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1. Introduction

In this paper, we study spatial propagation of the following nonlocal dispersal Fisher-
KPP equation

{
ut(t, x) = k ∗ u(t, x) − u(t, x) + f(u(t, x)), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
(1.1)

where u0 ∈ C(R), f ∈ C1([0, 1]) and satisfies the Fisher-KPP type condition:

(H) f is monostable; namely, f(0) = f(1) = 0 and f(u) > 0 for u ∈ (0, 1), f ′(0) > 0 and 
f(u) � f ′(0)u for u ∈ (0, 1).

The nonlocal dispersal, represented by the following convolution integral operator

k ∗ u(t, x) − u(t, x) =
∫
R

k(x − y)u(t, y)dy − u(t, x),

describes the movements of organisms between not only adjacent but also nonadjacent 
spatial locations (see, e.g. Berestycki et al. [6], Kao et al. [22], Murray [31] and Wang 
[38]). Here the kernel k(·) is a continuous and nonnegative function with 

∫
R k(x)dx = 1. 

Moreover, we assume that

(K1) there is a constant λ > 0 such that 
∫
R k(x)eλ|x|dx < +∞;

(K2) k(x1) > 0 and k(x2) > 0 for some constants x1 ∈ R+ and x2 ∈ R−.

Assumption (K1) is called the Mollison condition. For classical results on traveling wave 
solutions of equation (1.1), we refer to Schumacher [34], Bates et al. [5], Chen [9], Chen 
and Guo [11], Carr and Chmaj [8], Coville, Dávila and Martínez [12], Yagisita [44], and 
Sun et al. [36]. Entire solutions of equation (1.1) were studied by Li et al. [24] and Sun 
et al. [37].

The spreading speed is an important concept that describes the phenomenon of spatial 
propagation in many biological and ecological problems, such as the spatial spread of 
infectious diseases and the invasion of species. In 1975, Aronson and Weinberger [4]
studied spreading speed of the following reaction-diffusion equation

{
ut = uxx + f(u), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.
(1.2)

When f is monostable and f ′(0) > 0, they showed that if u0(·) �≡ 0 and 0 � u0(x) � 1
for x ∈ R, then u(t, x) satisfies
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lim
t→+∞

u(t, x) = 1 for any x ∈ R. (1.3)

Moreover, if u0(x) is compactly supported on R, then there is a constant c∗ > 0 such 
that

lim
t→+∞

u(t, x + ct) =
{

1, |c| < c∗,

0, |c| > c∗ for any x ∈ R.

The constant c∗ is called the asymptotic speed on spreading (for short, spreading speed) 
of equation (1.2). For more results on spreading speed theory, we refer to Kolmogorov 
et al. [23], Aronson and Weinberger [3,4], Liang and Zhao [25,26], Lui [28], Weinberger 
[39], Weinberger et al. [40], Yi and Zou [45], and the references cited therein.

For the nonlocal dispersal equation (1.1), Lutscher et al. [29] considered the spreading 
speed and proved that there are two constants c∗

r and c∗
l such that

lim
t→+∞

u(t, x + ct) =
{

1, c∗
l < c < c∗

r ,

0, c < c∗
l or c > c∗

r

for any x ∈ R, (1.4)

where

c∗
l � sup

λ∈R−

{
λ−1
[ ∫
R

k(x)eλxdx − 1 + f ′(0)
]}

, (1.5)

c∗
r � inf

λ∈R+

{
λ−1
[ ∫
R

k(x)eλxdx − 1 + f ′(0)
]}

. (1.6)

The constants c∗
l and c∗

r are called spreading speeds to the left and to the right of the 
nonlocal dispersal equation, respectively. Note that c∗

r may not be equal to −c∗
l because of 

the asymmetry of k. Here the asymmetry of k means that the probability that organisms 
move from point x to point x + y is not equal to that from x to x − y. In addition, 
Finkelshtein et al. [14,16] extended this conclusion to high dimensional spaces Rd, which 
is more complex because of the radial asymmetry of kernels. For more results about 
spreading speeds of nonlocal dispersal equations, we refer to Liang and Zhou [27], Rawal 
et al. [32], Shen and Zhang [35] and Zhang et al. [46].

The aim of this paper is to study some new problems on spreading speeds of nonlocal 
dispersal equations. The three main topics we cover are: identifying the signs of spreading 
speeds, improving the proof of the spreading speed result and studying the relationship 
between spreading speed and exponentially decaying initial data, which we describe in 
turn next.

(a) Identifying the signs of spreading speeds. In reaction-diffusion equation, the spread-
ing speed to the right c∗ is always positive and that to the left −c∗ is always negative. 
We wonder whether this remains true in nonlocal dispersal equations. It is significant 
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to identify the signs of spreading speeds, since they have important influences on spa-
tial properties of solutions and the stability of equilibrium states (see the influences on 
spatial dynamics below). In a related work, Coville et al. [12] showed that asymmetric 
kernels may induce nonpositive minimal wave speed which always coincides with spread-
ing speed in the Fisher-KPP case. However, they did not point out when the minimal 
wave speed is nonpositive.

We find that the spreading speed to the left c∗
l has the same sign as that of E(k) −f ′(0)

and the spreading speed to the right c∗
r has the same sign as that of E(k) + f ′(0). Here 

E(k) stands for the asymmetry level of k and is defined by

E(k) � sign(J(k))

⎡
⎣1 − inf

λ∈R

⎧⎨
⎩
∫
R

k(x)eλxdx

⎫⎬
⎭
⎤
⎦ ,

where J(k) �
∫
R k(x)xdx is the first moment and k belongs to the set that consists 

of all nonnegative and continuous functions satisfying (K1) and 
∫
R k(x)dx = 1. From 

this result, we show that asymmetric dispersal influences the signs of spreading speeds, 
and further influences the spatial dynamics in three aspects: it can determine the spatial 
propagation directions of solutions, influence the stability of equilibrium states, and affect 
the monotone property of solutions. More details are given in Section 2.

The results are applied to two special cases where k is a normal distribution and a 
uniform distribution, respectively. We present more details of the calculation of E(k)
and show how the asymmetric dispersal influences spatial dynamics in Section 5.

(b) Giving an improved proof of the spreading speed result. In [29], Lutscher et al. 
proved the spreading speed result by constructing an innovative lower solution of nonlocal 
dispersal equation (1.1), which can spread at any speed c in (c∗

l , c∗
r), as follows

u(t, x) =
{

εe−s(x−ct) sin(γ(x − ct)), x − ct ∈ [0, π/γ],

0, x − ct > π/γ.
(1.7)

In the construction of this lower solution, they needed to make some technical re-
quirements on k. For example, they assumed that supp(k) = R and the function 
x �→ exp(sx)k(x) is decreasing for large enough x. They also made some requirements 
on the monotone property of the function A(s) = (

∫
R k(x)esxdx − 1 + f ′(0))/s, s �= 0.

In this paper, without any additional assumptions, we construct two new lower solu-
tions which spread at speeds c1 and c2, respectively, as follows

ui(t, x) = max{0, Hi(eρi(−x+cit+ξi))}, i = 1, 2, (1.8)

with

Hi(z) = Aiz − Biz
1+δi − Diz

1−δi , z > 0,
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where c1 ∈ (c∗
r − ε, c∗

r) and c2 ∈ (c∗
l , c∗

l + ε) for small ε > 0.
However, (1.8) is not as good as (1.7), because the speed of (1.8) is limited to (c∗

l , c∗
l +ε)

or (c∗
r − ε, c∗

r). Therefore, we give a new method to study the whole situation of (c∗
l , c∗

r), 
which is called the “forward-backward spreading” method. In this method, for any τ > 0
we divide the time period of [0, τ ] into two parts [0, κτ ] and [κτ, τ ], where κ is any 
number in [0, 1]. In [0, κτ ] we construct a lower solution u1(t, x) spreading at a speed 
of c1 ∈ (c∗

r − ε, c∗
r). In [κτ, τ ] we construct another lower solution u2(t, x) which spreads 

at a speed of c2 ∈ (c∗
l , c∗

l + ε) and satisfies that u2(κτ, x) � u1(κτ, x). Then these 
two lower solutions can be regarded as a lower solution defined in [0, τ ] whose speed is 
c̄ = κc1 + (1 − κ)c2. Moreover, the arbitrariness of κ ensures that c̄ can be equal to any 
number in [c1, c2]. We remark that the term “forward-backward spreading” comes from 
the special case c∗

l < 0 < c∗
r , which means u1(t, x) spreads forward and u2(t, x) spreads 

backward.
By constructing the new lower solutions and applying the “forward-backward spread-

ing” method, we improve the proof of spreading speed result and further obtain a 
property about the spatial propagation of solutions (see Corollary 3.4).

Remark 1.1. In the study of traveling wave solutions, we usually construct the lower 
solution v(t, x) = max{0, eρ(−x+ct) − Leρ(1+δ)(−x+ct)}, where L is large enough. Note 
that v(t, x) > 0 for x large enough. Different from v(t, x), the lower solutions defined 
by (1.8) have no tails on both sides, which means that the function ui(t, ·) is compactly 
supported. Therefore, the lower solutions defined by (1.8) can be used to study the 
spreading speed for compactly supported initial data.

(c) Studying the relationship between spreading speed and exponentially decaying initial 
data. In a reaction-diffusion equation, it is well-known that the decay behavior to zero 
as x → ±∞ of the initial data influences the spreading speed, see e.g. Booty et al. [7], 
Hamel and Nadin [20], McKean [30], and Sattinger [33]. Moreover, when the initial datum 
decays slower than any exponentially decaying function or the kernel is “fat-tailed”, the 
propagation accelerates (namely, its spreading speed approaches infinity as t → +∞). 
This is studied by Alfaro [1], Alfaro and Coville [2], Finkelshtein et al. [15], Finkelshtein 
and Tkachov [18], Garnier [19], Hamel and Roques [21], and Xu et al. [41,42]. Therefore, 
we consider the influence of initial data on the spreading speed of equation (1.1).

Here we focus on the exponentially decaying initial function which satisfies that

u0(x) ∼ Ce−λ|x| as |x| → +∞.

When k is symmetric, for λ ∈ [λ∗, +∞) the spreading speed of equation (1.1) is c∗ �
c∗

r = −c∗
l , and for λ ∈ (0, λ∗) the spreading speed is equal to

c(λ) = λ−1
[ ∫

k(x)eλxdx − 1 + f ′(0)
]
.

R
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Moreover, c(λ) decreases strictly along with the increase of λ ∈ (0, λ∗) and we have 
c∗ = c(λ∗).

The rest of this paper is organized as follows. In Section 2, we study the signs of spread-
ing speeds and the influences of asymmetric dispersal on spatial dynamics. Section 3
presents the new lower solutions and the new “forward-backward spreading” method. 
By using them, we give an improved proof of the spreading speed result. Section 4 deals 
with the relationship between spreading speed and exponentially decaying initial data. 
In Section 5, two examples are provided to explain the results on the signs of spreading 
speeds.

2. The signs of spreading speeds

In this section we present the main results about the signs of spreading speeds and 
the influences of asymmetric dispersal on the spatial dynamics.

First we introduce some notations. By (K1), we denote

λ+ = sup
{

λ > 0
∣∣ ∫
R

k(x)eλxdx < +∞
}

∈ R+ ∪ {+∞}, (2.1)

λ− = inf
{

λ < 0
∣∣ ∫
R

k(x)eλxdx < +∞
}

∈ R− ∪ {−∞}. (2.2)

When λ+ < +∞, we have 
∫
R k(x)eλxdx → +∞ as λ → λ+; otherwise, 

∫
R k(x)eλ+xdx <

+∞ and then by the continuity of λ �→
∫
R k(x)eλxdx, there is a constant λ0 (close to 

and larger than λ+) such that 
∫
R k(x)eλ0xdx < +∞, which contradicts (2.1). When 

λ+ = +∞, by (K2) and the continuity of k, there exist a ∈ (0, x1] and b > 0 such that

k(x) � b for x ∈ [x1 − a, x1 + a]. (2.3)

From the nonnegativity of k, it follows that

lim
λ→+∞

∫
R

k(x)eλxdx � lim
λ→+∞

b

x1+a∫
x1−a

eλxdx = +∞.

Then we obtain

lim
λ→λ+

∫
R

k(x)eλxdx = +∞. (2.4)

Similarly, we have that

lim
λ→λ−

∫
k(x)eλxdx = +∞.
R
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By ∂2

∂λ2

∫
R k(x)eλxdx > 0, under (K1) and (K2), we can find a unique constant λ(k) ∈

(λ−, λ+) such that
∫
R

k(x)eλ(k)xdx = min
λ∈R

∫
R

k(x)eλxdx, namely
∫
R

k(x)eλ(k)xxdx = 0. (2.5)

Since the function λ �→
∫
R k(x)eλxxdx is strictly increasing, we know that

∫
R

k(x)eλxxdx > 0 for λ ∈ (λ(k), λ+) and
∫
R

k(x)eλxxdx < 0 for λ ∈ (λ−, λ(k)). (2.6)

It follows from J(k) =
∫
R k(x)eλxxdx

∣∣
λ=0 that sign(J(k)) = −sign(λ(k)). Then we have

E(k) = −sign(λ(k))

⎡
⎣1 −

∫
R

k(x)eλ(k)xdx

⎤
⎦ . (2.7)

Note that 0 �
∫
R k(x)eλ(k)xdx �

∫
R k(x)e0xdx = 1 by the optimality of λ(k), so that 

sign(E(k)) = −sign(λ(k)) and −1 � E(k) � 1. Next, we state two properties of E(k).

Proposition 2.1. The function E(k) satisfies that

(i) E(k) = −E(ǩ), where ǩ(x) = k(−x) for x ∈ R;
(ii) If k1 is more skewed to the right than k2, then E(k1) � E(k2). Here the concept that 

k1 is more skewed to the right than k2 means that k1(x) � k2(x) for x ∈ R+ and 
k1(x) � k2(x) for x ∈ R−.

Proof. Since J(k) = −J(ǩ) and

inf
λ∈R

∫
R

k(x)eλxdx = inf
λ∈R

∫
R

ǩ(x)eλxdx,

we have that E(k) = −E(ǩ).
Now suppose that k1(x) � k2(x) for x ∈ R+ and k1(x) � k2(x) for x ∈ R−. De-

note λ1 � λ(k1) and λ2 � λ(k2). By 
∫
R(k1(x) − k2(x))eλ2xxdx � 0, we get from ∫

R ki(x)eλixxdx = 0 that

∫
R

k1(x)eλ2xxdx � 0 =
∫
R

k1(x)eλ1xxdx.

Note that the function λ �→
∫
R k1(x)eλxxdx is increasing, then λ1 � λ2. Now we consider 

three cases. First, when λ1 � 0 � λ2, we easily check that E(k1) � 0 � E(k2) by 
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sign(E(k)) = −sign(λ(k)). Next, consider the case λ1 � λ2 � 0. Some calculations imply 
that

E(k1) = 1 −
∫
R

k1(x)eλ1xdx =
0∫

λ1

⎡
⎣∫
R

k1(x)eλxxdx

⎤
⎦ dλ,

E(k2) = 1 −
∫
R

k2(x)eλ2xdx =
0∫

λ2

⎡
⎣∫
R

k2(x)eλxxdx

⎤
⎦ dλ.

We have that

E(k1) − E(k2) =
λ2∫

λ1

⎡
⎣∫
R

k1(x)eλxxdx

⎤
⎦ dλ +

0∫
λ2

⎡
⎣∫
R

(k1(x) − k2(x))eλxxdx

⎤
⎦ dλ.

It follows from (2.6) that 
∫
R k1(x)eλxxdx > 0 for λ > λ1. Then we obtain E(k1) � E(k2)

by 
∫
R(k1(x) − k2(x))eλxxdx � 0. Finally, in the case 0 � λ1 � λ2, we can prove E(k1) �

E(k2) by a similar method. �
From Proposition 2.1, we can use E(k) to describe the asymmetry level of k. Note 

that E(k) ∈ [−1, 1] for any nonnegative and continuous k satisfying (K1). In particular, 
if k(·) is symmetric, then E(k) = 0; and if k(x) = 0 for all x ∈ R+, then E(k) = −1. 
Similarly, if k(x) = 0 for all x ∈ R−, then E(k) = 1. Moreover, when E(k) > 0, k can be 
regarded as a function skewed to the right and when E(k) < 0, it is a function skewed 
to the left.

Remark 2.2. The properties (i) and (ii) in Proposition 2.1 are two fundamental re-
quirements for the function describing the asymmetry level of k. For example, consider 
Eg(k) �

∫
R k(x)g(x)dx, where g is an odd function and is positive in R+. Then we can 

use Eg to describe the asymmetry level of k too. It is easy to check that Eg(k) satisfies 
(i) and (ii). A special form of Eg(k) is given by the moment function 

∫
R k(x)xN dx, where 

N is an odd number.

Let c(·) be the function defined by

c(λ) = λ−1
[ ∫
R

k(x)eλxdx − 1 + f ′(0)
]

for λ ∈ (λ−, 0) ∪ (0, λ+). (2.8)

The following lemma will be used several times in the remainder of the paper.

Lemma 2.3. For any k(·) satisfying (K1) and (K2), there are unique λ∗
r ∈ (0, λ+) and 

λ∗
l ∈ (λ−, 0) such that
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c∗
r = min

λ∈(0,λ+)
{c(λ)} = c(λ∗

r) =
∫
R

k(x)eλ∗
rxxdx (2.9)

and

c∗
l = max

λ∈(λ−,0)
{c(λ)} = c(λ∗

l ) =
∫
R

k(x)eλ∗
l xxdx. (2.10)

Proof. For λ ∈ (λ−, 0) ∪ (0, λ+), a simple calculation implies that

c′(λ) = λ−1
∫
R

k(x)eλxxdx − λ−2
[ ∫
R

k(x)eλxdx − 1 + f ′(0)
]
.

We obtain that lim
λ→0+

c′(λ) = −∞. Next, we show that

c′(λ) > 0 for any λ close to λ+. (2.11)

In the case λ+ < +∞, let M be a positive constant satisfying that Mλ+ > 1. Then there 
are two constants C1 and C2 such that for any λ ∈ (0, λ+),

∫
R

k(x)eλxxdx � M

+∞∫
M

k(x)eλxdx + C1,

∫
R

k(x)eλxdx �
+∞∫
M

k(x)eλxdx + C2.

Then we can obtain (2.11) by using 
∫ +∞

M
k(x)eλxdx → +∞ as λ → λ+. In the case 

λ+ = +∞, we need to rewrite c′(λ) as

c′(λ) = λ−2
[ ∫
R

k(x)eλx(λx − 1)dx + 1 − f ′(0)
]
.

Then we get (2.11) by the fact that eλx � λx + 1, x ∈ R. On the other hand, when 
c′(λ) = 0, it follows that c′′(λ) > 0 for λ ∈ (0, λ+). Therefore, there is a unique constant 
λ∗

r ∈ (0, λ+) such that

c′(λ∗
r) = 0 and c(λ∗

r) = min
λ∈(0,λ+)

{c(λ)} =
∫
R

k(x)eλ∗
rxxdx.

Moreover, we have that

c′(λ) < 0 for λ ∈ (0, λ∗
r) and c′(λ) > 0 for λ ∈ (λ∗

r , λ+).

Similarly, the existence and uniqueness of λ∗
l can be obtained. �
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Fig. 1. An illustrative diagram showing the changes of locations and signs of c∗
l and c∗

r under different 
conditions given in Theorem 2.4.

Now we show that the spreading speed to the left c∗
l has the same sign as that of 

E(k) − f ′(0) and the spreading speed to the right c∗
r has the same sign as that of 

E(k) + f ′(0).

Theorem 2.4. Suppose that (H), (K1) and (K2) hold. Then we have the following state-
ments:

(i) 0 < c∗
l < c∗

r iff E(k) > f ′(0);
(ii) 0 = c∗

l < c∗
r iff E(k) = f ′(0);

(iii) c∗
l < 0 < c∗

r iff −f ′(0) < E(k) < f ′(0);
(iv) c∗

l < c∗
r = 0 iff E(k) = −f ′(0);

(v) c∗
l < c∗

r < 0 iff E(k) < −f ′(0).

(See Fig. 1.)

Proof. By (2.9) and (2.10), it is easy to check that c∗
l < c∗

r , since the function λ �→∫
R k(x)eλxxdx is strictly increasing. When E(k) > f ′(0), by (2.7) we get that λ(k) < 0

and

E(k) = 1 −
∫
R

k(x)eλ(k)xdx > f ′(0).

From (1.5) it follows that

c∗
l � λ(k)−1

[ ∫
k(x)eλ(k)xdx − 1 + f ′(0)

]
> 0.
R
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Then 0 < c∗
l < c∗

r . When E(k) = f ′(0), we have λ(k) < 0 by sign(E(k)) = −sign(λ(k)). 
Then

min
λ∈R

⎛
⎝∫

R

k(x)eλxdx − 1 + f ′(0)

⎞
⎠ =

∫
R

k(x)eλ(k)xdx − 1 + f ′(0) = f ′(0) − E(k) = 0.

This implies that λ−1(
∫
R k(x)eλxdx − 1 + f ′(0)) � 0 for all λ < 0, with equality at 

λ = λ(k). Therefore, 0 = c∗
l < c∗

r by (1.5). When −f ′(0) < E(k) < f ′(0), we have

|E(k)| = 1 − inf
λ∈R

⎧⎨
⎩
∫
R

k(x)eλxdx

⎫⎬
⎭ < f ′(0).

From (1.5), (1.6) and Lemma 2.3, it follows that c∗
l < 0 < c∗

r . Finally, the proofs for 
cases (iv) and (v) are similar to those of cases (ii) and (i), respectively.

We can check that the sufficient conditions in cases (i)-(v) are necessary. For example, 
for case (i), if 0 < c∗

l < c∗
r , then E(k) > f ′(0); otherwise, one of the conditions in cases 

(ii)-(v) must hold, and c∗
l and c∗

r satisfy the corresponding relationship, which contradicts 
0 < c∗

l < c∗
r . �

Combining Theorem 2.4 with (1.4), we see that E(k) and f ′(0) determine the signs 
of spreading speeds. Moreover, they have three important cases about their influences 
on the spatial dynamics of nonlocal dispersal equation (1.1).

(a) The signs of c∗
r and c∗

l determine the spatial propagation directions of solutions.
Define a level set function by

Σω(t) � {x ∈ R | u(t, x) � ω} for any ω ∈ (0, 1), t > 0.

Then when t is large enough, Σω(t) spreads to both the left and right sides of the x-axis 
in case (iii), spreads only to the right in case (i), and spreads only to the left in case (v). 
However, in case (ii), if the set Σω(t) is connected, the movement of the left boundary of 
Σω(t) is slower than linearity and we cannot identify its propagating direction. Similarly, 
we cannot identify the propagating direction of the right boundary of Σω(t) in case (iv) 
either.

(b) The signs of c∗
r and c∗

l influence the stability of equilibrium states. In case (iii), the 
equilibrium state u ≡ 1 is globally stable and u ≡ 0 is globally unstable in any bounded 
spatial region. More precisely, if u0(·) �≡ 0 and u0 is continuous and nonnegative, then

for any x ∈ R, lim
t→∞

u(t, x) = 1;

namely, case (iii) has the same stability property as (1.3) in reaction-diffusion equations. 
However, in case (i) or (v), the equilibrium state u ≡ 0 becomes stable in any bounded 
spatial region for compactly supported initial data, which means that
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for any x ∈ R, lim
t→∞

u(t, x) = 0.

The fundamental reason of this change is that the asymmetric dispersal plays a more 
important role than the reaction term, and the spatial region Σω(t) travels in the domi-
nating direction of dispersal (namely, the direction of sign(J(k))). In addition, it is worth 
pointing out that the equilibrium state u ≡ 0 remains unstable for initial data satisfying 
u0(x) � ε with ε > 0 (see Finkelshtein et al. [13,14]).

(c) The asymmetry of k affects the monotone property of solutions. In the reaction-
diffusion equation (1.2), there is a well-known result stating that the solution preserves 
the symmetry and the monotonicity of initial data; that is, if u0(·) is symmetric and 
decreasing on R+, so is the solution u(t, ·) of equation (1.2) at any time t > 0. The 
following theorem shows that this result also holds in the nonlocal dispersal equation.

Theorem 2.5. If k(·) and u0(· + x1) are symmetric and decreasing on R+ with x1 ∈ R, 
so is the solution u(t, · + x1) of equation (1.1) at any time t > 0.

Proof. By translating the x-axis, we suppose that x1 = 0. The symmetry property of 
u(t, ·) can be obtained easily. Indeed, if we consider the following equation

{
vt(t, x) = k ∗ v(t, x) − v(t, x) + f(v(t, x)), t > 0, x ∈ R,

v(0, x) = u0(−x), x ∈ R,

then u(t, x) = v(t, x) = u(t, −x) for t � 0 and x ∈ R by the uniqueness of the solution. 
For a fixed number y ∈ R+, we define

w(t, x) = u(t, x + 2y) − u(t, x) for t � 0, x ∈ R.

The symmetry property of u(t, ·) implies that w(t, −y) = 0 for t � 0 and

w(t, x) = −w(t, −x − 2y) for t � 0, x ∈ R. (2.12)

Since u0(·) is symmetric and decreasing on R+, we have

w(0, x) � 0 for x > −y, w(0, x) � 0 for x < −y.

In order to prove that u(t, ·) is decreasing on R+ for any t > 0, we try to prove the 
following conclusion

w(t, x) � 0 for t > 0, x > −y. (2.13)

Indeed, if (2.13) holds, then we have that u(t, x + 2y) � u(t, x) for x > −y and y ∈ R+

at any time t > 0, which means that u(t, ·) is decreasing on R+.
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Now we begin to prove (2.13). Since f(u) ∈ C1([0, 1]), there is a constant M > 0 such 
that

wt(t, x) = k ∗ w(t, x) − w(t, x) + f(u(t, x + 2y)) − f(u(t, x))

� k ∗ w(t, x) − w(t, x) + M |w(t, x)| for t > 0, x ∈ R.
(2.14)

Suppose by contradiction that (2.13) does not hold and there exist two constants T0 > 0
and ε > 0 such that

sup
x>−y

{w(T0, x)} = εeKT0 and w(t, x) < εeKt for t ∈ (0, T0), x > −y, (2.15)

where K > max{M + 1, 8
3M + 4

3}. Under (2.15) we give an estimate for the nonlocal 
dispersal term k∗w(t, x) −w(t, x). From (2.12), it follows that for t ∈ (0, T0] and x > −y,

k ∗ w(t, x) − w(t, x)

=
+∞∫

−y

[w(t, z) − w(t, x)]k(x − z)dz +
−y∫

−∞

[w(t, z) − w(t, x)]k(x − z)dz

=
+∞∫

−y

Q(t, x, z, y)dz

=
∫

Σ1(t)

Q(t, x, z, y)dz +
∫

Σ2(t)

Q(t, x, z, y)dz,

where

Q(t, x, z, y) = [w(t, z) − w(t, x)]k(x − z) − [w(t, z) + w(t, x)]k(x + z + 2y)

and

Σ1(t) =
{

z | w(t, z) > 0, z > −y
}

, Σ2(t) =
{

z | w(t, z) � 0, z > −y
}

.

We also suppose that w(t, x) � 0 in the following estimation. When z ∈ Σ1(t), we can 
get from (2.15) that w(t, z) − w(t, x) � εeKt. Then it follows that

∫
Σ1(t)

Q(t, x, z, y)dz �
∫

Σ1(t)

εeKtk(x − z)dz � εeKt for t ∈ (0, T0], x > −y.

When z ∈ Σ2(t), we rewrite Q(t, x, z, y) as

Q(t, x, z, y) = w(t, z)[k(x − z) − k(x + z + 2y)] − w(t, x)[k(x − z) + k(x + z + 2y)].
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Since k(·) is symmetric and decreasing on R+, we have that k(x − z) − k(x + z + 2y) � 0
when x > −y and z > −y. Then it follows that

∫
Σ2(t)

Q(t, x, z, y)dz � 0 for t ∈ (0, T0], x > −y.

Therefore, when w(t, x) � 0, we have that

k ∗ w(t, x) − w(t, x) � εeKt for t ∈ (0, T0], x > −y. (2.16)

Next we return to the proof of (2.13). From (2.15), the continuity property of w(T0, ·)
implies that one or both of the following two cases must happen.

Case 1: There exists x0 ∈ (−y, +∞) such that w(T0, x0) = max
x>−y

{w(T0, x)} = εeKT0 .

Case 2: It holds that lim sup
x→+∞

{w(T0, x)} = εeKT0 .

If case 1 holds, from (2.15) we have

∂

∂t

(
w(t, x0) − εeKt

)∣∣∣∣
t=T0

� 0,

which implies

wt(T0, x0) � εKeKT0 . (2.17)

From (2.16) and (2.17), it follows that

wt(T0, x0) − k ∗ w(T0, x0) + w(T0, x0) − M |w(T0, x0)| � (K − 1 − M)εeKT0 > 0,

which contradicts (2.14).
If case 2 holds, then there exists a constant number x1 > −y (far away from −y) such 

that w(T0, x1) > 3
4εeKT0 . Let p0(x) be a smooth and increasing function satisfying that

p0(x) =
{

1 for x � x1,

3 for x � x1 + 1.

For σ > 0, we define

ρσ(t, x) =
[

1
2 + σp0(x)

]
εeKt for t ∈ [0, T0], x ∈ R

and
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σ∗ = inf
{

σ > 0 | w(t, x) − ρσ(t, x) � 0 for t ∈ [0, T0], x > −y
}

.

From (2.15), some simple calculations yield that ρ 1
2
(t, x) � εeKt � w(t, x) for t ∈ [0, T0]

and x > −y and ρ 1
4
(T0, x1) = 3

4εeKT0 < w(T0, x1). Then, by monotonicity of σ �→ ρσ, 
we have that 1

4 � σ∗ � 1
2 and

ρσ∗(t, x) � 5
4εeKt > w(t, x) for t ∈ [0, T0], x � x1 + 1.

From the definition of σ∗, there must exist T1 ∈ (0, T0] and x2 ∈ (−y, x1 + 1) such that

w(T1, x2) − ρσ∗(T1, x2) = max
t∈[0,T0], x>−y

{
w(t, x) − ρσ∗(t, x)

}
= 0,

which implies that

∂

∂t

(
w(t, x2) − ρσ∗(t, x2)

)∣∣∣∣
t=T1

� 0.

Since 1
4 � σ∗ � 1

2 , we have

w(T1, x2) = ρσ∗(T1, x2) � ρ 1
2
(T1, x2) � 2εeKT1 (2.18)

and

wt(T1, x2) � ∂

∂t
ρσ∗(T1, x2) = Kρσ∗(T1, x2) � Kρ 1

4
(T1, x2) � 3

4KεeKT1 . (2.19)

From (2.16), (2.18) and (2.19), we can get that

wt(T1, x2) − k ∗ w(T1, x2) + w(T1, x2) − M |w(T1, x2)| � (3
4K − 1 − 2M)εeKT1 > 0,

which contradicts (2.14).
Finally, we get (2.13) and the proof of Theorem 2.5 is finished. �
However, when k is asymmetric, Theorem 2.5 does not hold even if k has an adequate 

monotone property. For example, in case (i) or (v), the spatial point where the solution 
attains its maximum value keeps moving at a speed between c∗

l and c∗
r . We also point 

out that Theorem 2.5 is useful in Remark 3.5 and the proof of Theorem 4.2.
Recently, we [43] further studied the relationship between the signs of spreading speeds 

and the asymmetric dispersals of infectious agents and infectious humans in an epidemic 
model, where the infectious agents are carried by migratory birds. We found it is possible 
that the epidemic spreads only along the fly route of migratory birds and the spatial 
propagation in the opposite direction fails, as long as the infectious humans are kept 
from moving frequently.
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Remark 2.6. In reaction-diffusion equation (1.2), the proof of the same conclusion as 
Theorem 2.5 is easier than that in a nonlocal dispersal equation. Indeed, we can prove 
(2.13) by the maximum principle of equation wt(t, x) = Δw(t, x) +Mw(t, x) with (t, x) ∈
[0, +∞) × [−y, +∞).

3. Improved proof of spreading speeds

In this section, we give an improved proof of the spreading speed result for equation 
(1.1) by constructing new lower solutions and applying the “forward-backward spread-
ing” method. First, we state the comparison principle (see e.g. [10,12]).

Lemma 3.1 (Comparison principle). Suppose that the bounded continuous functions 
ū(t, x) and u(t, x) are upper and lower solutions of equation (1.1) for t ∈ (0, T ], in 
the sense that

ūt − k ∗ ū + u − f(ū) � 0 � ut − k ∗ u + u − f(u) for t ∈ (0, T ], x ∈ R.

If ū(0, x) � u(0, x) for x ∈ R, then ū(t, x) � u(t, x) for t ∈ [0, T ] and x ∈ R.

In the construction of the new lower solutions, we need an auxiliary function and some 
of its properties as stated in the following lemma.

Lemma 3.2. For any δ ∈ (0, 1), define

H(z) = Az − Bz1+δ − Dz1−δ for z > 0.

For any given A > 0 and D > 0, we have the following conclusions

Hmax > 0 for B ∈
(
0, A2/(4D)

)
,

Hmax → 0+, ν − μ → 0+ as B − A2/(4D) → 0−,

where

Hmax � sup
z>0

{
H(z)

}
= H(z0) for some z0 ∈ (μ, ν),

(μ, ν) �
{

z > 0 | H(z) > 0
}

for B ∈
(
0, A2/(4D)

)
.

Moreover, for any p > 0, there exists B(p) ∈
(
0, A2/(4D)

)
such that

Hmax = p and B(p) → A2/(4D) as p → 0+.

Proof. For any given A > 0, D > 0 and δ ∈ (0, 1), define

h(z, B) = Az − Bz1+δ − Dz1−δ for z > 0, 0 < B � A2

2 .
4D(1 − δ )
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Let z0 and z1 be two positive numbers given by

zδ
0 =

A +
√

A2 − 4BD(1 − δ2)
2B(1 + δ) and zδ

1 =
A −
√

A2 − 4BD(1 − δ2)
2B(1 + δ) .

A simple calculation implies that

∂

∂z
h(z, B)

⎧⎪⎪⎨
⎪⎪⎩

= 0 for z = z1 and z = z0,

< 0 for z ∈ (0, z1) ∪ (z0, +∞),

> 0 for z ∈ (z1, z0).

Therefore, we have Hmax = max{0, h(z0, B)}. Define

g(B) = h(z0, B) = Az0 − Bz1+δ
0 − Dz1−δ

0 for 0 < B � A2

4D(1 − δ2) .

Then it follows that g′(B) = −z1+δ
0 < 0. Notice that

g(B) = 0 when B = A2/(4D). (3.1)

The continuity and monotone property of g(·) show that

Hmax = g(B) > 0 for 0 < B < A2/(4D) and g(B) → 0+ as B − A2/(4D) → 0−.

When 0 < B < A2/(4D), by (μ, ν) =
{

z > 0 | H(z) > 0
}

we get

μ =
[A −

√
A2 − 4BD

2B

] 1
δ and ν =

[A +
√

A2 − 4BD

2B

] 1
δ

and

ν − μ → 0+ as B − A2/(4D) → 0−.

Moreover, a simple calculation shows that

g(B) = h(z0, B) � h
(
B− 1

1+δ , B
)

= B− 1
1+δ
[
A − DB

δ
1+δ
]

− 1,

which implies that g(B) → +∞ as B → 0. By (3.1) and the continuity of g(·), for any 
p > 0 there exists B(p) ∈ (0, A2/(4D)) such that Hmax = g(B(p)) = p and B(p) →
A2/(4D) as p → 0+. �

Now for small η > 0, define

cη(λ) = λ−1
[ ∫

k(x)eλxdx − 1 + f ′(0) − η
]

for λ ∈ (λ−, 0) ∪ (0, λ+)

R
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and

c∗
r(η) = inf

λ∈(0,λ+)
{cη(λ)} and c∗

l (η) = sup
λ∈(λ−,0)

{cη(λ)} for η ∈ (0, f ′(0)).

It follows that c∗
l < c∗

l (η) < c∗
r(η) < c∗

r and c∗
l (η) → c∗

l , c∗
r(η) → c∗

r as η → 0. Then for 
any small ε > 0, we can choose two constants η1 and η2 in (0, f ′(0)) such that

c∗
r(η1) = c∗

r − ε, c∗
l (η2) = c∗

l + ε. (3.2)

For any η ∈ (0, f ′(0)), define

Gη(c, λ) = cλ −
∫
R

k(x)eλxdx + 1 − f ′(0) + η for c ∈ (c∗
l , c∗

r) and λ ∈ (λ−, λ+). (3.3)

We can check that

Gη(c, 0) < 0 and ∂2

∂λ2 Gη(c, λ) < 0. (3.4)

When λ+ < +∞, by (2.4) we have that

lim
λ→λ+

Gη(c, λ) = −∞.

When λ+ = +∞, it follows from (2.3) that

lim
λ→+∞

1
λ

∫
R

k(x)eλxdx � lim
λ→+∞

b

λ

x1+a∫
x1−a

eλxdx = +∞,

which implies that

lim
λ→+∞

Gη(c, λ) = lim
λ→+∞

λ

⎛
⎝c − 1

λ

∫
R

k(x)eλxdx + 1 − f ′(0) + η

λ

⎞
⎠ = −∞ for c ∈ (c∗

l , c∗
r).

Therefore, by some similar calculations for the case λ → λ−, we can get that

lim
λ→λ±

Gη(c, λ) = −∞. (3.5)

Consider the case η = η1. For λ ∈ (0, λ+) and c1 ∈ (c∗
r − ε, c∗

r), we have

Gη1(c1, λ) = [c1 − cη1(λ)]λ = [c1 − c∗
r(η1)]λ + [c∗

r(η1) − cη1(λ)]λ.

Using the same argument as in the proof of Lemma 2.3, we can find some constant λ ∈
(0, λ+) such that c∗

r(η1) = cη1(λ), which implies Gη1(c1, λ) > 0 for any c1 ∈ (c∗
r − ε, c∗

r). 
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By (3.4) and (3.5), for any c1 ∈ (c∗
r − ε, c∗

r), there are three constants α+(c1), β+(c1) and 
γ+(c1) in (0, λ+) such that α+(c1) < γ+(c1) < β+(c1) and

Gη1(c1, α+(c1)) = Gη1(c1, β+(c1)) = 0 and Gη1(c1, γ+(c1)) > 0. (3.6)

Moreover, we have that Gη1(c1, λ) > 0 for λ ∈ (α+(c1), β+(c1)).
Similarly, when considering the case η = η2, for any c2 ∈ (c∗

l , c∗
l + ε) we can find three 

constants α−(c2), β−(c2) and γ−(c2) in (λ−, 0) such that β−(c2) < γ−(c2) < α−(c2) and

Gη2(c2, α−(c2)) = Gη2(c2, β−(c2)) = 0 and Gη2(c2, γ−(c2)) > 0 (3.7)

Moreover, it follows that Gη2(c2, λ) > 0 for λ ∈ (β−(c2), α−(c2)).
The following theorem and its proof are the main results of this section.

Theorem 3.3 (Spreading speeds). Suppose that the assumptions (H), (K1) and (K2) hold. 
If u0(·) satisfies that 0 � u0(x) � 1 for x ∈ R, u0(x1) > 0 for some x1 ∈ R and

u0(x)eλ∗
l x � Γ for x � −x0, u0(x)eλ∗

rx � Γ for x � x0, (3.8)

where x0 and Γ are two positive constants, then for any small ε > 0, there is a constant 
p ∈ (0, 1) such that the solution u(t, x) of equation (1.1) has the following properties:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

lim
t→+∞

sup
x�(c∗

l −ε)t

u(t, x) = 0,

min
(c∗

l +ε)t�x−x1�(c∗
r−ε)t

u(t, x) � p for any t > 0,

lim
t→+∞

sup
x�(c∗

r+ε)t

u(t, x) = 0.

(3.9)

Proof. Step 1 (Lower solution and “forward-backward spreading” method). From 
u0(x1) > 0, by translating the x-axis, we can find two positive constants p1 and r

such that

u0(x) � p1 for x ∈ [−r, r]. (3.10)

For small ε > 0, let η1 ∈ R+ and η2 ∈ R+ be the constants satisfying (3.2). By f(u) ∈
C1([0, 1]) and f ′(0) > 0, there is a constant p2 ∈ (0, p1] such that

f(u) � (f ′(0) − η

2 )u for u ∈ [0, p2],

where η = min{η1, η2}. For any δ ∈ (0, 1), by taking M(δ) = ηp−δ
2 /2, we can get that

f(u) � (f ′(0) − ηi)u + M(δ)u1+δ for u ∈ [0, p2]. (3.11)
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Now we prove that for any c1 ∈ (c∗
r − ε, c∗

r) and c2 ∈ (c∗
l , c∗

l + ε) there is a constant 
p ∈ (0, 1) such that

u(τ, X) � p for any given τ > 0, X ∈ [c2τ, c1τ ].

Let κ be a constant defined by

κ = X − c2τ

c1τ − c2τ
∈ [0, 1].

In the following proof, we introduce the “forward-backward spreading” method and divide 
the time period of [0, τ ] into two parts [0, κτ ] and [κτ, τ ].

In [0, κτ ], for c1 ∈ (c∗
r − ε, c∗

r) we choose the same α+(c1), β+(c1) and γ+(c1) as those 
in (3.6). Construct a set of lower solutions which spread at a speed of c1 as follows

u1(t, x; ξ1) = max
{

0, H1(eρ1(−x+c1t+ξ1))
}

for t ∈ [0, κτ ], x ∈ R (3.12)

with

ξ1 ∈
[
−r + ρ−1

1 ln ν1, r + ρ−1
1 ln μ1

]
, (3.13)

where

H1(z) = A1z − B1z1+δ1 − D1z1−δ1 for z > 0,

ρ1 = β+(c1) + γ+(c1)
2 , δ1 = β+(c1) − γ+(c1)

β+(c1) + γ+(c1) ,

(A1)δ1 = Gη1(c1, ρ1)
M(δ1) , D1 = A1Gη1(c1, ρ1)

Gη1(c1, γ+(c1)) , B1 ∈
(
0, A2

1/(4D1)
)

,

(μ1, ν1) �
{

z > 0 | H1(z) > 0
}

.

Here Gη(c, λ) is defined by (3.3). By Lemma 3.2, we can choose B1 ∈
(
0, A2

1/(4D1)
)

close to A2
1/(4D1) such that

Hmax
1 � max

z>0

{
H1(z)

}
� p2 � p1, ρ−1

1
(

ln ν1 − ln μ1
)
� r/2. (3.14)

Let z1 be the constant in (μ1, ν1) such that Hmax
1 = H1(z1). A simple calculation implies 

that

u1(0, x; ξ1) =
{

0 for x /∈ Ω1,

H1(eρ1(−x+ξ1)) for x ∈ Ω1,

where
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Ω1 = (ξ1 − ρ−1
1 ln ν1, ξ1 − ρ−1

1 ln μ1).

By (3.13) we have that Ω1 ⊆ (−r, r). From (3.10) and Hmax
1 � p1, it follows that

u1(0, x; ξ1) � u0(x) for x ∈ R.

Next we verify that u1(t, x; ξ1) is a lower solution of equation (1.1). When x −c1t /∈ Ω1, 
it is easy to check that u1(t, x; ξ1) = 0 and

∂tu1(t, x; ξ1) − k ∗ u1(t, x; ξ1) + u1(t, x; ξ1) − f(u1(t, x; ξ1)) � 0.

When x − c1t ∈ Ω1, we have that u1(t, x; ξ1) = H1(eρ1(−x+c1t+ξ1)). By (3.11), some 
calculations show that

∂tu1(t, x; ξ1) − k ∗ u1(t, x; ξ1) + u1(t, x; ξ1) − f(u1(t, x; ξ1))

� A1Gη1(c1, ρ1)eρ1(−x+c1t+ξ1) − B1Gη1(c1, ρ1(1 + δ1))eρ1(1+δ1)(−x+c1t+ξ1)

− D1Gη1(c1, ρ1(1 − δ1))eρ1(1−δ1)(−x+c1t−ξ1) + M(δ1)A1+δ
1 eρ1(1+δ1)(−x+c1t+ξ1).

Recall the definitions of ρ1, δ1, A1 and D1, then we get from (3.3) that

Gη1(c1, ρ1(1 + δ1)) = Gη1(c1, β+(c1)) = 0,

D1Gη1(c1, ρ1(1 − δ1)) = D1Gη1(c1, γ+(c1)) = A1Gη1(c1, ρ1),

M(δ1)(A1)1+δ = A1Gη1(c1, ρ1).

It follows that

∂tu1(t, x; ξ1) − k ∗ u1(t, x; ξ1) + u1(t, x; ξ1) − f(u1(t, x; ξ1))

� A1Gη1(c1, ρ1)
[
eρ1(−x+c1t+ξ1) − eρ1(1+δ1)(−x+c1t+ξ1) − eρ1(1−δ1)(−x+c1t+ξ1)] � 0.

Then u1(t, x; ξ1) is a lower solution of equation (1.1).
Therefore, Lemma 3.1 implies that

u(t, x) � u1(t, x; ξ1) for t ∈ [0, κτ ], x ∈ R.

Define x1(t) = c1t + ξ1 − ρ−1
1 ln z1 with t ∈ [0, κτ ] and it follows that

u(t, x1(t)) � u1(t, x1(t); ξ1) = Hmax
1 for t ∈ [0, κτ ].

The arbitrariness of the parameter ξ1 in (3.13) shows that

u(t, x) � Hmax
1 for t ∈ [0, κτ ], x ∈ [c1t − r/2, c1t + r/2].

Then we have
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u(κτ, x) � Hmax
1 for x ∈ [c1κτ − r/2, c1κτ + r/2]. (3.15)

In the second time period [κτ, τ ], for c2 ∈ (c∗
l , c∗

l + ε) we choose the same α−(c2), 
β−(c2) and γ−(c2) as those in (3.7). Construct another set of lower solutions which 
spread at a speed of c2 as follows

u2(t, x; ξ2) = max
{

0, H2(eρ2(−x+c2t+ξ2))
}

for t ∈ [κτ, τ ], x ∈ R

=
{

0 for x − c2t /∈ Ω2,

H2(eρ2(−x+c2t+ξ2)) for x − c2t ∈ Ω2

(3.16)

with

ξ2 ∈
[
(c1 − c2)κτ + ρ−1

2 ln μ2 − r/2, (c1 − c2)κτ + ρ−1
2 ln ν2 + r/2

]
, (3.17)

where

Ω2 = (ξ2 − ρ−1
2 ln μ2, ξ2 − ρ−1

2 ln ν2),

H2(z) = A2z − B2z1+δ2 − D2z1−δ2 for z > 0,

ρ2 = β−(c2) + γ−(c2)
2 , δ2 = β−(c2) − γ−(c2)

β−(c2) + γ−(c2) ,

(A2)δ2 = Gη2(c2, ρ2)
M(δ2) , D2 = A2Gη2(c2, ρ2)

Gη2(c2, γ−(c2)) , B2 ∈
(
0, A2

2/(4D2)
)

,

(μ2, ν2) � {z > 0 | H2(z) > 0} .

Here Gη(c, λ) is defined by (3.3) and note that ρ2 is a negative number. By Lemma 3.2, 
we can choose B2 ∈

(
0, A2

2/(4D2)
)

close to A2
2/(4D2) such that

Hmax
2 � max

z>0

{
H2(z)

}
� Hmax

1 � p2 � p1, ρ−1
2 (ln μ2 − ln ν2) � r/2. (3.18)

Let z2 be the constant in (μ2, ν2) such that Hmax
2 = H2(z2). At time t = κτ , we have

u2(κτ, x; ξ2) =
{

0 for x /∈ Ω2 + c2κτ,

H2(eρ2(−x+c2κτ+ξ2)) for x ∈ Ω2 + c2κτ,

where

Ω2 + c2κτ � (ξ2 − ρ−1
2 ln μ2 + c2κτ, ξ2 − ρ−1

2 ln ν2 + c2κτ) ⊆ (c1κτ − r/2, c1κτ + r/2).

Then it follows from (3.15) that u(κτ, x) � u2(κτ, x; ξ2) for x ∈ R and any ξ2 satisfying 
(3.17). Similar to the case of u1(t, x; ξ1), it can be verified that u2(t, x; ξ2) is a lower 
solution of equation (1.1) in time [κτ, τ ]. Then for any ξ2 satisfying (3.17), by Lemma 3.1
we have that
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u(t, x) � u2(t, x; ξ2) for t ∈ [κτ, τ ], x ∈ R.

For t ∈ [κτ, τ ], we define x2(t) = c2t + ξ2 − ρ−1
2 ln z2 and it follows that

u(t, x2(t)) � u2(t, x2(t); ξ2) = H(z2) = Hmax
2 .

Since

ρ−1
2 (ln μ2 − ln z2) � ρ−1

2 (ln μ2 − ln ν2) � r/2 and

ρ−1
2 (ln z2 − ln v2) � ρ−1

2 (ln μ2 − ln ν2) � r/2,

we can choose ξ2 satisfying (3.17) and

ξ2 = (c1 − c2)κτ + ρ−1
2 ln z2.

It follows that x2(τ) = c1κτ + c2(1 − κ)τ = X. By taking p = Hmax
2 , we have that

u(τ, X) � p for any τ > 0, X ∈ [c2τ, c1τ ].

Therefore, for any small ε > 0 there is a constant p ∈ (0, 1) such that

min
(c∗

l +ε)t�x�(c∗
r−ε)t

u(t, x) � p for any t > 0.

Step 2 (Upper solution). Now we begin to prove that

lim
t→+∞

sup
x�(c∗

l −ε)t

u(t, x) = 0 and lim
t→+∞

sup
x�(c∗

r+ε)t

u(t, x) = 0. (3.19)

Construct an upper solution as follows

ū(t, x) = min
{

1, Γ0eλ∗
r(−x+c∗

rt), Γ0eλ∗
l (−x+c∗

l t)
}

,

where the constant Γ0 � max{1, Γ} is large enough such that ū(0, x) � u0(x).
Next we verify that ū(t, x) is an upper solution of equation (1.1). Define

G(c, λ) = cλ −
∫
R

k(x)eλxdx + 1 − f ′(0) for c ∈ R, λ ∈ (λ−, λ+).

Then it follows from (2.9) and (2.10) that G(c∗
r , λ∗

r) = G(c∗
l , λ∗

l ) = 0. By a simple 
calculation, if x � c∗

l t + (λ∗
l )−1 ln Γ0, then ū(t, x) = Γ0eλ∗

l (−x+c∗
l t) and it follows from 

(H) that

ūt(t, x) − k ∗ ū(t, x) + ū(t, x) − f(ū(t, x)) � G(c∗
l , λ∗

l )Γ0eλ∗
l (−x+c∗

l t) = 0.
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If x � c∗
rt + (λ∗

r)−1 ln Γ0, then ū(t, x) = Γ0eλ∗
r(−x+c∗

rt) and we get from (H) that

ūt(t, x) − k ∗ ū(t, x) + ū(t, x) − f(ū(t, x)) � G(c∗
r , λ∗

r)Γ0eλ∗
r(−x+c∗

rt) = 0.

If c∗
l t + (λ∗

l )−1 ln Γ0 � x � c∗
rt + (λ∗

r)−1 ln Γ0, then ū(t, x) = 1 and

ūt(t, x) − k ∗ ū(t, x) + ū(t, x) − f(ū(t, x)) � 0.

Therefore, we get that ū(t, x) is an upper solution of equation (1.1). Lemma 3.1 implies 
that u(t, x) � ū(t, x) for t � 0, x ∈ R. It follows that

sup
x�(c∗

l −ε)t

u(t, x) � sup
x�(c∗

l −ε)t

ū(t, x) � Γ0eλ∗
l εt,

sup
x�(c∗

r+ε)t

u(t, x) � sup
x�(c∗

r+ε)t

ū(t, x) � Γ0e−λ∗
rεt,

which means that (3.19) holds. �
By Theorem 6.2 in the classic spreading speed theory [39], we can get from the second 

inequality of (3.9) that for any small ε > 0,

min
(c∗

l +ε)t�x�(c∗
r−ε)t

u(t, x) → 1 as t → +∞.

Then combining with the other two inequalities of (3.9), we see that u(t, x) satisfies the 
propagation property (1.4).

By using the new lower solutions and the above “forward-backward spreading” 
method, we obtain a corollary which shows that if u0(x1) > 0 for some x1 ∈ R, then the 
property u > 0 will spread over an expanding spatial region.

Corollary 3.4. Suppose that (H), (K1) and (K2) hold. For any small ε > 0 and small 
p > 0, there is a constant rε(p) > 0 such that if

u0(x) � p, x ∈ [x1 − rε(p), x1 + rε(p)] for some x1 ∈ R,

then the solution u(t, x) of equation (1.1) satisfies that

u(t, x) � p for t > 0, x ∈ [x1 + (c∗
l + ε)t, x1 + (c∗

r − ε)t].

Moreover, for any small ε > 0, we have that rε(p) → 0 as p → 0.

Proof. We use the same notations as those in the proof of Theorem 3.3. By translating 
the x-axis, we suppose that x1 = 0. From Lemma 3.2, for any p ∈ (0, p2], there are 
B1(p) ∈

(
0, A2

1/(4D1)
)

and B2(p) ∈
(
0, A2

2/(4D2)
)

satisfying that Hmax
1 = Hmax

2 = p. 
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We define r(p) = 2(r1(p) +r2(p)), where ri(p) is the length of the set {x ∈ R | Hi(e−ρix) >
0}. We suppose that

u0(x) � p for x ∈ [−r(p), r(p)].

Define the lower solutions u1(t, x; ξ1) and u2(t, x; ξ2) by (3.12) and (3.16), respectively, 
where

ξ1 ∈
[
−r(p) + ρ−1

1 ln ν1, r(p) + ρ−1
1 ln μ1

]
,

ξ2 ∈
[
(c1 − c2)κτ + ρ−1

2 ln μ2 − r2(p), (c1 − c2)κτ + ρ−1
2 ln ν2 + r2(p)

]
.

It follows that

Ω1 ⊆ (−r(p), r(p)), Ω2 + c2κτ ⊆ (c1κτ − r2(p), c1κτ + r2(p)).

Then by the same method as the proof of Theorem 3.3, we can prove Corollary 3.4. 
Moreover, as p → 0+, it follows from Lemma 3.2 that Bi(p) → A2

i /(4Di), which implies 
that ri(p) → 0. We can see that ri(p) is dependent on ci, since Hi and ρi are dependent 
on ci. Therefore, ri(p) is also dependent on ε. �
Remark 3.5. When considering a reaction-diffusion equation or when the kernel in equa-
tion (1.1) is symmetric, we point out that the new lower solutions (3.12) and (3.16) remain 
valid. However, it is not necessary to apply the “forward-backward spreading” method, 
since we can use Theorem 2.5 instead (more details are found in proof of Theorem 4.2). 
Then the conclusion in Corollary 3.4 still holds in the reaction-diffusion equation (1.2).

4. Spreading speeds for exponentially decaying initial data

In this section we study the relationship between spreading speed and exponentially 
decaying initial data. First we state the weak “hair-trigger” effect in nonlocal dispersal 
equations (see e.g. [1,3,17]).

Lemma 4.1 (Weak “hair-trigger” effect). Suppose that (H) holds and k(·) is a symmetric 
kernel satisfying (K1). Let u(t, x) be the solution of equation (1.1) with initial data u0(x). 
If there are two constants x0 ∈ R and ω0 ∈ (0, 1) such that

u0(x) � ω0 for x ∈ B1(x0),

then for any ω ∈ (0, 1), there exists T ω
ω0

� 0 (independent of x0) such that

u(t, x) � ω for x ∈ B1(x0), t � T ω
ω0

,

where B1(x0) �
{

x ∈ R
∣∣ |x − x0| � 1

}
.
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The following theorem is the main result of this section.

Theorem 4.2. Suppose (H) holds and k(·) is a symmetric kernel which is decreasing on 
R+ and satisfies (K1). Denote c∗ � c∗

r = −c∗
l and λ∗ � λ∗

r = −λ∗
l . If f ∈ C1+δ0

(
[0, p0]

)
for some p0, δ0 ∈ (0, 1) and u0(·) satisfies

0 < u0(x) � 1 for x ∈ R, u0(x) ∼ Ce−λ|x| as |x| → +∞ with λ ∈ (0, λ∗),

then for any ε ∈ (0, c(λ)), the solution u(t, x) of equation (1.1) has the following proper-
ties

⎧⎪⎨
⎪⎩

min
|x|�(c(λ)−ε)t

u(t, x) → 1,

sup
|x|�(c(λ)+ε)t

u(t, x) → 0
as t → +∞,

where c(λ) is defined by (2.8). Moreover, we have that c′(λ) < 0 for λ ∈ (0, λ∗).

Proof. From the proof of Lemma 2.3, we have that

c′(λ) < 0 for λ ∈ (0, λ∗) and c′(λ) > 0 for λ ∈ (λ∗, λ+).

Since c(λ) → +∞ as λ → λ+, for any λ ∈ (0, λ∗) there is a unique constant δλ > 0 such 
that

c(λ) = c(λ(1 + δλ)) and c(s) < c(λ) for s ∈ (λ, λ(1 + δλ)).

Define

G(c, λ) = cλ −
∫
R

k(x)eλxdx + 1 − f ′(0) for c � c∗, λ ∈ (λ−, λ+).

For any λ ∈ (0, λ∗), it follows from (2.8) that

G(c(λ), λ) = G(c(λ), λ(1 + δλ)) = 0

and

G(c(λ), s) > G(c(s), s) = 0 for s ∈ (λ, λ(1 + δλ)).

Now we prove that for any ε ∈ (0, c(λ)),

min u(t, x) → 1 as t → +∞. (4.1)

|x|�(c(λ)−ε)t
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By the assumptions of u0 in Theorem 4.2, there is a function v0(·) ∈ C(R) which is 
symmetric and decreasing on R+ and satisfies that

u0(x) � v0(x) =
{

γe−λ|x|, |x| � y0,

p1 � γe−λy0 , |x| � y0,
(4.2)

where γ and y0 are two positive constants. Let v(t, x) be the solution of equation (1.1)
with the initial condition v(0, x) = v0(x). From Lemma 3.1 it follows that

u(t, x) � v(t, x) for t � 0, x ∈ R. (4.3)

Theorem 2.5 shows that v(t, ·) is also symmetric and decreasing on R+ for any t > 0. 
We denote p � min{p0, p1} and δ � min{δ0, δλ/2}, then G(c(λ), λ(1 + δ)) > 0. By 
f(·) ∈ C1+δ0 ([0, p0]) we can find some constant M > 0 such that

f(u) � f ′(0)u − Mu1+δ for u ∈ (0, p]. (4.4)

Construct a lower solution as follows

u(t, x) = max
{

0, g
(

γeλ(−x+c(λ)t)
)}

for t � 0, x ∈ R,

where g(z) = z − Lz1+δ for z > 0 and

L � max
{

p−δ, γ−δeλδ, M/G(c(λ), λ(1 + δ))
}

. (4.5)

Let z0 be the constant satisfying zδ
0 = L−1(1 +δ)−1, then ω0 � g(z0) � g(z) for all z > 0

and

u(t, x) � ω0 = L− 1
δ δ(1 + δ)− 1+δ

δ � p for t � 0, x ∈ R.

From (4.2) it follows that v0(x) � u(0, x) for x ∈ R. Now we verify that u(t, x) is a 
lower solution of equation (1.1). If x < c(λ)t + λ−1(ln γ + δ−1 ln L), we can check that 
u(t, x) = 0 and

ut(t, x) − k ∗ u(t, x) + u(t, x) − f(u(t, x)) � 0.

If x � c(λ)t + λ−1(ln γ + δ−1 ln L), then u(t, x) = g
(
γeλ(−x+c(λ)t)). From (4.4) it follows 

that

ut(t, x) − k ∗ u(t, x) + u(t, x) − f(u(t, x))

� G(c(λ), λ)γeλ(−x+c(λ)t) −
[
G(c(λ), λ(1 + δ))L − M

]
γ1+δeλ(1+δ)(−x+c(λ)t).

By G(c(λ), λ) = 0 and L � M/G(c(λ), λ(1 + δ)), we get that u(t, x) is a lower solution.
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Lemma 3.1 implies that

v(t, x) � u(t, x) for t � 0, x ∈ R.

Let x0(t) = c(λ)t + λ−1(ln γ − ln z0) � 1 with t � 0 and we have that

v(t, x0(t)) � u(t, x0(t)) = g(z0) = ω0 for t � 0.

The symmetry and monotone property of v(t, ·) yield that

v(t, x) � ω0 for t � 0, |x| � x0(t).

For any ω ∈ (0, 1), let T ω
ω0

be the positive constant defined in Lemma 4.1 and we have

v(t + T ω
ω0

, x) � ω for t � 0, |x| � x0(t),

which implies that

min
|x|�x0(t)−c(λ)T ω

ω0

v(t, x) � ω for t � T ω
ω0

.

For ε ∈ (0, c(λ)), there is a constant T � T ω
ω0

(dependent on ε and ω) such that

εT � c(λ)T ω
ω0

− λ−1(ln γ − ln z0).

Then we have that x0(t) − c(λ)T ω
ω0

� (c(λ) − ε)t and

min
|x|�(c(λ)−ε)t

u(t, x) � min
|x|�(c(λ)−ε)t

v(t, x) � ω for t � T,

which completes the proof of (4.1).
Finally, it suffices to check that for any ε > 0,

sup
|x|�(c(λ)+ε)t

u(t, x) → 0 as t → +∞. (4.6)

Construct an upper solution as follows

ū(t, x) = min
{

1, Γeλ(−|x|+c(λ)t)
}

for t � 0, x ∈ R.

By the same method as the step 2 of the proof of Theorem 3.3, we can get (4.6). �
Combining Theorems 3.3 and 4.2, when k is symmetric, we obtain the relationship 

between spreading speed and initial data that decays exponentially or faster. If u0(x) ∼
Ce−λ|x| as |x| → +∞, then for λ ∈ [λ∗, +∞) the spreading speed is equal to c∗ and 
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for λ ∈ (0, λ∗) the spreading speed c(λ) decreases strictly along with the increase of λ. 
Moreover, we have that c∗ = c(λ∗). This relationship shows that the nonlocal dispersal 
equation with symmetric kernel shares the same property of spreading speed as the 
corresponding reaction-diffusion equation.

5. Case studies

In this section we show how to calculate E(k) and apply Theorem 2.4 to two examples 
of dispersal kernels: normal distribution and uniform distribution. For more applications 
to complex systems, refer to our recent paper [43].

5.1. Normal distribution

Assume that the dispersal kernel k satisfies

k(x) = 1√
2πσ

exp
(

− (x − α)2

2σ

)
,

where α ∈ R is the expectation and σ > 0 is the variance. Define a constant

r = α/
√

2σ.

Then some calculations yield that sign(r) = sign(J(k)) and

E(k) = sign(r)
[
1 − inf

λ∈R

{
exp
(

αλ + σ

2 λ2
)}]

= sign(r)
(
1 − exp

(
−r2)) .

The following result is a straightforward consequence of Theorem 2.4 and we omit its 
proof.

Corollary 5.1. When f ′(0) � 1, it holds that c∗
l < 0 < c∗

r and when f ′(0) < 1, there exists 
a constant r∗ > 0 such that

(i) if r > r∗, then 0 < c∗
l < c∗

r ;
(ii) if r = r∗, then 0 = c∗

l < c∗
r ;

(iii) if −r∗ < r < r∗, then c∗
l < 0 < c∗

r ;
(iv) if r = −r∗, then c∗

l < c∗
r = 0;

(v) if r < −r∗, then c∗
l < c∗

r < 0.

Remark 5.2. Since the dispersal coefficient in equation (1.1) is 1, the condition f ′(0) > 1
implies that the reaction term plays a more important role than the dispersal term; on the 
other hand, the condition f ′(0) < 1 means that the dispersal term is more important. In 
the latter case, we show that the asymmetry level of dispersal determines the propagation 
directions.
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5.2. Uniform distribution

Suppose that the kernel k is given by

k(x) =

⎧⎪⎨
⎪⎩

1
a − b

for x ∈ [b, a],

0 for x /∈ [b, a],

where a ∈ R+ and b ∈ R− stand for the farthest distances of organism movements during 
a unit time period along and against x-axis, respectively. The average moving speed is ∫

k(x)xdx = (a + b)/2. Some calculations yield that

E(k) = sign(a + b)
[
1 − inf

λ �=0
{h(λ)}

]
,

where h(λ) = (eaλ − ebλ)/(aλ − bλ) with λ �= 0. Next, we define an auxiliary function 
and give its property in the following lemma.

Lemma 5.3. Define ω(x) = (x − 1)ex. Then there is a unique continuous function z(·)
from (0, +∞) to (−∞, 1) with z(·) �≡ 0 such that ω(z(θ)) = ω(−θz(θ)) for any θ > 0. 
Moreover, the function z(·) is increasing on (0, +∞).

Proof. For any θ > 0, define

ω̄(θ, x) = ω(x) − ω(−θx) = (x − 1)ex + (θx + 1)e−θx for θ ∈ (0, +∞), x ∈ R.

It follows that ∂
∂x ω̄(θ, x) = xex − θ2xe−θx for x ∈ R. Denote x1 = 0 and x2(θ) =

2(1 + θ)−1 ln θ, then ∂
∂x ω̄(θ, x1) = ∂

∂x ω̄(θ, x2(θ)) = 0. Some calculations yield that

ω̄(θ, 0) = 0, ω̄(θ, 1) > 0, ω̄(θ, −1/θ) < 0, (5.1)

and

ω̄ (θ, 1 − 1/θ) = e1−θ(θ2 − eθ−1/θ)/θ.

Notice that the function θ �→ θ − 1/θ − 2 ln θ is strictly increasing on (0, +∞) and it 
equals 0 when θ = 1. Then we have that

ω̄(θ, 1 − 1/θ) < 0 for θ > 1, ω̄(θ, 1 − 1/θ) > 0 for 0 < θ < 1. (5.2)

If θ > 1, then x1 < x2(θ) and

∂
ω̄(θ, x) < 0 for x ∈ (x1, x2(θ)), ∂

ω̄(θ, x) > 0 for x ∈ R\[x1, x2(θ)]. (5.3)

∂x ∂x
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By (5.1) and (5.2), for any θ > 1 there is a unique z(θ) ∈ (1 −1/θ, 1) such that ω̄(θ, z(θ)) =
0. On the other hand, if 0 < θ < 1 then x1 > x2(θ) and

∂

∂x
ω̄(θ, x) < 0 for x ∈ (x2(θ), x1), ∂

∂x
ω̄(θ, x) > 0 for x ∈ R\[x2(θ), x1].

For any θ ∈ (0, 1), we can find a unique z(θ) ∈ (−1/θ, 1 − 1/θ) such that ω̄(θ, z(θ)) = 0. 
In addition, when θ = 1 we define z(θ) = 0. Finally, we show that

z(1) = 0, z(θ) ∈ (1 − 1/θ, 1) for θ > 1, z(θ) ∈ (−1/θ, 1 − 1/θ) for 0 < θ < 1. (5.4)

Now we prove that z(·) is continuous on (0, +∞). Indeed, it suffices to show that

lim
θ→1+

z(θ) = lim
θ→1−

z(θ) = 0.

Notice that

ω̄(θ, z(θ)) − ω̄ (θ, 1 − 1/θ) =
z(θ)∫

1−1/θ

∂

∂x
ω̄(θ, x)dx,

which means that

−e1−θ(θ2 − eθ−1/θ)/θ =
z(θ)∫

1−1/θ

xex − θ2xe−θxdx.

Let θ → 1+ or 1−, then

lim
θ→1+

z(θ)∫
0

xex − xe−xdx = lim
θ→1−

z(θ)∫
0

xex − xe−xdx = 0.

It follows that limθ→1+ z(θ) = limθ→1− z(θ) = 0. Therefore, z(·) is continuous on 
(0, +∞).

Next, we prove that z(·) is increasing on (0, +∞). Consider the function ω̄(θ, x) with 
(θ, x) ∈ (1, +∞) × (0, +∞). For any fixed θ0 > 1, it holds that ω̄(θ0, z(θ0)) = 0 and 
∂

∂x ω̄(θ0, z(θ0)) > 0 by (5.3). Then implicit function theorem implies that z(·) has a 
continuous derivative at θ0 and

z′(θ) = −∂ω̄(θ, z(θ))
∂θ

/
∂ω̄(θ, z(θ))

∂x
= θz2(θ)e−θz(θ)

z(θ)ez(θ) − θ2z(θ)e−θz(θ) for θ > 1.

From ω(z(θ)) = ω(−θz(θ)) it follows that
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z′(θ) = z(θ)(z(θ) − 1)
(θ + 1)[1 − 1/θ − z(θ)] for θ > 1. (5.5)

When θ > 1, by z(θ) ∈ (1 − 1/θ, 1), we have that z′(θ) > 0. Similarly, we can prove that 
z′(·) is continuous on (0, 1) and

z′(θ) = z(θ)(z(θ) − 1)
(θ + 1)[1 − 1/θ − z(θ)] for θ ∈ (0, 1).

Then for θ ∈ (0, 1), by z(θ) ∈ (−1/θ, 1 − 1/θ) we obtain that z′(θ) > 0. Therefore, we 
have proved that z(·) is increasing on (0, +∞). This completes the proof. �

Define a constant

θ � −a/b ∈ (0, +∞).

From h′(λ) = (ω(aλ) − ω(bλ))/(aλ2 − bλ2), it follows that h′(z(θ)/b) = 0. Then by 
ω(z(θ)) = ω(−θz(θ)), we have that h(z(θ)/b) = ez(θ)/(1 + θz(θ)) and

E(k) = sign(θ − 1)
[
1 − ez(θ)

1 + θz(θ)

]
.

Denote

r � (θ − 1)/(θ + 1) = (a + b)/(a − b) ∈ (−1, 1).

Corollary 5.4. All results in Corollary 5.1 hold for the uniform distribution case.

Proof. It suffices to prove the results in the case 0 < f ′(0) < 1, since −1 < E(k) < 1. 
Now we only consider the case r � 0, namely θ � 1 (otherwise consider the new spatial 
variable y = −x). Denote

q(θ) = 1 − ez(θ)

1 + θz(θ) .

For θ > 1, it follows that

q′(θ) = ez(θ)(θ − θz(θ) − 1)
[1 + θz(θ)]2 z′(θ) + ez(θ)z(θ)

[1 + θz(θ)]2 .

From (5.5) we get that

q′(θ) = ez(θ)z(θ)[θz(θ) − θ + 1]
2 for θ > 1.
[1 + θz(θ)]
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Then (5.4) implies that q′(θ) > 0 for θ > 1, which means that q(·) is strictly increasing 
on [1, +∞). Moreover, since z(θ) → 1 as θ → +∞, we have that

q(1) = 0 and q(θ) → 1 as θ → +∞.

Therefore, when f ′(0) ∈ (0, 1), there exists a unique constant θ∗ > 1 such that q(θ∗) =
f ′(0). Denote r∗ = (θ∗ − 1)/(θ∗ + 1). Finally, by Theorem 2.4, the monotone property 
of q completes the proof. �
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