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Abstract This paper studies an epidemic model with nonlocal dispersals. We focus on the influences of initial

data and nonlocal dispersals on its spatial propagation. Here, initial data stand for the spatial concentrations

of the infectious agent and the infectious human population when the epidemic breaks out and the nonlocal

dispersals mean their diffusion strategies. Two types of initial data decaying to zero exponentially or faster are

considered. For the first type, we show that spreading speeds are two constants whose signs change with the

number of elements in some set. Moreover, we find an interesting phenomenon: the asymmetry of nonlocal

dispersals can influence the propagating directions of the solutions and the stability of steady states. For the

second type, we show that the spreading speed is decreasing with respect to the exponentially decaying rate of

initial data, and further, its minimum value coincides with the spreading speed for the first type. In addition, we

give some results about the nonexistence of traveling wave solutions and the monotone property of the solutions.

Finally, some applications are presented to illustrate the theoretical results.
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1 Introduction

To model the spread of cholera in the European Mediterranean regions in 1973, Capasso and Mad-

dalena [8, 9] proposed a system of two parabolic differential equations to describe a positive feedback

interaction between the concentration of bacteria and the infectious human population; namely, the high

concentration of bacteria leads to the large infection rate of the human population and once infected

the human population increases the growth rate of bacteria. Capasso and Kunisch [7] and Capasso and

Wilson [10] also applied this mechanism to model other epidemics with fecal-oral transmission (such as
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typhoid fever and hepatitis A). In these studies, the spatial movements of the infectious agent and the

infectious human host are described by the Laplacian operators.

In this paper, we use nonlocal convolution operators to represent the spatial movements of the infectious

agent and the infectious human host. Then the epidemic model becomes
ut(t, x) = D1u(t, x)− αu(t, x) + h(v(t, x)), t > 0, x ∈ R,
vt(t, x) = D2v(t, x)− βv(t, x) + g(u(t, x)), t > 0, x ∈ R,
u(0, x) = u0(x), v(0, x) = v0(x), x ∈ R,

(1.1)

where u(t, x) and v(t, x) biologically stand for the spatial concentration of the infectious agent (bacteria

or viruses) and the spatial density of the infectious human population at time t and location x ∈ R,
respectively. The constants α > 0 and β > 0 denote the natural death rates of the infectious agent and

the infectious humans, respectively. The function h(v) denotes the growth of the infectious agent caused

by the infectious humans. Meanwhile, the function g(u) is the infection rate of the human population

under the assumption that the total susceptible human population is a constant during the evolution of

the epidemic. The nonlocal dispersals, represented by the following convolution operators:

D1u(t, x) , k1 ∗ u(t, x)− u(t, x) =

∫
R
k1(x− y)u(t, y)dy − u(t, x),

D2v(t, x) , k2 ∗ v(t, x)− v(t, x) =

∫
R
k2(x− y)v(t, y)dy − v(t, x)

describe the movements of the infectious agent and the infectious humans, respectively, between not only

adjacent but also nonadjacent spatial locations. The dispersal kernel ki with i ∈ {1, 2} is nonnegative

and stands for the probability of the movement from the spatial location 0 to x, and thus∫
R
ki(x)dx = 1.

Here, the movements between nonadjacent spatial locations can be thought as the long-distance move-

ments of the infectious agent and the infectious humans across cities or countries by air-traffic and other

long-distance transportation.

1.1 A brief review of related literature

The spatial propagation of the system (1.1) and its variants has been widely studied in the literature.

For example, Li et al. [25] and Meng et al. [34] studied traveling wave solutions, spreading speeds and

entire solutions of the system (1.1). We refer to Bao and Li [4], Bao et al. [5], Hu et al. [20], Liu and

Wang [29], Wang and Castillo-Chavez [39] and Xu et al. [47] for the results on the spreading dynamics

of more general nonlocal dispersal systems. Particularly, if the infected humans do not move during

the infectious period (for example, they are in sickbeds or quarantined probably), then the system (1.1)

reduces to the following partially degenerate system:{
ut(t, x) = k1 ∗ u(t, x)− u(t, x)− αu(t, x) + h(v(t, x)), t > 0, x ∈ R,
vt(t, x) = −βv(t, x) + g(u(t, x)), t > 0, x ∈ R.

(1.2)

This system is a special case of the system (1.1) with k2(x) being equal to a Dirac function δ(x) (the

movement happens only between every spatial location and itself; namely, there is no movement of the

infected humans). Traveling wave solutions and entire solutions of the system (1.2) were studied by Wang

et al. [41], Wu and Hsu [45] and Zhang et al. [55]. For other related results on nonlocal dispersal epidemic

models, we refer to for example Li and Yang [26] and Yang et al. [51].

In addition, if the movements of the infectious agent and the infectious human population happen only

between adjacent spatial locations, the classical Laplace diffusion operators are applied instead of the

nonlocal dispersal operators. For the results about classical diffusion epidemic models, we refer to Allen
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et al. [2], Cui et al. [13], Cui and Lou [14], Hsu and Yang [19], Wang [38], Xu and Zhao [46] and Zhao

and Wang [57].

Other fundamental properties involved in this paper such as the existence and uniqueness of the

solution in the system (1.1) can be studied following the theories in [3]. The stability of the steady

state can be studied following the techniques in [50, 51, 56]. For more classical results about nonlocal

dispersal problems, we refer to Andreu-Vaillo et al. [3], Bates [6], Fife [15], Kao et al. [21], Li et al. [24],

Murray [35], Shen and Zhang [36], Wang [42] and the references cited therein.

1.2 Preview of the main results

In this paper, we mainly study the influences of two important factors on the spatial propagation in the

model (1.1), namely nonlocal dispersals and initial data. Here, initial data stand for the spatial density

of the infectious agent and the infectious human population when epidemic breaks out and the nonlocal

dispersals mean their diffusion strategies. Our contribution can be summarized in the following three

aspects.

First, we consider the dependence of the spatial propagation on the nonlocal dispersals. Usually, we

can find the phenomenon of anisotropic dispersal; for example, the avian influenza viruses carried by

migratory birds have a higher possibility to move along the flight route. Then we can use the asymmetric

dispersal to study this phenomenon. Here, the asymmetric dispersal (kernel) means that for any spatial

location x ∈ R, the probability of organism moving from 0 to x is not equal to that from 0 to −x. Since
diffusion is the original driving force of the spatial propagation, it is necessary to study the changes of

the spatial propagation caused by the asymmetry of dispersals in the system (1.1).

Before it, we recall the known results on spreading speeds of the following scalar equation:

ut = k ∗ u− u+ f(u), (1.3)

where f(·) is Fisher-KPP (short for Kolmogorov Petrovsky and Piskunov) type and k(·) is asymmetric.

Then there are two constants c∗l and c∗r such that

lim
t→+∞

u(t, x+ ct) = 1 for c∗l < c < c∗r , lim
t→+∞

u(t, x+ ct) = 0 for c < c∗l or c > c∗r ,

where c∗l and c∗r are called the spreading speeds to left and right, respectively (see Lutscher et al. [31],

Finkelshtein et al. [16] and Shen and Zhang [36]). Furthermore, Coville et al. [12] showed that asymmetric

kernels may cause the nonpositive minimal wave speed for traveling wave solutions (see also Sun et al. [37]

and Zhang et al. [53,54]). As is well known, the minimal wave speed for traveling wave solutions always

equals the spreading speed in the Fisher-KPP equations. Therefore, it is worth identifying the signs of

spreading speeds when the kernels are asymmetric. Recently, this problem was solved in our paper [49],

and furthermore, it was shown that the asymmetry level of the kernel determines the signs of spreading

speeds c∗l and c∗r , which in turn determine the propagating directions of the solutions and influence the

stability of equilibrium states [32].

Motivated by [20, 49], we study the influences of asymmetric kernels on the spatial propagation and

identify the signs of spreading speeds. However, such a problem is more difficult than that in the

equation (1.3), because the signs of spreading speeds c∗l and c∗r in the system (1.1) are actually influenced

by two kernels k1(·) and k2(·). In order to treat this problem, we define

Λ = {λ ∈ R | A(λ)B(λ) > g′(0)h′(0), A(λ) < 0, B(λ) < 0},

where

A(λ) =

∫
R
k1(x)e

λxdx− 1− α, B(λ) =

∫
R
k2(x)e

λxdx− 1− β.

Then we show that the signs of c∗l and c∗r change with the number of elements in the set Λ (see Theo-

rem 2.2) which is essentially determined by the dispersal kernels k1(·) and k2(·). Particularly, when k1(·)
and k2(·) are symmetric, it follows that c∗ , c∗r = −c∗l > 0.
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We show that in the system (1.1), the asymmetric dispersals can influence the propagating directions

of the solutions and the stability of steady states. More precisely, denote the spatial region

Ω(t) , {x ∈ R | (u(t, x), v(t, x)) > (ν, ν)} for t > 0 with some ν ∈ (0, 1), (1.4)

and there is an interesting phenomenon: Ω(t) propagates to both the left and the right of the x-axis

for c∗l < 0 < c∗r , propagates only to the right for 0 < c∗l < c∗r , and propagates only to the left for

c∗l < c∗r < 0. For some appropriate initial data, when c∗l < 0 < c∗r , the steady state (u, v) ≡ (1, 1) is

stable, i.e., (u(t, x), v(t, x)) → (1, 1) as t → +∞, but when 0 < c∗l < c∗r or c∗l < c∗r < 0, we see that

(u(t, x), v(t, x)) → (0, 0) as t→ +∞ in any bounded spatial region.

Next, we study the dependence of the spatial propagation on initial data. Consider two types of initial

data which decay to zero exponentially or faster as |x| → +∞, but their decaying rates are different.

We establish a relationship between the spreading speed and the exponentially decaying rate λ of initial

data. For the first type whose decaying rate is large (this type includes compactly supported functions),

we show that spreading speeds are constants c∗l and c∗r (see Theorem 3.1). For the second type whose

decaying rate is small, when k1(·) and k2(·) are symmetric, we show that the spreading speed c(λ) is

decreasing with respect to λ, and the minimum value of c(λ) coincides with c∗ (see Theorem 4.2). In

addition, we obtain two other results of the system (1.1), namely the nonexistence of traveling wave

solutions (see Corollary 3.2) and the monotone property of the solutions (see Theorem 4.1).

These results give us guidance for better control of the spatial propagation of epidemics. We see that

even though the spatial concentrations of the infectious agent and the infectious human population are

very low at the spatial locations far away from x = 0, they have an important influence on the spatial

propagation of the system (1.1). Therefore, in order to slow down the spreading speed of epidemics, the

prevention in low-density spatial regions is at least as important as the treatment in high-density spatial

regions. In addition, there are some applications of the theoretical results to the control of epidemics

whose infectious agent is carried by migratory birds. As we shall see in Section 5, it is possible that the

epidemic spreads only along the flight route of migratory birds and the spatial propagation against the

flight route fails, as long as the infectious humans are kept from moving frequently.

Finally, we show that the spreading speed in this paper is studied by applying the comparison principle

(see Lemma 3.4) and constructing new types of upper and lower solutions, instead of the classic theories

of spreading speeds which are established by Weinberger [43] and developed by Lewis et al. [22], Li et

al. [23], Liang and Zhao [27, 28], Lui [30] and Yi and Zou [52]. Indeed, when we study the dependence

of spreading speeds on initial data, the method of upper and lower solutions is more useful because it

can deal with more general types of initial data (see, e.g., Hamel and Nadin [17], Hamel and Roques [18]

and Xu et al. [49]). We present a new method to construct the lower solution of the system (1.1) which

spreads at a speed of c1 or c2, where c1 ∈ (c∗r − ϵ, c∗r) and c2 ∈ (c∗l , c
∗
l + ϵ). We also apply the new

“forward-backward spreading” method which was first given in our previous paper [49]. In this method,

for any time T > 0 and any µ ∈ [0, 1], we construct a lower solution U1(t, x) in the first period of time

[0, µT ] which spreads at a speed of c1, and in the second period of time [µT, T ] we construct another

lower solution U2(t, x) which spreads at a speed of c2 and satisfies U2(µT, x) 6 U1(µT, x). Then these

two lower solutions can be regarded as a lower solution defined in the time period [0, T ] whose speed is

c̄ = µc1 + (1− µ)c2. Moreover, the arbitrariness of µ guarantees that c̄ can be any number in [c1, c2].

The methods in this paper could be applicable to the following m-species nonlocal dispersal cooperative

system: {
∂tU(t, x) = K ∗ U(t, x)− U(t, x) + F (U(t, x)), t > 0, x ∈ R,
U(0, x) = U0(x) = (u0,1(x), . . . , u0,m(x)), x ∈ R,

(1.5)

where m > 2, U(t, x) = (u1(t, x), . . . , um(t, x)) and K(x) = (k1(x), . . . , km(x)). Here, the function

F (U) = (f1(U), . . . , fm(U)) is cooperative and F ′(0) is an irreducible matrix. Actually, the system (1.1)

can be regarded as a special case of the system (1.5) with m = 2. The study of the system (1.1) has

simpler calculations, but it shows clearer presentations of the new upper and lower solutions and the

“forward-backward spreading” method. Moreover, in the system (1.5), if the nonlocal dispersal operators
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are replaced by Laplacian operators, all the methods still work. However, it is not necessary to apply the

“forward-backward spreading” method, since we can use a monotone property similar to Theorem 4.1

instead (see also the proof of Theorem 4.2 for more details).

The rest of this paper is organized as follows. In Section 2, we present the definitions and some

mathematical analysis of spreading speeds. Section 3 is devoted to the spatial propagation for the first

type of initial data and asymmetric kernels. In Section 4, we study the spatial propagation for the second

type of initial data and symmetric kernels. Meanwhile, we also prove some monotone property result for

the system (1.1). In Section 5, we give some applications of the theoretical results.

2 The signs of spreading speeds

In this section, we define the notations of spreading speeds and identify their signs. First, we give some

assumptions. Let α and β be two positive constants. Throughout this paper, we assume g(·) and h(·) are
two functions in C1([0, 1]) ∩ C1+δ0([0, p0]), where δ0 and p0 are two constants in (0, 1), and satisfy that

(H1) g(0) = h(0) = 0, h(1)/α = g(1)/β = 1, h(g(s)/β)− αs > 0 for all s ∈ (0, 1);

(H2) 0 < g(u) 6 g′(0)u, g′(u) > 0 for all u ∈ (0, 1); 0 < h(v) 6 h′(0)v, h′(v) > 0 for all v ∈ (0, 1).

From (H1) and (H2), the system (1.1) is monostable and (u(t, x), v(t, x)) ≡ (1, 1) is the unique nontrivial

steady state. Moreover, we have αβ < h′(0)g′(0). Suppose k1(·) and k2(·) are two continuous and

nonnegative dispersal kernel functions satisfying

(K1)
∫
R ki(x)dx = 1 and

∫
R ki(x)e

λxdx < +∞ for any λ ∈ R and i ∈ {1, 2};
(K2) there are x+i ∈ R+ and x−i ∈ R− such that ki(x

±
i ) > 0 for each i ∈ {1, 2}.

We assume the initial data u0(·) and v0(·) are two continuous functions which satisfy that 0 6 u0(x) 6 1,

0 6 v0(x) 6 1 for all x ∈ R and

u0(x) → 0, v0(x) → 0 as |x| → +∞.

Now define

c(λ) =
1

λ
D(λ) for λ ̸= 0, (2.1)

where

D(λ) =
1

2
[A(λ) +B(λ) +

√
(A(λ)−B(λ))2 + 4g′(0)h′(0)]

and

A(λ) =

∫
R
k1(x)e

λxdx− 1− α, B(λ) =

∫
R
k2(x)e

λxdx− 1− β. (2.2)

It follows that D(λ) > A(λ) and D(λ) > B(λ) for λ ∈ R. Particularly, if k1(·) and k2(·) are symmetric,

then c(λ) = −c(−λ) for λ ̸= 0.

Theorem 2.1. There are two unique constants λ∗r ∈ R+ and λ∗l ∈ R− such that

c∗r , c(λ∗r) = inf
λ∈R+

{c(λ)}, c∗l , c(λ∗l ) = sup
λ∈R−

{c(λ)}, (2.3)

and c′(λ) < 0 for λ ∈ (λ∗l , 0) ∪ (0, λ∗r). Moreover, we have c∗l < c∗r. Particularly, if k1(·) and k2(·) are

symmetric, then c∗ , c∗r = −c∗l > 0 and λ∗ , λ∗r = −λ∗l .
Proof. This proof is based on some mathematical analysis of the functions c′(λ) and c′′(λ). First, we

prove

lim
λ→0+

c′(λ) = −∞ and lim
λ→0−

c′(λ) = −∞. (2.4)

By some simple calculations, we see the functions A(λ), B(λ), A′(λ) and B′(λ) are uniformly bounded as

λ → 0. Then the functions D(λ) and D′(λ) are also uniformly bounded as λ → 0. Therefore, we easily

get (2.4) from c′(λ) = λ−1D′(λ)− λ−2D(λ) and D(0) > 0.

Now we show that

c′(λ) > 0 for |λ| large enough. (2.5)
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From the definitions of the functions c(λ) and D(λ), we have

2λ2c′(λ) = 2(λD′(λ)−D(λ))

= (λA′ −A) + (λB′ −B) +
(A−B)[(λA′ −A)− (λB′ −B)]− 4g′(0)h′(0)

[(A−B)2 + 4g′(0)h′(0)]
1
2

.

Then from

|A−B| < [(A−B)2 + 4g′(0)h′(0)]
1
2 ,

it follows that

λ2c′(λ) > min{λA′(λ)−A(λ)−
√
g′(0)h′(0), λB′(λ)−B(λ)−

√
g′(0)h′(0)}.

By some simple calculations, we have

λA′(λ)−A(λ) =

∫
R
k1(x)e

λx(λx− 1)dx+ 1 + α→ +∞ as |λ| → +∞,

λB′(λ)−B(λ) =

∫
R
k2(x)e

λx(λx− 1)dx+ 1 + β → +∞ as |λ| → +∞,

which imply that (2.5) holds.

Next, we try to prove that

λc′′(λ) > 0 for λ ̸= 0, provided c′(λ) = 0. (2.6)

Indeed, since

c′′(λ) = λ−1[D′′(λ)− 2c′(λ)],

we just need to prove that

D′′(λ) > 0 for all λ ∈ R. (2.7)

From the definitions of the functions A(λ), B(λ) and D(λ), it follows that for all λ ∈ R, A′′(λ) > 0,

B′′(λ) > 0 and

2D′′ = A′′ +B′′ +
(A−B)(A′′ −B′′)

[(A−B)2 + 4g′(0)h′(0)]
1
2

+
4h′(0)g′(0)(A′ −B′)2

[(A−B)2 + 4g′(0)h′(0)]
3
2

.

By |A−B| < [(A−B)2 + 4g′(0)h′(0)]
1
2 , we get

D′′(λ) > min{A′′(λ), B′′(λ)} > 0 for all λ ∈ R.

Then we get (2.6).

It follows from (2.6) that there is at most one constant λ∗r in R+ such that c′(λ∗r) = 0. Meanwhile,

(2.4) and (2.5) imply the existence of this constant. Similarly, there is a unique constant λ∗l ∈ R− such

that c′(λ∗l ) = 0. Therefore, we have

c′(λ)


> 0, λ ∈ (−∞, λ∗l ) ∪ (λ∗r ,+∞),

= 0, λ = λ∗l or λ = λ∗r ,

< 0, λ ∈ (λ∗l , 0) ∪ (0, λ∗r).

(2.8)

Then we obtain (2.3) from (2.8). Moreover, since c′(λ) = λ−1[D′(λ)− c(λ)] and c′(λ∗l ) = c′(λ∗r) = 0, we

have

c∗l = c(λ∗l ) = D′(λ∗l ) and c∗r = c(λ∗r) = D′(λ∗r).

From (2.7) and λ∗l < 0 < λ∗r , it follows that c∗l < c∗r . Particularly, if k1(·) and k2(·) are symmetric,

we have D(λ) = D(−λ) for λ ∈ R. Then c(λ) + c(−λ) = 0 for λ ̸= 0, which implies λ∗r = −λ∗l and

c∗r = −c∗l > 0.
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In order to identify the signs of c∗l and c∗r , we define a set

Λ , {λ ∈ R | A(λ)B(λ) > g′(0)h′(0), A(λ) < 0, B(λ) < 0}.

Now we give a relationship between the set Λ and the signs of c∗l and c∗r .

Theorem 2.2. We have either Λ ⊆ R+ or Λ ⊆ R−. Moreover,

(i) if Λ = ∅, then c∗l < 0 < c∗r ;

(ii) if Λ ∩ R+ is a singleton set, then c∗l < c∗r = 0;

(iii) if Λ ∩ R− is a singleton set, then 0 = c∗l < c∗r ;

(iv) if int(Λ) ∩ R+ ̸= ∅, then c∗l < c∗r < 0;

(v) if int(Λ) ∩ R− ̸= ∅, then 0 < c∗l < c∗r.

Proof. First, we prove that either Λ ⊆ R+ or Λ ⊆ R−. Since

A(0)B(0) = αβ < h′(0)g′(0),

we have 0 /∈ Λ. So it is sufficient to prove that the set Λ is a closed interval in R. For this purpose, we

denote

ΛA = {λ ∈ R | A(λ) < 0} and ΛB = {λ ∈ R | B(λ) < 0}.

Then we have Λ ⊆ ΛA ∩ΛB . Some calculations show that A′′(λ) > 0 and B′′(λ) > 0 for all λ ∈ R, which
imply that the sets ΛA and ΛB are two open intervals in R. For any λ ∈ ΛA ∩ ΛB , if

(A(λ)B(λ))′ = A′(λ)B(λ) +A(λ)B′(λ) = 0,

then we have

(A(λ)B(λ))′′ = A′′(λ)B(λ) +A(λ)B′′(λ) + 2A′(λ)B′(λ) < 0. (2.9)

Therefore, the set Λ is a closed interval in R, which means that either Λ ⊆ R+ or Λ ⊆ R−.

Now we determine the signs of c∗l and c∗r . From the definition of the function D(λ), we have

D(λ) < 0 ⇔ A(λ) +B(λ) < 0 and A(λ)B(λ) > g′(0)h′(0) ⇔ λ ∈ int(Λ).

Similarly, we can get

D(λ) = 0 ⇔ A(λ) +B(λ) < 0 and A(λ)B(λ) = g′(0)h′(0) ⇔ λ ∈ ∂Λ.

Then it follows that

D(λ) > 0 ⇔ λ /∈ Λ.

Therefore, if Λ = ∅, then D(λ) > 0 for all x ∈ R, which implies that c∗l < 0 < c∗r . If there is some

constant λ0 ∈ R+ such that Λ ∩ R+ = {λ0} = ∂Λ, we have

c(λ0) = 0 = inf
λ∈R+

{c(λ)} = c∗r > c∗l .

If there is some constant λ0 ∈ int(Λ) ∩ R+, then it follows that 0 > c(λ0) > c∗r > c∗l . Similarly, we can

get Theorems 2.2(iii) and 2.2(v).

Remark 2.3. From Theorem 2.2 we can see that the signs of c∗l and c∗r change with the number of

elements in the set Λ, which is essentially determined by the kernels k1(·) and k2(·). Moreover, from

Theorem 2.2(i) we have c∗l < 0 < c∗r when

(1 + α− E(k1))(1 + β − E(k2)) < g′(0)h′(0), (2.10)

where E(k) can describe the asymmetry level of k(·) and is defined by

E(k) = inf

{∫
R
k(x)eλxdx

∣∣∣∣ λ ∈ R
}
.

It is easy to check that E(k) ∈ [0, 1]. Particularly, when k1(·) and k2(·) are symmetric, we have E(k1) =

E(k2) = 1, which verifies that (2.10) is right by αβ < h′(0)g′(0).
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3 The first type of initial data and the case of asymmetric kernels

In this section, we establish the spatial propagation result of the system (1.1) for the first type of initial

data and asymmetric kernels by constructing new types of upper and lower solutions and using the

“forward-backward spreading” method. Now we present the main theorem.

Theorem 3.1. Assume that (H1), (H2), (K1) and (K2) hold. If u0(·) and v0(·) satisfy that u0(x0) > 0,

v0(x0) > 0 for some constant x0 ∈ R and there are two positive constants x1 and Γ0 such that

max {u0(x), v0(x)}eλ
∗
l x 6 Γ0 for x 6 −x1, max{u0(x), v0(x)}eλ

∗
rx 6 Γ0 for x > x1,

then for any small ϵ > 0 there is a constant ν ∈ (0, 1) such that the solution of the system (1.1) has the

following properties: 

lim
t→+∞

sup
x−x06(c∗l −ϵ)t

(u(t, x), v(t, x)) = (0, 0),

inf
(c∗l +ϵ)t6x−x06(c∗r−ϵ)t

(u(t, x), v(t, x)) > (ν, ν) for all t > 0,

lim
t→+∞

sup
x−x0>(c∗r+ϵ)t

(u(t, x), v(t, x)) = (0, 0).

Before giving its proof, we show some other results derived from Theorem 3.1. We see that the spreading

speeds of the system (1.1) for this type of initial values are c∗l and c∗r whose signs are determined by k1(·)
and k2(·) as stated in Section 2. Therefore, the asymmetric dispersals in the system (1.1) can influence

the propagating directions of the solutions and the stability property of steady states. More precisely, the

spatial region Ω(t) defined by (1.4) propagates to both the left and the right of the x-axis for c∗l < 0 < c∗r ,

propagates only to the right for 0 < c∗l < c∗r , and propagates only to the left for c∗l < c∗r < 0. However,

if the set Ω(t) is connected at time t > 0, in the case of 0 = c∗l < c∗r , the movement of the left boundary

of Ω(t) is slower than linearity and we cannot identify its propagating direction. Similarly, we cannot

identify the propagating direction of the right boundary of Ω(t) in the case of c∗l < c∗r = 0 either.

Furthermore, for this type of initial data, when c∗l < 0 < c∗r , the steady state (u(t, x), v(t, x)) ≡ (1, 1)

is stable, i.e., (u(t, x), v(t, x)) → (1, 1) as t → +∞, but when c∗l < c∗r < 0 or 0 < c∗l < c∗r , we see that

(u(t, x), v(t, x)) → (0, 0) as t→ +∞ in any bounded spatial region.

From Theorem 3.1 we also obtain the following spatial propagation phenomenon: any small positive

perturbation of the steady state (u(t, x), v(t, x)) ≡ (0, 0) at some spatial location x0 ∈ R and time t = 0

(namely (u(0, x0), v(0, x0)) > (0, 0) holds) will spread in the spatial region

Ω(t, ϵ, x0) , {x ∈ R | (c∗l + ϵ)t 6 x− x0 6 (c∗r − ϵ)t} for any t > 0 and small ϵ > 0, (3.1)

which means that (u(t, x), v(t, x)) > (µ, µ) for x ∈ Ω(t, ϵ, x0) and some constant µ > 0. From this result,

we can get some nonexistence results of traveling wave solutions of the following system:{
ut(t, x) = k1 ∗ u(t, x)− u(t, x)− αu(t, x) + h(v(t, x)), t ∈ R, x ∈ R,
vt(t, x) = k2 ∗ v(t, x)− v(t, x)− βv(t, x) + g(u(t, x)), t ∈ R, x ∈ R.

(3.2)

Corollary 3.2. Assume that (H1), (H2), (K1) and (K2) hold. Suppose that

(u(t, x), v(t, x)) = (ϕ(x− ct), ψ(x− ct))

is a traveling wave solution of the system (3.2) and satisfies (ϕ, ψ) ̸≡ (0, 0). We have

(i) if (ϕ(+∞), ψ(+∞)) = (0, 0), then c > c∗r ;

(ii) if (ϕ(−∞), ψ(−∞)) = (0, 0), then c 6 c∗l .

Proof. Let the initial data (u0(x), v0(x)) in the system (1.1) satisfy

(u0(x), v0(x)) 6 (ϕ(x), ψ(x)) for x ∈ R, (u0(x0), v0(x0)) ≫ (0, 0) for some x0 ∈ R.
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Then Theorem 3.1 and the comparison principle (see Lemma 3.4) show that for any constant ϵ > 0 small

enough,

(ϕ(x− ct), ψ(x− ct)) > (u(t, x), v(t, x)) > (ν, ν) for t > 0, x ∈ Ω(t, ϵ, x0),

where (u(t, x), v(t, x)) is a solution of the system (1.1) and Ω(t, ϵ, x0) is defined by (3.1).

In Case (i), we suppose c < c∗r . Let ϵ be small enough such that 0 < ϵ < c∗r − c. By taking a constant

c0 ∈ R satisfying max{c, c∗l + ϵ} < c0 < c∗r − ϵ, we get that x0 + c0t ∈ Ω(t, ϵ, x0) and

(ϕ(x0 + c0t− ct), ψ(x0 + c0t− ct)) > (ν, ν) for t > 0.

It is a contradiction to (ϕ(+∞), ψ(+∞)) = (0, 0). Similarly, we can prove Case (ii).

Remark 3.3. Corollary 3.2 shows that there exists no traveling wave solution (u(t, x), v(t, x))

= (ϕ(x − ct), ψ(x − ct)) of the system (3.2) satisfying (ϕ(+∞), ψ(+∞)) = (0, 0) and c ∈ (−∞, c∗r).

Meanwhile, the system (3.2) has no traveling wave solution satisfying (ϕ(−∞), ψ(−∞)) = (0, 0) and

c ∈ (c∗l ,+∞) either.

Now we focus on the proof of Theorem 3.1 in the following three subsections.

3.1 Preliminaries

The basic tools in the proof of Theorem 3.1 are the method of upper and lower solutions and the following

comparison principle of the system (1.1) whose proof can be found in [25].

Lemma 3.4 (Comparison principle). Assume that (H1), (H2) and (K1) hold. For any τ > 0, if the

continuous functions (u1(t, x), v1(t, x)) and (u2(t, x), v2(t, x)) satisfy
∂tu1 − k1 ∗ u1 + u1 + αu1 − h(v1) > ∂tu2 − k1 ∗ u2 + u2 + αu2 − h(v2),

∂tv1 − k2 ∗ v1 + v1 + βv1 − g(u1) > ∂tv2 − k2 ∗ v2 + v2 + βv2 − g(u2),

u1(0, x) > u2(0, x), v1(0, x) > v2(0, x)

for t ∈ (0, τ ], x ∈ R, then (u1(t, x), v1(t, x)) > (u2(t, x), v2(t, x)) for t ∈ [0, τ ] and x ∈ R.
Next, we define some notations. For c ∈ R and λ ∈ R, denote

G(c, λ) , cλ−A(λ) = cλ−
∫
R
k1(x)e

λxdx+ 1 + α, (3.3)

H(c, λ) , cλ−B(λ) = cλ−
∫
R
k2(x)e

λxdx+ 1 + β. (3.4)

From (2.1), we get that for λ ̸= 0,

G(c(λ), λ) = D(λ)−A(λ) > 0, H(c(λ), λ) = D(λ)−B(λ) > 0. (3.5)

It follows that for λ ̸= 0,

G(c(λ), λ)H(c(λ), λ) = (D(λ)−A(λ))(D(λ)−B(λ)) = g′(0)h′(0). (3.6)

Denote the function

b(λ) , 1

2h′(0)
[−A(λ) +B(λ) +

√
(A(λ)−B(λ))2 + 4h′(0)g′(0)] > 0 for λ ∈ R. (3.7)

When k1 and k2 are symmetric, we have b(λ) = b(−λ). Then we get from (2.1) that

b(λ) =
G(c(λ), λ)

h′(0)
=

g′(0)

H(c(λ), λ)
for λ ̸= 0. (3.8)

In the construction of new lower solutions, we also need to introduce some new notations. For any

η ∈ (0,min{g′(0), h′(0)}), we define a function

cη(λ) =
1

λ
Dη(λ) for λ ̸= 0, (3.9)
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where

Dη(λ) =
1

2
[A(λ) +B(λ) +

√
(A(λ)−B(λ))2 + 4(g′(0)− η)(h′(0)− η)].

Similar to (3.6), we have

G(cη(λ), λ)H(cη(λ), λ) = (g′(0)− η)(h′(0)− η) for λ ̸= 0. (3.10)

By the same method used in the proof of Theorem 2.1, for any η ∈ (0,min{g′(0), h′(0)}), we can define

c∗r(η) , inf
λ∈R+

{cη(λ)} and c∗l (η) , sup
λ∈R−

{cη(λ)}. (3.11)

It follows that c∗l < c∗l (η) < c∗r(η) < c∗r . Moreover, we have c∗r(η) → c∗r and c∗l (η) → c∗l as η → 0.

Then for any ϵ > 0 small enough, there are two small constants η1, η2 ∈ (0,min{g′(0), h′(0)}) such that

c∗r(η1) = c∗r − ϵ, c∗l (η2) = c∗l + ϵ and

αβ < (h′(0)− η1)(g
′(0)− η1), αβ < (h′(0)− η2)(g

′(0)− η2).

For short, we denote

g1 , g′(0)− η1, h1 , h′(0)− η1, g2 , g′(0)− η2, h2 , h′(0)− η2.

The following lemma gives some properties of the functions G(c, λ) and H(c, λ).

Lemma 3.5. For any c1 ∈ (c∗r − ϵ, c∗r) with ϵ > 0 small enough, there are two unique constants

ζ1(c1) > γ1(c1) > 0 (denoted also by ζ1 and γ1 for short) such that

G(c1, γ1)H(c1, γ1) = G(c1, ζ1)H(c1, ζ1) = g1h1

and

G(c1, ρ)H(c1, ρ) > g1h1, G(c1, ρ) > 0, H(c1, ρ) > 0 for all ρ ∈ (γ1, ζ1).

Similarly, for any c2 ∈ (c∗l , c
∗
l + ϵ) with ϵ > 0 small enough, there are two unique constants ζ2(c2) <

γ2(c2) < 0 (denoted also by ζ2 and γ2 for short) such that

G(c2, γ2)H(c2, γ2) = G(c2, ζ2)H(c2, ζ2) = g2h2

and

G(c2, ρ)H(c2, ρ) > g2h2, G(c2, ρ) > 0, H(c2, ρ) > 0 for all ρ ∈ (ζ2, γ2).

Proof. Similar to the proof of Theorem 2.1, for any constant η ∈ (0,min{g′(0), h′(0)}), there are two

unique constants λ∗r(η) ∈ R+ and λ∗l (η) ∈ R− such that

c∗r(η) = cη(λ
∗
r(η)), c∗l (η) = cη(λ

∗
l (η)),

where cη(λ), c
∗
r(η) and c

∗
l (η) are defined by (3.9) and (3.11). Since λ∗r(η1) > 0 and

∂

∂c
G(c, λ) =

∂

∂c
H(c, λ) = λ, c1 > c∗r − ϵ = c∗r(η1) = cη1(λ

∗
r(η1)),

we get

G(c1, λ
∗
r(η1)) > G(cη1(λ

∗
r(η1)), λ

∗
r(η1)) > 0, (3.12)

H(c1, λ
∗
r(η1)) > H(cη1(λ

∗
r(η1)), λ

∗
r(η1)) > 0. (3.13)

Then (3.10) implies

G(c1, λ
∗
r(η1))H(c1, λ

∗
r(η1)) > G(cη1(λ

∗
r(η1)), λ

∗
r(η1))H(cη1(λ

∗
r(η1)), λ

∗
r(η1)) = g1h1.
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On the other hand, we easily get

G(c1, 0) = α > 0, H(c1, 0) = β > 0, G(c1, 0)H(c1, 0) = αβ < g1h1.

Since

G(c1,+∞) < 0, H(c1,+∞) < 0,
∂2

∂λ2
G(c1, λ) < 0,

∂2

∂λ2
H(c1, λ) < 0,

from (3.12) and (3.13), there is a unique constant λ1 in (λ∗r(η1),+∞) such that G(c1, λ) > 0, H(c1, λ) > 0

for λ ∈ (0, λ1) and either G(c1, λ1) = 0 or H(c1, λ1) = 0. Then it follows that

G(c1, λ1)H(c1, λ1) = 0 < g1h1.

By the arguments above, there are two constants γ1 ∈ (0, λ∗r(η1)) and ζ1 ∈ (λ∗r(η1), λ1) such that

G(c1, γ1)H(c1, γ1) = G(c1, ζ1)H(c1, ζ1) = g1h1. Moreover, if the constant λ0 ∈ (0, λ1) satisfies

∂

∂λ
(G(c1, λ)H(c1, λ))

∣∣∣∣
λ=λ0

= G(c1, λ0)
∂

∂λ
H(c1, λ0) +H(c1, λ0)

∂

∂λ
G(c1, λ0) = 0,

then we can get

∂2

∂λ2
(G(c1, λ)H(c1, λ))

∣∣∣∣
λ=λ0

= G(c1, λ0)
∂2

∂λ2
H(c1, λ0) +H(c1, λ0)

∂2

∂λ2
G(c1, λ0) + 2

∂

∂λ
G(c1, λ0)

∂

∂λ
H(c1, λ0)

< 0.

Therefore, we have that γ1 and ζ1 are unique and

G(c1, ρ) > 0, H(c1, ρ) > 0, G(c1, ρ)H(c1, ρ) > g1h1 for ρ ∈ (γ1, ζ1).

Similarly, we can get the results about ζ2 and γ2.

Now we choose some constants ρ1 ∈ (γ1, ζ1), ρ2 ∈ (ζ2, γ2), δ1 > 0 and δ2 > 0 such that

γ1 < ρ1(1− δ1) < ρ1(1 + δ1) < ζ1, ζ2 < ρ2(1 + δ2) < ρ2(1− δ2) < γ2. (3.14)

Then for short, we denote

G0
1 , G(c1, ρ1), G+

1 , G(c1, ρ1(1 + δ1)), G−
1 , G(c1, ρ1(1− δ1)),

H0
1 , H(c1, ρ1), H+

1 , H(c1, ρ1(1 + δ1)), H−
1 , H(c1, ρ1(1− δ1)),

∆0
1 = G0

1H
0
1 − g1h1 > 0, ∆+

1 = G+
1 H

+
1 − g1h1 > 0, ∆−

1 = G−
1 H

−
1 − g1h1 > 0

and
G0

2 , G(c2, ρ2), G+
2 , G(c2, ρ2(1 + δ2)), G−

2 , G(c2, ρ2(1− δ2)),

H0
2 , H(c2, ρ2), H+

2 , H(c2, ρ2(1 + δ2)), H−
2 , H(c2, ρ2(1− δ2)),

∆0
2 = G0

2H
0
2 − g2h2 > 0, ∆+

2 = G+
2 H

+
2 − g2h2 > 0, ∆−

2 = G−
2 H

−
2 − g2h2 > 0.

It follows from Lemma 3.5 that G0
iH

0
i > gihi for each i ∈ {1, 2}. Therefore, we can choose some constant

κi > 0 such that
gi
H0

i

< κi <
G0

i

hi
for each i ∈ {1, 2}.

Since

G+
i → G0

i , H+
i → H0

i , G−
i → G0

i , H−
i → H0

i as δi → 0+,

we can retake δi small enough such that the constant κi also satisfies

gi

H+
i

< κi <
G+

i

hi
and

gi

H−
i

< κi <
G−

i

hi
for each i ∈ {1, 2}. (3.15)
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Remark 3.6. All the notations defined in this section with subscript “1” will be used to construct the

first lower solutions spreading at a speed of c1 ∈ (c∗r − ϵ, c∗r); meanwhile, all the notations with subscript

“2” will be used to construct the second lower solutions spreading at a speed of c2 ∈ (c∗l , c
∗
l + ϵ).

In addition, we also define an auxiliary function and give its properties in the following lemma.

Lemma 3.7. Let M , N and L be three positive constants. For any δ ∈ (0, 1), define

f(y) =My −Ny1+δ − Ly1−δ for y > 0.

Then we have the following conclusions:

(i) Fmax > 0 when M2 > 4LN , and Fmax = 0 when M2 6 4LN ,

(ii) Fmax → 0+ and S −R→ 0+ as M2 − 4LN → 0+,

where

Fmax , sup
y>0

{f(y)} and (R,S) , {y > 0 | f(y) > 0} when M2 > 4LN.

Proof. Let y0 and y1 denote two constants satisfying

y0 =

[
M +

√
M2 − 4LN(1− δ2)

2(1 + δ)N

] 1
δ

, y1 =

[
M −

√
M2 − 4LN(1− δ2)

2(1 + δ)N

] 1
δ

.

Then we have

f ′(y)


< 0 for y ∈ (0, y1) ∪ (y0,+∞),

= 0 for y = y0 and y = y1,

> 0 for y ∈ (y1, y0)

and

Fmax , sup
y>0

{f(y)} = max{0, f(y0)}.

For the fixed positive constants M and N , we define a function

F (L) , f(y0) =My0 −Ny1+δ
0 − Ly1−δ

0 for L > 0.

From some simple calculations, we get

F ′(L) = f ′(y0)
∂y0
∂L

− y1−δ
0 = −y1−δ

0 < 0.

Notice F (L) = 0 when L = M2

4N . Then it follows that

F (L) > 0 when L <
M2

4N
, F (L) < 0 when L >

M2

4N
.

Therefore, we prove that

Fmax > 0 when M2 > 4LN, and Fmax = 0 when M2 6 4LN

and Fmax → 0+ as M2 − 4LN → 0+. Since (R,S) , {y > 0 | f(y) > 0} when M2 > 4LN , some simple

calculations imply that

R =

[
M −

√
M2 − 4LN

2N

] 1
δ

, S =

[
M +

√
M2 − 4LN

2N

] 1
δ

.

Then it follows that S −R→ 0+ as M2 − 4LN → 0+. This completes the proof.
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3.2 Lower bounds of the spatial propagation

In this subsection, we prove the lower bounds of the spatial propagation in Theorem 3.1. First, we give

a new method to construct lower solutions. Let P denote some positive constant satisfying that for each

i ∈ {1, 2},

P > max

{(
1

κi

)1+δi[2(G0
i − hiκi)

2

G−
i − hiκi

− (G+
i − hiκi)

]
,
2(H0

i κi − gi)
2

H−
i κi − gi

− (H+
i κi − gi)

}
, (3.16)

where gi = g′(0) − ηi, hi = h′(0) − ηi and κi satisfies (3.15). Since g and h are in the function space

C1[0, 1], there is some constant q0 ∈ (0, 1) such that for each i ∈ {1, 2},

g(u) >
(
g′(0)− ηi

2

)
u for u ∈ (0, q0), h(v) >

(
h′(0)− ηi

2

)
v for v ∈ (0, q0).

By taking q0 smaller such that q0 6 min {( η1

2P )−δ1 , ( η2

2P )−δ2}, we can get

g(u) > giu+ Pu1+δi for u ∈ (0, q0), h(v) > hiv + Pv1+δi for v ∈ (0, q0). (3.17)

Define two sets of lower solutions as follows:{
ui(t, x; ξi) = max{0, fi(eρi(−x+cit+ξi))},

vi(t, x; ξi) = max{0, κifi(eρi(−x+cit+ξi))},
for each i ∈ {1, 2}, (3.18)

where fi(y) = y− y1+δi −Liy
1−δi for y ∈ R+, and ρi and δi are two constants satisfying (3.14). Here, Li

is some constant in [ 18 ,
1
4 ) and ξi ∈ R is a parameter number, and both will be chosen later. Moreover,

we define

Ri =

[
1−

√
1− 4Li

2

] 1
δi

, Si =

[
1 +

√
1− 4Li

2

] 1
δi

, Yi =

[
1 +

√
1− 4Li(1− δ2i )

2(1 + δi)

] 1
δi

.

Then Lemma 3.7 shows that

(Ri, Si) = {y > 0 | fi(y) > 0}, Yi ∈ (Ri, Si), Fmax
i , sup

y>0
{fi(y)} = fi(Yi) > 0.

Also from Lemma 3.7, we can take Li close enough to 1
4 such that

max{Fmax
i , κiF

max
i } 6 q0.

Therefore, we obtain from some simple calculations that
ui(t, x; ξi) = vi(t, x; ξi) = 0 for x− cit /∈ Ωi,

ui(t, x; ξi) =
1

κi
vi(t, x; ξi) = fi(e

ρi(−x+cit+ξi)) ∈ (0, Fmax
i ] for x− cit ∈ Ωi,

where Ωi = (ξi − ρ−1
i lnSi, ξi − ρ−1

i lnRi).

Next, we prove that the pair of the functions (ui(t, x; ξi), vi(t, x; ξi)) is a lower solution of the

system (1.1) for all ξi ∈ R. When x− cit /∈ Ωi, we have ui(t, x; ξi) = vi(t, x; ξi) = 0 and

∂

∂t
ui(t, x; ξi)− k1 ∗ ui(t, x; ξi) + ui(t, x; ξi) + αui(t, x; ξi)− h(vi(t, x; ξi)) 6 0,

∂

∂t
vi(t, x; ξi)− k2 ∗ vi(t, x; ξi) + vi(t, x; ξi) + βvi(t, x; ξi)− g(ui(t, x; ξi)) 6 0.

When x − cit ∈ Ωi, we have ui(t, x; ξi) =
1
κi
vi(t, x; ξi) = fi(e

ρi(−x+cit+ξi)). Then it follows from (3.17)

that
∂

∂t
ui(t, x; ξi)− k1 ∗ ui(t, x; ξi) + ui(t, x; ξi) + αui(t, x; ξi)− h(vi(t, x; ξi))

6 (G0
i − hiκi)e

ρi(−x+cit+ξi) − (G+
i − hiκi + Pκ1+δi

i )eρi(1+δi)(−x+cit+ξi)

− (G−
i − hiκi)Lie

ρi(1−δi)(−x+cit+ξi)
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and
∂

∂t
vi(t, x; ξi)− k2 ∗ vi(t, x; ξi) + vi(t, x; ξi) + βvi(t, x; ξi)− g(ui(t, x; ξi))

6 (H0
i κi − gi)e

ρi(−x+cit+ξi) − (H+
i κi − gi + P )eρi(1+δi)(−x+cit+ξi)

− (H−
i κi − gi)Lie

ρi(1−δi)(−x+cit+ξi).

From (3.16) and Li >
1
8 , we have

(G0
i − hiκi)

2 − 4(G+
i − hiκi + Pκ1+δi

i )(G−
i − hiκi)Li < (G0

i − hiκi)
2(1− 8Li) < 0,

(H0
i κi − gi)

2 − 4(H+
i κi − gi + P )(H−

i κi − gi)Li < (H0
i κi − gi)

2(1− 8Li) < 0.

Then Lemma 3.7 shows that when x− cit ∈ Ωi,

∂

∂t
ui(t, x; ξi)− k1 ∗ ui(t, x; ξi) + ui(t, x; ξi) + αui(t, x; ξi)− h(vi(t, x; ξi)) 6 0,

∂

∂t
vi(t, x; ξi)− k2 ∗ vi(t, x; ξi) + vi(t, x; ξi) + βvi(t, x; ξi)− g(ui(t, x; ξi)) 6 0.

Therefore, the pair of the functions (ui(t, x; ξi), vi(t, x; ξi)) is a lower solution for any ξi ∈ R.
Finally, we are ready to prove the lower bounds of the spatial propagation in Theorem 3.1. The

“forward-backward spreading” method will be applied here.

Proof of Theorem 3.1 (Lower bounds). From the assumptions in Theorem 3.1, we have u0(x0) > 0 and

v0(x0) > 0 for some constant x0 ∈ R. By translating the x-axis, we can simply suppose that x0 = 0.

Then there are two constants q1 > 0 and d > 0 such that

u0(x) > q1, v0(x) > q1 for x ∈ [−d, d]. (3.19)

Now we prove that for any small ϵ > 0 there is some constant ν ∈ (0, 1) such that the solution

(u(t, x), v(t, x)) of the system (1.1) satisfies

(u(T,X), v(T,X)) > (ν, ν) for all T > 0, X ∈ [c2T, c1T ],

where c1 ∈ (c∗r − ϵ, c∗r) and c2 ∈ (c∗l , c
∗
l + ϵ). For any given T > 0 and X ∈ [c2T, c1T ], we denote

µ =
X − c2T

c1T − c2T
∈ [0, 1].

First, we construct a set of lower solutions in the first time period [0, µT ] as follows:{
u1(t, x; ξ1) = max{0, f1(eρ1(−x+c1t+ξ1))},

v1(t, x; ξ1) = max{0, κ1f1(eρ1(−x+c1t+ξ1))},
for t ∈ [0, µT ], x ∈ R,

where ξ1 ∈ [−d/2+ ρ−1
1 lnR1, d/2+ ρ−1

1 lnS1] and L1 is some constant in [ 18 ,
1
4 ), which is close to 1

4 such

that

max{Fmax
1 , κ1F

max
1 } 6 min{q0, q1} and ρ−1

1 (lnS1 − lnR1) 6 d/2.

Then it follows that
u1(t, x; ξ1) = v1(t, x; ξ1) = 0 for x− c1t /∈ Ω1,

u1(t, x; ξ1) =
1

κ1
v1(t, x; ξ1) = f1(e

ρ1(−x+c1t+ξ1)) > 0 for x− c1t ∈ Ω1

with

Ω1 = (ξ1 − ρ−1
1 lnS1, ξ1 − ρ−1

1 lnR1) ⊆ (−d, d). (3.20)

From the discussion above, the pair of the functions (u1(t, x; ξ1), v1(t, x; ξ1)) is a lower solution of the

system (1.1). Moreover, we obtain

u1(t, x; ξ1) 6 Fmax
1 6 q1, v1(t, x; ξ1) 6 κ1F

max
1 6 q1 for t > 0, x ∈ R.
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It follows from (3.19) and (3.20) that for every ξ1 ∈ [−d/2 + ρ−1
1 lnR1, d/2 + ρ−1

1 lnS1],

u0(x) > u1(0, x; ξ1), v0(x) > v1(0, x; ξ1), x ∈ R.

Therefore, by Lemma 3.4 we have

u(t, x) > u1(t, x; ξ1), v(t, x) > v1(t, x; ξ1) for t ∈ [0, µT ], x ∈ R.

If we denote z1(t) = c1t+ ξ1 − ρ−1
1 lnY1 for t ∈ [0, µT ], then

u(t, z1(t)) > u1(t, z1(t); ξ1) = f1(Y1) = Fmax
1 ,

v(t, z1(t)) > v1(t, z1(t); ξ1) = κ1f1(Y1) = κ1F
max
1 .

Furthermore, the arbitrariness of ξ1 and R1 < Y1 < S1 show that

u(t, x) > Fmax
1 , v(t, x) > κ1F

max
1 for all t ∈ [0, µT ], x ∈ [c1t− d/2, c1t+ d/2].

Therefore, there is some constant q2 = min{Fmax
1 , κ1F

max
1 } such that

u(µT, x) > q2, v(µT, x) > q2 for x ∈ [c1µT − d/2, c1µT + d/2]. (3.21)

Next, we construct another set of lower solutions in the second time period [µT, T ] as follows:{
u2(t, x; ξ2) = max{0, f2(eρ2(−x+c2t+ξ2))},

v2(t, x; ξ2) = max{0, κ2f2(eρ2(−x+c2t+ξ2))},
for t ∈ [µT, T ], x ∈ R,

where ξ2 ∈ [(c1 − c2)µT + ρ−1
2 lnR2, (c1 − c2)µT + ρ−1

2 lnS2] and L2 is some constant in [ 18 ,
1
4 ), which is

close to 1
4 such that

max {Fmax
2 , κ2F

max
2 } 6 q2 and ρ−1

2 (lnS2 − lnR2) 6 d/2.

Then it follows that
u2(t, x; ξ2) = v2(t, x; ξ2) = 0 for x− c2t /∈ Ω2,

u2(t, x; ξ2) =
1

κ2
v2(t, x; ξ2) = f2(e

ρ2(−x+c2t+ξ2)) > 0 for x− c2t ∈ Ω2

with Ω2 = (ξ2 − ρ−1
2 lnS2, ξ2 − ρ−1

2 lnR2).

As stated above, the pair of the functions (u2(t, x; ξ2), v2(t, x; ξ2)) is also a lower solution of the

system (1.1). At the time t = µT , we have
u2(µT, x; ξ2) = v2(µT, x; ξ2) = 0 for x /∈ c2µT +Ω2,

u2(µT, x; ξ2) =
1

κ2
v2(µT, x; ξ2) ∈ (0, q2) for x ∈ c2µT +Ω2,

where

c2µT +Ω2 , (c2µT + ξ2 − ρ−1
2 lnS2, c2µT + ξ2 − ρ−1

2 lnR2).

It follows that c2µT + Ω2 ⊆ (c1µT − d/2, c1µT − d/2). Then we get from (3.21) that for every ξ2 ∈
[(c1 − c2)µT + ρ−1

2 lnR2, (c1 − c2)µT + ρ−1
2 lnS2],

u(µT, x) > u2(µT, x; ξ2), v(µT, x) > v2(µT, x; ξ2), x ∈ R.

Therefore, Lemma 3.4 implies that

u(t, x) > u2(t, x; ξ2), v(t, x) > v2(t, x; ξ2) for t ∈ [µT, T ], x ∈ R.
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If we denote z2(t) = c2t+ ξ2 − ρ−1
2 lnY2 for t ∈ [µT, T ], then

u(t, z2(t)) > u1(t, z2(t); ξ2) = f2(Y2) = Fmax
2 ,

v(t, z2(t)) > v1(t, z2(t); ξ2) = κ2f2(Y2) = κ2F
max
2 .

Furthermore, the arbitrariness of ξ2 and R2 < Y2 < S2 show that

u(t, x) > Fmax
2 , v(t, x) > κ2F

max
2 for all t ∈ [µT, T ], x = c2t+ (c1 − c2)µT.

By taking ν = min{Fmax
2 , κ2F

max
2 }, we get from X = c2T + (c1 − c2)µT that

u(T,X) > ν, v(T,X) > ν for T > 0, X ∈ [c2T, c1T ].

Therefore, for any small constant ϵ > 0 we have

inf
(c∗l +ϵ)t6x6(c∗r−ϵ)t

(u(t, x), v(t, x)) > (ν, ν) for t > 0.

This completes the proof.

3.3 Upper bounds of the spatial propagation

Proof of Theorem 3.1 (Upper bounds). In this subsection, we prove that

sup
x6(c∗l −ϵ)t

(u(t, x), v(t, x)) → (0, 0) and sup
x>(c∗r+ϵ)t

(u(t, x), v(t, x)) → (0, 0) as t→ +∞. (3.22)

First, we define the functions{
ū(t, x) = min{1,Γeλ

∗
l (−x+c∗l t),Γeλ

∗
r(−x+c∗rt)},

v̄(t, x) = min{1, b(λ∗l )Γeλ
∗
l (−x+c∗l t), b(λ∗r)Γe

λ∗
r(−x+c∗rt)}

(3.23)

for t > 0 and x ∈ R, where the function b(λ) is defined by (3.7). From the assumptions in Theorem 3.1,

we can take Γ large enough such that Γ > max{1,Γ0,
1

b(λ∗
l )
, 1
b(λ∗

r)
} and

ū(0, x) > u0(x), v̄(0, x) > v0(x) for x ∈ R. (3.24)

Next, we prove that the pair of the functions (ū(t, x), v̄(t, x)) is an upper solution of the system (1.1).

When x 6 c∗l t + (λ∗l )
−1 ln Γ, we have ū(t, x) = Γeλ

∗
l (−x+c∗l t) and v̄(t, x) 6 b(λ∗l )Γe

λ∗
l (−x+c∗l t). Then it

follows from (H2) and (3.8) that

∂tū− k1 ∗ ū+ ū+ αū− h(v̄) > [G(c∗l , λ
∗
l )− h′(0)b(λ∗l )]Γe

λ∗
l (−x+c∗l t) = 0.

Similarly, when x > c∗rt+ (λ∗r)
−1 ln Γ, we get from (H2) and (3.8) that

∂tū− k1 ∗ ū+ ū+ αū− h(v̄) > [G(c∗r , λ
∗
r)− h′(0)b(λ∗r)]Γe

λ∗
r(−x+c∗rt) = 0.

If x ∈ [c∗l t+ (λ∗l )
−1 ln Γ, c∗rt+ (λ∗r)

−1 ln Γ], then ū(t, x) = 1 and v̄(t, x) 6 1, which implies

∂tū− k1 ∗ ū+ ū+ αū− h(v̄) > α− h(v̄) > α− h(1) = 0.

Therefore, we finally obtain

∂tū− k1 ∗ ū+ ū+ αū− h(v̄) > 0 for all t > 0, x ∈ R.

Similarly, we can obtain

∂tv̄ − k2 ∗ v̄ + v̄ + βv̄ − g(ū) > 0 for all t > 0, x ∈ R.
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From Lemma 3.4 and (3.24), it follows that

(u(t, x), v(t, x)) 6 (ū(t, x), v̄(t, x)) for t > 0, x ∈ R.

Then we have

sup
x6(c∗l −ϵ)t

(u(t, x), v(t, x)) 6 sup
x6(c∗l −ϵ)t

(ū(t, x), v̄(t, x)) 6 (Γeλ
∗
l ϵt, b(λ∗l )Γe

λ∗
l ϵt),

sup
x>(c∗r+ϵ)t

(u(t, x), v(t, x)) 6 sup
x>(c∗r+ϵ)t

(ū(t, x), v̄(t, x)) 6 (Γe−λ∗
rϵt, b(λ∗r)Γe

−λ∗
rϵt).

Therefore, using λ∗l < 0 < λ∗r , we finish the proof of (3.22).

Remark 3.8. The irreducibility of the linearized system at zero is a necessary property in this paper.

In fact, our idea of the new lower solution (3.18) is from the following system:{
ut = k1 ∗ u− u− αu+ (h′(0)− η)v + Pv1+δ, t > 0, x ∈ R,
vt = k2 ∗ v − v − βv + (g′(0)− η)u+ Pu1+δ, t > 0, x ∈ R,

where δ > 0 is an appropriate constant and η > 0 is a constant small enough (see the condition (3.17)). If

the linearized system at zero is reducible (namely, h′(0) or g′(0) is equal to 0), the above system becomes

non-cooperative and meanwhile Lemma 3.5 does not hold. Then there are not any ρi and δi satisfying

(3.14). Thus, we cannot construct any lower solution in the form of (3.18). Moreover, in some studies

(see, for example, Weinberger et al. [44]) the irreducibility can be replaced by some other assumptions

on the matrix in Frobenius form.

Remark 3.9. The linear and nonlinear selection of speed is an important problem in reaction-diffusion

systems. In the system (1.1), the condition for linear selection is given by

g(u) 6 g′(0)u and h(v) 6 h′(0)v. (3.25)

However, when (3.25) is not satisfied, the upper solution (3.23) becomes unavailable and thus the upper

bound (3.22) of the spatial propagation is no longer right. In order to obtain the upper bound, we can

use g(u) 6 ĝu and h(v) 6 ĥv instead of (3.25), where

ĝ = sup
u∈(0,1]

{g(u)/u} and ĥ = sup
v∈(0,1]

{h(v)/v}.

Under the same assumptions except (3.25) as in Theorem 3.1, when k1 and k2 are symmetric, we can

obtain 
lim

t→+∞
sup

|x|>(c++ϵ)t

(u(t, x), v(t, x)) → (0, 0),

inf
|x|6(c−−ϵ)t

(u(t, x), v(t, x)) > (ν, ν) for all t > 0,

where the constants c+ and c− satisfy that c+ > c− and

c+ 6 inf
λ∈R+

{
1

2λ
[A(λ) +B(λ) +

√
(A(λ)−B(λ))2 + 4ĥĝ]

}
,

c− > inf
λ∈R+

{
1

2λ
[A(λ) +B(λ) +

√
(A(λ)−B(λ))2 + 4h′(0)g′(0)]

}
.

However, it is challenging to prove that c+ = c−. There are more results about the linear and nonlinear

selection of speed (see, e.g., Alhasanat and Ou [1], Ma and Ou [33], Ma et al. [32] and Wang et al. [40]).

4 The second type of initial data and symmetric kernels

In this section, under the assumption that k1 and k2 are symmetric, we prove the monotone property

and the spatial propagation result for the second type of initial data.
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4.1 Monotone property

The following theorem gives a monotone property result of the system (1.1).

Theorem 4.1. If k1(·), k2(·), u0(·) and v0(·) are symmetric and decreasing on R+, so are the functions

u(t, ·) and v(t, ·) at any time t > 0, where (u(t, x), v(t, x)) is the solution of (1.1).

Proof. First, the symmetry properties of u(t, ·) and v(t, ·) can be obtained easily. Indeed, by considering

the system 
∂

∂t
w1(t, x) = k1 ∗ w1(t, x)− w1(t, x)− αw1(t, x) + h(w2(t, x)), t > 0, x ∈ R,

∂

∂t
w2(t, x) = k2 ∗ w2(t, x)− w2(t, x)− βw2(t, x) + g(w1(t, x)), t > 0, x ∈ R,

w1(0, x) = u0(−x), w2(0, x) = v0(−x), x ∈ R

and by using the uniqueness property of the solution, we have u(t, x) = w1(t, x) = u(t,−x) and v(t, x) =
w2(t, x) = v(t,−x) for t > 0, x ∈ R.

Next, we prove the monotone property. For a fixed constant y > 0, we define

m1(t, x) = u(t, x+ 2y)− u(t, x), m2(t, x) = v(t, x+ 2y)− v(t, x) for t > 0, x ∈ R.

Then the symmetric properties of u(t, ·) and v(t, ·) imply that

m1(t,−y) = m2(t,−y) = 0 for t > 0.

At time t = 0, we easily get that

m1(0, x) 6 0, m2(0, x) 6 0 for x > −y,
m1(0, x) > 0, m2(0, x) > 0 for x < −y.

In order to show that u(t, ·) and v(t, ·) are decreasing in R+, we prove that

m1(t, x) 6 0, m2(t, x) 6 0 for all t > 0, x > −y. (4.1)

Indeed, if (4.1) holds, then u(t, x+2y) 6 u(t, x) and v(t, x+2y) 6 v(t, x) for all x > −y and t > 0, which

imply that u(t, ·) and v(t, ·) are decreasing in R+.

Now we prove (4.1). Since h(·) ∈ C1([0, 1]), there is some constant M > 0 such that for all t > 0 and

x ∈ R,

∂

∂t
m1(t, x) = k1 ∗m1(t, x)−m1(t, x)− αm1(t, x) + h(v(t, x+ 2y))− h(v(t, x))

6 k1 ∗m1(t, x)−m1(t, x)− αm1(t, x) +Mm2(t, x). (4.2)

Now we suppose that (4.1) does not hold, which means that there are two constants T0 > 0 and ε > 0

such that

m1(t, x) < εeKt, m2(t, x) < εeKt for all t ∈ (0, T0), x > −y (4.3)

and at least one of the following two results holds:

sup
x>−y

{m1(T0, x)} = εeKT0 , m2(T0, x) 6 εeKT0 for x > −y; (4.4)

m1(T0, x) 6 εeKT0 for x > −y, sup
x>−y

{m2(T0, x)} = εeKT0 .

Here, K is a positive constant satisfying K > 4
3 (M + 1)− α. Without loss of generality, we assume (4.4)

holds. As stated in the proof of [49, Lemma 2.2], when m1(t, x) > 0, it holds that

k1 ∗m1(t, x)−m1(t, x) 6 εeKt for t ∈ (0, T0], x > −y. (4.5)
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From (4.4), at least one of the following cases must hold:

Case 1. There is x0 ∈ (−y,+∞) such that m1(T0, x0) = supx>−y{m1(T0, x)} = εeKT0 .

Case 2. lim supx→+∞{m1(T0, x)} = εeKT0 .

If Case 1 holds, it follows that

∂

∂t
(m1(t, x0)− εeKt)

∣∣∣∣
t=T0

> 0,

which means that
∂

∂t
m1(T0, x0) > εKeKT0 .

Then from (4.4) and (4.5) we get

∂

∂t
m1(T0, x0)− k1 ∗m1(T0, x0) +m1(T0, x0) + αm1(T0, x0)−Mm2(T0, x0)

> (K − 1 + α−M)εeKT0 > 0.

It is a contradiction to (4.2), which implies that (4.1) holds.

If Case 2 holds, there is some constant x1 large enough such that

m1(T0, x1) >
3

4
εeKT0 .

For all σ > 0, we define

ρσ(t, x) =

[
1

2
+ σq0(x)

]
εeKt for t ∈ [0, T0], x ∈ R,

where q0(x) is a smooth and increasing function satisfying

q0(x) =

{
1 for x 6 x1,

3 for x > x1 + 1.

Let σ∗ be a constant denoted by

σ∗ = inf{σ > 0 | m1(t, x)− ρσ(t, x) 6 0 for t ∈ [0, T0], x > −y}.

Moreover, some simple calculations yield that 1
4 6 σ∗ 6 1

2 and

ρσ∗(t, x) > 5

4
εeKt > m1(t, x) for t ∈ [0, T0], x > x1 + 1.

From the definition of σ∗, there must exist T1 ∈ (0, T0] and x2 ∈ (−y, x1 + 1) such that

m1(T1, x2)− ρσ∗(T1, x2) = sup
t∈[0,T0],x>−y

{m1(t, x)− ρσ∗(t, x)} = 0.

Then we have

m1(T1, x2) = ρσ∗(T1, x2) > ρ 1
4
(T1, x2) >

3

4
εeKT1 ,

∂

∂t
m1(T1, x2) >

∂

∂t
ρσ∗(T1, x2) = Kρσ∗(T1, x2) > Kρ 1

4
(T1, x2) >

3

4
KεeKT1 .

From (4.3) and (4.5), it follows that

∂

∂t
m1(T1, x2)− k1 ∗m1(T1, x2) +m1(T1, x2) + αm1(T1, x2)−Mm2(T1, x2)

>
(
3

4
K − 1 +

3

4
α−M

)
εeKT1 > 0,

which contradicts (4.2). Therefore, we finish the proof of (4.1).
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4.2 Spatial propagation

In this subsection, we study the spatial propagation of the system (1.1) for the second type of initial data

and symmetric kernels. The following theorem is the main result.

Theorem 4.2. Assume that (H1) and (H2) hold. Let k1 and k2 satisfy (K1) and be symmetric on R and

decreasing in R+. If u0(·) and v0(·) are two continuous functions satisfying 0 < u0(x) 6 1, 0 < v0(x) 6 1

for x ∈ R and

u0(x) ∼ O(e−λ|x|), v0(x) ∼ O(e−λ|x|) as |x| → +∞ with λ ∈ (0, λ∗),

then for any ϵ ∈ (0, c(λ)) there is some constant ν ∈ (0, 1) such that the solution of the system (1.1) has

the following properties: 
lim

t→+∞
sup

|x|>(c(λ)+ϵ)t

(u(t, x), v(t, x)) → (0, 0),

inf
|x|6c(λ)t

(u(t, x), v(t, x)) > (ν, ν) for all t > 0,

where λ∗ , λ∗r = −λ∗l .
Remark 4.3. From Theorem 4.2 and the definition of c(λ) in (2.1), we obtain a relationship between

spreading speeds and the exponentially decaying rate of initial data. Moreover, Theorem 2.1 shows that

c′(λ) < 0 for all λ ∈ (0, λ∗); namely, the spreading speed c(λ) is decreasing with respect to λ ∈ (0, λ∗).

Meanwhile, we also have inf{c(λ) | λ ∈ (0, λ∗)} = c∗, which implies that the minimum value of c(λ)

coincides with the spreading speed for the first type of initial value and symmetric kernels.

Before proving Theorem 4.2, we give the following lemma.

Lemma 4.4. For any λ ∈ (0, λ∗r), there is a unique constant δλ > 0 such that

c(λ) = c(λ+ λδλ) and c(η) < c(λ) for η ∈ (λ, λ+ λδλ).

Similarly, for any λ ∈ (λ∗l , 0), there is a unique constant δλ > 0 such that

c(λ) = c(λ+ λδλ) and c(η) > c(λ) for η ∈ (λ+ λδλ, λ).

Proof. Since D(λ) > A(λ) for all λ ∈ R and

lim
λ→+∞

A(λ)

λ
= +∞, lim

λ→−∞

A(λ)

λ
= −∞

from (2.1), we get that limλ→+∞ c(λ) = +∞ and limλ→−∞ c(λ) = −∞. On the other hand, from

D(0) ∈ (0,+∞) it follows that limλ→0+ c(λ) = +∞ and limλ→0− c(λ) = −∞. Therefore, by (2.8), we

finish the proof of Lemma 4.4.

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. For any λ ∈ (0, λ∗), let δλ denote the constant in Lemma 4.4. Then c(λ) >

c(λ(1 + δ)) for δ ∈ (0, δλ). We denote G(c, λ), H(c, λ) and b(λ) by (3.3), (3.4) and (3.7), respectively.

Since ∂
∂cG(c, λ) =

∂
∂cH(c, λ) = λ ∈ (0, λ∗), from (3.5) we get{

G(c(λ), λ(1 + δ)) > G(c(λ(1 + δ)), λ(1 + δ)) > 0,

H(c(λ), λ(1 + δ)) > H(c(λ(1 + δ)), λ(1 + δ)) > 0,
for λ ∈ (0, λ∗), δ ∈ (0, δλ).

Therefore, it follows from (3.8) that

g′(0)

H(c(λ), λ(1 + δ))
< b(λ(1 + δ)) <

G(c(λ), λ(1 + δ))

h′(0)
for λ ∈ (0, λ∗), δ ∈ (0, δλ). (4.6)



Xu W-B et al. Sci China Math November 2020 Vol. 63 No. 11 2197

Step 1. Now we prove that

sup
|x|>(c(λ)+ϵ)t

(u(t, x), v(t, x)) → (0, 0) as t→ +∞. (4.7)

For any given λ ∈ (0, λ∗), define{
ū(t, x) = min{1,Γeλ(−|x|+c(λ)t)},

v̄(t, x) = min{1, b(λ)Γeλ(−|x|+c(λ)t)},
for t > 0, x ∈ R, (4.8)

where the constant Γ is large enough such that Γ > max {1, 1
b(λ)}. By the assumptions about initial data

in Theorem 4.2, we can take Γ larger if necessary such that

ū(0, x) > u0(x), v̄(0, x) > v0(x) for x ∈ R. (4.9)

Now we prove that the pair of functions (ū(t, x), v̄(t, x)) is an upper solution of the system (1.1). If

|x| 6 c(λ)t+ λ−1 ln Γ, we have ū(t, x) = 1 and v̄(t, x) 6 1. Then it follows from (H1) and (H2) that

∂tū− k1 ∗ ū+ ū+ αū− h(v̄) > α− h(v̄) > α− h(1) = 0.

If |x| > c(λ)t + λ−1 ln Γ, we get ū(t, x) = Γeλ(−|x|+c(λ)t) and v̄(t, x) 6 b(λ)Γeλ(−|x|+c(λ)t). By (H2)

and (3.8), some simple calculations imply that

∂tū− k1 ∗ ū+ ū+ αū− h(v̄) > [G(c(λ), λ)− h′(0)b(λ)]Γeλ(−|x|+c(λ)t) = 0.

We finally get that

∂tū− k1 ∗ ū+ ū+ αū− h(v̄) > 0 for all t > 0, x ∈ R. (4.10)

Meanwhile, if |x| 6 c(λ)t+ λ−1 ln(b(λ)Γ), we have v̄(t, x) = 1 and ū(t, x) 6 1. Then it follows from (H1)

and (H2) that

∂tv̄ − k2 ∗ v̄ + v̄ + βv̄ − g(ū) > β − g(ū) > β − g(1) = 0.

If |x| > c(λ)t + λ−1 ln(b(λ)Γ), we get v̄(t, x) = b(λ)Γeλ(−|x|+c(λ)t) and ū(t, x) 6 Γeλ(−|x|+c(λ)t). By (H2)

and (3.8), some simple calculations show

∂tv̄ − k2 ∗ v̄ + v̄ + βv̄ − g(ū) > [H(c(λ), λ)b(λ)− g′(0)]Γeλ(−|x|+c(λ)t) = 0.

We finally get that

∂tv̄ − k2 ∗ v̄ + v̄ + βv̄ − g(ū) > 0 for all t > 0, x ∈ R. (4.11)

Therefore, (ū(t, x), v̄(t, x)) is an upper solution of the system (1.1).

By (4.9)–(4.11), Lemma 3.4 shows that

(u(t, x), v(t, x)) 6 (ū(t, x), v̄(t, x)) for t > 0, x ∈ R.

Then we have

sup
|x|>(c(λ)+ϵ)t

(u(t, x), v(t, x)) 6 sup
|x|>(c(λ)+ϵ)t

(ū(t, x), v̄(t, x)) 6 (Γe−λϵt, b(λ)Γe−λϵt),

which implies that (4.7) holds.

Step 2. Next, we prove that

(u(t, x), v(t, x)) > (ν, ν) for all t > 0, |x| 6 c(λ)t.

From the assumptions in Theorem 4.2, there exists a continuous symmetric function w0(x), which is

decreasing in R+ and satisfies that

u0(x) > w0(x), v0(x) > w0(x) for x ∈ R, w0(x) =

{
γ0e

−λ|x|, |x| > y0,

p1 , γ0e
−λy0 , |x| 6 y0,
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where γ0 and y0 are two positive constants. Let p and δ denote two constants satisfying p = min{p0, p1}
and 0 < δ < min{δ0, δλ}. Then by g(·), h(·) ∈ C1+δ0([0, p0]), we can find some constant M > 0 such that

g(u) > g′(0)u−Mu1+δ for u ∈ [0, p], h(v) > h′(0)v −Mv1+δ for v ∈ [0, p]. (4.12)

Let (w1(t, x), w2(t, x)) denote the solution of the following system:
∂tw1(t, x) = k1 ∗ w1(t, x)− w1(t, x)− αw1(t, x) + h(w2(t, x)), t > 0, x ∈ R,
∂tw2(t, x) = k2 ∗ w2(t, x)− w2(t, x)− βw2(t, x) + g(w1(t, x)), t > 0, x ∈ R,
w1(0, x) = w0(x), w2(0, x) = w0(x), x ∈ R.

Then Lemma 3.4 implies that

(u(t, x), v(t, x)) > (w1(t, x), w2(t, x)) for all t > 0, x ∈ R. (4.13)

Since k1(·) and k2(·) are symmetric and decreasing on R+, it follows from Theorem 4.1 that w1(t, ·) and
w2(t, ·) are also symmetric and decreasing on R+ at any time t > 0.

For any given λ ∈ (0, λ∗), we define{
u(t, x) = max{0, γeλ(−|x|+c(λ)t) − γLeλ(1+δ)(−|x|+c(λ)t)},

v(t, x) = max{0, γb(λ)eλ(−|x|+c(λ)t) − γLb(λ(1 + δ))eλ(1+δ)(−|x|+c(λ)t)}

for all t > 0 and x ∈ R, where b(λ) is defined by (3.7), γ is some positive constant satisfying

0 < γ 6 min

{
γ0,

γ0
b(λ)

}
,

and L ∈ R+ is large enough such that

L > max

{
1,

b(λ)

b(λ(1 + δ))
, γδp−δ, γδp−δ [b(λ)]1+δ

b(λ(1 + δ))
,

Mγδ[b(λ)]1+δ

G(c(λ), λ(1 + δ))− h′(0)b(λ(1 + δ))
,

Mγδ

b(λ(1 + δ))H(c(λ), λ(1 + δ))− g′(0)

}
. (4.14)

We easily get that

u(0, x) 6 γ0e
−λ|x|, v(0, x) 6 γ0e

−λ|x| for all x ∈ R.

If we consider the function f(y) = Ay−By1+δ for y ∈ R+ with A,B ∈ R+, whose maximum value equals

fmax , A
1+δ
δ B− 1

δ δ(1 + δ)−
1+δ
δ , then we have

u(t, x) 6 fmax
1 , γL− 1

δ δ(1 + δ)−
1+δ
δ 6 p 6 p1,

v(t, x) 6 fmax
2 , γL− 1

δ [b(λ)]
1+δ
δ [b(λ(1 + δ))]−

1
δ δ(1 + δ)−

1+δ
δ 6 p 6 p1

for all t > 0 and x ∈ R. Therefore, the definition of w0(·) shows that

w0(x) > u(0, x), w0(x) > v(0, x) for all x ∈ R. (4.15)

We now verify that (u(t, x), v(t, x)) is a lower solution of the system (1.1). When |x| 6 c(λ)t +

(λδ)−1 lnL, we easily get u(t, x) = 0. Then from (H1) and (H2), it follows that

∂tu− k1 ∗ u+ u+ αu− h(v) 6 −h(v) 6 0.

When |x| > c(λ)t+ (λδ)−1 lnL, we have

u(t, x) = γeλ(−|x|+c(λ)t) − γLeλ(1+δ)(−|x|+c(λ)t),

v(t, x) > γb(λ)eλ(−|x|+c(λ)t) − γLb(λ(1 + δ))eλ(1+δ)(−|x|+c(λ)t).
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Then by (4.12), some simple calculations imply that

∂tu− k1 ∗ u+ u+ αu− h(v)

6 γ[G(c(λ), λ)− h′(0)b(λ)]eλ(−|x|+c(λ)t)

× {γL[G(c(λ), λ(1 + δ))− h′(0)b(λ(1 + δ))]−M [γb(λ)]1+δ}eλ(1+δ)(−|x|+c(λ)t).

From (3.8), (4.6) and (4.14), it follows that

∂tu− k1 ∗ u+ u+ αu− h(v) 6 0 for |x| > c(λ)t+ (λδ)−1 lnL.

Therefore, we finally prove that

∂tu− k1 ∗ u+ u+ αu− h(v) 6 0 for all t > 0, x ∈ R. (4.16)

Similarly, we can also prove

∂tv − k2 ∗ v + v + βv − g(u) 6 0 for all t > 0, x ∈ R. (4.17)

From (4.15)–(4.17), Lemma 3.4 shows that

(w1(t, x), w2(t, x)) > (u(t, x), v(t, x)) for t > 0, x ∈ R.

Then some simple calculations imply that

w1(t, x) > u(t, x) = fmax
1 , when |x| = c(λ)t+ (λδ)−1 ln[(1 + δ)L],

w2(t, x) > v(t, x) = fmax
2 , when |x| = c(λ)t+ (λδ)−1 ln

[
(1 + δ)L

b(λ(1 + δ))

b(λ)

]
.

Since w1(t, ·) and w2(t, ·) are symmetric and decreasing in R+ at any time t > 0, by taking ν =

min{fmax
1 , fmax

2 } > 0, we can get from L > max{1, b(λ)
b(λ(1+δ))} that

w1(t, x) > ν, w2(t, x) > ν for t > 0, |x| 6 c(λ)t.

Therefore, by (4.13) we prove that (u(t, x), v(t, x)) > (ν, ν) for all t > 0, |x| 6 c(λ)t.

Remark 4.5. In Theorem 4.2, we assume that the initial data u0 and v0 have the same exponentially

decaying behavior. When they have different decaying behavior, the spatial propagation problem is

more difficult and there are some interesting phenomena. For example, our paper [48] showed that the

component with exponentially unbounded initial data (for example, decaying algebraically) can accelerate

the component with exponentially decaying initial data. However, to the best of our knowledge, when

all the components decay exponentially but their decaying rates are different, there is no study about

the interaction among the components. We think that the component with a smaller decaying rate could

accelerate that with a bigger decaying rate. The fundamental reason of this acceleration phenomenon is

that the growth sources of one component could come from other components. For more results about

the acceleration among the components, see, e.g., Coulon and Yangari [11] and Xu et al. [47].

5 Applications

In this section, we give some applications of the theoretical results to the control of epidemic whose

infectious agent is carried by migratory birds. We consider the question whether it is possible that the

epidemic spreads only along the flight route of migratory birds and the spatial propagation against the

flight route fails. Throughout this section, we suppose that the positive parameters α, β, g′(0) and h′(0)

in the system (1.1) have already been determined. Now we assume some specific forms of the kernel

functions k1 and k2.
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5.1 Normal distribution

Suppose that the migratory birds fly at a constant speed a ∈ R and the infectious agent has its own

moving ability. In the system (1.1), we assume that k1 and k2 satisfy

k1(x) =
1√
2πσ1

exp

(
− (x− a)2

2σ1

)
and k2(x) =

1√
2πσ

exp

(
− x2

2σ

)
.

Here, the expectation a of k1 represents the movements of the infectious agent caused by migratory flight

and the variance σ1 ∈ R+ describes the strength of its own moving ability. The expectation of k2 is 0

because humans usually return after leaving their own residences. The variance σ ∈ R+ describes the

intensity of the movements of the infectious humans.

By observing the migration flight of birds and the moving ability of the infectious agent, we suppose

that the parameters a and σ1 can be determined. We also suppose that a > 0; otherwise just consider

the new spatial variable y = −x. Finally, our question becomes how to restrict the movements of the

infectious humans such that the epidemic spreads only along the flight route and the spatial propagation

against the flight route fails; namely we need to find a proper parameter σ such that 0 < c∗l < c∗r .

Define a constant r which can describe the asymmetry level of k1 as follows:

r , a/
√
2σ1.

Remark 5.1. Intuitively, the asymmetry level of a probability density function k could be measured

by the ratio of M1(k) =
∫
R+ k(x)xdx to M2(k) =

∫
R− k(x)|x|dx. By some calculations, we have

M1(k1)/M2(k1) = φ(r) , 2

(
exp(−r2)
r
√
π

+ erf(r)− 1

)−1

+ 1,

where erf(·) is the error function defined by erf(r) = 2√
π

∫ r

0
exp (−t2)dt. It is easy to check that φ(·) is

strictly increasing. Therefore, we can use r to describe the asymmetry level of k1.

We define another important constant of the system (1.1) by

K , β(α+ 1− exp(−r2))/(g′(0)h′(0)) ∈ R+.

Note that K is strictly increasing with respect to r. Next, we show that K can describe the change of the

spatial propagation of the system (1.1) caused by the asymmetry of k1.

Corollary 5.2. If K > 1, then there is a constant σ∗ ∈ R+ such that

(i) when 0 < σ < σ∗, the spatial propagation against the flight route fails; namely 0 < c∗l < c∗r,

(ii) when σ > σ∗, the spatial propagation happens along two directions (along and against the flight

route); namely c∗l < 0 < c∗r,

(iii) when σ = σ∗, it is the critical state; namely 0 = c∗l < c∗r.

Moreover, if K 6 1, then c∗l < 0 < c∗r holds for any σ ∈ (0,+∞).

Proof. From (2.2), some calculations show that

A(λ) =

∫
R
k1(x)e

λxdx− 1− α = exp

(
aλ+

σ1
2
λ2

)
− 1− α,

B(λ) =

∫
R
k2(x)e

λxdx− 1− β = exp

(
σ

2
λ2

)
− 1− β.

Recall the following sets defined in the proof of Theorem 2.2:

ΛA = {λ ∈ R | A(λ) < 0}, ΛB = {λ ∈ R | B(λ) < 0},
Λ = {λ ∈ R | A(λ)B(λ) > g′(0)h′(0), A(λ) < 0, B(λ) < 0}.

We know that ΛA and ΛB are two open intervals and Λ is a closed interval in R. Moreover, it is easy to

check that Λ ⊆ ΛA ∩ ΛB . Since
∂

∂λ
(B(λ)A(λ))

∣∣∣∣
λ=0

= −aβ 6 0,
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we get that Λ ⊆ R− when a > 0 and Λ = ∅ by A(0)B(0) < h′(0)g′(0) when a = 0.

Next, in order to study the relation between Λ and σ, we consider a function Λ(·) : σ 7→ Λ which is

from R+ to the set that consists of all closed intervals in R. From

∂B

∂σ
=

1

2
λ2 exp

(
σ

2
λ2

)
> 0 for λ ∈ R,

∂|AB|
∂σ

= A
∂B

∂σ
< 0 for λ ∈ ΛA ∩ ΛB ,

it follows that

Λ(σ′) ⊆ Λ(σ) for any σ′ > σ (5.1)

and this inclusion is strict when Λ(σ) ̸= ∅. By the continuity of B with respect to σ, we know that Λ(·)
is also continuous, which means that both its lower bound and upper bound are continuous with respect

to σ when Λ ̸= ∅.
When K > 1, first, we consider σ → 0+ and λ = −a/σ1. Then

lim
σ→0+

A(−a/σ1)B(−a/σ1) = β

(
1 + α− exp

(
− a2

2σ1

))
> g′(0)h′(0).

Therefore, there is a positive constant σ0 small enough such that intΛ(σ0) ∩ R− ̸= ∅. Next, we consider

σ → +∞. Then λ+B → 0+ and λ−B → 0−, where

λ±B = ±
√

2

σ
ln(1 + β) and ΛB = (λ−B , λ

+
B).

It follows that

lim
σ→+∞

A(λ)B(λ) 6 αβ < g′(0)h′(0) for any λ ∈ ΛA ∩ ΛB . (5.2)

Therefore, there is a positive constant σ∞ large enough such that Λ(σ∞)∩R = ∅. Finally, by Theorem 2.2

and (5.1), we finish the proof of Corollaries 5.2(i)–5.2(iii).

When K 6 1, we have

A(λ)B(λ) 6 β

(
1 + α− exp

(
− a2

2σ1

))
6 g′(0)h′(0) for λ ∈ ΛA ∩ ΛB .

In the above inequalities, the first equality holds only if a = 0, which implies that the second equality

does not hold. Then

A(λ)B(λ) < g′(0)h′(0) for λ ∈ ΛA ∩ ΛB ,

which means that Λ ̸= ∅. From Theorem 2.2, it follows that c∗l < 0 < c∗r .

Now we give more details of the change of the spatial propagation caused by the asymmetry of k1.

When k1 is symmetric (namely r = 0), it follows that K = αβ/(h′(0)g′(0)) < 1 and the propagation always

happens along two directions. When the asymmetry of k1 becomes stronger (namely, r becomes larger),

K becomes larger. If K > 1, the asymmetry of k1 is strong enough to change the spreading dynamics

of the system (1.1). It is possible that the epidemic spreads only along the flight route of migratory

birds and the spatial propagation against the flight route fails, as long as the infectious humans are kept

from moving frequently such that σ < σ∗. Moreover, we point out that if (1 + α)β 6 g′(0)h′(0), then

K < 1 always holds for any k1, which means that the reaction terms play a more important role and the

asymmetry of dispersal cannot change the spreading dynamics of the system (1.1).

Finally, the critical number σ∗ can be calculated by some numerical methods. For example, suppose

that α = 0.2, β = 0.1, h′(0)g′(0) = 0.22, a = 0.5 and σ1 = 1. Then we have K = 1.4432 and σ∗ = 2.2098.
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5.2 Uniform distribution

Suppose that k1 and k2 are given by

k1(x) =


1

a− b
for x ∈ [b, a],

0 for x /∈ [b, a],

and k2(x) =


1

2σ
for x ∈ [−σ, σ],

0 for x /∈ [−σ, σ],

where the constants a ∈ R+ and b ∈ R− stand for the farthest distances of movements of the infectious

agent during a unit time period along and against the flight route, respectively. The average moving

speed is ∫
k1(x)xdx =

(a+ b)

2
.

The constant σ ∈ R+ stands for the farthest distance of movements of the infectious human during a

unit time period. Similar to the normal distribution case, it holds that∫
k2(x)xdx = 0.

Here, the uniform distribution means that every distance in the moving range has the same probability

to happen.

Similar to the normal distribution case, we suppose that the parameters a and b have already been

determined by some experimental data and a + b > 0; otherwise, just consider the new spatial variable

y = −x. Now we show how to choose the parameter σ such that 0 < c∗l < c∗r .

From (2.2), some calculations show that

A(λ) =


eaλ − ebλ

(a− b)λ
− 1− α, λ ̸= 0,

− α, λ = 0,

B(λ) =


eσλ − e−σλ

2σλ
− 1− β, λ ̸= 0,

− β, λ = 0.

When a+ b > 0, denote

r = −a/b ∈ (1,+∞),

which describes the asymmetry level of k1. Indeed, we have that M1(k1)/M2(k1) = r2 and it is strictly

increasing with respect to r, where M1(k1) and M2(k1) are defined in Remark 5.1.

Before giving the result in this case, we need to prove the following lemma.

Lemma 5.3. Let ω(z) = (z − 1)ez with z ∈ R. Then for any r ∈ (1,+∞), there is a unique constant

zr ∈ R such that ω(zr) = ω(−rzr) and zr ̸= 0. Moreover, we have zr ∈ (1 − 1/r, 1). In addition, when

r = 1, ω(z) > ω(−z) for z ∈ R+.

Proof. For r ∈ (1,+∞), define a function

ω̄(z) = ω(z)− ω(−rz) = (z − 1)ez + (rz + 1)e−rz for z ∈ R.

It follows that

ω̄′(z) = zez − r2ze−rz for z ∈ R.

Denote z1 = 0 and z2 = 2(1 + r)−1 ln r ∈ (0, 1). Then some calculations imply that ω̄′(z1) = ω̄′(z2) = 0

and

ω̄′(z) < 0, z ∈ (z1, z2) and ω̄′(z) > 0, z ∈ R\[z1, z2].

It is easy to check that

ω̄(1) = (r + 1)e−r > 0
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and it follows from r − 1/r > 2 ln r for r > 1 that

ω̄(1− 1/r) =
e1−r

r
(r2 − er−1/r) < 0 for r > 1.

Then we can find a unique constant zr ∈ (1 − 1/r, 1) such that ω̄(zr) = 0; namely ω(zr) = ω(−rzr).
Moreover, when r = 1, we have z1 = z2 and ω̄ is strictly increasing in R. Then ω(z) > ω(−z) for z ∈ R+

by ω̄(0) = 0.

Now define ω(z) = (z − 1)ez with z ∈ R. From Lemma 5.3, let zr denote the constant satisfying

ω(zr) = ω(−rzr). In view of

A′(λ) =
1

(a− b)λ2
(ω(aλ)− ω(bλ))

from ω(zr) = ω(−rzr), it follows that A′(zr/b) = 0 and

A(zr/b) = min{A(z); z ∈ R} =
ezr

1 + rzr
− 1− α 6 A(0) < 0.

Now we can define the constant K which describes the change of the spatial propagation of the system (1.1)

caused by the asymmetry of k1 as follows:

K , −βmin{A(z); z ∈ R}
g′(0)h′(0)

=
−βA (zr/b)

g′(0)h′(0)
> 0.

When a + b = 0, by min{A(z); z ∈ R} = −α, we can simply denote K = αβ/(g′(0)h′(0)). From the

following result, we see that K is strictly increasing with respect to r.

Proposition 5.4. ∂
∂rK > 0 for r > 1.

Proof. It suffices to prove that ∂
∂rA(zr/b) < 0 for r > 1. By differentiating the equation ω(zr) =

ω(−rzr) with respect to r, we have
dzr
dr

=
rzr

e(1+r)zr − r2
.

Then
∂

∂r

(
ezr

1 + rzr

)
=

ezr (1− r + rzr)

(1 + rzr)2
· dzr
dr

− ezrzr
(1 + rzr)2

=
ezrzr

(1 + rzr)2(e(1+r)zr − r2)
(r + r2zr − e(1+r)zr ).

Also from ω(zr) = ω(−rzr), it holds that e(1+r)zr = (1+ rzr)/(1−zr). Then by zr ∈ (1−1/r, 1), we have

r + r2zr − e(1+r)zr =
1 + rzr
1− zr

(r − rzr − 1) < 0.

From the proof of Lemma 5.3, it holds that

zr > z2 = 2(1 + r)−1 ln r;

namely e(1+r)zr − r2 > 0. Therefore, ∂
∂rA (zr/b) < 0, which completes the proof.

Now we give the result on the change of the spatial propagation caused by the asymmetry of k1.

Corollary 5.5. All the results in Corollary 5.2 hold for the uniform distribution case.

Proof. Although this proof is similar to the proof of Corollary 5.2, we need to check some details.

Let the sets Λ, ΛA and ΛB and the function Λ(·) : σ 7→ Λ be the same notations as in the proof of

Corollary 5.2. By some calculations and Lemma 5.3, we have

∂B

∂σ
=
ω(λσ)− ω(−λσ)

2λσ2
> 0 for λ ∈ R.

Then it follows that (5.1) holds and this inclusion is strict when Λ(σ) ̸= ∅.
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When K > 1, consider σ → 0+ and λ = zr/b. Then

lim
σ→0+

A(zr/b)B(zr/b) = −βA(zr/b) > g′(0)h′(0).

Considering σ → +∞, we have B(λ) → +∞ for any λ ∈ R+ ∪ R−. Then λ+B → 0+ and λ−B → 0− where

ΛB = (λ−B , λ
+
B), which means that (5.2) holds. The rest of this proof can be obtained similarly.

From Corollary 5.5, we have some similar discussions to those from Corollary 5.2 in the normal distri-

bution case. In addition, here the critical number σ∗ can also be calculated by a numerical method. For

example, when α = β = 0.2, g′(0)h′(0) = 0.06, a = 2 and b = −1, we have K = 1.1952 and σ∗ = 0.8423.

Remark 5.6. For the more general form of k1, when k2 is symmetric, we think that Corollary 5.2

remains true, as long as we define

K , β(α+ 1− E(k1))/(h
′(0)g′(0))

and σ , Var(k2), where

E(k1) = inf

{∫
R
k1(x)e

λxdx;λ ∈ R
}

and Var(k2) is the variance of k2.

We have presented some applications of the theoretical results to the control of epidemics whose

infectious agents (bacteria or viruses) are carried by migratory birds. These applications demonstrate that

the frequent movements of the infectious humans accelerate the spreading of the epidemics. Moreover,

it is possible that the epidemic spreads only along the flight route of migratory birds and the spatial

propagation against the flight route fails as long as the infectious humans are kept from moving frequently.
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