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Abstract This paper studies an epidemic model with nonlocal dispersals. We focus on the influences of initial
data and nonlocal dispersals on its spatial propagation. Here, initial data stand for the spatial concentrations
of the infectious agent and the infectious human population when the epidemic breaks out and the nonlocal
dispersals mean their diffusion strategies. Two types of initial data decaying to zero exponentially or faster are
considered. For the first type, we show that spreading speeds are two constants whose signs change with the
number of elements in some set. Moreover, we find an interesting phenomenon: the asymmetry of nonlocal
dispersals can influence the propagating directions of the solutions and the stability of steady states. For the
second type, we show that the spreading speed is decreasing with respect to the exponentially decaying rate of
initial data, and further, its minimum value coincides with the spreading speed for the first type. In addition, we
give some results about the nonexistence of traveling wave solutions and the monotone property of the solutions.

Finally, some applications are presented to illustrate the theoretical results.
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1 Introduction

To model the spread of cholera in the European Mediterranean regions in 1973, Capasso and Mad-
dalena [8,9] proposed a system of two parabolic differential equations to describe a positive feedback
interaction between the concentration of bacteria and the infectious human population; namely, the high
concentration of bacteria leads to the large infection rate of the human population and once infected
the human population increases the growth rate of bacteria. Capasso and Kunisch [7] and Capasso and
Wilson [10] also applied this mechanism to model other epidemics with fecal-oral transmission (such as
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typhoid fever and hepatitis A). In these studies, the spatial movements of the infectious agent and the
infectious human host are described by the Laplacian operators.

In this paper, we use nonlocal convolution operators to represent the spatial movements of the infectious
agent and the infectious human host. Then the epidemic model becomes

ue(t,x) = Dyu(t, z) — au(t,z) + h(v(t,x)), t>0, xR,
ve(t,x) = Dov(t, ) — Bu(t,x) + g(u(t,z)), t>0, z€R, (1.1)
u(0,2) =wuo(x), v(0,2) =vo(z), z€R,

where u(t,z) and v(¢, ) biologically stand for the spatial concentration of the infectious agent (bacteria
or viruses) and the spatial density of the infectious human population at time ¢ and location z € R,
respectively. The constants ae > 0 and 8 > 0 denote the natural death rates of the infectious agent and
the infectious humans, respectively. The function h(v) denotes the growth of the infectious agent caused
by the infectious humans. Meanwhile, the function g(u) is the infection rate of the human population
under the assumption that the total susceptible human population is a constant during the evolution of
the epidemic. The nonlocal dispersals, represented by the following convolution operators:

Diu(t,r) 2 ky *u(t,z) —u(t,z) = /]Rkl (x —y)u(t,y)dy — u(t, x),

Dov(t,z) = kg xv(t,x) — v(t,x) = / ko(z — y)u(t,y)dy — v(t, x)
R
describe the movements of the infectious agent and the infectious humans, respectively, between not only
adjacent but also nonadjacent spatial locations. The dispersal kernel k; with ¢ € {1,2} is nonnegative
and stands for the probability of the movement from the spatial location 0 to x, and thus

/Rki(x)dx —1

Here, the movements between nonadjacent spatial locations can be thought as the long-distance move-
ments of the infectious agent and the infectious humans across cities or countries by air-traffic and other
long-distance transportation.

1.1 A brief review of related literature

The spatial propagation of the system (1.1) and its variants has been widely studied in the literature.
For example, Li et al. [25] and Meng et al. [34] studied traveling wave solutions, spreading speeds and
entire solutions of the system (1.1). We refer to Bao and Li [4], Bao et al. [5], Hu et al. [20], Liu and
Wang [29], Wang and Castillo-Chavez [39] and Xu et al. [47] for the results on the spreading dynamics
of more general nonlocal dispersal systems. Particularly, if the infected humans do not move during
the infectious period (for example, they are in sickbeds or quarantined probably), then the system (1.1)
reduces to the following partially degenerate system:

{ut(t,x) =k xu(t,z) —u(t,z) — au(t,z) + h(v(t,z)), t>0, z€R,
)

! (1.2)
+g(u(t,z)), t>0, zeR.

v(t,x) = —Pou(t,x

This system is a special case of the system (1.1) with ko(z) being equal to a Dirac function 6(x) (the
movement happens only between every spatial location and itself; namely, there is no movement of the
infected humans). Traveling wave solutions and entire solutions of the system (1.2) were studied by Wang
et al. [41], Wu and Hsu [45] and Zhang et al. [55]. For other related results on nonlocal dispersal epidemic
models, we refer to for example Li and Yang [26] and Yang et al. [51].

In addition, if the movements of the infectious agent and the infectious human population happen only
between adjacent spatial locations, the classical Laplace diffusion operators are applied instead of the
nonlocal dispersal operators. For the results about classical diffusion epidemic models, we refer to Allen
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et al. [2], Cui et al. [13], Cui and Lou [14], Hsu and Yang [19], Wang [38], Xu and Zhao [46] and Zhao
and Wang [57].

Other fundamental properties involved in this paper such as the existence and uniqueness of the
solution in the system (1.1) can be studied following the theories in [3]. The stability of the steady
state can be studied following the techniques in [50, 51, 56]. For more classical results about nonlocal
dispersal problems, we refer to Andreu-Vaillo et al. [3], Bates [6], Fife [15], Kao et al. [21], Li et al. [24],
Murray [35], Shen and Zhang [36], Wang [42] and the references cited therein.

1.2 Preview of the main results

In this paper, we mainly study the influences of two important factors on the spatial propagation in the
model (1.1), namely nonlocal dispersals and initial data. Here, initial data stand for the spatial density
of the infectious agent and the infectious human population when epidemic breaks out and the nonlocal
dispersals mean their diffusion strategies. Our contribution can be summarized in the following three
aspects.

First, we consider the dependence of the spatial propagation on the nonlocal dispersals. Usually, we
can find the phenomenon of anisotropic dispersal; for example, the avian influenza viruses carried by
migratory birds have a higher possibility to move along the flight route. Then we can use the asymmetric
dispersal to study this phenomenon. Here, the asymmetric dispersal (kernel) means that for any spatial
location = € R, the probability of organism moving from 0 to x is not equal to that from 0 to —z. Since
diffusion is the original driving force of the spatial propagation, it is necessary to study the changes of
the spatial propagation caused by the asymmetry of dispersals in the system (1.1).

Before it, we recall the known results on spreading speeds of the following scalar equation:

u =k+xu—u+ f(u), (1.3)

where f(-) is Fisher-KPP (short for Kolmogorov Petrovsky and Piskunov) type and k(-) is asymmetric.
Then there are two constants ¢ and ¢} such that

lim w(t,z+ct)=1 fore <ec<cy, lim u(t,x+ct)=0 forc<e or c>cl,
t——+oo t—+oo

where ¢ and ¢} are called the spreading speeds to left and right, respectively (see Lutscher et al. [31],
Finkelshtein et al. [16] and Shen and Zhang [36]). Furthermore, Coville et al. [12] showed that asymmetric
kernels may cause the nonpositive minimal wave speed for traveling wave solutions (see also Sun et al. [37]
and Zhang et al. [53,54]). As is well known, the minimal wave speed for traveling wave solutions always
equals the spreading speed in the Fisher-KPP equations. Therefore, it is worth identifying the signs of
spreading speeds when the kernels are asymmetric. Recently, this problem was solved in our paper [49],
and furthermore, it was shown that the asymmetry level of the kernel determines the signs of spreading
speeds ¢; and ¢}, which in turn determine the propagating directions of the solutions and influence the
stability of equilibrium states [32].

Motivated by [20,49], we study the influences of asymmetric kernels on the spatial propagation and
identify the signs of spreading speeds. However, such a problem is more difficult than that in the
equation (1.3), because the signs of spreading speeds ¢ and ¢;: in the system (1.1) are actually influenced
by two kernels ki1 (-) and ko(:). In order to treat this problem, we define

A={NeR|AN)B(\) = 4¢'(0)R'(0), A(\) <0, B(\) < 0},
where

A = /R ki (2)eMdz —1—a, B(\) = /R oo (2)edr — 1 — .

Then we show that the signs of ¢ and ¢} change with the number of elements in the set A (see Theo-
rem 2.2) which is essentially determined by the dispersal kernels k1 () and ko (-). Particularly, when k;(-)
and ko(-) are symmetric, it follows that ¢* £ ¢ = —c} > 0.
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We show that in the system (1.1), the asymmetric dispersals can influence the propagating directions
of the solutions and the stability of steady states. More precisely, denote the spatial region

Q) &2 {r e R | (u(t,z),v(t,z)) > (v,v)} for t >0 with some v € (0,1), (1.4)

and there is an interesting phenomenon: 2(¢) propagates to both the left and the right of the z-axis
for ¢f < 0 < ¢j, propagates only to the right for 0 < ¢f < ¢, and propagates only to the left for
¢f < ¢; < 0. For some appropriate initial data, when ¢ < 0 < ¢, the steady state (u,v) = (1,1) is
stable, i.e., (u(t,z),v(t,xz)) — (1,1) as t — 400, but when 0 < ¢ < ¢} or ¢f < ¢ < 0, we see that
(u(t,z),v(t,x)) = (0,0) as t = +oo in any bounded spatial region.

Next, we study the dependence of the spatial propagation on initial data. Consider two types of initial
data which decay to zero exponentially or faster as || — 400, but their decaying rates are different.
We establish a relationship between the spreading speed and the exponentially decaying rate A of initial
data. For the first type whose decaying rate is large (this type includes compactly supported functions),
we show that spreading speeds are constants ¢ and ¢} (see Theorem 3.1). For the second type whose
decaying rate is small, when k;(-) and ky(-) are symmetric, we show that the spreading speed c(X) is
decreasing with respect to A, and the minimum value of ¢(\) coincides with ¢* (see Theorem 4.2). In
addition, we obtain two other results of the system (1.1), namely the nonexistence of traveling wave
solutions (see Corollary 3.2) and the monotone property of the solutions (see Theorem 4.1).

These results give us guidance for better control of the spatial propagation of epidemics. We see that
even though the spatial concentrations of the infectious agent and the infectious human population are
very low at the spatial locations far away from z = 0, they have an important influence on the spatial
propagation of the system (1.1). Therefore, in order to slow down the spreading speed of epidemics, the
prevention in low-density spatial regions is at least as important as the treatment in high-density spatial
regions. In addition, there are some applications of the theoretical results to the control of epidemics
whose infectious agent is carried by migratory birds. As we shall see in Section 5, it is possible that the
epidemic spreads only along the flight route of migratory birds and the spatial propagation against the
flight route fails, as long as the infectious humans are kept from moving frequently.

Finally, we show that the spreading speed in this paper is studied by applying the comparison principle
(see Lemma 3.4) and constructing new types of upper and lower solutions, instead of the classic theories
of spreading speeds which are established by Weinberger [43] and developed by Lewis et al. [22], Li et
al. [23], Liang and Zhao [27,28], Lui [30] and Yi and Zou [52]. Indeed, when we study the dependence
of spreading speeds on initial data, the method of upper and lower solutions is more useful because it
can deal with more general types of initial data (see, e.g., Hamel and Nadin [17], Hamel and Roques [18]
and Xu et al. [49]). We present a new method to construct the lower solution of the system (1.1) which
spreads at a speed of ¢; or ¢y, where ¢1 € (¢ —€,c) and ¢ € (¢f,cf +¢€). We also apply the new
“forward-backward spreading” method which was first given in our previous paper [49]. In this method,
for any time 7' > 0 and any u € [0,1], we construct a lower solution Us(t,z) in the first period of time
[0, #T] which spreads at a speed of ¢;, and in the second period of time [uT,T] we construct another
lower solution Us(t,x) which spreads at a speed of ¢y and satisfies Us(uT, z) < Uy (uT,z). Then these
two lower solutions can be regarded as a lower solution defined in the time period [0, 7] whose speed is
¢ = pey + (1 — p)ee. Moreover, the arbitrariness of p guarantees that ¢ can be any number in [c1, ¢3].

The methods in this paper could be applicable to the following m-species nonlocal dispersal cooperative
system:

{&U(t,x) =KxU(t,x) = U(t,x) + F(U(t,z)), t>0, z€eR, (15)

U(0,2) = Up(z) = (up1(x),...,upm(x)), z€R, .

where m > 2, U(t,z) = (u1(t,z),...,um(t,z)) and K(z) = (ki(z),...,kn(x)). Here, the function
FU) = (fi(U),..., fm(U)) is cooperative and F’(0) is an irreducible matrix. Actually, the system (1.1)
can be regarded as a special case of the system (1.5) with m = 2. The study of the system (1.1) has
simpler calculations, but it shows clearer presentations of the new upper and lower solutions and the
“forward-backward spreading” method. Moreover, in the system (1.5), if the nonlocal dispersal operators
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are replaced by Laplacian operators, all the methods still work. However, it is not necessary to apply the
“forward-backward spreading” method, since we can use a monotone property similar to Theorem 4.1
instead (see also the proof of Theorem 4.2 for more details).

The rest of this paper is organized as follows. In Section 2, we present the definitions and some
mathematical analysis of spreading speeds. Section 3 is devoted to the spatial propagation for the first
type of initial data and asymmetric kernels. In Section 4, we study the spatial propagation for the second
type of initial data and symmetric kernels. Meanwhile, we also prove some monotone property result for
the system (1.1). In Section 5, we give some applications of the theoretical results.

2 The signs of spreading speeds

In this section, we define the notations of spreading speeds and identify their signs. First, we give some
assumptions. Let « and 8 be two positive constants. Throughout this paper, we assume g(-) and h(-) are
two functions in C'*([0, 1]) N C1+% ([0, po]), where &y and py are two constants in (0, 1), and satisfy that

(H1) ¢g(0) = h(0) =0, h(1)/a=g(1)/8 =1, h(g(s)/B) —as > 0 for all s € (0,1);

(H2) 0 < g(u) < ¢'(0)u, ¢'(u) = 0 for all u € (0,1); 0 < h(v) < W (0)v, h'(v) = 0 for all v € (0,1).
From (H1) and (H2), the system (1.1) is monostable and (u(t, z),v(t,x)) = (1,1) is the unique nontrivial
steady state. Moreover, we have a8 < h'(0)g’(0). Suppose ki(-) and ky(-) are two continuous and
nonnegative dispersal kernel functions satisfying

(K1) [, ki(z)dr =1 and [, ki(2)e**dz < +oo for any A € R and i € {1,2};

(K2) there are v € Rt and 371 6 R~ such that k;(z) > 0 for each i € {1,2}.

We assume the initial data ug(-) and vg(+) are two continuous functions which satisfy that 0 < ug(z) < 1,
0 <wvo(x) <1forall zeR and

uo(x) = 0, wvo(x) =0 as|z] = +oo.

Now define 1
c(N\) = XD()\) for X\ # 0, (2.1)
where 1
D(A) = 5[AN) + B(A) + V(AN = B(V)? + 44/ (0)1(0)]
and

/k1 Ye M dx — B(\) = / ko(x)erdr — 1 — . (2.2)
It follows that D(A) > A(A) and D(A) > B(A) for A € R. Particularly, if k1(-) and k2(-) are symmetric,
then ¢(A) = —e(=A) for A #£ 0.
Theorem 2.1.  There are two unique constants \j: € R™ and \j € R~ such that

P =cA) = inf {c(N)}, o 2e(\) = sup {c(M)}, (2.3)

AERT AER—

C

and /(X) < 0 for X € (Af,0) U (0,X)). Moreover, we have ¢; < ck. Particularly, if ki(-) and kao(-) are
symmetric, then ¢* £ ¢i = —cf >0 and \* £ X = —\7.
Proof.  This proof is based on some mathematical analysis of the functions ¢/(\) and ¢”’()). First, we

prove

li ') =— d i '(\) = —o0. 2.4
Jim ()= 00 and lim ¢() = —oc (2.4

By some simple calculations, we see the functions A(\), B(X), A’(\) and B’(\) are uniformly bounded as
A — 0. Then the functions D(A) and D’()) are also uniformly bounded as A — 0. Therefore, we easily
get (2.4) from ¢/(A\) = A7LD/(X) — A=2D()) and D(0) > 0.
Now we show that
d(X\) >0 for || large enough. (2.5)
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From the definitions of the functions ¢(A) and D()\), we have
22%2¢(\) = 2(AD'(\) — D(\))

A—B)[(AA' — A) — (AB’ — B)] — 4¢’(0)h'(0)
[(A = B)? +4¢'(0)'(0)]2 .

— (A= A)+ (AB' — B) +

Then from
|A— B| < [(A— B)?+ 44 (0)1'(0)]2,

it follows that

A2 (A) > min{AA (\) — A(N) — /g (0)R (0), AB'(\) — B(\) — \/g'(0)A/ (0)}.

By some simple calculations, we have

AMA'(N) — AN = /Rkl(x)e)‘“:()\x —1dz +1+a— 400 as |\ — +oo,

AB'(\) — B(\) = /ng(x)e’w()\x —1ldz+1+ 8 — +oo as |\ = +o0,

which imply that (2.5) holds.
Next, we try to prove that
Ad’(A) >0 for A #0, provided ¢’(\) =0. (2.6)
Indeed, since
¢"(N) = A7HD"(A) — 2 (V)],

we just need to prove that
D"(A) >0 forall A € R. (2.7)

From the definitions of the functions A(\), B(A) and D(A), it follows that for all A € R, A”(\) > 0,
B"(X) > 0 and

(A-B)(A" - B") 41'(0)g'(0) (A’ — B')?

A e By L ag OO T (A= B + g (O (0]

By |A — B| < [(A— B)? +4¢'(0)1'(0)]2, we get
D"(X) = min{A"()\), B”"(\)} >0 forall A € R.

Then we get (2.6).

It follows from (2.6) that there is at most one constant A¥ in R such that ¢/(\f) = 0. Meanwhile,
(2.4) and (2.5) imply the existence of this constant. Similarly, there is a unique constant A\j € R™ such
that ¢/(A]) = 0. Therefore, we have

>0, X€ (=00, )U (N, +00),
dN){=0, X=X or A=\, (2.8)
<0, A€ (N,0)U(0,A)).

Then we obtain (2.3) from (2.8). Moreover, since ¢/(A) = A71[D'(X) — ¢(\)] and ¢/(A]) = ¢/(A;) = 0, we
have
cf =c(\))=D'(\) and cf=c(\)=D'(\)).

From (2.7) and A\ < 0 < A%, it follows that ¢f < ¢}. Particularly, if k1(-) and ko(-) are symmetric,
we have D(X) = D(—A\) for A € R. Then ¢(A\) + ¢(—A) = 0 for A # 0, which implies A} = —A} and
¢t = —cf > 0. O
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In order to identify the signs of ¢j and c;;, we define a set
A2 {NeR | AN)B(A) = ¢ (0)h(0), A(\) <0, B(\) < 0}.

Now we give a relationship between the set A and the signs of ¢/ and c}.

Theorem 2.2. We have either A C RT or A CR™. Moreover,
(i) f A=0, then ¢ <0< c};
(ii) if ANRT is a singleton set, then ¢f < ¢ = 0;
(iii) if ANR™ is a singleton set, then 0 = ¢f < cf;
(iv) if int(A) NRT # 0, then ¢f < ¢ < 0;
(v) if int(A) NR™ # 0, then 0 < ¢f < c}.
Proof.  First, we prove that either A C RT or A C R™. Since
A(0)B(0) = af < 1'(0)g'(0),

we have 0 ¢ A. So it is sufficient to prove that the set A is a closed interval in R. For this purpose, we
denote

A ={NeR| AN <0} and AP ={NecR|B(\) <0}

Then we have A C AN AB. Some calculations show that A”()\) > 0 and B”(\) > 0 for all A € R, which
imply that the sets A4 and AP are two open intervals in R. For any A € A4 N AB| if

(ANBO)Y = A N)BQ) + ANB'(N) =0,

then we have
(AN)B(N)" = A"(N\)B(X) + A(\)B”(\) +24'(\)B'(\) < 0. (2.9)

Therefore, the set A is a closed interval in R, which means that either A C RT or A CR™.
Now we determine the signs of ¢/ and ¢}. From the definition of the function D(\), we have

DA <0 AN+ B(\) <0 and AA)B() > ¢ (0)R'(0) & X\ € int(A).
Similarly, we can get
DA =0 AN+ B(\) <0 and AN)B() =g (0)R'(0) & X € OA.

Then it follows that
D(A\)>0< ¢ A

Therefore, if A = (), then D(X\) > 0 for all z € R, which implies that ¢ < 0 < ¢}. If there is some
constant \g € R such that ANRT = {\g} = 9A, we have

C()\()) =0= )\ieanJr{c()\)} = C: > C?"

If there is some constant Ao € int(A) NR*, then it follows that 0 > ¢(A\g) > ¢ > ¢;. Similarly, we can
get Theorems 2.2(iii) and 2.2(v). O

Remark 2.3. From Theorem 2.2 we can see that the signs of ¢/ and ¢} change with the number of
elements in the set A, which is essentially determined by the kernels ki(-) and ko(:). Moreover, from
Theorem 2.2(i) we have ¢ < 0 < ¢} when

(14+a—E(k1))(1+ 8 — E(k2)) < ¢'(0)h'(0), (2.10)
where E(k) can describe the asymmetry level of k(-) and is defined by
E(k) = inf { / E(x)eMdr | A € ]R}.
R

It is easy to check that E(k) € [0, 1]. Particularly, when k;(-) and ko(-) are symmetric, we have E(k1) =
E(ko) = 1, which verifies that (2.10) is right by a8 < h'(0)g’(0).
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3 The first type of initial data and the case of asymmetric kernels

In this section, we establish the spatial propagation result of the system (1.1) for the first type of initial
data and asymmetric kernels by constructing new types of upper and lower solutions and using the
“forward-backward spreading” method. Now we present the main theorem.

Theorem 3.1.  Assume that (H1), (H2), (K1) and (K2) hold. If ug(-) and vo(-) satisfy that ug(zg) > 0,
vo(xg) > 0 for some constant xo € R and there are two positive constants x1 and Ty such that

max {ug(x), vo(x)}eN® < Ty forz < —z1, max{ug(z),vo(z)}eM® < Ty forz >z,

then for any small € > 0 there is a constant v € (0,1) such that the solution of the system (1.1) has the
following properties:

lim sup  (u(t,z),v(t,z)) = (0,0),

t—+oo z—xo<(cf —e)t

inf t t,z)) > (v, t>o0,
(c;-s-e)tgxlzlxog(c:—e)t(u( ,x),v(t,x)) = (v,v) forallt >0

lim sup  (u(t,z),v(t,x)) = (0,0).

=400 4 _zo>(cite)t

Before giving its proof, we show some other results derived from Theorem 3.1. We see that the spreading
speeds of the system (1.1) for this type of initial values are ¢} and ¢} whose signs are determined by %1 (+)
and ko(-) as stated in Section 2. Therefore, the asymmetric dispersals in the system (1.1) can influence
the propagating directions of the solutions and the stability property of steady states. More precisely, the
spatial region 2(¢) defined by (1.4) propagates to both the left and the right of the z-axis for ¢; < 0 < ¢},
propagates only to the right for 0 < ¢ < ¢,
if the set Q(t) is connected at time ¢ > 0, in the case of 0 = ¢f < ¢, the movement of the left boundary
of Q(t) is slower than linearity and we cannot identify its propagating direction. Similarly, we cannot
identify the propagating direction of the right boundary of €(t) in the case of ¢ < ¢ = 0 either.
Furthermore, for this type of initial data, when ¢ < 0 < ¢, the steady state (u(t,z),v(t,z)) = (1,1)
is stable, i.e., (u(t,x),v(t,z)) = (1,1) as t — 400, but when ¢ < ¢ < 0or 0 < ¢ < ¢, we see that
(u(t,z),v(t,x)) = (0,0) as t — +oo in any bounded spatial region.

From Theorem 3.1 we also obtain the following spatial propagation phenomenon: any small positive
perturbation of the steady state (u(t,z),v(t,z)) = (0,0) at some spatial location zy € R and time ¢t = 0
(namely (u(0,zg),v(0,2z0)) > (0,0) holds) will spread in the spatial region

and propagates only to the left for ¢j < ¢ < 0. However,

Qt,e,z0) 2 {x €R | (¢f + )t <x — 20 < (c& —€)t} for any ¢ > 0 and small € > 0, (3.1)
which means that (u(t,x),v(t,x)) > (u, u) for © € Q(t, €, z9) and some constant x> 0. From this result,

we can get some nonexistence results of traveling wave solutions of the following system:

(3.2)

{ut(t, x) =k xu(t,z) —u(t,x) — au(t,z) + h(v(t,x)), teR, zeR,
v(t,x) = kg xv(t,z) — v(t,z) — Bo(t,z) + g(u(t,x)), teR, xR,

Corollary 3.2.  Assume that (H1), (H2), (K1) and (K2) hold. Suppose that

(’U,(t, 33‘), U(t7 x)) = (¢($ - Ct)’ ¢($ - Ct))

is a traveling wave solution of the system (3.2) and satisfies (¢,1) # (0,0). We have
(i) if (p(+00),¥(+00)) = (0,0), then ¢ = c;
(ii) if (¢p(—00), ¥ (—00)) = (0,0), then c < cf.

Proof.  Let the initial data (ug(z),ve(2)) in the system (1.1) satisfy

(uo(z),v9(2)) < (o(x),¥(x)) forx € R, (uo(xo),vo(x0)) > (0,0) for some xy € R.
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Then Theorem 3.1 and the comparison principle (see Lemma 3.4) show that for any constant e > 0 small
enough,
(p(x — ct),Y(xz —ct)) = (u(t,x),v(t,x)) = (v,v) fort>0, xe€Qtexg),

where (u(t, z),v(t,z)) is a solution of the system (1.1) and (¢, €, ) is defined by (3.1).
In Case (i), we suppose ¢ < ¢;. Let € be small enough such that 0 < € < ¢ — ¢. By taking a constant
co € R satisfying max{c, ¢j + €} < ¢p < ¢} — €, we get that zg + cot € Q(t,€,z0) and

(p(zo + cot — ct), Y(xo + cot — ct)) = (v,v) for ¢t > 0.
It is a contradiction to (¢(+00), 1 (+00)) = (0,0). Similarly, we can prove Case (ii). O

Remark 3.3. Corollary 3.2 shows that there exists no traveling wave solution (u(t,x),v(t,x))
= (¢(x — ct),¥(x — ct)) of the system (3.2) satisfying (¢(400),9(+00)) = (0,0) and ¢ € (—o0,ck).
Meanwhile, the system (3.2) has no traveling wave solution satisfying (¢(—o0), ¥ (—o00)) = (0,0) and
¢ € (¢f , +00) either.

Now we focus on the proof of Theorem 3.1 in the following three subsections.
3.1 Preliminaries

The basic tools in the proof of Theorem 3.1 are the method of upper and lower solutions and the following
comparison principle of the system (1.1) whose proof can be found in [25].

Lemma 3.4 (Comparison principle).  Assume that (H1), (H2) and (K1) hold. For any T > 0, if the
continuous functions (uy(t,x),vi(t,x)) and (ua(t, x),va(t, z)) satisfy

Opur — k1 *ug +ug + aug — h(vy) = Opug — k1 * ug + us + aug — h(va),

o1 — ka xv1 1 + B — g(ur) = Opva — k2 x v2 + v2 + Bua — g(us),

u1(07x) 2“2(071')’ 1]1(0,33) 21}2(0758)
fort e (0,7], x € R, then (ui(t,x),v1(t,z)) = (u2(t,x),va(t, ) fort € [0,7] and € R.

Next, we define some notations. For ¢ € R and A € R, denote

G(e,\) & ed— AN =) — / ki(x)eMdr + 1+ a, (3.3)
R

H(c,)\) & ch—B()\) =c)\— / ka(z)e?dx + 1+ B. (3.4)
R

From (2.1), we get that for A # 0,
G(c(A\),A) =D(\) — A(N) >0, H(c(A),A\) =D(N\) —B(\) >0. (3.5)

It follows that for A #£ 0,

Denote the function

MMééﬁmﬂﬁMM+BQy+¢MQy<MMV+MNmyWN>OfMAER. (3.7)

When k; and ke are symmetric, we have b(A\) = b(—A). Then we get from (2.1) that

G(e(N),N) _  4'(0)

e ORI CEYSY

for A # 0. (3.8)

In the construction of new lower solutions, we also need to introduce some new notations. For any
n € (0, min{g’(0), ~'(0)}), we define a function

cn(A) = = Dy(\) for A#0, (3.9)
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where
Dy(A) = %[A(/\) + B\ + V(AQA) = BO))? +4(g'(0) — 1) (' (0) — n)].
Similar to (3.6), we have
Glen(A), AV H (cy(A); A) = (¢'(0) = n)(K'(0) —n) for A#0. (3.10)

By the same method used in the proof of Theorem 2.1, for any n € (0, min{g’(0),2'(0)}), we can define

o) 2 inf {e,(V} and ()2 sup {ey(\)}- (3.11)
S AER—

It follows that ¢ < ¢f(n) < ci(n) < ci. Moreover, we have ci(n) — ¢ and ¢ (n) — ¢ as n — 0.
Then for any € > 0 small enough, there are two small constants 71,72 € (0, min{g’(0), 2’(0)}) such that
cr(m) = e; —€,¢f(n2) = ¢f + ¢ and

af < (h'(0) —=m)(g'(0) —m), aB < (I'(0)—mn2)(g'(0) —n2).
For short, we denote
0129 0)—m, hEHN0)—m, g229(0)—n2, hyEh(0)—ns.

The following lemma gives some properties of the functions G(c, A) and H/(c, ).

Y —€,cf) with € > 0 small enough, there are two unique constants
Ci(e1) > v1(e1) > 0 (denoted also by 1 and 1 for short) such that

Lemma 3.5. For any ¢; € (cF

G(ci,m)H(c1,m) = G(e1, ) H (e, G1) = g1

and
G(c1,p)H(c1,p) > gr1h1, G(cr,p) >0, H(ci,p) >0 forall p € (y1,(1).

Similarly, for any ca € (¢, ¢ + €) with e > 0 small enough, there are two unique constants (a(c2) <
va(c2) < 0 (denoted also by (o and v2 for short) such that

G(c2,72)H (c2,72) = G(c2,(2)H (c2,(2) = gaho

and
G(ca, p)H(c2,p) > g2ha, G(c2,p) >0, H(cz,p) >0 forall p € (C2,72)-

Proof.  Similar to the proof of Theorem 2.1, for any constant n € (0, min{g’(0), #'(0)}), there are two
unique constants A\%(n) € R* and \j(n) € R~ such that

r(n) = cq(Ar(m), ¢ (n) = en(N (0)),

where ¢, (), ¢i(n) and ¢/ (n) are defined by (3.9) and (3.11). Since A (7)) > 0 and

C

DOeN) = o HeX) =, e > e} —e=cim) = e (0m))
we get
Gler, Xi(m)) > Gle (X)), Ax(mn)) > 0, (3.12)
H(er, N2(11)) > H(eqy (N (), A2 (1)) > 0. (3.13)

Then (3.10) implies

Ger, An(m)) H (ex, Az () > Gleq, (A2 (), A () H (eq, (A2 (1)), Az () = gaha.
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On the other hand, we easily get
G(Cl70):a>07 H(Cl,O):ﬂ>0, G(Clao)H(ClaO):a6<glhl-

Since
2 2

0
WG(CDA) < 07 W

from (3.12) and (3.13), there is a unique constant Ay in (A%(n1), +00) such that G(cq,A) > 0, H(ci, A) >0
for A € (0, A1) and either G(c1, A1) =0 or H(c1, A1) = 0. Then it follows that

G(c1,+0) <0, H(ep,+00) <0, H(er,A) <0,

G(er, M) H (e, M) =0 < gihy.

By the arguments above, there are two constants v; € (0,A%(n1)) and ¢; € (A5(n1), A1) such that
G(er,v1)H(c1,m) = G(er, G )H(er,C1) = grhy. Moreover, if the constant g € (0, A1) satisfies

0 0 0
a(G(Clv A H (c1, M) . = G(c1, )\o)aH(Ch o) + H (e, )\O)ﬁG(Cla Ao) =0,
then we can get

82

5 (Gler, \)H (e, N))

N2 A=A
= G(eg, A )a—2H(c Xo) + H(ep, A )a—zG(c A )+2£G(c A >2H(C o)
- 1,10 3>\2 1,10 1,10 8)\2 1,10 a)\ 1, N0 8)\ 1,10
< 0.

Therefore, we have that v; and {; are unique and
G(Clap) > 07 H<Cl7p) >0’ G(clap)H(Clap) >glh1 fOI'pE (717(1)'

Similarly, we can get the results about (5 and ~,. O
Now we choose some constants p1 € (y1,¢1), p2 € ((2,72), 61 > 0 and d2 > 0 such that
Y1 <p1(1—(51) <p1(1+51) <(, (s <p2(1+52) <p2(1—§2) < 2. (3.14)

Then for short, we denote

G 2 G(e1,p1), Gy £G(cr,pi(1+61)), Gy £ G(cr,pi(l—61)),

HY £ H(ci,p), Hf £ H(ci,pr(1+61)), Hy £ H(cr,pi(1—61)),

A?:G?H?—glhl > 0, AT:GTHf—gﬂZl > 0, Al_ ZGle_—gﬂh >0
and N N N

Gg = G(CQapQ)a G; = G(C27P2(1 + 62)); G; = G(C2>P2(1 - 62))7

HY £ H(ca,p2), Hy £ H(ca,p2(1+02)), Hy £ H(ca,p2(1—62)),

Ag = GgHS — g2h2 > 0, A;_ = G;_H;_ — thQ > 0, AQ_ = GQ_HQ_ — gghg > 0.

It follows from Lemma 3.5 that GYHY > g;h; for each i € {1,2}. Therefore, we can choose some constant
k; > 0 such that

i Gy
Iio <Ky < h—z for each i € {1,2}.

Since
G -@&, HO'—-H), G —-GY, H —H) asé — 0%,

we can retake J; small enough such that the constant x; also satisfies

; p ; -
I—?"’ <K < C}Z and hgfl_ <K < (2’1 for each i € {1,2}. (3.15)

3 3
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Remark 3.6.  All the notations defined in this section with subscript “1” will be used to construct the
first lower solutions spreading at a speed of ¢; € (¢} — €, ¢); meanwhile, all the notations with subscript
“2” will be used to construct the second lower solutions spreading at a speed of ¢2 € (¢, ¢} + ).

In addition, we also define an auxiliary function and give its properties in the following lemma.

Lemma 3.7. Let M, N and L be three positive constants. For any § € (0,1), define
fly) = My — Ny'** — Ly'=°  for y > 0.

Then we have the following conclusions:
(i) F™a > 0 when M? > 4ALN, and F™® = ( when M? < 4LN,
(i) Fmax — 0F and S — R — 0" as M? —4LN — 07,
where
Froax & sug{f(y)} and (R,S)={y>0] f(y) >0} when M? > 4LN.
y>

Proof.  Let yo and y; denote two constants satisfying

M+ /M2—4LN(1—=5%)]7 M —/M?2—4LN(1—5%)]7
o= 2(1+ )N = 2(1+ 6)N '

Then we have
<0 fory e (0,y1)U (yo,+00),

fly){=0 fory=yo and y=y1,
>0 forye (y1,90)

and
pmax & Sg%{f(y)} = max{0, f(yo)}

For the fixed positive constants M and N, we define a function
F(L) = f(yo) = Myo — Nyé+5 — Lycl)_‘s for L > 0.

From some simple calculations, we get

0 - _
F'(L) = f’(zm)% —y P =y <0,

Notice F(L) =0 when L = {Y—;. Then it follows that

2 2

M

Therefore, we prove that
F™ >0 when M? >4LN, and F™>* =0 when M? <4LN

and F™8% — 0% as M2 —4LN — 0%, Since (R,S) £ {y > 0| f(y) > 0} when M? > 4L N, some simple
calculations imply that

e M\/M24LNF S{M+\/M24LN§
B 2N T 2N '

Then it follows that S — R — 0 as M? — 4LN — 0%. This completes the proof. O
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3.2 Lower bounds of the spatial propagation

In this subsection, we prove the lower bounds of the spatial propagation in Theorem 3.1. First, we give
a new method to construct lower solutions. Let P denote some positive constant satisfying that for each

ie{1,2),
1\ " T2(GY — hiri)? 2(HP ki — gi)?
P>max{() {W—(G? —hiﬂz’)]>w—(H;rHi—gi)}7 (3.16)
K Gz — h;k; HZ' Ri — Gi

where g; = ¢'(0) — n;, h; = h/(0) — n; and &; satisfies (3.15). Since g and h are in the function space
C1[0, 1], there is some constant gy € (0, 1) such that for each i € {1,2},

o) > (50~ 5 u forue Q) 40)> (10) =)o for ve O.a0)

By taking g smaller such that go < min {(3%5)~%, (22)7%2}, we can get
g(u) > giu+ Pul™  foru e (0,q), h(v) = hiv+ Po'™% for v e (0,q). (3.17)

Define two sets of lower solutions as follows:

{ui(t,w;&) = max{0, f;(ePi oty

for each 7 € {1,2}, 3.18
v;(t, ;&) = max{0, k; f;(ePr (T Het+EI) L .2} (3.18)

where f;(y) =y —y' ™% — Lyy' % for y € Rt, and p; and §; are two constants satisfying (3.14). Here, L;
is some constant in [%, %) and ¢; € R is a parameter number, and both will be chosen later. Moreover,
we define

p_ [LoVIZAL)E o [L4VIZAL]E (141 4L -5
i = 2 ’ i = 9 ) i = 2<1+6l)

1
5

Then Lemma 3.7 shows that

(Ri,Si) = {y>01] fily) >0}, Vie(R;,S:), F*™ = zg%{fi(y)} = fi(Ys) >0

Also from Lemma 3.7, we can take L; close enough to i such that
max{F;"* k, F/"*} < qo
Therefore, we obtain from some simple calculations that
w(t,z;6) = v(t,2;6) =0 for x — c;t & U,

1
it 23 &) = —v(t,2:6) = fileriTrhette)) € (0, ™) for z — et €
where Qi = (51 - pl_l lnSi,fi - pl_l IHRZ)

Next, we prove that the pair of the functions (uw,(¢,x;&;),v;(t,
system (1.1) for all ¢ € R. When x — ¢;t ¢ Q;, we have u,(t,x;&;) =

x;&;)) is a lower solution of the
v,(t, ;&) =0 and

aat w(t23&) — b+ w(,236) + w5 (F 23 6) + oy (8, 23.6) — h(v (8, 23€)) <0,
aat v (t,036) — ko x v, (1, 25.6) + v5(t 23 6) + By (T, 25.6) — g(u; (8, 2;6)) <O

When x — ¢;t € Q;, we have u,(t,;&;) = éyi(t,x;ﬁi) = fi(eri(=oFeit+&))  Then it follows from (3.17)

that
0

ot z(t T3 fz) ky *gi(t,x;&) +gi(t,x;§i) + Ozgi(t,w;&) - h(yi(t,x;&))

(G? _ hmi)epi(fﬂwﬂr&) _ (G;" — hik; + Pli’}"!‘(si)epi(l“réi)(*m‘f’cit“’gi)

_ (Gi_ _ hmi)Liepi(1*5i)(*w+c7¢t+§i)
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and
0
&Qi(t"”;@) — ko kv (t, ;&) + v (t, 25 6) + B (t, 25 6) — g, (t, 25 6:))
< (HP ki — gi)ePiCobett8) _ (Hir g, — g; + P)eri(tHo(matet+ts)
—(H; ki — gi)Liep"(175”(*"’”“#%0.
From (3.16) and L; > %, we have
(GO — hiki)® — A(GF — hik; + PrMO)(Gy = haki)Li < (G? — hrk)2(1 — 8L;) < 0,
(Hki — gi)* — 4(H ki — gi + P)(H; ki — gi)Li < (HO%; — g:)%(1 — 8L;) < 0.

Then Lemma 3.7 shows that when z — ¢;t € Q;,

%yi(tw;&) — kw8, 23 6) 4+ w(t, 23 6) + on (t, 25.&) — h(v(t, 2;6)) <0,

%Qi(t w38) — ko x v (t, 2, 6) + v (8, w3&) + Buy(t,w36) — glu,(t,736)) <O0.

Therefore, the pair of the functions (u;(t, x;&;),v;(t, z;&;)) is a lower solution for any & € R.
Finally, we are ready to prove the lower bounds of the spatial propagation in Theorem 3.1. The
“forward-backward spreading” method will be applied here.

Proof of Theorem 3.1 (Lower bounds).  From the assumptions in Theorem 3.1, we have wug(xo) > 0 and
vo(xg) > 0 for some constant xg € R. By translating the z-axis, we can simply suppose that xg = 0.
Then there are two constants ¢; > 0 and d > 0 such that

uo(x) =2 q1, wolzr) = q for x €[—d,d]. (3.19)
Now we prove that for any small € > 0 there is some constant v € (0,1) such that the solution
(u(t,z),v(t,x)) of the system (1.1) satisfies
(u(T,X),v(T, X)) = (v,v) forallT >0, X €lcT,c1T],
where ¢; € (¢ —€,c}) and ¢z € (¢, ¢f +€). For any given T > 0 and X € [¢oT, ¢, T, we denote

X—CQT
== _<lo,1].
H Clech [ ]

First, we construct a set of lower solutions in the first time period [0, uT] as follows:

{Ul (t, xT; 51) = maX{O7 f1 (epl(_$+clt+£1))}7

for t € [0, uT], z €R,
Uy (ta x; 51) = max{o? "ilfl (epl(—w+c1t+€1))}7 [ ]

where & € [—d/2+ py ' InRy,d/2+ p; ' In 1] and L, is some constant in [%, 1), which is close to 1 such
that
max{ F{"™ r F"™>} < min{qo, 1} and p;'(InS; —InRy) < d/2.

Then it follows that
uy (b, 561) = v (¢, 256) =0 for x — c1t ¢ Uy,
1
wy (t,2;61) = —w, (t,2;61) = fr(en T2ty S5 0 for x — it €
R1
with
Q= (& —p;'InS1,& —prtInRy) C (—d, d). (3.20)

From the discussion above, the pair of the functions (u, (t,2;&1),v, (¢, 2;&1)) is a lower solution of the
system (1.1). Moreover, we obtain

up(t, ;&) < FP™ < qry, vt 2;6) < s P <qp fort >0, zeR.
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It follows from (3.19) and (3.20) that for every & € [~d/2+ p; ' In Ry, d/2 + p; ' In Sy],
uop(z) = uy(0,2;61), wo(z) = v,(0,2;&), zeR
Therefore, by Lemma 3.4 we have
u(t,x) = uq(t,x;&1), v(t,z) 2v(t,x6) fortel0,pT], zeR.
If we denote 2 (t) = cit + & — p; - InY; for t € [0, uT7], then

u(t, z1(t)) = uy (t,21(¢); 61) = fr(Y1) = FI™,
> v (t, 21(1); &1) = k1 f1(Y1) = kL F

Furthermore, the arbitrariness of £; and Ry < Y7 < S7 show that
u(t,z) = F, o(t,x) 2 ki F7 for allt € [0, uT], x € [cit —d/2,c1t + d/2].
Therefore, there is some constant go = min{ F{*®* xq F{***} such that
u(pT,z) = q2, v(pT,x) = q2 for x € [eypT — d/2,c1uT + d/2). (3.21)
Next, we construct another set of lower solutions in the second time period [uT, T as follows:

{“2(75’33;52) = max{0, fz(ep2(—$+02t+£z))},

fort € [uT,T], x€R,
vy (t, 3 &2) = max{0, ko fo(eP2(TTFe2tFE2) )}

where & € [(e1 — c2)uT + p3 ' In Ro, (1 — e2)uT + p3 " In S5] and Lo is some constant in [, 1), which is
close to § such that

max {F5" ko Fy'*} < ¢ and pgl(ln Sy —In Ry) < d/2.
Then it follows that
Uy (t, 582) = vy(t, 2;62) =0 for 2 — cot & Qy,
1
Uy (1,5 €2) = —wy(t, x5 £9) = fo(eP2(ToHe2H8)) S 0 for 2 — eot € Qy
K2
with Qp = (&, — py ' In Sy, & — py ' In Ry).

As stated above, the pair of the functions (us(t,2;&2),v5(t,2;&2)) is also a lower solution of the
system (1.1). At the time ¢t = uT, we have

o (pT, x362) = vy (uT, 2;€2) = 0 for x ¢ couT + Qo,

1
QQ(MTM(E;&-Q) = FQQZ(NTvx;é-Q) € (07QQ) for x € CQ/J’T + QQ?

where
CQ/,LT + QQ £ (CQ/.LT + 52 — p;l In SQ, CQMT + 52 - ,0;1 In RQ)

It follows that copT + Qo C (uT — d/2,c1puT — d/2). Then we get from (3.21) that for every & €
[(e1 — ca)uT + py ' In Ry, (¢1 — co)uT + p; ' In S,

u(pT, ) Z uy(uT, x:&2),  v(pT,x) = vo(uT, x;&2), x €R.
Therefore, Lemma 3.4 implies that

u(t,x) = uy(t, z;&2), v(t,z) = vy(t,x;&) forte [uI,T], xe€R.
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If we denote zo(t) = cot + & — py ' InYy for t € [uT, T], then

uy (L, 22(1); §2) = fa(Y2) = F™™,
vy (t, 22(t); §2) = Ko fa(Ya) = Ko Fp"™™.

Furthermore, the arbitrariness of £&; and Ry < Y5 < S5 show that
u(t,x) = F3'*,  o(t,x) 2 ke 3" forall t € [uT,T], x=cot+ (c1 —c2)uT.
By taking v = min{ F3"®*, ko F5**} | we get from X = 3T + (¢1 — co)pT that
w(T, X)2v, vo(T,X)z2v forT>0, X ¢€]lcT, T
Therefore, for any small constant € > 0 we have

inf t,x),v(t, > (v, for t > 0.
(cl*Jre)téle(c:fe)t(u( .T) U( QS)) (V V)

This completes the proof. O
3.3 Upper bounds of the spatial propagation

Proof of Theorem 3.1 (Upper bounds).  In this subsection, we prove that

sup (u(t,z),v(t,z)) — (0,0) and sup (u(t,z),v(t,z)) — (0,0) ast— +oo. (3.22)

z<(cf—e)t x2(cr+te)t
First, we define the functions

{u(t,x) = min{1, TeN ("#Heit) perr(—otert)y (3.23)

o(t, 2) = min{1, b\ )TN (ZTFt) p(A*)Derr(—otert))

for t > 0 and x € R, where the function b(A) is defined by (3.7). From the assumptions in Theorem 3.1,
we can take I' large enough such that T' > max{1, T, ﬁ, ﬁ} and
1 T

a(0,2) =2 up(z), ©(0,2) > wvg(x) for x €R. (3.24)

Next, we prove that the pair of the functions (u(t, z),o(¢,z)) is an upper solution of the system (1.1).
When = < ¢t + (A\f)~"'InT, we have a(t,z) = TeN (=2t and o(t,2) < b(A\})Ter (=2 Then it
follows from (H2) and (3.8) that

Oyt — k1 % i+ 1+ ot — h(D) = [G(cf, AF) — W (0)b(A;)|DeM (ZoFert) — g,
Similarly, when = > ¢t + (A*) "' InT, we get from (H2) and (3.8) that
Oyt — k1 % 0+ 1+ oti — h(D) = [G(ck, AE) — W (0)b(A:)Der(—oFert) — g,
Ifz € cit+(A)'InD, it + (AF) "' InT), then @(t,x) = 1 and v(¢, ) < 1, which implies
ou—ki*xu+u+au—h(v) 2a—h(®) 2a—h(1)=0.
Therefore, we finally obtain
ou—kixu+u+au—h(v) 20 foralt>0 =zekR

Similarly, we can obtain

O —kaxv+0+pv—g(u) =20 foralt>0, xe€R.
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From Lemma 3.4 and (3.24), it follows that
(u(t,z),v(t,x)) < (at,z),o(t,x)) fort >0, zeR

Then we have

sup  (u(t,z),v(t,2) < sup (At @), o(t, ) < (LN b(A )TN ),
< (cf—e)t z<(cf—e)t

sup (u(t,x),v(t,2)) < sup (a(t, @), 0(t,x)) < (Le < b(AT)Te™ ).
x> (cri+e)t x> (ci+e)t

Therefore, using A < 0 < A}, we finish the proof of (3.22). O

Remark 3.8. The irreducibility of the linearized system at zero is a necessary property in this paper.
In fact, our idea of the new lower solution (3.18) is from the following system:

uy = k1 xu—u—oau+ (M(0)—nv+ Pt t>0, zcR,
vy =kyxv—v—Pv+(¢(0) —n)u+Pul*®, t>0, zeR,

where § > 0 is an appropriate constant and 7 > 0 is a constant small enough (see the condition (3.17)). If
the linearized system at zero is reducible (namely, h’'(0) or ¢’(0) is equal to 0), the above system becomes
non-cooperative and meanwhile Lemma 3.5 does not hold. Then there are not any p; and 9; satisfying
(3.14). Thus, we cannot construct any lower solution in the form of (3.18). Moreover, in some studies
(see, for example, Weinberger et al. [44]) the irreducibility can be replaced by some other assumptions
on the matrix in Frobenius form.

Remark 3.9. The linear and nonlinear selection of speed is an important problem in reaction-diffusion
systems. In the system (1.1), the condition for linear selection is given by

g(u) < ¢g'(0)u and h(v) <K (0)v. (3.25)

However, when (3.25) is not satisfied, the upper solution (3.23) becomes unavailable and thus the upper
bound (3.22) of the spatial propagation is no longer right. In order to obtain the upper bound, we can
use g(u) < gu and h(v) < ho instead of (3.25), where

g= sup {g(u)/u} and h= sup {h(v)/v}.
u€(0,1] v€(0,1]

Under the same assumptions except (3.25) as in Theorem 3.1, when k; and ko are symmetric, we can

obtain
lim  sup  (u(t,2),v(t,x)) — (0,0),
b0 2> (et o)t

| K%nf : (u(t,z),v(t,x)) = (v,v) forallt>0,
z|<(c™—¢€)t

where the constants ¢t and ¢~ satisfy that ¢ > ¢~ and

et < nf, {21)\[A()\) +B(\) + \/(A(A) - B(X)?+ 4&&]},

e > it {140+ BO) + VTAD) ~ B0+ 0101}

However, it is challenging to prove that ¢™ = ¢~. There are more results about the linear and nonlinear
selection of speed (see, e.g., Alhasanat and Ou [1], Ma and Ou [33], Ma et al. [32] and Wang et al. [40]).

4 The second type of initial data and symmetric kernels

In this section, under the assumption that k; and k, are symmetric, we prove the monotone property
and the spatial propagation result for the second type of initial data.
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4.1 Monotone property

The following theorem gives a monotone property result of the system (1.1).

Theorem 4.1.  Ifki(-), ka(-), uo(-) and vo(+) are symmetric and decreasing on R™, so are the functions
u(t,) and v(t,-) at any time t > 0, where (u(t,x),v(t,z)) is the solution of (1.1).

Proof.  First, the symmetry properties of u(t, -) and v(¢, -) can be obtained easily. Indeed, by considering

the system
0
awl(tax) =k xwi(t,r) —wi(t,x) — awi (t,r) + h(wz(t,z)), t>0, x€R,
%wg(t,x) = ko x wa(t,x) — wa(t,x) — Bwa(t,z) + g(wy(t,x)), t>0, zeR,

w1(0,2) = up(—x), we2(0,x2) =vo(—x), z€R

and by using the uniqueness property of the solution, we have u(t,z) = wy(¢,2) = u(t, —x) and v(t,z) =
wa(t,z) = v(t,—x) for t >0, z € R.
Next, we prove the monotone property. For a fixed constant y > 0, we define

mi(t,x) = u(t,z + 2y) —u(t,x), ma(t,z) =v(t,x+2y) —v(t,z) fort>0, zeR.
Then the symmetric properties of u(t,-) and v(¢,-) imply that
my(t,—y) = ma(t,—y) =0 fort>0.
At time ¢ = 0, we easily get that

m1(0

y L ) m2(07 )
mq(0,x

0 )< 0 forax>—y,
0, m2(0,z) 20 forax< —y.

VoA

In order to show that u(t,-) and v(t,-) are decreasing in RT, we prove that
mi(t,x) <0, mao(t,z) <0 forallt>0, z>-—y. (4.1)

Indeed, if (4.1) holds, then u(t, x4 2y) < u(t,z) and v(t,z+2y) < v(t, z) for all x > —y and ¢ > 0, which
imply that u(t,-) and v(¢,-) are decreasing in R*.

Now we prove (4.1). Since h(-) € C1([0,1]), there is some constant M > 0 such that for all ¢ > 0 and
z €R,

%ml(u x) =ky xmy(t,x) —my(t,x) — amq(t,z) + h(v(t, z + 2y)) — h(v(t, ))

< k1 xmy(t,x) — my(t,x) — amy(t, z) + Mms(t, x). (4.2)

Now we suppose that (4.1) does not hold, which means that there are two constants Tp > 0 and € > 0
such that
my(t,x) < ee® ma(t,x) < et forallt € (0,Tp), =>—y (4.3)

and at least one of the following two results holds:

sup {m1(To, )} = ee®XT0, my(Tpy, ) < X0 for z > —y; (4.4)
r>—y
my(To, z) < eefT0 for x> —y,  sup {mo(Ty,x)} = 70,
r>—y

Here, K is a positive constant satisfying K > %(M + 1) — a. Without loss of generality, we assume (4.4)
holds. As stated in the proof of [49, Lemma 2.2], when m; (¢, z) > 0, it holds that

ky *my(t,x) —my(t,z) < et fort € (0,Ty], = > —y. (4.5)
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From (4.4), at least one of the following cases must hold:

Case 1. There is xg € (—y, +00) such that m, (7o, o) = sup,~ _,{mi(To,z)} = geKTo,

Case 2. limsup,_, . {mi(To,z)} = eef70.

If Case 1 holds, it follows that
g(ml(t xo) — ceft) >0
ot =T,

which means that

0
aml (To, .’,Eo) = EKGKTO.

Then from (4.4) and (4.5) we get

0
aml(To,l’o) — kl k ml(To,SC()) + ml(To,l’o) + Oéml(To,Io) — MmQ(To,QZo)
> (K — 14 a— M)eefT > 0.

It is a contradiction to (4.2), which implies that (4.1) holds.
If Case 2 holds, there is some constant z; large enough such that

3
mq (To, 331) > Z&eKTO.

For all o > 0, we define
1
po(t,x) = [2 + aqo(x)} eeft fort € [0,Ty), z€R,

where go(z) is a smooth and increasing function satisfying
1 for z < zq,
qo(x) =
3 forz >+ 1.
Let ¢* be a constant denoted by
o' =inf{o > 0| mi(t,z) — ps(t,x) <0 for t € [0,Tp], z > —y}.

and

Moreover, some simple calculations yield that % <o* < %

5
por(t, ) = ZEeKt >mq(t,x) fortel0,To], >z +1.
From the definition of ¢*, there must exist 77 € (0,7p] and z2 € (—y,z1 + 1) such that

ml(Tth) — Po* (T1,.732) = sup {ml(tvx) — Po* (tam)} =0.
te[0,To],z>—y

Then we have

my(Th,22) = po-(Th,22) = p

3
% (Tla I‘2) 2 ZEQKTl )

0 0 3
am1(T1,372) > apa*(Thfﬂz) = Kpo+(T1,22) 2 Kp1(Ty, 22) > ZKEGKTI-

From (4.3) and (4.5), it follows that

0
aml(Tl,l'g) — kl * ml(Tl,scg) —+ ml(Tl,l'g) —+ aml(Tl,xz) — MmQ(Tl,l'g)

> (iK— 1+ %a — M)eeKTl >0,

which contradicts (4.2). Therefore, we finish the proof of (4.1). O
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4.2 Spatial propagation
In this subsection, we study the spatial propagation of the system (1.1) for the second type of initial data

and symmetric kernels. The following theorem is the main result.

Theorem 4.2.  Assume that (H1) and (H2) hold. Let ki and ko satisfy (K1) and be symmetric on R and
decreasing in RY. If ug(-) and vo(+) are two continuous functions satisfying 0 < ug(x) < 1, 0 < vo(z) < 1
for x € R and

up(x) ~ O(e™ M) wo(z) ~ O™ as x| = +oo  with X € (0,\%),

then for any € € (0,c(N)) there is some constant v € (0,1) such that the solution of the system (1.1) has
the following properties:

lim sup u(t,z),v(t,x)) — (0,0),
Jm e (e m) - (0,0

inf (u(t,z),v(t,x)) > (v,v orallt >0,
it (@), o(t@) > () S

where \* £ X5 = —\¥.

Remark 4.3. From Theorem 4.2 and the definition of ¢()) in (2.1), we obtain a relationship between
spreading speeds and the exponentially decaying rate of initial data. Moreover, Theorem 2.1 shows that
d(A) < 0 for all A € (0, \*); namely, the spreading speed ¢()\) is decreasing with respect to A € (0, \*).
Meanwhile, we also have inf{c()\) | A € (0,A*)} = ¢*, which implies that the minimum value of c¢())
coincides with the spreading speed for the first type of initial value and symmetric kernels.

Before proving Theorem 4.2, we give the following lemma.

Lemma 4.4.  For any A € (0, \}), there is a unique constant 6y > 0 such that
c(A) =c(A+Adx) and c(n) <c(A) forne (A A+ Ady).
Similarly, for any X € (A},0), there is a unique constant §x > 0 such that
c(A) =c(A+Xdx) and c(n) >c(A) forn e (A+ A, A).

Proof.  Since D(A) > A()\) for all A € R and

lim L()\) = +o00, lim 714(/\) =—
A—=4oo A Ao—co A
from (2.1), we get that limy_, 1o c¢(A) = +o0 and limy_,_o ¢(A) = —oo. On the other hand, from
D(0) € (0,4+00) it follows that limy ,o+ ¢(A) = 400 and limy .- ¢(A) = —oo. Therefore, by (2.8), we
finish the proof of Lemma 4.4. L

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2.  For any A € (0,A*), let 5 denote the constant in Lemma 4.4. Then ¢(A) >
(A1 +0)) for 6 € (0,05). We denote G(c,\), H(c,A) and b(N) by (3.3), (3.4) and (3.7), respectively.
Since Z£G(c,A) = £ H(c,\) = X € (0,\*), from (3.5) we get

G(c(N), A1+ 8)) > G+ 8)), A1 +6)) > 0,
H(c(\), A1+ 8)) > H(c(A(1+6)), A1 + 6)) > 0,

~

for A € (0,\*), &€ (0,6)).

Therefore, it follows from (3.8) that

G(c(N), A1 +9))

<b(A(149)) < 7 (0)

for A € (0,\%), 3 € (0,5). (4.6)
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Step 1. Now we prove that

sup  (u(t,x),v(t,z)) — (0,0) ast— +oo. (4.7)
[z]2(c(M)+e)t

For any given A € (0, A"), define
(t,z) = min{1, PeN—lzl+et)y
ﬁ(t :E) = min{l, b()\)]?eA(_|3’7|"!‘C()\)t)}7

I

fort >0, zeR, (4.8)

where the constant I' is large enough such that I' > max {1, ﬁ} By the assumptions about initial data
in Theorem 4.2, we can take I' larger if necessary such that

w(0,2) = uo(z), ©(0,z) = vo(z) forzeR. (4.9)

Now we prove that the pair of functions (u(t,z),v(t,x)) is an upper solution of the system (1.1). If
|z| < c(A\)t+ A7"1InT, we have u(t,2) = 1 and v(¢,2) < 1. Then it follows from (H1) and (H2) that

Oyl — ky % U+ 4+ ati — h(T) > a— h(?) = a — h(1) = 0.

If 2| > ¢\t + A"1InT, we get a(t,z) = TeMlIHeND and o(t, ) < b(A\)Terlzl+eN - By (H2)
and (3.8), some simple calculations imply that
Oyt — k1 % U+ 1 + ot — k(D) = [G(e(N), X) — B (0)b(\)]Der—lzl+eNt) — g,
We finally get that
ou—kixu+u+au—h(v) 20 foralt>0, =zekR (4.10)
Meanwhile, if |z| < e¢(A)t + A~ In(b(A)T), we have ©(t,z) = 1 and (¢, z) < 1. Then it follows from (H1)
and (H2) that
0i0 = kg x 0+ 0+ 0 — g(u) > 5 —g(w) > f—g(1) = 0.
If |z| > c(A\)t + A" In(b(\)T), we get 0(t, z) = b(A\)Ter—I21+eND) and a(t, z) < Te(=l2l+eNt) - By (H2)
and (3.8), some simple calculations show
00 — k2 ¥ 0+ 0+ 50 — g(a) = [H(c(A), A)b(A) — ¢/ (0)]LeXTI#+eND = .
We finally get that
OO0 —koxU+0+P0—g(u) >0 forallt >0, z€R. (4.11)

Therefore, (u(t,z),v(t,z)) is an upper solution of the system (1.1).
By (4.9)-(4.11), Lemma 3.4 shows that

(u(t,z),v(t,x)) < (alt,x),v(t,x)) fort>=0, xR
Then we have

sup  (u(t,z),v(t,z)) < sup  (u(t,z),0(t,x)) < (Te*, bA)Le ),
| > (c(A)+o)t |2 (c(A)+o)t

which implies that (4.7) holds.
Step 2. Next, we prove that

(u(t,z),v(t,x)) = (v,v) forallt >0, |z|<c(N)t.

From the assumptions in Theorem 4.2, there exists a continuous symmetric function wg(x), which is
decreasing in R and satisfies that

uo(z) > wo(x), wo(z) = wo(x) forz €R, wo(x)= {%eA
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where 79 and yo are two positive constants. Let p and § denote two constants satisfying p = min{po, p1 }
and 0 < § < min{&g,8x}. Then by g(-), h(-) € C**%([0,po]), we can find some constant M > 0 such that

g(u) = ¢ (0)u — Mu'*® foru € [0,p], h(v)=h (0w —Mv'™ forwvel0,pl. (4.12)
Let (w1 (t, ), ws(t, x)) denote the solution of the following system:
Owi(t,x) = k1 w1 (t, ) —wi(t, ) — awr(t, ) + h(wa(t, z)), t>0, zeR,

Opwa(t, x) = ko x wa(t, ) — wa(t,x) — Pwa(t,z) + glwr(t,z)), t>0, zeR,
wy(0,2) = wo(x), wa(0,2) =wo(x), x€R.

Then Lemma 3.4 implies that
(u(t,z),v(t,x)) = (w1(t,x),ws(t,z)) forallt>0, xe€R. (4.13)

Since k1 () and ks(-) are symmetric and decreasing on R, it follows from Theorem 4.1 that wy (¢, ) and
wa(t,-) are also symmetric and decreasing on R* at any time ¢ > 0.
For any given A € (0, \*), we define

u(t, z) = max{0, 7eNIEFEND oy LA (—lal+ehny
o(t, z) = max{0, yb(A)eMTI2FeND _ 5 1p(A(1 4 §))er D (lzl+eNt)y

for all ¢ > 0 and = € R, where b()) is defined by (3.7), v is some positive constant satisfying
0< v < min {707 br(ys\)}7
and L € RY is large enough such that
b(A) Aop8 4p0 [V
"H(A(1+6))’ ’ b(A(1+9))’
M~ p(N)]'+° M~ }
G(c(N), A1 +8)) — W (0)b(A(L+8))" b(A(1 + ) H(c(N), X1+ ) —g'(0) |

We easily get that

L}max{l

(4.14)

uw(0,2) < e M 0(0,2) < ype Ml for all z € R.

If we consider the function f(y) = Ay — By'T? for y € RT with A, B € R*, whose maximum value equals
fmax & A5 B ~50(1 + 5)*%, then we have

u(t,z) < firex & ’yL*?é(l + 5) <p<p,
u(t,x) < [ S LT 5[b(>\)]%§[b(>\( 1+0)7#5(1+0)"F <p<m
for all t > 0 and = € R. Therefore, the definition of w(-) shows that
wo(z) = u(0,z), wo(z)=v(0,2) forall ze€R. (4.15)

We now verify that (u(t,x),v(t,x)) is a lower solution of the system (1.1). When |z| < c¢(A)t +
(A6)~In L, we easily get u(t,z) = 0. Then from (H1) and (H2), it follows that

Oru — ki ¥ u+u+ au — h(v) < —h(v) <O0.
When |z| > ¢(A\)t + (A6)"!In L, we have
ult, ) = A IO _ o LA 1+~ lal (M)
Q(t7$) > ’yb()\)eA(7|II+C()\)t) _ ")/Lb( (1 + 5)) A(1490)(— |a:|+c()\)t)'
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Then by (4.12), some simple calculations imply that

Oy — Ky *@+ﬂ+aﬂ—h(y)
< A[G(e(N), A) = B (0)b(A)]e}lel+e(NE)
X {’YL[G(C()\), )\(1 + 5)) - h/(O)bO\(l + 5))} — M[’Yb()\)]1+6}e’\(1+5)(—|3€|+c(>\)t).

From (3.8), (4.6) and (4.14), it follows that
Ou—ky xu+u+ou—hv) <0 for |z|>c(\)t+ (M) 'InL.

Therefore, we finally prove that

Ou—ki*xu+ut+aou—hw) <0 forallt>0, zeR. (4.16)
Similarly, we can also prove

Ov—kexv+v+Puv—gu) <0 forallt >0, z€R. (4.17)

From (4.15)—(4.17), Lemma 3.4 shows that

(wi(t, z),wa(t,x)) = (u(t,x),v(t,z)) fort>0, zxecR.

Then some simple calculations imply that

wi (t,x) > u(t,r) = f**, when |z| = c(A\)t + (A8) "' In[(1 + 6)L),
b(A(1+4))

wo(t,x) > v(t,z) = f3*,  when |z| = c(\)t + (M) 'In [(1+0)L 0y

Since wi(t,-) and wsy(t,-) are symmetric and decreasing in R at any time ¢ > 0, by taking v =

min{ f{"@, fiex1 > 0, we can get from L > max{1, %} that

w(t,z) 2 v, wa(t,r) Z2v fort>0, |z <c(A)t.

Therefore, by (4.13) we prove that (u(t,z),v(t,z)) > (v,v) for all t > 0, |z| < c(N)t. O

Remark 4.5. In Theorem 4.2, we assume that the initial data ug and vy have the same exponentially
decaying behavior. When they have different decaying behavior, the spatial propagation problem is
more difficult and there are some interesting phenomena. For example, our paper [48] showed that the
component with exponentially unbounded initial data (for example, decaying algebraically) can accelerate
the component with exponentially decaying initial data. However, to the best of our knowledge, when
all the components decay exponentially but their decaying rates are different, there is no study about
the interaction among the components. We think that the component with a smaller decaying rate could
accelerate that with a bigger decaying rate. The fundamental reason of this acceleration phenomenon is
that the growth sources of one component could come from other components. For more results about
the acceleration among the components, see, e.g., Coulon and Yangari [11] and Xu et al. [47].

5 Applications

In this section, we give some applications of the theoretical results to the control of epidemic whose
infectious agent is carried by migratory birds. We consider the question whether it is possible that the
epidemic spreads only along the flight route of migratory birds and the spatial propagation against the
flight route fails. Throughout this section, we suppose that the positive parameters «, 8, ¢’(0) and h/(0)
in the system (1.1) have already been determined. Now we assume some specific forms of the kernel
functions k; and ks.
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5.1 Normal distribution
Suppose that the migratory birds fly at a constant speed a € R and the infectious agent has its own
moving ability. In the system (1.1), we assume that k; and ko satisfy

b (2) = —— exp<—(“"”2;1“)2

d k 1 x?
VI ) et mo = pmen (- 5)
Here, the expectation a of k; represents the movements of the infectious agent caused by migratory flight
and the variance o1 € RT describes the strength of its own moving ability. The expectation of ko is 0
because humans usually return after leaving their own residences. The variance o € R™ describes the
intensity of the movements of the infectious humans.

By observing the migration flight of birds and the moving ability of the infectious agent, we suppose
that the parameters a and o7 can be determined. We also suppose that a > 0; otherwise just consider
the new spatial variable y = —z. Finally, our question becomes how to restrict the movements of the
infectious humans such that the epidemic spreads only along the flight route and the spatial propagation
against the flight route fails; namely we need to find a proper parameter o such that 0 < ¢ < cj.

Define a constant r which can describe the asymmetry level of ki as follows:

r£a/20.

Remark 5.1. Intuitively, the asymmetry level of a probability density function k could be measured
by the ratio of My (k) = [;. k(z)zdx to Ma(k) = [,_ k(x)|z|dz. By some calculations, we have

exp(—r?)
T

where erf(-) is the error function defined by erf(r) = % Jy exp (=t?)dt. 1t is easy to check that ¢(-) is
strictly increasing. Therefore, we can use r to describe the asymmetry level of k.

My (k) M) = () 22 pat) 1) 1

We define another important constant of the system (1.1) by
K 2 B(a+1—exp(=r%))/(g'(0)1'(0)) € RT.
Note that K is strictly increasing with respect to r. Next, we show that /C can describe the change of the

spatial propagation of the system (1.1) caused by the asymmetry of k;.

Corollary 5.2. If K > 1, then there is a constant c* € RT such that

(1) when 0 < o < o*, the spatial propagation against the flight route fails; namely 0 < ¢ < ¢,

(ii) when o > o*, the spatial propagation happens along two directions (along and against the flight
route); namely ¢; <0 < c},

(iii) when o = o*, it is the critical state; namely 0 = ¢f < c}.
Moreover, if K < 1, then ¢f <0 < ¢ holds for any o € (0, +00).

Proof.  From (2.2), some calculations show that
AN = / ki(z)eMdr — 1 — o = exp (a)\ + 021)\2) —1—-aq,
R

B(\) = / ko(z)e dr — 1 — B = exp (;)\2> -1-5.
R

Recall the following sets defined in the proof of Theorem 2.2:

AM={NeR| AN <0}, AB={NeR|B()) <0},

A={NeR | ANB\) =g (0)h(0), A(\) <0, B(\) < 0}
We know that A4 and AP are two open intervals and A is a closed interval in R. Moreover, it is easy to
check that A C A4 N AE. Since

o (BAAR)) | =-aB <0,
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we get that A CR™ when a > 0 and A =0 by A(0)B(0) < A’'(0)g'(0) when a = 0.
Next, in order to study the relation between A and o, we consider a function A(:) : ¢ — A which is
from RY to the set that consists of all closed intervals in R. From

o
oo
0| AB| OB

S A B
P _A(90<0 for A e A" NA”7,

1
= S\ exp (;v) >0 for A€R,

it follows that

A(0’) CA(o) forany o’ >0 (5.1)
and this inclusion is strict when A(o) # (. By the continuity of B with respect to o, we know that A(-)
is also continuous, which means that both its lower bound and upper bound are continuous with respect

to o when A # ().
When K > 1, first, we consider o — 0% and A = —a/o;. Then

lim A(—a/o1)B(—a/o1) = 5(1 +o—exp (— “2>> > ¢'(0)K(0).

oc—07t 201

Therefore, there is a positive constant oy small enough such that intA(op) "R~ # @. Next, we consider
o — +oo. Then A}, — 07 and A\ — 0~, where

2
Ao =4y/ZIn(1+p) and AP = (A5, \5).
g

lim A\)B(\) < af < ¢ (0)h'(0) for any A € A4 N AL, (5.2)

o—-+o00o

It follows that

Therefore, there is a positive constant o, large enough such that A(o.,) "R = (. Finally, by Theorem 2.2
and (5.1), we finish the proof of Corollaries 5.2(i)-5.2(iii).
When K < 1, we have

a2

201

AMN)B()) < ﬁ(l + a — exp ( - )) < g (0)R'(0) for A e AANAB.
In the above inequalities, the first equality holds only if a = 0, which implies that the second equality
does not hold. Then

ANB(X) < ¢ (0)h'(0) for A€ AN AB,
which means that A # (. From Theorem 2.2, it follows that ¢; < 0 < ¢}. O

Now we give more details of the change of the spatial propagation caused by the asymmetry of k;.
When k; is symmetric (namely r = 0), it follows that K = a8/(h'(0)¢’(0)) < 1 and the propagation always
happens along two directions. When the asymmetry of k; becomes stronger (namely, r becomes larger),
K becomes larger. If IC > 1, the asymmetry of k; is strong enough to change the spreading dynamics
of the system (1.1). It is possible that the epidemic spreads only along the flight route of migratory
birds and the spatial propagation against the flight route fails, as long as the infectious humans are kept
from moving frequently such that ¢ < ¢*. Moreover, we point out that if (1 + )8 < ¢'(0)h’(0), then
K < 1 always holds for any k1, which means that the reaction terms play a more important role and the
asymmetry of dispersal cannot change the spreading dynamics of the system (1.1).

Finally, the critical number ¢* can be calculated by some numerical methods. For example, suppose
that o = 0.2, 8 = 0.1, ' (0)g’(0) = 0.22, a = 0.5 and o1 = 1. Then we have K = 1.4432 and o* = 2.2098.
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5.2 Uniform distribution

Suppose that ki and ko are given by

1
for z € [b, a], — for x € [—0,0],
ky(z)=qa—0 and ko(z) =< 20

0 for x ¢ [b, a], 0 forz¢[—0,0],

where the constants @ € RT and b € R~ stand for the farthest distances of movements of the infectious
agent during a unit time period along and against the flight route, respectively. The average moving
speed is
a+b
/kl(x)xdx: (at )
2

The constant ¢ € RT stands for the farthest distance of movements of the infectious human during a
unit time period. Similar to the normal distribution case, it holds that

/ ks () = 0.

Here, the uniform distribution means that every distance in the moving range has the same probability
to happen.

Similar to the normal distribution case, we suppose that the parameters a and b have already been
determined by some experimental data and a + b > 0; otherwise, just consider the new spatial variable
y = —x. Now we show how to choose the parameter ¢ such that 0 < ¢f < c;.

From (2.2), some calculations show that

00X _ obA
—1—aq, A # 0,
A\) =< (a—Db)A #
—a, A=0,
ea)\ _ e—a)\
—1—
B(\) = 20\ B AF0,
— B, A=0.

When a 4 b > 0, denote
r=—a/be (1,+00),

which describes the asymmetry level of k1. Indeed, we have that Mj(ky)/Ma(k1) = r? and it is strictly
increasing with respect to r, where M (k1) and My (k) are defined in Remark 5.1.
Before giving the result in this case, we need to prove the following lemma.

Lemma 5.3. Let w(z) = (z — 1)e* with z € R. Then for any r € (1,+00), there is a unique constant
zr € R such that w(z,) = w(—rz,) and z, # 0. Moreover, we have z. € (1 —1/r,1). In addition, when
r=1, w(z) >w(—z) for z € RT.

Proof.  For r € (1,400), define a function

wiz)=w(z)—w(-rz)=(z—1)e*+ (rz+1)e ™ for z € R.
It follows that
@'(2) = ze* —r?ze”"* for z € R.

Denote z; = 0 and z2 = 2(1 +7)"*Inr € (0,1). Then some calculations imply that @'(z1) = &'(22) = 0
and
W'(2) <0, z€(z1,22) and @'(2) >0, z€R\[z,z22]

It is easy to check that
w(1)=(r+1e" >0
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and it follows from r — 1/r > 2Inr for r > 1 that

1—r

w(l-=1/r)= ¢ (r? —e"" YTy <0 forr > 1.

Then we can find a unique constant z, € (1 — 1/r,1) such that @(z,) = 0; namely w(z.) = w(—rz,).
Moreover, when r = 1, we have z; = 29 and @ is strictly increasing in R. Then w(z) > w(—=2) for z € R
by @(0) = 0. O

Now define w(z) = (z — 1)e* with z € R. From Lemma 5.3, let 2z, denote the constant satisfying

w(zr) = w(—=rz;). In view of
1

(a —b)A?
from w(z,) = w(—rz,), it follows that A’(z./b) =0 and

AN = (w(a) — w(dA))

A(z,/b) = min{A(z); z € R} = —1-a<A(0)<o.

Now we can define the constant IC which describes the change of the spatial propagation of the system (1.1)

caused by the asymmetry of ki as follows:

—Bmin{A(z);z € R}  —BA(2./b)
g'(0)h'(0) ~ g(0)r(0)

When a + b = 0, by min{A(z);z € R} = —a, we can simply denote £ = af/(¢'(0)h’(0)). From the
following result, we see that K is strictly increasing with respect to 7.

K2 > 0.

Proposition 5.4. %IC >0 for r > 1.

Proof. It suffices to prove that %A(zr /b) < 0 for r > 1. By differentiating the equation w(z,) =

w(—rz,) with respect to r, we have
dz, TZp

dr — e(Hm)z — 27

Then

0 e*r _efr(l—r+rz) dz e*r 2,
or\l+rz.)  (1+rz)? dr  (147rz.)?
e*rz,.

- 2, _o(l+n)z
B (1 + ’I“ZT)2(e(1+7')zT _ T2) (T +roz, e )

Also from w(z,) = w(—7z,), it holds that 1+ = (1472,)/(1 - 2,.). Then by 2, € (1—1/r,1), we have

(1+T‘)ZT _ 1 + TZy

[ (r—rz.—1) <0.

T+ rzzr —e
From the proof of Lemma 5.3, it holds that
2 > zg =2(1+7)  nr;

namely e(1t7)% — 12 > (. Therefore, %A (2/b) < 0, which completes the proof. O

Now we give the result on the change of the spatial propagation caused by the asymmetry of k.
Corollary 5.5.  All the results in Corollary 5.2 hold for the uniform distribution case.

Proof.  Although this proof is similar to the proof of Corollary 5.2, we need to check some details.
Let the sets A, A4 and Ap and the function A(-) : ¢ — A be the same notations as in the proof of
Corollary 5.2. By some calculations and Lemma 5.3, we have

0B w(\o) —w(=Ao)
oo 202

Then it follows that (5.1) holds and this inclusion is strict when A(o) # 0.

>0 for A eR.
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When K > 1, consider ¢ — 0% and A = 2,./b. Then
li%lJr A(z/b)B(z/b) = —BA(2,/b) > ¢'(0)1'(0).
o—

Considering o — +00, we have B(\) — +o00 for any A € R* UR™. Then A\j; — 07 and A — 0~ where
AP = (A5, A};), which means that (5.2) holds. The rest of this proof can be obtained similarly. O

From Corollary 5.5, we have some similar discussions to those from Corollary 5.2 in the normal distri-
bution case. In addition, here the critical number ¢* can also be calculated by a numerical method. For
example, when a = 8 =10.2, ¢’(0)h'(0) = 0.06, a = 2 and b = —1, we have K = 1.1952 and o* = 0.8423.

Remark 5.6. For the more general form of ki, when ko is symmetric, we think that Corollary 5.2
remains true, as long as we define

K £ B(a+1—E(k))/(I'(0)g'(0))
and o £ Var(ky), where
E(ky) = inf { / Ey(z)erda; A € ]R}
R

and Var(kz) is the variance of k.

We have presented some applications of the theoretical results to the control of epidemics whose
infectious agents (bacteria or viruses) are carried by migratory birds. These applications demonstrate that
the frequent movements of the infectious humans accelerate the spreading of the epidemics. Moreover,
it is possible that the epidemic spreads only along the flight route of migratory birds and the spatial
propagation against the flight route fails as long as the infectious humans are kept from moving frequently.
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