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1. Introduction

In this paper, we study spatial propagation of the following nonlocal dispersal Fisher-
KPP equation

{ut(t,x) =kxu(t,x) —u(t,z) + f(u(t,x)), t>0, z €R, (L.1)

u(0,z) = up(x), x € R,
where uy € C(R), f € C*(]0,1]) and satisfies the Fisher-KPP type condition:

(H) f is monostable; namely, f(0) = f(1) = 0 and f(u) > 0 for u € (0,1), f/(0) > 0 and
f(u) < f(0)u for u € (0,1).

The nonlocal dispersal, represented by the following convolution integral operator

bea(t.) ~ ultia) = [ ko = pultg)dy - ult.2),
R

describes the movements of organisms between not only adjacent but also nonadjacent
spatial locations (see, e.g. Berestycki et al. [6], Kao et al. [22], Murray [31] and Wang
[38]). Here the kernel k(-) is a continuous and nonnegative function with [p k(x)dz = 1.
Moreover, we assume that

(K1) there is a constant A > 0 such that [, k(z)e*®lda < +oo;
(K2) k(x1) > 0 and k(x2) > 0 for some constants z; € RT and 2 € R™.

Assumption (K1) is called the Mollison condition. For classical results on traveling wave
solutions of equation (1.1), we refer to Schumacher [34], Bates et al. [5], Chen [9], Chen
and Guo [11], Carr and Chmaj [8], Coville, Davila and Martinez [12], Yagisita [44], and
Sun et al. [36]. Entire solutions of equation (1.1) were studied by Li et al. [24] and Sun
et al. [37].

The spreading speed is an important concept that describes the phenomenon of spatial
propagation in many biological and ecological problems, such as the spatial spread of
infectious diseases and the invasion of species. In 1975, Aronson and Weinberger [4]
studied spreading speed of the following reaction-diffusion equation

Up = Uge + f(u), t>0, xR,
{t f(u) (1.9)

u(0,z) = ug(x), x € R.

When f is monostable and f/(0) > 0, they showed that if up(-) # 0 and 0 < up(x) < 1
for € R, then u(t, z) satisfies
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tllgrnoou(t,x) =1 for any x € R. (1.3)
Moreover, if up(x) is compactly supported on R, then there is a constant ¢* > 0 such
that

1, | <c*,
lim wu(t,z+ ct) =
iteo 0, le|>c"

for any = € R.
The constant ¢* is called the asymptotic speed on spreading (for short, spreading speed)
of equation (1.2). For more results on spreading speed theory, we refer to Kolmogorov
et al. [23], Aronson and Weinberger [3,4], Liang and Zhao [25,26], Lui [28], Weinberger
[39], Weinberger et al. [40], Yi and Zou [45], and the references cited therein.

For the nonlocal dispersal equation (1.1), Lutscher et al. [29] considered the spreading
speed and proved that there are two constants c;: and c¢j such that

' 1, ¢g<e<ecl,
lim w(t,z+ct) = for any z € R, (1.4)
t=+oo 0, c<¢ ore>c
where

2 sup {A-l[/k(:ﬂ)emd:ﬂ— 1+f’(0)”, (1.5)

AeR— 2

*x A . —1 Az _ /

s )\1€r]1RfJr {)\ [/k:(m)e de —1+f (O)}} (1.6)

R

The constants ¢ and c; are called spreading speeds to the left and to the right of the
nonlocal dispersal equation, respectively. Note that c;: may not be equal to —¢; because of
the asymmetry of k. Here the asymmetry of £ means that the probability that organisms
move from point x to point z + y is not equal to that from x to x — y. In addition,
Finkelshtein et al. [14,16] extended this conclusion to high dimensional spaces R¢, which
is more complex because of the radial asymmetry of kernels. For more results about
spreading speeds of nonlocal dispersal equations, we refer to Liang and Zhou [27], Rawal
et al. [32], Shen and Zhang [35] and Zhang et al. [46].

The aim of this paper is to study some new problems on spreading speeds of nonlocal
dispersal equations. The three main topics we cover are: identifying the signs of spreading
speeds, improving the proof of the spreading speed result and studying the relationship
between spreading speed and exponentially decaying initial data, which we describe in
turn next.

(a) Identifying the signs of spreading speeds. In reaction-diffusion equation, the spread-
ing speed to the right ¢* is always positive and that to the left —c* is always negative.
We wonder whether this remains true in nonlocal dispersal equations. It is significant
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to identify the signs of spreading speeds, since they have important influences on spa-
tial properties of solutions and the stability of equilibrium states (see the influences on
spatial dynamics below). In a related work, Coville et al. [12] showed that asymmetric
kernels may induce nonpositive minimal wave speed which always coincides with spread-
ing speed in the Fisher-KPP case. However, they did not point out when the minimal
wave speed is nonpositive.

We find that the spreading speed to the left ¢ has the same sign as that of E(k)— f'(0)
and the spreading speed to the right ¢ has the same sign as that of E(k) + f/(0). Here
E(k) stands for the asymmetry level of k and is defined by

E(k) & sign(J(k)) [1— irel% /k(a:)e)‘xdac ,
R

where J(k) £ [g k(z)zdz is the first moment and k belongs to the set that consists
of all nonnegative and continuous functions satisfying (K1) and [, k(x)dz = 1. From
this result, we show that asymmetric dispersal influences the signs of spreading speeds,
and further influences the spatial dynamics in three aspects: it can determine the spatial
propagation directions of solutions, influence the stability of equilibrium states, and affect
the monotone property of solutions. More details are given in Section 2.

The results are applied to two special cases where k is a normal distribution and a
uniform distribution, respectively. We present more details of the calculation of E(k)
and show how the asymmetric dispersal influences spatial dynamics in Section 5.

(b) Giving an improved proof of the spreading speed result. In [29], Lutscher et al.

proved the spreading speed result by constructing an innovative lower solution of nonlocal

*

dispersal equation (1.1), which can spread at any speed c in (¢, ¢}

), as follows

e =) gin(y(z — ¢ T —c T
u(t’x):{s sin(y(z — ct)), t € [0,7/4], @

0, x—ct>m/y.

In the construction of this lower solution, they needed to make some technical re-
quirements on k. For example, they assumed that supp(k) = R and the function
x +— exp(sx)k(x) is decreasing for large enough z. They also made some requirements
on the monotone property of the function A(s) = ([ k(x)e*"dz — 1+ f(0))/s, s # 0.

In this paper, without any additional assumptions, we construct two new lower solu-
tions which spread at speeds c; and cs, respectively, as follows

u;(t, ©) = max{0, Hy(ePi(ToFet+& i =1 2, (1.8)
with

Hi(z) = Az — Bz — D21 % 2 >0,
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where ¢; € (¢} —€,¢}) and ¢z € (¢f, ¢f + €) for small € > 0.
However, (1.8) is not as good as (1.7), because the speed of (1.8) is limited to (¢}, ¢j +¢€)

*
T

or (¢} —¢,c). Therefore, we give a new method to study the whole situation of (¢, c}),
which is called the “forward-backward spreading” method. In this method, for any 7 > 0
we divide the time period of [0,7] into two parts [0,k7] and [k7, 7], where k is any
number in [0,1]. In [0, k7] we construct a lower solution u;(t,z) spreading at a speed
of ¢; € (¢} —¢€,¢t). In [k7, 7] we construct another lower solution wus (¢, ) which spreads
at a speed of co € (¢f,cf + €) and satisfies that us(k7,2) < ui(k7,2). Then these
two lower solutions can be regarded as a lower solution defined in [0, 7] whose speed is
¢ = key + (1 — K)eg. Moreover, the arbitrariness of k ensures that ¢ can be equal to any
number in [c1, co]. We remark that the term “forward-backward spreading” comes from
the special case ¢ < 0 < ¢, which means (¢, ) spreads forward and us(t, z) spreads
backward.

By constructing the new lower solutions and applying the “forward-backward spread-
ing” method, we improve the proof of spreading speed result and further obtain a

property about the spatial propagation of solutions (see Corollary 3.4).

Remark 1.1. In the study of traveling wave solutions, we usually construct the lower
solution v(t,z) = max{0,er(~7+et) — Ler(1+d)(=2+ct)l where L is large enough. Note
that v(t,z) > 0 for = large enough. Different from wv(t,z), the lower solutions defined
by (1.8) have no tails on both sides, which means that the function w, (¢, ) is compactly
supported. Therefore, the lower solutions defined by (1.8) can be used to study the
spreading speed for compactly supported initial data.

(¢) Studying the relationship between spreading speed and exponentially decaying initial
data. In a reaction-diffusion equation, it is well-known that the decay behavior to zero
as  — +oo of the initial data influences the spreading speed, see e.g. Booty et al. [7],
Hamel and Nadin [20], McKean [30], and Sattinger [33]. Moreover, when the initial datum
decays slower than any exponentially decaying function or the kernel is “fat-tailed”, the
propagation accelerates (namely, its spreading speed approaches infinity as ¢ — +00).
This is studied by Alfaro [1], Alfaro and Coville [2], Finkelshtein et al. [15], Finkelshtein
and Tkachov [18], Garnier [19], Hamel and Roques [21], and Xu et al. [41,42]. Therefore,
we consider the influence of initial data on the spreading speed of equation (1.1).

Here we focus on the exponentially decaying initial function which satisfies that

up(x) ~ Ce™ M1 as x| — 400

When £k is symmetric, for A € [A\*, +-00) the spreading speed of equation (1.1) is ¢* £
cr = —cf, and for A € (0, \*) the spreading speed is equal to

e(\) = A [/k(x)e”dm 1+ f’(O)]

R
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Moreover, c(\) decreases strictly along with the increase of A € (0,\*) and we have
c* = ().

The rest of this paper is organized as follows. In Section 2, we study the signs of spread-
ing speeds and the influences of asymmetric dispersal on spatial dynamics. Section 3
presents the new lower solutions and the new “forward-backward spreading” method.
By using them, we give an improved proof of the spreading speed result. Section 4 deals
with the relationship between spreading speed and exponentially decaying initial data.
In Section 5, two examples are provided to explain the results on the signs of spreading
speeds.

2. The signs of spreading speeds
In this section we present the main results about the signs of spreading speeds and

the influences of asymmetric dispersal on the spatial dynamics.
First we introduce some notations. By (K1), we denote

AT = sup {)\ >0 | /k(m)e)“"”dm < Jroo} € R U {400}, (2.1)
R

A~ = inf {A <0 /k(x)e“dx < +oo} € R~ U{—oo}. (2.2)
R

When AT < +o0, we have [ k(z)edz — +0o as A — AT; otherwise, [p k(z)er @da <
400 and then by the continuity of A — [p k(z)e**dx, there is a constant Ao (close to
and larger than AT) such that [p k(z)e*?dz < +oo, which contradicts (2.1). When
AT = 400, by (K2) and the continuity of &, there exist a € (0,21] and b > 0 such that

k(x) 2 b for x € [x1 —a,z1 + a. (2.3)

From the nonnegativity of &, it follows that

x1+a
lim k(z)e’dr > lim b / e Mdr = +oo.
A——+o0 A——+o0
R xr1—a
Then we obtain
lim [ k(x)e*dr = +oo. (2.4)
A=At
R

Similarly, we have that

lim /k(m)e)“"”dx = +o0.
A=A~
R
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By 38—;2 Jg k(z)e*dx > 0, under (K1) and (K2), we can find a unique constant A(k) €
(A7, AT) such that

/k(x)e/\(k)mdxzg\ni{g/k(x)e)‘wdx, namely /k(:ﬂ)e)‘(k)wxdx =0. (2.5)
€
R R R

Since the function A — [ k(z)e** zdz is strictly increasing, we know that

/k(a:)e”xdx > 0 for A € (\(k),\") and /k(a:)e”xdx <0 for A e (A7, A(k)). (2.6)
R R

It follows from J(k) = [ k(:v)e“xd:chzo that sign(J(k)) = —sign(A(k)). Then we have

E(k) = —sign(A(k)) |1 — / E(z)e?®zdz | (2.7)
R

Note that 0 < [ k(z)e*®%dz < [, k(z)e"dz = 1 by the optimality of A(k), so that
sign(E(k)) = —sign(A(k)) and —1 < E(k) < 1. Next, we state two properties of E(k).

Proposition 2.1. The function E(k) satisfies that

(i) E(k) = —E(k), where k(z) = k(—z) for x € R;

(ii) If k1 is more skewed to the right than ke, then E(k1) > E(ke). Here the concept that
k1 is more skewed to the right than ko means that ki(x) > ko(z) for x € RT and
ki(x) < ko(x) forz e R™.

Proof. Since J(k) = —J(k) and

inf /k(:c)e)‘zdxz inf /lvf(x)emdx,
AeR AeR
R R

we have that E(k) = —E(k).
Now suppose that ki(z) > ko(z) for € RT and ki(z) < ko(z) for z € R™. De-

note Ay £ A(k1) and Ay = A(k2). By [p(ki(z) — ko(z))e*2®zdz > 0, we get from
Jg ki(z)e*®xdxz = 0 that

/kl(x)e)‘ﬁxdx >0= /kl(x)e)‘lx:rdx.
R R

Note that the function A — fR ki (z)e*zdz is increasing, then \; < Ao. Now we consider
three cases. First, when A\; < 0 < Ag, we easily check that E(k;) > 0 > E(ks) by
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sign(E(k)) = —sign(A(k)). Next, consider the case A1 < A2 < 0. Some calculations imply
that

0
E(kl)zl—/kl(x)emdxz/ /kl(x)e’\“’xd:c d\,
R

0
E(ky) =1 R/kz(x)emd:ﬂ :/ /kQ(x)e“xdx dX.

We have that

A2 0
E(k)) — E(ky) = J / ki (z)eMadr | d\ + / / (k1 (x) — kg(z))e M xdz | dA.

It follows from (2.6) that [ k1(z)e**@dz > 0 for A > 1. Then we obtain E(k1) > E(ks)
by [g(k1(z) — ko(z))eMadz > 0. Finally, in the case 0 < Ay < A2, we can prove E(k;) >
E(k2) by a similar method. O

From Proposition 2.1, we can use E(k) to describe the asymmetry level of k. Note
that E(k) € [—1,1] for any nonnegative and continuous k satisfying (K1). In particular,
if k(-) is symmetric, then E(k) = 0; and if k(z) = 0 for all z € R*, then E(k) = —1.
Similarly, if k(x) = 0 for all € R™, then F(k) = 1. Moreover, when E(k) > 0, k can be
regarded as a function skewed to the right and when E(k) < 0, it is a function skewed
to the left.

Remark 2.2. The properties (i) and (ii) in Proposition 2.1 are two fundamental re-
quirements for the function describing the asymmetry level of k. For example, consider
Ey(k) £ [g k(z)g(z)dx, where g is an odd function and is positive in R*. Then we can
use E, to describe the asymmetry level of k too. It is easy to check that E,(k) satisfies
(i) and (ii). A special form of Eg4(k) is given by the moment function [p k(x)a™ dz, where
N is an odd number.

Let ¢(-) be the function defined by

c(A) = A7t [ / k(z)e de — 1+ f’(O)} for A € (A, 0) U (0, AT). (2.8)
R

The following lemma will be used several times in the remainder of the paper.

Lemma 2.3. For any k(-) satisfying (K1) and (K2), there are unique \* € (0,A") and
Af € (A7,0) such that
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= =c(\) = [ k(x)eMad 2.9
i = i (e} =) = [ ho)eNada (2.9)
R
and
cj :)\er{l)\axo){c( ) =c(A) /k N rda. (2.10)
R

Proof. For A € (A™,0) U (0, "), a simple calculation implies that
d\) =271 /k(x)e”xdm — 22 [/k(x)e/\””da: -1+ f’(())]
R R

We obtain that hr(r)l c'(\) = —oo. Next, we show that

d(\) >0 for any A close to AT. (2.11)

In the case AT < 400, let M be a positive constant satisfying that M A+ > 1. Then there
are two constants C; and Cy such that for any A € (0, A1),

—+o0 —+o0
/k(x)e)‘mxdz >M / k(x)erdx + C, /k(x)e)‘mdz < / E(x)erdx + Cs.
R M R M

Then we can obtain (2.11) by using f]\-;m k(x)e’dr — 400 as A — A1, In the case
AT = 400, we need to rewrite ¢’(\) as

d(N) = A2 [/ K@)e™ (a — )z + 1 1/(0)].

R

Then we get (2.11) by the fact that e*® > Ax + 1, € R. On the other hand, when
d(N\) = 0, it follows that ¢’/(\) > 0 for A € (0, \1). Therefore, there is a unique constant
A% € (0,AT) such that

d(A\)=0and ¢(\)) = min {c(A }—/k Ye T xda.

Ae(0,A1)

Moreover, we have that
d(A) <0 for X € (0,\) and ¢/(A) >0 for A € (A5, AT).

Similarly, the existence and uniqueness of A\j can be obtained. O
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Fig. 1. An illustrative diagram showing the changes of locations and signs of ¢ and ¢ under different
conditions given in Theorem 2.4.

Now we show that the spreading speed to the left ¢; has the same sign as that of
E(k) — f/(0) and the spreading speed to the right ¢} has the same sign as that of
E(k) + f/(0).

Theorem 2.4. Suppose that (H), (K1) and (K2) hold. Then we have the following state-
ments:

(See Fig. 1.)

Proof. By (2.9) and (2.10), it is easy to check that ¢f < ¢, since the function A —

Jg k(z)eradx is strictly increasing. When E(k) > f/(0), by (2.7) we get that A(k) < 0
and

Bk =1 / k@) M dz > £(0).
R
From (1.5) it follows that

= Ak)! [/k(x)e’\(k)zdx —1+ f’(O)] > 0.
R
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Then 0 < ¢ < ¢i. When E(k) = f/(0), we have A(k) < 0 by sign(E(k)) = —sign(A(k)).
Then

min /k@kMM%ﬂ+fﬂD :/%up““mx—1+fmn:fﬂD—Ew):a

AeR
R R

This implies that A™!( [ k(z)e*dx — 1 + f/(0)) < 0 for all A < 0, with equality at
A = A(k). Therefore, 0 = ¢f < ¢ by (1.5). When —f'(0) < E(k) < f'(0), we have

|E%H:1—mf(/mm&%x < f'(0).

A€R
R

From (1.5), (1.6) and Lemma 2.3, it follows that ¢ < 0 < ¢}. Finally, the proofs for
cases (iv) and (v) are similar to those of cases (ii) and (i), respectively.

We can check that the sufficient conditions in cases (i)-(v) are necessary. For example,
for case (i), if 0 < ¢f < ¢f, then E(k) > f'(0); otherwise, one of the conditions in cases
(ii)-(v) must hold, and ¢} and ¢ satisfy the corresponding relationship, which contradicts
0<c¢ <ci. O

Combining Theorem 2.4 with (1.4), we see that E(k) and f/(0) determine the signs
of spreading speeds. Moreover, they have three important cases about their influences
on the spatial dynamics of nonlocal dispersal equation (1.1).

(a) The signs of c; and ¢ determine the spatial propagation directions of solutions.
Define a level set function by

Yo(t) 2 {z € R | u(t,z) > w} forany w e (0,1), t > 0.

Then when ¢ is large enough, ¥, (¢) spreads to both the left and right sides of the z-axis
in case (iii), spreads only to the right in case (i), and spreads only to the left in case (v).
However, in case (ii), if the set X, (¢) is connected, the movement of the left boundary of
Y (t) is slower than linearity and we cannot identify its propagating direction. Similarly,
we cannot identify the propagating direction of the right boundary of ¥,,(¢) in case (iv)
either.

(b) The signs of ¢ and ¢} influence the stability of equilibrium states. In case (iii), the
equilibrium state u = 1 is globally stable and v = 0 is globally unstable in any bounded
spatial region. More precisely, if ug(-) #Z 0 and wug is continuous and nonnegative, then

for any z € R, lim wu(t,z) =1;
t—o0
namely, case (iii) has the same stability property as (1.3) in reaction-diffusion equations.

However, in case (i) or (v), the equilibrium state v = 0 becomes stable in any bounded
spatial region for compactly supported initial data, which means that
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for any z € R, lim wu(t,z) = 0.
t—o0

The fundamental reason of this change is that the asymmetric dispersal plays a more
important role than the reaction term, and the spatial region %, (¢) travels in the domi-
nating direction of dispersal (namely, the direction of sign(J(k))). In addition, it is worth
pointing out that the equilibrium state v = 0 remains unstable for initial data satisfying
ug(z) = € with € > 0 (see Finkelshtein et al. [13,14]).

(c) The asymmetry of k affects the monotone property of solutions. In the reaction-
diffusion equation (1.2), there is a well-known result stating that the solution preserves
the symmetry and the monotonicity of initial data; that is, if ug(-) is symmetric and
decreasing on R™, so is the solution u(¢,-) of equation (1.2) at any time ¢ > 0. The
following theorem shows that this result also holds in the nonlocal dispersal equation.

Theorem 2.5. If k(-) and uo(- + z1) are symmetric and decreasing on R™T with x1 € R,
s0 is the solution u(t,- + 1) of equation (1.1) at any time t > 0.

Proof. By translating the z-axis, we suppose that z; = 0. The symmetry property of
u(t,-) can be obtained easily. Indeed, if we consider the following equation

{vt(t,x) =kxv(t,z) —v(t,z)+ fv(t,z)), t>0, z€R,
v(0,2) = up(—x), = € R,

then u(t,z) = v(t,x) = u(t,—x) for t > 0 and x € R by the uniqueness of the solution.
For a fixed number y € RT, we define

w(t,x) = u(t,z+2y) —u(t,z) fort >0, x € R.
The symmetry property of u(t,-) implies that w(¢, —y) = 0 for ¢ > 0 and
w(t,z) = —w(t,—x —2y) fort >0, z €R. (2.12)
Since ug(+) is symmetric and decreasing on R, we have
w(0,2) <0 for x > —y, w(0,z) >0 for z < —y.

In order to prove that u(t,-) is decreasing on RT for any ¢ > 0, we try to prove the
following conclusion

w(t,z) <0fort>0, z>—y. (2.13)

Indeed, if (2.13) holds, then we have that u(t,z + 2y) < u(t,z) for z > —y and y € R
at any time ¢ > 0, which means that u(t,-) is decreasing on R™T.
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Now we begin to prove (2.13). Since f(u) € C1([0,1]), there is a constant M > 0 such
that

wi(t, ) = kxw(t,x) —w(t, ) + f(ult,z + 2y)) = f(ult, 2))

(2.14)
< kxw(t,z) —w(t,z)+ Mlw(t,z)| fort>0, x€R.

Suppose by contradiction that (2.13) does not hold and there exist two constants Ty > 0
and € > 0 such that

sup {w(Tp, z)} = eeT0 and w(t,z) < ee®* for t € (0,Ty), = > —y, (2.15)
r>—y

where K > max{M +1, $M + 3}. Under (2.15) we give an estimate for the nonlocal
dispersal term kxw(t, x) —w(t, ). From (2.12), it follows that for ¢ € (0, Tp] and x > —y,

kExw(t,x) —w(t, )
+oo -y

_ / w(t, ) — w(t, 2)|k(z — 2)dz + / w(t, 2) — w(t, 2)|k(z — 2)dz

—y — 0

—+o00
_ / Qlt, . 2 )dz
-y

= / Qt,z,z,y)dz + / Q(t,z,z,y)dz,
21(t) 3a(t)
where
Qt,x, z,y) = [w(t,z) —w(t,x)|k(zx — 2) — [w(t, z) + w(t, z)|k(z + 2z + 2y)
and
Sit) ={z |w(t,2) >0, 2> -y}, Bao(t)={z|w(t,z2) <0, z>—y}.

We also suppose that w(t,z) > 0 in the following estimation. When z € ¥4(¢), we can
get from (2.15) that w(t, z) — w(t,x) < ee*t. Then it follows that

Qt,x, z,y)dz < / el k(z — 2)dz < eeft for t € (0,Ty), > —y.

S1(t) 1 ()

When z € X5(t), we rewrite Q(t, z, z,y) as

Qt,z,z,y) =w(t,2)[k(x — 2) — k(z + z 4+ 2y)] — w(t,z)[k(z — z) + k(x + z + 2y)].
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Since k(-) is symmetric and decreasing on R, we have that k(z —z) —k(z +2+42y) > 0
when & > —y and z > —y. Then it follows that

/ Q(t,x,z,y)dz <0 fort e (0,Tp], © > —y.
Sa(t)
Therefore, when w(t, z) > 0, we have that
kxw(t,z) —w(t,z) < et fort € (0,Ty], x> —y. (2.16)

Next we return to the proof of (2.13). From (2.15), the continuity property of w(Tp, )
implies that one or both of the following two cases must happen.

Case 1: There exists xg € (—y, +00) such that w(Tp, o) = max {w(Ty,z)} = eeXTo.

r>—y
Case 2: It holds that lim sup{w(Tp, )} = eeX7o.

Tr——+o0

If case 1 holds, from (2.15) we have

13}
— (w(t, zg) — ce’! >0,
ai (Wt 20 ) .

which implies
wi(Tp, zo) = eKeXT0, (2.17)
From (2.16) and (2.17), it follows that
wy(Ty, z0) — k * w(Ty, z0) + w(Ty, 20) — M|w(Ty, z0)| = (K — 1 — M)eeXT0 > 0,
which contradicts (2.14).

If case 2 holds, then there exists a constant number 27 > —y (far away from —y) such
that w(Ty, z1) > 2cef70. Let py(z) be a smooth and increasing function satisfying that

1 for xz < x4,
po(z) =
3 forz>z;+1.

For ¢ > 0, we define

1
po(t,x) = [5 + apo(x)} ee®t for t €0, Ty], z € R

and
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:inf{a >0 | w(t,x) — ps(t,z) <0 fort €[0,To], = > —y}.

From (2.15), some simple calculations yield that py (¢,2) > > eelt > w(t,x) for t € [0,Ty)

and z > —y and pi(mel) = %aeKTD < w(TO,xl) Then, by monotonicity of o — p,,

we have that i <o* K % and

5
por(t, ) = ZseKt > w(t,z) fort €[0,Tp], x > a1 + 1.
From the definition of ¢*, there must exist T} € (0,Tp] and 22 € (—y,z1 + 1) such that

'U.)(Tl,.TQ) (Tlv 2) telo, To]a’>;> y{ (t,.’E) _po'*(t3x)} :Oa

which implies that

i (
. w(ta 3,’2) — Po* (t, 132)) = 0
ot —T
Since % <o* < %, we have
w(T1,22) = po+ (T1, 2) < pi (T1, 22) < 2eeKT (2.18)
and
0 3 KT
’wt(Tl,l‘g) 2 Epa* (Tl,l’g) = Kpg* (Tl,.’L’Q) 2 K %(Tl,.rg) 4K€6 i, (219)

From (2.16), (2.18) and (2.19), we can get that

3
we (T, 22) — k* w(Ty, xe) + w(Th, x2) — M|w(Ty, x2)| > (ZK —-1- 2M)z:‘eKT1 >0,

which contradicts (2.14).
Finally, we get (2.13) and the proof of Theorem 2.5 is finished. O

However, when k is asymmetric, Theorem 2.5 does not hold even if k has an adequate
monotone property. For example, in case (i) or (v), the spatial point where the solution
attains its maximum value keeps moving at a speed between ¢ and c;. We also point
out that Theorem 2.5 is useful in Remark 3.5 and the proof of Theorem 4.2.

Recently, we [43] further studied the relationship between the signs of spreading speeds
and the asymmetric dispersals of infectious agents and infectious humans in an epidemic
model, where the infectious agents are carried by migratory birds. We found it is possible
that the epidemic spreads only along the fly route of migratory birds and the spatial
propagation in the opposite direction fails, as long as the infectious humans are kept
from moving frequently.
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Remark 2.6. In reaction-diffusion equation (1.2), the proof of the same conclusion as
Theorem 2.5 is easier than that in a nonlocal dispersal equation. Indeed, we can prove
(2.13) by the maximum principle of equation w;(t, z) = Aw(t, )+ Mw(t, z) with (¢,z) €
[0, +00) x [~y, +00).

3. Improved proof of spreading speeds

In this section, we give an improved proof of the spreading speed result for equation
(1.1) by constructing new lower solutions and applying the “forward-backward spread-
ing” method. First, we state the comparison principle (see e.g. [10,12]).

Lemma 3.1 (Comparison principle). Suppose that the bounded continuous functions
u(t,z) and u(t,z) are upper and lower solutions of equation (1.1) for t € (0,T], in
the sense that

w—kxu+u—f(u) 202y, —k*xut+u— f(u) forte(0,T], z€R.
If u(0,z) > w(0,x) for x € R, then u(t,z) = u(t,x) fort € [0,T] and z € R.

In the construction of the new lower solutions, we need an auxiliary function and some
of its properties as stated in the following lemma.

Lemma 3.2. For any ¢ € (0,1), define
H(z) = Az — Bz'™0 — D2'79 for 2 > 0.
For any given A > 0 and D > 0, we have the following conclusions

H™> >0 for B € (0,A%/(4D)),
H™™ 0% v—pu—0" as B— A%/(4D) =07,

where

H™Max & 81;13 {H(2)} = H(z0) for some z € (u,v),
z
(n,v) £ {z>0] H(z) >0} for Be (0,A*/(4D)).
Moreover, for any p > 0, there exists B(p) € (0, A?/(4D)) such that
H™ = p and B(p) — A?/(4D) as p — 0%,
Proof. For any given A >0, D > 0 and ¢ € (0, 1), define

A2

h(Z,B):AZ—BZI+5—DZ17§ fOI'Z>O7 O<B< m
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Let zp and 21 be two positive numbers given by

A+ /A2 —4BD(1 - ?)
2B(1+6)

5 A— /A2 —4BD(1 - 82

20 = and 2] = 3B+ 90)

A simple calculation implies that

=0 for z =z and z = zg,

0

&h(z,B) <0 for z € (0,21) U (20, +00),
>0 for z € (21, 20).

Therefore, we have H™** = max{0, h(zo, B)}. Define

A2
_ _ 146 1-§
g(B) —h(ZO,B) —AZO—BZO —DZO for 0 < B S m
Then it follows that ¢/(B) = —z3™ < 0. Notice that
g(B) =0 when B = A?/(4D). (3.1)

The continuity and monotone property of g(-) show that
H™> = g(B) >0 for 0 < B < A?/(4D) and g¢(B) — 0" as B — A?/(4D) - 0".
When 0 < B < A%/(4D), by (p,v) = {z > 0| H(z) > 0} we get

A— /A2 —4BD7} A+ A2 —4BD7;
“:[ 2B } and”:[ 2B }

and
v—pu—0"as B— A?/(4D) — 0™.
Moreover, a simple calculation shows that
9(B) = h(z, B) > h(B~T,B) = B~ 15 [A— DBT] — 1,

which implies that g(B) — 400 as B — 0. By (3.1) and the continuity of g(-), for any
p > 0 there exists B(p) € (0,A?/(4D)) such that H™®* = ¢(B(p)) = p and B(p) —
A%/(4D)asp—0t. O

Now for small 1 > 0, define

cn(A) =271 [/k(x)e/\xda: -1+ f'(0) — 77} for A € (A7,0) U (0,AT)
R
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and

cr(n) = Ae%g’fﬁ){cn(/\)} and ¢ (n) = AGS(’;IBO){%(/\)} for 1 € (0, f'(0)).

It follows that ¢ < ¢f(n) < ¢i(n) < ¢ and ¢f(n) — ¢, ci(n) — ¢ as n — 0. Then for
any small € > 0, we can choose two constants 7; and ny in (0, f'(0)) such that

crm)=ci—e c(p)=c+e (3.2)
For any n € (0, f'(0)), define

Gp(c,\) = — /k(m)e)‘zdx +1—=f(0)+n for ce(c,ci)and A€ (A\7,AT). (3.3)
R

We can check that

2
Gy(e,0) < 0 and 2, (e, \) < 0. (3.4)

ON?
When AT < +o0, by (2.4) we have that

)\1_1>r§\1+ Gy(c,\) = —oc.

When At = +o0, it follows from (2.3) that

x1+a
1 b
lim — / k(z)eMdr > lim / eMdr = 400,
A—4o0 A A—+o0
R Tr1—a
which implies that
- Y 1 Ao 1-fO)+n) _ -
)\EI}}OC Gy(c,\) = /\BTOO)\ c— X/k:(x)e dx + — | = forc € (¢f,c).
R

Therefore, by some similar calculations for the case A — A™, we can get that
Algili Gy(e,\) = —o0. (3.5)
Consider the case n =n;. For A € (0, A1) and ¢; € (¢} — ¢, ), we have

Gy (e, A) = [er = ey (VA = [er = e (m)IA + [en(m) = e (M)A

Using the same argument as in the proof of Lemma 2.3, we can find some constant A €
(0, AT) such that ¢(n1) = ¢, (A), which implies Gy, (¢1,A) > 0 for any ¢; € (¢f — €, ¢f).
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By (3.4) and (3.5), for any ¢; € (¢ —¢,c}), there are three constants a™(c1), 87 (c1) and
vt (e1) in (0,AT) such that a™(¢1) <yt (e1) < B1(e1) and

G, (c1,a (1)) = Gy, (1,87 (c1)) = 0 and Gy, (e1,77 (1)) > 0. (3.6)

Moreover, we have that Gy, (c1,\) > 0 for A € (ot (c1), 87 (c1)).
Similarly, when considering the case n = 72, for any cs € (¢, ¢ + ¢€) we can find three
constants a~ (¢3), B (c2) and v~ (¢2) in (A7, 0) such that S (c2) < v (e2) < a (c2) and

Gy (C2, a7 (€2)) = Gy (€2, 87 (¢2)) = 0 and Gy, (c2,77 (¢2)) > 0 (3.7)

Moreover, it follows that Gy, (c2, A) > 0 for A € (87 (c2), @ (c2)).
The following theorem and its proof are the main results of this section.

Theorem 3.3 (Spreading speeds). Suppose that the assumptions (H), (K1) and (K2) hold.
If ug(+) satisfies that 0 < up(z) < 1 for x € R, ug(x1) > 0 for some 1 € R and

uo(x)eN® KT for & < —xo,  uo(x)e™" < T for x> xq, (3.8)

where oy and I' are two positive constants, then for any small € > 0, there is a constant
p € (0,1) such that the solution u(t,z) of equation (1.1) has the following properties:

lim sup  u(t,z) =0,

t—+00 (e —e)t

min u(t,z) = or any t> 0,
(cf+e)t<z—z1<(ct—e)t ( ) P f y (39)

lim sup  wu(t,z) =0.

400 o> (cxte)t

Proof. Step 1 (Lower solution and “forward-backward spreading” method). From
ug(z1) > 0, by translating the z-axis, we can find two positive constants p; and r
such that

uo(z) = p1 for x € [—r7]. (3.10)

For small € > 0, let 73 € RT and 1, € R be the constants satisfying (3.2). By f(u) €
C1([0,1]) and f'(0) > 0, there is a constant py € (0, p1] such that

J(w) > (f(0) = )u for u € [0, pal,
where 77 = min{#;, 7, }. For any § € (0, 1), by taking M (5) = np;° /2, we can get that

f(u) = (f'(0) = n)u + M(&)ul*® for u € [0,pa]. (3.11)
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Now we prove that for any ¢; € (¢f —€,¢}) and ¢2 € (¢f, ¢ + €) there is a constant
p € (0,1) such that

u(r,X) > p for any given 7 > 0, X € [coT, c17].

Let k be a constant defined by

X —
k=——22T co,1].
C1T — CT

In the following proof, we introduce the “forward-backward spreading” method and divide
the time period of [0, 7] into two parts [0, k7] and [kT, 7].

In [0, k7], for ¢1 € (¢} — €, ¢) we choose the same at(c;), 87 (c1) and v+ (c1) as those
n (3.6). Construct a set of lower solutions which spread at a speed of ¢; as follows

uq (t, ;&) = max {0, Hl(epl(fﬂclt%l))} fort € [0,k7], x €R

(3.12)
with

& € [f'r +p vy, 4 prt lnul] , (3.13)

where

Hi(z) = A1z — Biz't% — D270 for 2 > 0,
_ BHe) +9F(a)
pr="——"tp

o o) —vH(e)
2 LT B (e) + (@)
5 G, (c1,p1) . A1Gy, (c1,p1)
(A1) = nMT’ D, = i

G (et (e D€ (0 A1/@D),
(m,01) £ {z > 0| Hi(2) > 0}.

Here G, (c,A) is defined by (3.3). By Lemma 3.2, we can choose By € (0,A4%/(4Dy))
close to A?/(4Dy) such that

Hpax & rggé( {Hl(z)} < p2 < p1, pl_l(ln vy — lnul) <r/2. (3.14)

Let 21 be the constant in (p1, v1) such that H*** = H;(z1). A simple calculation implies
that

(0.2:6) 0 for z ¢ Oy,
u y L361) =

' Hy (e o8y for z € Q,
where
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O = (& —py Inwy, & — py Hin).
By (3.13) we have that 4 C (—r,r). From (3.10) and H{"* < py, it follows that
uy(0,2561) <ug(x) for z € R.

Next we verify that u, (¢, z; £1) is a lower solution of equation (1.1). When x—c1t ¢ Q,
it is easy to check that w; (¢, ;&) = 0 and

Oy (t, 7561) — b *uy (8, 2361) +uy (8, 2561) — f(wy (¢, 7361)) < 0.

When z — ¢;t € Qy, we have that ui(t,z;&) = Hi(err("ztat+&)) By (3.11), some
calculations show that

Opuy (8,25 61) — kxug (8, 560) +uy (8 236) — fuy (8 236))
< AGy, (c1, pl)epl(_r+61t+£l) — B1Gy, (e, p1(1+ (51))6’01(1+61)(_r+01t+51)
— D1Gyy, (e, pr(1 — 51))6P1(1*51)(*1’+01t*€1) + M(51)A%+5601(1+51)(*®+01t+51)_

Recall the definitions of p1, 61, A1 and Dy, then we get from (3.3) that

Gy, (1, pr(1461)) = Gy, (1,7 (1)) =0,
D1Gy, (c1, pi(1 = 61)) = D1Gy, (1,77 (1)) = A1Gy, (c1, 1),
M(81)(A1)" = 41Gyy, (c1, p1).

It follows that

Qv (8,3 60) =k xay (8 236) +ug (4 25.6) = flug (8, 2360))
< A1Gy, (c1,p1) [epl(*z+c1t+§1) e (1+01) (—ztert+€r) ep1(1751)(7:v+51t+§1)] <0.

Then u, (t,x;&1) is a lower solution of equation (1.1).
Therefore, Lemma 3.1 implies that

u(t,x) = uq(t,2;&) fort €[0,k7], z € R.
Define z1(t) = 1t + & — py " ln 2y with ¢ € [0, #7] and it follows that
u(t,z1(t)) = uq (t, 21(¢); &) = H™ for ¢ € [0, k7).
The arbitrariness of the parameter &; in (3.13) shows that
u(t,z) = H{"* for t € [0,kT], = € [e1t —7/2, e1t +7/2)].

Then we have
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u(kT,x) = H{"™ for x € [e1hT — /2, cakT +1/2]. (3.15)

In the second time period [k7,7], for ¢ € (¢f,¢] + €) we choose the same a™ (c2),
B~ (c2) and v~ (c2) as those in (3.7). Construct another set of lower solutions which
spread at a speed of ¢y as follows

Uy (t, 5 &) = max {0, Ha(er?*Fe2M48))) for ¢ € k7, 7], 2 €R

0 for & — cot & Qo, (3.16)
B Hg(e”z(_“3+c2t+52)) for x — cot € Qo

with
& € [(e1 — co)km +p3 ' Inps —7/2, (e — c2)kT + p3 " Inws +7/2] (3.17)
where

Qo = (& — py ' I, & — py ' Inws),
Hy(z) = Asz — Boz'192 — Do21 =02 for 2 > 0,

_ BT(e2) + 7 (e2) _ BT(e2) =7 (e2)
= T @)y (@)

2
G, (ca, p2) AsGy, (ca, p2) 2

A0 = T2 o, = 2T PR By e (0, A2/(4D,))

(A" =G P27 Gleny (@) 22 € (0 4/0D2)

(MQ,VQ) £ {Z >0 ‘ HQ(Z) > O} .

Here G, (c, A) is defined by (3.3) and note that p, is a negative number. By Lemma 3.2,
we can choose By € (0,A43/(4D3)) close to A3/(4D3) such that

Hx & max {Hg(z)} < HP"™ < pa2 < pu, p2_1(11’1/J/2 —Inw) < r/2. (3.18)
Let z2 be the constant in (ug,vs) such that HY** = Hy(z3). At time ¢ = k7, we have

0 for « ¢ Qo + cokr,

Hg(ePZ(ﬂHCQMJ“EZ)) for x € Qs + cakT,

@2(’€T7x;§2) = {

where
Qo + cokT 2 (&9 — pgl In po + cort, & — pgl Inwvy 4+ cort) C (1k7T — 1/2,c16T +1/2).

Then it follows from (3.15) that u(k7,x) > uy(k7, ;&) for € R and any & satisfying
(3.17). Similar to the case of u,(t,z;&;), it can be verified that u,(t,z;&3) is a lower
solution of equation (1.1) in time [k, 7]. Then for any &, satisfying (3.17), by Lemma 3.1
we have that
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u(t, x) = uy(t, z; &) for t € [k7, 7], x € R.
For t € [k, 7], we define xo(t) = cat + & — py " In 2o and it follows that
u(t,x2(t)) = us(t, 22(t); &2) = H(z2) = Hy™.
Since

Py (Inpg — In2zp) < py t(Inpg — Invy) < r/2 and

Py t(In 2o —Inwy) < py t(Inpg — Inwy) < /2,
we can choose & satisfying (3.17) and
&= (c1 — c)kT + pgl In zs.
It follows that xo(7) = c1x7 + c2(1 — k)7 = X. By taking p = H**, we have that
u(r,X) = p forany 7 >0, X € [caT, c17].
Therefore, for any small ¢ > 0 there is a constant p € (0,1) such that

min u(t,xr) = for anv t > 0.
(c +e)t<a<(ci—e)t (t,z) = p v

Step 2 (Upper solution). Now we begin to prove that

lim sup u(t,z) =0 and lim sup u(t,x) =0. 3.19
t—+o0 (e —e)t ( ) tg)+ooz2(cj:+e)t ( ) ( )

Construct an upper solution as follows

u(t,z) = min {1, [oetr(-2tert) Foe/\f(_z'*'cl*t)} ,

where the constant T'g > max{1,T'} is large enough such that @(0,z) > uo(z).
Next we verify that u(t, z) is an upper solution of equation (1.1). Define

G(c,\) =cA — /k:(x)e’\xdx +1—f(0) force R, A€ (A7, AT).
R

Then it follows from (2.9) and (2.10) that G(c},\:) = G(c¢f,A\[) = 0. By a simple
calculation, if z < ¢ft + (Af) "' InTy, then u(t,z) = ToeM (=#+¢t) and it follows from
(H) that

Uy (t, ) — ks a(t, ) + a(t, z) — f(u(t,z)) = G(cf, A )Doett (Zo+et) — g,
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If 2 > ¢t + (A5) " InTy, then a(t, 2) = Doe* (=7 and we get from (H) that
Uy (t, ) — ks a(t, ) + a(t, z) — f(u(t,z)) = G(ck, A Doer (o+ert) — g,
If it + (A)'InTo < @ < it + (AF) "' In Ty, then a(t,z) = 1 and
u(t,z) — kxu(t,z) + a(t,z) — f(u(t,z)) > 0.

Therefore, we get that u(t,x) is an upper solution of equation (1.1). Lemma 3.1 implies
that u(t,z) < u(t,z) for t = 0, x € R. It follows that

sup  u(t,x) < sup  a(t,z) < ToeN e,
z<(cf —e)t z<(cf —e)t

sup  u(t,z) < sup a(t,x) < Toe M,
x> (ci+e)t z>(cri+e)t

which means that (3.19) holds. O

By Theorem 6.2 in the classic spreading speed theory [39], we can get from the second
inequality of (3.9) that for any small € > 0,

min u(t,z) > 1 ast — +oo.
(cf+e)t<e<(cr—e)t

Then combining with the other two inequalities of (3.9), we see that u(t,x) satisfies the
propagation property (1.4).

By using the new lower solutions and the above “forward-backward spreading”
method, we obtain a corollary which shows that if ug(z1) > 0 for some z; € R, then the
property u > 0 will spread over an expanding spatial region.

Corollary 3.4. Suppose that (H), (K1) and (K2) hold. For any small € > 0 and small
p > 0, there is a constant r.(p) > 0 such that if

ug(x) =2 p, « € [x1 — re(p), x1 +1re(p)] for some x1 € R,
then the solution u(t,x) of equation (1.1) satisfies that
u(t,z) =p fort>0, x €z + (] +e)t, 1+ (¢ —e)t].
Moreover, for any small e > 0, we have that r.(p) — 0 as p — 0.
Proof. We use the same notations as those in the proof of Theorem 3.3. By translating

the z-axis, we suppose that x; = 0. From Lemma 3.2, for any p € (0,ps], there are
Bi(p) € (0, A7/(4Dy)) and Ba(p) € (0, A3/(4D,)) satisfying that H™* = HE™ = p,
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We define r(p) = 2(r1(p)+r2(p)), where r;(p) is the length of the set {z € R | H;(e~Pi%) >
0}. We suppose that

ug(xz) = p for x € [—r(p),r(p)].

Define the lower solutions u, (¢, x; &1) and uy(t, 2;&2) by (3.12) and (3.16), respectively,
where

& e [-r(p)+py Invn, r(p) +py  Inpu],
& e [(cl — Co)RT + ,02_1 In pg — ra(p), (c1 — co)kT + p2_1 Invy + rg(p)] )

It follows that

Q) C (=r(p),r(p)), Q2+ cakt C (1T — ro(p), c1&T + 12(D)).

Then by the same method as the proof of Theorem 3.3, we can prove Corollary 3.4.
Moreover, as p — 07, it follows from Lemma 3.2 that B;(p) — A?/(4D;), which implies
that r;(p) — 0. We can see that r;(p) is dependent on ¢;, since H; and p; are dependent
on ¢;. Therefore, r;(p) is also dependent on €. O

Remark 3.5. When considering a reaction-diffusion equation or when the kernel in equa-
tion (1.1) is symmetric, we point out that the new lower solutions (3.12) and (3.16) remain
valid. However, it is not necessary to apply the “forward-backward spreading” method,
since we can use Theorem 2.5 instead (more details are found in proof of Theorem 4.2).
Then the conclusion in Corollary 3.4 still holds in the reaction-diffusion equation (1.2).

4. Spreading speeds for exponentially decaying initial data

In this section we study the relationship between spreading speed and exponentially
decaying initial data. First we state the weak “hair-trigger” effect in nonlocal dispersal
equations (see e.g. [1,3,17]).

Lemma 4.1 (Weak “hair-trigger” effect). Suppose that (H) holds and k(-) is a symmetric
kernel satisfying (K1). Let u(t, z) be the solution of equation (1.1) with initial data ug(x).
If there are two constants xo € R and wg € (0,1) such that

uo(z) = wo for x € By(xo),
then for any w € (0,1), there exists Tz > 0 (independent of xo) such that
u(t,z) 2w for x € Bi(xo), t =T,

where By (wg) £ {z € R | |z — x| < 1}.
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The following theorem is the main result of this section.

Theorem 4.2. Suppose (H) holds and k() is a symmetric kernel which is decreasing on
R* and satisfies (K1). Denote c* £ ¢ = —cf and X\* £ X5 = —\;. If f € C*%([0, po])
for some po,dp € (0,1) and uo(-) satisfies

0 <up(z) <1 forzeR, up(z) ~Ce M as |z| = 400 with A € (0,\%),

then for any € € (0,¢(N)), the solution u(t,x) of equation (1.1) has the following proper-
ties

min  u(t,x) — 1,
lz]<(e(X) =€)t
as t — 400,
sup  u(t,z) =0
[z[Z(c(N)+e)t

where c(\) is defined by (2.8). Moreover, we have that ¢'(\) < 0 for A € (0, \*).
Proof. From the proof of Lemma 2.3, we have that
d(\) <0 for A € (0,\*) and ¢'(\) > 0 for A € (\*, AT).

Since ¢(\) = +oo as A = AT, for any A € (0, \*) there is a unique constant d, > 0 such
that

c(A) = c(A(1+6y)) and ¢(s) < ¢(A) for s € (A, A(1 4 6y)).
Define

G(e,\) = e — /k:(x)e)‘mdx +1—f/(0) forc>=c*, A& (A7, AT).
R

For any A € (0, A*), it follows from (2.8) that

and
G(c(N),s) > G(c(s),s) =0 for s € (A, A\(1 4 6y)).

Now we prove that for any € € (0,c())),

min  u(t,x) —» 1 ast — +oo. (4.1)
|lz|<(e(V)—e)t
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By the assumptions of ug in Theorem 4.2, there is a function vg(-) € C(R) which is

symmetric and decreasing on R and satisfies that

—Alz|
)

wo(x) > vo() = {76 (4.2)

A LA
pr=ye ", |

where 7 and yq are two positive constants. Let v(t, z) be the solution of equation (1.1)
with the initial condition v(0, z) = vo(z). From Lemma 3.1 it follows that

u(t,z) 2 v(t,x) fort >0, z € R. (4.3)
Theorem 2.5 shows that v(t,-) is also symmetric and decreasing on R™ for any ¢ > 0.
We denote p £ min{pg,p1} and 6§ £ min{dy,dx/2}, then G(c(A\),A\(1 +4)) > 0. By

f(-) € C**% (]0, po]) we can find some constant M > 0 such that
f(u) = £ (0)u— Mu'™® for u € (0,p]. (4.4)

Construct a lower solution as follows
u(t,x) = max {O, g (’yeM_“'C()‘)t))} fort >0, x € R,
where g(z) = z — Lz'*? for z > 0 and

L>max{p~, 7% M/G(c(\),\1+))}. (4.5)

Let 2o be the constant satisfying zy = L™1(1+6)71, then wy £ g(20) = g(2) for all z > 0
and

1496
)

u(t,x) < wp :L_%(S(l—l—&)_ <p fort >0, z eR.

From (4.2) it follows that vo(z) > w(0,z) for + € R. Now we verify that u(t,z) is a
lower solution of equation (1.1). If z < ¢(A\)t + A~ ! (Iny + d~!In L), we can check that
u(t,x) =0 and

ﬂt(tax) — k= Q(t,$) +Q(tax) - f(ﬂ(tvx)) < 0.

Ifz > c(A)t+ A" (Iny+6"1In L), then u(t,z) = g (ye* ==V From (4.4) it follows
that

uy(t, ) ks ult, @) + u(t, ) — f(u(t, x))
G(e(A), )y =D TG (e(A), A1+ 8)) L — My oA (Catenn),

By G(c(A),A) =0and L > M/G(c(\), A(1+0)), we get that u(t, z) is a lower solution.
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Lemma 3.1 implies that
v(t,z) 2 u(t,x) fort >0, z € R.
Let zo(t) = c(A\)t + A7 (Iny — Inzp) > 1 with ¢t > 0 and we have that
v(t, zo(t)) = u(t,zo(t)) = g(20) = wp for ¢t > 0.
The symmetry and monotone property of v(t, -) yield that
v(t,x) 2wy for t =0, |z| < zo(t).
For any w € (0,1), let T be the positive constant defined in Lemma 4.1 and we have
v(t+ Ty ,x) 2w fort >0, |z <xo(t),

which implies that

min v(t,x) > w fort> Ty .
|lz|<zo (8) —c(N) TS,

For € € (0,¢(A)), there is a constant 7" > T (dependent on € and w) such that
el > (NI — A ' (Iny — In z).
Then we have that zo(t) — ¢(A\)T% > (c(\) — €)t and

min  u(t,x) > min  v(t,z) 2w fort =T,
lz|<(e(A) =€)t lz|<(e(A) =€)t

which completes the proof of (4.1).
Finally, it suffices to check that for any € > 0,

sup  u(t,z) =0 ast — +oo. (4.6)
lz[Z(c(A)+e)t

Construct an upper solution as follows
u(t, z) = min {1, Fe)‘(*lmlﬂ(k)t)} fort >0, x € R.
By the same method as the step 2 of the proof of Theorem 3.3, we can get (4.6). O
Combining Theorems 3.3 and 4.2, when k is symmetric, we obtain the relationship

between spreading speed and initial data that decays exponentially or faster. If ug(x) ~
Ce Al as |z| — 400, then for A € [A*,4+00) the spreading speed is equal to ¢* and
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for A € (0, \*) the spreading speed c¢()\) decreases strictly along with the increase of .
Moreover, we have that ¢* = ¢(A*). This relationship shows that the nonlocal dispersal
equation with symmetric kernel shares the same property of spreading speed as the
corresponding reaction-diffusion equation.

5. Case studies

In this section we show how to calculate E(k) and apply Theorem 2.4 to two examples
of dispersal kernels: normal distribution and uniform distribution. For more applications
to complex systems, refer to our recent paper [43].

5.1. Normal distribution

Assume that the dispersal kernel k satisfies

ko) = e (—%) ,

where o € R is the expectation and o > 0 is the variance. Define a constant

r=a/V2o.

Then some calculations yield that sign(r) = sign(J(k)) and

E(k) = sign(r) [1 — inf {eXp (aA + %)@) }}
= sign(r) (1 — exp (—12)) .

The following result is a straightforward consequence of Theorem 2.4 and we omit its
proof.

Corollary 5.1. When f'(0) > 1, it holds that ¢ < 0 < ¢ and when f'(0) < 1, there exists
a constant r* > 0 such that

(i) if r > r*, then 0 < ¢ < ¢}

(ii) if r =r*, then 0 = ¢f < c};
(iii) of —r* <r <7r*, then ¢f <0< c;
(iv) if r = —r*, then ¢f < ¢} =0;
(v) if r < —r*, then ¢f < ck < 0.

Remark 5.2. Since the dispersal coefficient in equation (1.1) is 1, the condition f/(0) > 1
implies that the reaction term plays a more important role than the dispersal term; on the
other hand, the condition f/(0) < 1 means that the dispersal term is more important. In
the latter case, we show that the asymmetry level of dispersal determines the propagation
directions.
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5.2. Uniform distribution

Suppose that the kernel k is given by

for x € [b, al,
k(z) =< @~
0 for « ¢ [b, al,

where a € RT and b € R~ stand for the farthest distances of organism movements during
a unit time period along and against x-axis, respectively. The average moving speed is
J k(z)zdx = (a +b)/2. Some calculations yield that

E(k) = sign(a +B)[1 ~ inf {h(V)}].

where h(\) = (e®* — e*)/(aX — bA) with A # 0. Next, we define an auxiliary function
and give its property in the following lemma.

Lemma 5.3. Define w(x) = (x — 1)e®. Then there is a unique continuous function z(-)
from (0,400) to (—oo,1) with z(-) # 0 such that w(z(0)) = w(—0z(8)) for any 6 > 0.
Moreover, the function z(-) is increasing on (0,400).

Proof. For any 6 > 0, define

0(0,z) = w(z) — w(—0zx) = (x —1)e” + (B + 1)e~ %% for § € (0, +0), z € R.

It follows that %@(ﬁ,x) = ze® — 0%xe % for 2 € R. Denote 2; = 0 and z2(6) =
2(1+6) 0, then 2u(0,21) = Zw(0,22(0)) = 0. Some calculations yield that

©(0,0) =0, w(,1)>0, @(0,-1/0) <0, (5.1)
and
©(0,1—1/0) =e'=0(9% — 971/%) /9.

Notice that the function 6 — 8 — 1/60 — 21n#@ is strictly increasing on (0,+oc0) and it
equals 0 when 6 = 1. Then we have that

(0,1 —1/6) <0for 0 >1, ©(0,1—1/0) >0 for 0 <6 < 1. (5.2)

If 0 > 1, then 1 < z2(0) and

%@(Q,x) < 0 for z € (x1,22(0)), %@(Q,x) > 0 for z € R\[z1, z2(0)]. (5.3)
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By (5.1) and (5.2), for any 6 > 1 there is a unique z(6) € (1—1/6, 1) such that w(0, z(0)) =
0. On the other hand, if 0 < # < 1 then x; > x2(0) and

3&1(9,3@) < 0 for x € (z2(0), z1),

5 @(0,z) > 0 for z € R\[z2(0), z1].

9
ox
For any 6 € (0, 1), we can find a unique z(0) € (—1/6,1 —1/6) such that w(d, z(0)) = 0.
In addition, when 6 = 1 we define z(f) = 0. Finally, we show that

2(1)=0, z() e (1—1/6,1) for 6 > 1, 2() € (—1/0,1 —1/0) for 0 <O < 1. (54)

Now we prove that z(-) is continuous on (0, +00). Indeed, it suffices to show that

lim z(#) = lim z(f) = 0.

0—1+ 0—1—

Notice that

z(0)
200, 2(0)) — @ (0,1 — 1/6) = / %@(G,x)dx,

1-1/6
which means that
z(0)
—el (9% — 91/0) 1 = / ze® — 0%ze %% dx.
1-1/6
Let # — 1% or 17, then
2(0) z(0)
lim / re® —xe ¥dr = lim / xe® —xe *dx = 0.
0—1+ 0—1—
0 0
It follows that limg_,1+ 2(f) = limy_,;- 2(f) = 0. Therefore, z(:) is continuous on

(0, +00).

Next, we prove that z(-) is increasing on (0, +00). Consider the function w(6
(0,z) € (1,400) X (0,400). For any fixed 6y > 1, it holds that w(fy,2(fy)) = 0 a
%@(00,2(00)) > 0 by (5.3). Then implicit function theorem implies that z(-) has
continuous derivative at 6y and

x) Wlth

b

9w(0,2(0)) /0w(6,2(0)) 022(0)e—0=(®)
' = - =
2'(0) = o6 ox 2(0)®) — g22(0)e—0=®) for 6 > 1.

From w(z(0)) = w(—0z(0)) it follows that
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gy - 20)(z(0) - 1)
2(0)7(9—1—1)[1—1/9—2(9)] for 0 > 1. (5.5)

When 6 > 1, by z(0) € (1—1/6,1), we have that z/(f) > 0. Similarly, we can prove that
Z'(+) is continuous on (0,1) and

gy 20)(z(0) - 1)
2'(0) = GO —1/6=200) for 6 €(0,1).

Then for § € (0,1), by 2(8) € (=1/6,1 — 1/6) we obtain that z'(6) > 0. Therefore, we
have proved that z(-) is increasing on (0, +00). This completes the proof. O

Define a constant

02 —a/be(0,+00).

From h/(A) = (w(a)) — w(b)))/(ar? — bA?), it follows that h'(z(0)/b) = 0. Then by
w(z(0)) = w(—02(0)), we have that h(z(6)/b) = e*(?) /(14 0z()) and
_ =(0)
E(k) = sign(0 — 1) [1 o)
Denote

r20-1)/0+1)=(a+b)/(a—b) e (~1,1).
Corollary 5.4. All results in Corollary 5.1 hold for the uniform distribution case.
Proof. It suffices to prove the results in the case 0 < f/(0) < 1, since —1 < E(k) < 1.

Now we only consider the case r > 0, namely 6 > 1 (otherwise consider the new spatial
variable y = —z). Denote

For 6 > 1, it follows that

Vi (0 —02(0)-1) , e*(92(9)
T re(0 ( 1+ 02(0)2

From (5.5) we get that

B e*02(0)[02(0) — 0 + 1]

q0) = [+ 0:(0)2 for 6 > 1.
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Then (5.4) implies that ¢'(#) > 0 for § > 1, which means that ¢(-) is strictly increasing
on [1,400). Moreover, since z(f) — 1 as § — +oo, we have that

g(1)=0and ¢(0) — 1 as § — +oo.

Therefore, when f/(0) € (0,1), there exists a unique constant * > 1 such that ¢(6*) =
17(0). Denote r* = (6* — 1)/(6* + 1). Finally, by Theorem 2.4, the monotone property
of ¢ completes the proof. O
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