truly
random 𝐶 of the same length. Moreover, for each call D𝐿(𝑁*, 𝐴, 𝐶), we instead use ⊥ as the
answer. Thanks to the restriction on the behavior of the adversary, any call to the Dec oracle must
eventually end up with a call to D instead of looking up prior tuples from encryption queries.
As a result, any Dec query will result in a false-answer. Hence game 𝐺4 coincides with game
Gnoae2

SE3[KD,𝛱](𝒜) of challenge bit 𝑏 = 0, and thus

Advnoae2
SE3[KD,𝛱](𝒜) = Pr[𝐺1(𝒜)]− Pr[𝐺4(𝒜)] .

We now bound the gap between each pair of consecutive games. Consider the following adversary ℬ′

attacking the (muti-user) PRF security of KD. It runs 𝒜 and simulates game 𝐺1, but for each call
to KD(𝐾𝑖, ·), it instead uses its oracle Eval(𝑖, ·). Thus

Pr[𝐺1(𝒜)]− Pr[𝐺2(𝒜)] = Advprf
KD(ℬ′) .
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procedure Initialize//Games 𝐺1, 𝐺2

𝐾1, 𝐾2, · · · ←$𝒦; 𝐽1, 𝐽2, · · · ← 0
𝑓1, 𝑓2, · · · ←$ Func({0, 1}𝑠, {0, 1}𝑘 × {0, 1}ℓ)

procedure Enc.init(𝑖, 𝑁)
(𝑅, 𝑃 )← 𝑁 ; 𝐽𝑖 ← 𝐽𝑖 + 1; 𝑗 ← 𝐽𝑖

(𝐿, 𝑋)← KD(𝐾𝑖, 𝑅) //For game 𝐺1 only
(𝐿, 𝑋)← 𝑓𝑖(𝑅) //For game 𝐺2 only
𝑃 * ← 𝑃 ⊕𝑋; 𝑆𝑖,𝑗 ← (𝐿, 𝑁, 𝑃 *, 1); return 𝐽𝑖

procedure Enc.next(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
(𝐿, 𝑁, 𝑃 *, 𝑟)← 𝑆𝑖,𝑗 ; 𝐶 ← E𝐿(⟨𝑃 *, 𝑟, 0⟩, 𝐴, 𝑀)
𝑆𝑖,𝑗 ← (𝐿, 𝑁, 𝑃 *, 𝑟 + 1); return 𝐶

procedure Enc.last(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
(𝐿, 𝑁, 𝑃 *, 𝑟)← 𝑆𝑖,𝑗 ; 𝐶 ← E𝐿(⟨𝑃 *, 𝑟, 1⟩, 𝐴, 𝑀)
𝑆𝑖,𝑗 ← ⊥; return 𝐶

procedure Dec(𝑖, 𝑁, 𝐴, 𝐶, ℐ, 𝑎)
if |𝐴| ̸= |𝐶| then return false
(𝑅, 𝑃 )← 𝑁 ; 𝑚← |𝐶|
(𝐿, 𝑋)← KD(𝐾𝑖, 𝑅) //For game 𝐺1 only
(𝐿, 𝑋)← 𝑓𝑖(𝑅) //For game 𝐺2 only
𝑃 * ← 𝑃 ⊕𝑋

for 𝑟 ← 1 to |ℐ| do
𝑗 ← ℐ[𝑟]; if 𝑗 > 𝑚 or 𝑗 < 1 then return false
if (𝑎 = 0 or 𝑗 < 𝑚) then

if
(︀
D𝐿(⟨𝑃 *, 𝑗, 0⟩, 𝐴[𝑗], 𝐶[𝑗]) = ⊥

)︀
then return false

elsif D𝐿(⟨𝑃 *, 𝑚, 1⟩, 𝐴[𝑚], 𝐶[𝑚]) = ⊥ then return false
return true
procedure Finalize(𝑏′)
return (𝑏′ = 1)

Fig. 19: Games 𝐺1 and 𝐺2 in the proof of Theorem 4. Each game maintains an internal
procedure Look.

procedure Initialize//Games 𝐺3, 𝐺4

𝐽1, 𝐽2, · · · ← 0
𝑓1, 𝑓2, · · · ←$ Func({0, 1}𝑠, {0, 1}𝑘 × {0, 1}ℓ)

procedure Enc.init(𝑖, 𝑁)
(𝑅, 𝑃 )← 𝑁 ; 𝐽𝑖 ← 𝐽𝑖 + 1; 𝑗 ← 𝐽𝑖

(𝐿, 𝑋)← 𝑓𝑖(𝑅); 𝑃 * ← 𝑃 ⊕𝑋

𝑆𝑖,𝑗 ← (𝐿, 𝑁, 𝑃 *, 1); return 𝐽𝑖

procedure Enc.next(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
(𝐿, 𝑁, 𝑃 *, 𝑟)← 𝑆𝑖,𝑗 ; (𝑅, 𝑃 )← 𝑁

𝑁* ← ⟨𝑃 *, 𝑟, 0⟩; 𝐶 ← E𝐿(𝑁*, 𝐴, 𝑀)
𝐶←$ {0, 1}|𝐶| //For game 𝐺4 only
Tab[𝑖, 𝑅, 𝑁*, 𝐴, 𝐶]← true
𝑆𝑖,𝑗 ← (𝐿, 𝑁, 𝑃 *, 𝑟 + 1); return 𝐶

procedure Enc.last(𝑖, 𝑗, 𝐴, 𝑀)
if 𝑆𝑖,𝑗 = ⊥ then return ⊥
(𝐿, 𝑁, 𝑟)← 𝑆𝑖,𝑗 ; (𝑅, 𝑃 )← 𝑁

𝑁* ← ⟨𝑃, 𝑟, 1⟩; 𝐶 ← E𝐿(𝑁*, 𝐴, 𝑀)
𝐶←$ {0, 1}|𝐶| //For game 𝐺4 only
Tab[𝑖, 𝑅, 𝑁*, 𝐴, 𝐶]← true; 𝑆𝑖,𝑗 ← ⊥
return 𝐶

procedure Dec(𝑖, 𝑁, 𝐴, 𝐶, 𝑎)
if |𝐴| ̸= |𝐶| then return false
(𝑅, 𝑃 )← 𝑁 ; 𝑚← |𝐶|
for 𝑟 ← 1 to |ℐ| do

𝑗 ← ℐ[𝑟]; if 𝑗 > 𝑚 or 𝑗 < 1 then return false
if (𝑎 = 0 or 𝑗 < 𝑚) then

if Look(𝑖, 𝑅, ⟨𝑃, 𝑗, 0⟩, 𝐴[𝑗], 𝐶[𝑗]) = false then
return false

elsif Look(𝑖, 𝑅, ⟨𝑃, 𝑚, 1⟩, 𝐴[𝑚], 𝐶[𝑚]) = false then
return false

return true
private procedure Look(𝑖, 𝑅, 𝑁*, 𝐴, 𝐶)
if Tab[𝑖, 𝑅, 𝑁*, 𝐴, 𝐶] ̸= ⊥ then return true
(𝐿, 𝑋)← 𝑓𝑖(𝑅); 𝑀 ← D𝐿(𝑁*, 𝐴, 𝐶)
𝑀 ← ⊥ //For game 𝐺4 only
return (𝑀 ̸= ⊥)

procedure Finalize(𝑏′)
return (𝑏′ = 1)

Fig. 20: Games 𝐺3 and 𝐺4 in the proof of Theorem 4. Each game maintains an internal
procedure Look.

Next, in game 𝐺3, for each table look-up Look(𝑖, 𝑅, 𝑁*, 𝐴, 𝐶) with 𝑁* = ⟨𝑃, 𝑗, 𝑎⟩, the triple
(𝑖, 𝑅, 𝑁*) uniquely determines the user 𝑖, nonce 𝑁 = (𝑅, 𝑃 ), and counter 𝑗. Since 𝒜 is nonce-
respecting, the table look-ups do not return false positives. Thanks to the correctness of the con-
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ventional AE scheme 𝛱,
Pr[𝐺2(𝒜)] = Pr[𝐺3(𝒜)] .

Finally, consider the following adversary ℬ attacking 𝛱. It runs 𝒜 and simulates game 𝐺3, but
with the following differences.

– First, instead of eagerly sampling a function 𝑓𝑖 for each user 𝑖, adversary ℬ lazily implements 𝑓𝑖.
That is, each time it has to evaluate 𝑓𝑖(𝑅), if this is the first time it has to do this evaluation,
it picks 𝐿←$ {0, 1}𝑘 and 𝑋 ←$ {0, 1}ℓ, stores the pair (⟨𝑖, 𝑅⟩, 𝐿, 𝑋), and returns (𝐿, 𝑋) as the
answer, where ⟨𝑖, 𝑅⟩ is a unique encoding of (𝑖, 𝑅) as an integer. Otherwise, if there is already
some pair (⟨𝑖, 𝑅⟩, 𝐿, 𝑋) then it simply returns (𝐿, 𝑋) as the answer.

– Next, for each call E𝐿(𝑁*, 𝐴, 𝑀) for a user 𝑖 under nonce 𝑁 = (𝑅, 𝑃 ), it instead calls
Enc(⟨𝑖, 𝑅⟩, 𝑁*, 𝐴, 𝑀). Likewise, for each call D𝐿(𝑁*, 𝐴, 𝐶) for a user 𝑖 under nonce 𝑁 = (𝑅, 𝑃 ),
it calls Dec(⟨𝑖, 𝑅⟩, 𝑁*, 𝐴, 𝐶).

– Finally, ℬ keeps track of how many times an effective nonce prefix 𝑃 * appears among (partial)
encrypted streams. If there is some 𝑃 * that appears for 𝑑 = max{4ℓ, 4𝑞/2ℓ} streams then it
terminates immediately, outputting 1. This step can be implemented in linear time via a hash
function. This termination ensures that ℬ is 𝑑-repeating.

Thanks to the table look-ups in game 𝐺3, adversary ℬ does not make prohibited queries to the
decryption oracle. We claim that for each encryption query Enc(⟨𝑖, 𝑅⟩, 𝑁*, 𝐴, 𝑀) with 𝑁* =
⟨𝑃 *, 𝑗, 𝑎⟩, the pair (⟨𝑖, 𝑅⟩, 𝑁*) uniquely determines the user 𝑖 and nonce 𝑁 = (𝑅, 𝑃 ) and counter 𝑗.
This implies ℬ is nonce-respecting, as long as 𝒜 is nonce-respecting. To justify this claim, assume
to the contrary that there are two encryption queries that end up with the same pair (⟨𝑖, 𝑅⟩, 𝑁*),
with 𝑁* = ⟨𝑃 *, 𝑗, 𝑎⟩. Let (𝐿, 𝑋) ← 𝑓𝑖(𝑅), and let 𝑃 ← 𝑃 * ⊕ 𝑋. These two queries belong to
the same user 𝑖, have the same nonce 𝑁 = (𝑅, 𝑃 ), and use the same counter 𝑗, which leads to a
contradiction if 𝒜 is nonce-respecting.
Let 𝑐 be the challenge bit of game Gae

𝛱 (ℬ). Suppose that 𝑐 = 1. If ℬ does not terminate prematurely
then it perfectly simulates game 𝐺3(𝒜). Otherwise, it will always output 1, which is the correct
answer. Hence

Pr[Gae
𝛱 (ℬ)⇒ true | 𝑐 = 1] ≥ Pr[𝐺3(𝒜)] .

We claim that
Pr[Gae

𝛱 (ℬ)⇒ false | 𝑐 = 0] ≤ Pr[𝐺4(𝒜)] + 2−ℓ . (14)
Subtracting, we get

Advae
𝛱 (ℬ) ≥ Pr[𝐺3(𝒜)]− Pr[𝐺4(𝒜)]− 2−ℓ .

Summing up,

Advnoae2
SE3[KD,𝛱](𝒜) = Pr[𝐺1(𝒜)]− Pr[𝐺4(𝒜)]

=
3∑︁

𝑖=1
Pr[𝐺𝑖(𝒜)]− Pr[𝐺𝑖+1(𝒜)] ≤ Advprf

KD(ℬ′) + Advae
𝛱 (ℬ) + 2−ℓ .

To justify Eq. (14), assume that the challenge bit 𝑐 of game Gae
𝛱 (ℬ) is 0. If ℬ does not termi-

nate prematurely then it perfectly simulates game 𝐺4(𝒜). Thus the gap between the probabilities
Pr[Gae

𝛱 (ℬ) ⇒ false | 𝑐 = 0] and Pr[𝐺4(𝒜)] is at most the probability that ℬ terminates prema-
turely, assuming that 𝑐 = 0. View ℬ as playing a balls-into-bins game. For each (partial) en-
crypted stream, we view it as throwing a ball to bin 𝑃 *, where 𝑃 * is the effective nonce prefix. Let
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𝑑 = max{4ℓ, 4𝑞/2𝑛}. Our goal is to prove that the chance that some bin contains at least 𝑑 balls is
at most 2−ℓ.
Note that ℬ’s queries are generated by 𝒜, and the latter only receives truly random strings or ⊥
that are independent of the effective nonce prefixes. In other words, ℬ’s queries are non-adaptively
generated. For 𝑑 balls that ℬ throws, if there are two of them that belong to the same (𝑖, 𝑅) then
they can’t go to the same bin. If none of them belongs to the same (𝑖, 𝑅) then the 𝑑 corresponding
nonce prefixes are independent, uniformly random strings, and thus the chance that those balls go
to the same bin is 2(1−𝑑)ℓ. While Lemma 2 is stated for uniformly thrown balls, its proof only needs
the hypothesis that for any 𝑑 balls, the chance that they go to the same bin is at most 2(1−𝑑)ℓ. Thus
our goal above is a direct result of the extended Lemma 2.
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