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SUMMARY

This paper is concerned with empirical likelihood inference on the population mean when the
dimension p and the sample size 7 satisfy p/n — ¢ € [1,00). As shown in Tsao (2004), the
empirical likelihood method fails with high probability when p/n > 1/2 because the convex hull
of the n observations in R” becomes too small to cover the true mean value. Moreover, when
p > n, the sample covariance matrix becomes singular, and this results in the breakdown of
the first sandwich approximation for the log empirical likelihood ratio. To deal with these two
challenges, we propose a new strategy of adding two artificial data points to the observed data. We
establish the asymptotic normality of the proposed empirical likelihood ratio test. The proposed
test statistic does not involve the inverse of the sample covariance matrix. Furthermore, its form
is explicit, so the test can easily be carried out with low computational cost. Our numerical
comparison shows that the proposed test outperforms some existing tests for high-dimensional
mean vectors in terms of power. We also illustrate the proposed procedure with an empirical
analysis of stock data.
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592 X. Cul, R. L1, G. YANG AND W. ZHOU
1. INTRODUCTION

This paper studies how to use the empirical likelihood method to test whether a high-
dimensional mean vector takes a specific value. The empirical likelihood method was proposed
by Owen (1988, 1990) and is a powerful nonparametric statistical tool. Suppose that {x1,...,x,}
is an independent and identically distributed random sample from a p-dimensional population
with mean p. The empirical likelihood function for p is defined as

n

n n
R, () = max (l_[nw, T w; =0, Zwi =1, Za),-x,- = ,u).
i=1 i=1

i=1

The asymptotic behaviour of R, (1) has been studied in the setting of fixed and finite p by Owen
(1990) and in the settings with p = o(n'/3) and p = o(n'/?) by Hjort et al. (2009) and Chen et al.
(2009), respectively.

There are some challenges in extending the empirical likelihood method for statistical inference
of alarge-dimensional mean vector when ¢, = p/n — ¢ > 0, i.e., in the case where p and n are of
the same order. The first difficulty is that the corresponding optimization problem of the empirical
likelihood method becomes problematic because, as shown in Tsao (2004), when ¢, > 1/2 there
is a positive probability of the event that the mean vector p falls outside the convex hull of the
n data points. As a result, the empirical likelihood for a p-dimensional population breaks down
with positive probability when ¢, > 1/2. To deal with this problem, which is the main obstacle
related to the convex hull problem, Chen et al. (2008) proposed adding an artificial data point to
the n observations. Their proposal pushes the mean vector into the convex hull of the n + 1 data
points. However, the sample mean of the n+ 1 data points is different from the sample mean of the
n actual observations. As a result, the empirical likelihood method cannot be used for statistical
inference on the population mean. To deal with this issue, Emerson & Owen (2009) proposed
adding two artificial data points to the # observations, and Chen et al. (2015) further showed that
the empirical likelihood is still valid when ¢;, — ¢ € (0, 1) as n goes to infinity. Their proposal is
not applicable in the ¢, > 1 case because the two artificial data points rely on the inverse of the
sample covariance matrix, which becomes singular when p > n. Indeed, the singularity of the
sample covariance matrix is the second obstacle in extending the empirical likelihood method to
the setting with ¢,, > 1.

This paper aims to develop an empirical likelihood statistic for the mean vector u in the setting
of ¢, — ¢ € [1,00). To deal with the optimization problem and the singularity of the sample
covariance matrix, we propose a new strategy of adding two artificial data points to the » actual
observations so that the true mean vector falls in the convex hull of n + 2 data points, the sample
mean of the n 4 2 data points equals the sample mean of the # actual observations, and the two
artificial data points do not involve the inverse of the sample covariance matrix. The proposed
empirical likelihood ratio test statistic has several appealing properties. First, we are able to derive
a closed-form expression for the empirical likelihood statistic, so it can be implemented without
involving numerical optimization. This is a very useful property because the empirical likelihood
method is typically computationally expensive. Second, the proposed empirical likelihood ratio
test statistic does not involve the inverse of the sample covariance matrix. Therefore, it can be
implemented in both of the settings p > n and p < n. We also study the asymptotic behaviour
of the proposed empirical likelihood ratio test and derive its asymptotic distribution under the
null hypothesis, and under a local alternative hypothesis by using probability tools on the con-
centration properties of certain quadratic forms. Under the local alternative hypothesis, we show
that our new test yields a significant power gain over tests proposed by Bai & Sarandasa (1996),
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High-dimensional mean vector test 593

Chen & Qin (2010) and Wang et al. (2015). We further construct an empirical likelihood ratio test
statistic for linear hypotheses about the population mean and derive its limiting null distribution.
Simulation results indicate that the proposed tests perform well.

2. LARGE-DIMENSIONAL EMPIRICAL LIKELIHOOD METHOD
2.1. Notation and setting

Suppose that {x; : i = 1,...,n} is a random sample from a p-dimensional population x
with mean p and covariance matrix . Throughout this paper, we write X = > ., x;/n and
S =@m-D"! Yo (i —X)(x; — X)" for the sample mean and sample covariance matrix,
respectively. This section develops an empirical likelihood test for

Ho:p=po versus Hy:u = o (1)
in the case where p is large. Throughout the paper we impose the following assumptions.

Assumption 1. We can represent x as
x=u+ 2z, 2)

where z = (z1,...,zp)" has independent and identically distributed elements with mean 0 and
variance 1 such that £ (|Zj|6) < Q.

Assumption 2. Writing ¢, = p/n, we have ¢, — ¢ € [1,00).

We refer to the model defined in Assumption 1 as the independent component model. It is easy
to verify that the multivariate normal distribution satisfies Assumption 1. As a natural extension
of the multivariate normal distribution, the independent component model is a typical assumption
in the literature on statistical inference on mean vectors (Bai & Sarandasa, 1996; Chen & Qin,
2010) and has received attention in signal processing and machine learning (Hyvérinen et al.,
2001) as well. For ease of notation and without loss of generality, we focus on the case where
z is a p-dimensional vector in Assumption 1. The proposed procedure can be directly extended
to the model x = p + I'z, where z is g-dimensional random vector with g > pand"'isap x ¢
constant matrix of rank p. Under this model, ¥ = cov(x) = I'T'" is of full rank.

2.2, Empirical likelihood method

The traditional empirical likelihood method becomes inapplicable when p > n, because the
zero vector falls outside the convex hull of {x; —u : i = 1,.. ., n} with positive probability (Tsao,
2004). Furthermore, the singularity of the sample covariance matrix of x results in the breakdown
of the first sandwich approximation for the log empirical likelihood ratio. Thus, it is challenging
to construct an empirical likelihood test for (1).

To deal with the convex hull issue, we propose adding the following two pseudo-observations:

Xpgl = Mo — an(X — o), Xpy2 = po + (2 + an) (X — o). (3)

Introducing x,+1 ensures that the zero vector will be contained in the convex hull of {x; — u :
i=1,...,n,n+ 1}. The second point x, is introduced to maintain the original sample mean
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since Z:’:lz x;/(n 4+ 2) = x. The factor a, plays a key role in achieving the desirable theoretical
properties of the empirical likelihood-based statistic. We propose

I
a, = — — )
TIE = ol + kalaT(® — po)l2}1/2

“4)

where a, depends on positive constants k,, and /,, and « is a p-dimensional constant vector
satisfying || = 1.

Our proposal in (3) is motivated by the proposal of Chen et al. (2015), but these two approaches
differ in the choice of @,,. Chen et al. (2015) proposed taking a,, proportional to {(x — t0)"S ! (x —
o) 32 /11x — joll* and showed that their test is asymptotically equivalent to Hotelling’s 72 test.
Clearly, the method of Chen et al. (2015) becomes infeasible when ¢, > 1 due to the singularity of
S. As demonstrated in Bai & Sarandasa (1996), Hotelling’s 72 may suffer from lower power when
¢, approaches 1 from below. As demonstrated in Theorem 1, inclusion of the term &, | (¥ — 1t0)|?
in (4) is necessary for the empirical likelihood ratio test for (1) to achieve a higher local power.

For the new dataset {x; : i = 1,...,n,n + 1,n 4+ 2}, the empirical likelihood ratio is

n+2 n+2 n+2
R0, kn) = max []"[(n+2)wi P20, ) or=1, ) ol — o) = 0},
i=1 i=1

i=1

where we write R(, k) to emphasize its dependence on 4, and the log empirical likelihood
statistic is W (g, k) = —2log R(o, k).

Surprisingly, there is an explicit formula for W (1o, k,) when p > n. Specifically, let §, =
(n+2)/(1 4+ a,); then we can show that a closed-form expression for W (o, k) is

k 1 : n_ )"
W(,bL(), n)=—2 nogl—i—; 1—(1+m$n>
1 & 1 no ,\'?
—Hog{z ?+§<1+m§n> . (5)

The proof of (5) is given in the Appendix. Clearly, W (10, k,) does not involve S~! and can easily
be calculated without involving numerical optimization.

Remark 1. The traditional empirical likelihood cannot be defined when p > n because the
matrix (x1,...,x,) is of full rank n. This implies that the solution to ) 7, w;(x; — o) = 0 is
w1 = --- = w, = 0. However, we provide a feasible empirical likelihood in (5) for the p > n
case. The proof of (5) shows that the probability weight of each observation is the same, but
nonzero. It is interesting to study data-driven probability weights in the case where p > n.

2.3. Empirical likelihood-based test statistic

As shown in Lemma Al in the Appendix, the asymptotic mean and variance of
2nl,% (n4+2)"2W (1o, ky) are tr(Q2) and 2 tr(22), respectively, where Q = X 1/2 Up+ k,aaT)T1/2
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and 1, is the p x p identity matrix. Let tr(Q°) denote an estimator of tr(Q°) for s = 1 and 2.
Define an empirical likelihood-based test statistic as

2nl? .
Ei%pwwmm—nmﬁ. (6)

T, = 2fr(Q%)"1/? {
Next we introduce an estimator of tr(2%) for s = 1 and 2. Note that

tr(Q) = tr(X) + k' Sa,  tr(2%) = tr(T?) + 2k,0" S + k2 (" Ta)?.

Let P, = n!/(n — r)!. Following Chen et al. (2010),

. 1 & 1
tr(X) = - le?xi ~ inij, 7
i=1 nojtj
1 2 o -
r(z?) = 72 Z(xiij)2 5 Zx;xjx}xk + i Z xiijx,:xl ®)
N ES gk gkl

are unbiased estimators of tr(X) and tr(X?), respectively, where Z* denotes summation over
pairwise different indices; for example, Zf’] © means summation over {(i,j, k) : i & j,j F k,

k i}
By using (7) and (8), tr(2) and tr(2%) can be estimated by the following two estimators:

r(Q) = r(T) + kpa'Sa,  1(Q%) = 1(T?) + 2k,0"S%a + k2 (" Sar)?.

Under the assumptions of Theorem 1, fr($2?)/tr(2?) — 1 — 0 in probability as n — oo. This
result is sufficient for us to derive the central limit theorem for 7,.

Theorem 1 below establishes the asymptotic distribution of 7, under Hy and under the local
alternative

Hy:p=po+n"28u, [8|<C, |lul =1, ©)
where C is a constant independent of p.

THEOREM 1. Suppose that Assumptions 1 and 2 hold and that there exist two positive constants
co and Co such that co < Amin(X) < Amax(X) < Co, where Amin(A) and Amax (A) stand for the
smallest and largest eigenvalues of a matrix A, respectively. Further assume that X satisfies
either of the following two conditions:

Condition 1. X is a diagonal matrix;

Condition 2. there exists a constant b% > 0 such that 1 — tr(X o X) /tr(Ez) > b%, where
C o C = (¢;byj) for a matrix C = (c;).

Assume additionally that as n — 00, l,l_ln5/4 — 0, ky — o0 and k,/+/p — 0. Suppose that
o is a p-dimensional vector with ||«| = 1. Then:

(1) under Hy, T, — N(0,1) in distribution as n — 00,

0zZ0z 1snbny |z uo Jasn AjisloAlun aje)s eluenjAsuuad Aq 0210L8S/L6S/S/L0L/8101eAawoIg/woo dnoolwapeoe//:sdiy woly papeojumoq



596 X. Cul, R. L1, G. YANG AND W. ZHOU
(i1) under Hy in (9),

nllpe = poll® + nkala" (1w — po) P
2u@))2

Ty — N(,1)

in distribution.

The proof of Theorem 1 is given in the Appendix. If the covariance matrix ¥ satisfies Condi-
tion 1, it leads to a trivial situation where all components of x are independent. Let us consider
the autoregressive correlation matrix ¥ = (p!"~/ |)pX p for some p € (—1,1). It can be shown
after some algebra that tr(2?) = p/(1 — p?) + p2(p% — 1)/(1 — p*)?, tr(T 0 £) = p and

0%+ p*(p% —1)/(1 — p?) e

l—tr(Eo X %) =
tr( )/tr(X7) P4 p2(p% —1)/(1 — p?)

Hence X satisfies Condition 2. Let 01.2 = var(x;) and consider another covariance matrix
% = (010" pscp.

If the values of {012, cees apz} are uniformly bounded away from zero and infinity, then using
the above result for the correlation matrix it can be shown that Condition 2 is also satisfied. In
Theorem 1, we require /, — oo along with the condition that n>/4 /1, — 0. In practice, we can
choose 1, = n*/*log(n).

Accordingly, the asymptotic power of 7}, under local alternative (9) is

T,,12\82
(1 4 knla™ul?)8 } 10

PeL (1) = (D|:_Zl—a0 + L

where @ (x) denotes the standard normal cumulative distribution function and z| g, its (1 — ag)-
quantile. Notice that all the eigenvalues of ¥ are between two positive absolute constants cg
and Cy, and that tr(X) = O(p) and tr(£?) = O(p). Thus the term §2/{2tr(£2)}'/? is of order
O(p~'/?), and the order of (1 + k| u|?)8%/{2tr(RQ%)}!/? in (10) is O(p~ /% + p~1 %k, |a"u)?),
which reduces to O(p~'/?k,) when |a"u| % 0. In this situation, the test statistic 7}, is much
more powerful than Tgg, the test statistic proposed by Bai & Sarandasa (1996). However, when
la™u| = 0ork, =0, T, and Tgs have the same asymptotic power.

Remark 2. Inpractice, itis important to find the « in (6) such that the corresponding asymptotic
power in (10) attains its maximum value. Some calculations give that

BeL (W) = ®[—z1ap + 1721 + Kl u>)8*H1 + o(1)}].

Therefore one can choose « = u to achieve the approximate optimal test power. One feasible
choice is « = 1,/./p, obtained by treating all elements of u as being equal. Alternatively, one
could choose o based on prior knowledge.

Peng et al. (2014) proposed a large-dimensional empirical likelihood for testing a mean vector
when p = o[pl0Tmin@G.D1/12C+0}] which means p < n'/2. They split the sample into two parts
and applied the empirical likelihood method to two equations, Z:’i 21 (1 — o) (x2i — o) =0

and ZZ 21 IIT, (x17 + x2i — 2p0) = 0, where x] and x; are independent and identically distributed
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random vectors with mean p and 1, denotes a p-dimensional vector with all elements equal to 1.
Peng et al. (2014) used the second equation to enhance test power, while we use a weighted
linear combination of ||x — wol|? and |aT(X — wo)|?. An interesting connection is that the term
1"(x — o) is the key to enhancing test power.

2.4. Test of the linear hypothesis
We now study the linear hypothesis about . Consider

Hy:Fu=pny versus H,:Fu ¥ uo,

where F' is a ¢ X p (¢ > n) matrix not depending on the data or © and of full rank ¢ < p.
To test the linear hypothesis Hy : F v = o, we can use the empirical likelihood given in (6)
by taking

an

In
~ {IFE = poll? + kaly T(FX — o) P}1/%°

where y is a known g-dimensional vector with ||y || = 1. The resulting log empirical likelihood
statistic is denoted by W (10, k,). We have the following analogue of the empirical likelihood
test statistic (6):

2ni?

F _ (i a2n—1/2
TF = (2(A?)) {—(n+2)2

W (10, k) — fr(A)},

with A = TTF"(I, + k,yy")FT. Here
r(A) = tr{SyF" (I + knyyDF),  r(A%) = tr[{SoF (I + kayyHF),

which are estimators of tr(A) and tr(A?), respectively, as Amax (FTF) = O(p?).

If the assumptions of Theorem 1 hold, then from the proof of Theorem 1 we have that under
Hy, T, ,f — N(0, 1) in distribution as n — 0o, which can be used to test the hypothesis in the
matrix.

3. NUMERICAL STUDIES
3.1. Preliminaries

This section is devoted to assessing the finite-sample performance of the proposed empirical
likelihood-based test. We first conduct Monte Carlo simulations to compare the performance of
the proposed empirical likelihood based-test with the test of Chen & Qin (2010), denoted by Tcq,
and the test of Wang et al. (2015), denoted by Twpr. To save space, in this section we present
simulation results only for Hy; results for the linear hypothesis and the real-data example are
reported in the Supplementary Material.

In our simulations, the data were generated fromx = u + X 1722, where z = (z1, . ... ,Zp)T has
independent and identically distributed elements with mean 0 and variance 1. We consider three
scenarios for z;: (I) z; ~ N (0, 1); (II) z; ~ {Ga(4,2) — 2}, where Ga(4,2) denotes the gamma
distribution with shape parameter 4 and rate parameter 2; and (I1I) z; ~ (3/5) 1/24(5), where #(5)
is the 7 distribution with five degrees of freedom. Throughout the simulations we set ¥ = (oy/)
with oy = 0.5,
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Fig. 1. Estimated density functions of 7,, and T, ,? under Hy: the solid, dotted and dashed curves are the estimated density

curves of N(0, 1), 7, and T,? , respectively; the top, middle and bottom rows correspond toz; ~ N(0, 1),z; ~ Ga(4,2)—2

and z; ~ (3/5)'%t(5), respectively; and the left, middle and right columns correspond to (n,p/n) = (200, 1.5),
(400, 1.5) and (800, 1.5), respectively.

3.2. Limiting null distribution

We first examine the impact of the plug-in estimate of the asymptotic mean and variance
of Wy, (o, k) given in § 2.2, and study how close the finite-sample distribution of 7, is to the
standard normal distribution. To this end, we define

2nl?
= W (1o, kn) — tr(Q)},

0 _ 2\—1/2
70 = 2tr(Q2)} {—(n+2)2

which is the pre-plug-in version of T}, with o = 0. We take , = n>/*log(n), k, = (p/ logp)'/?

and o = (1,...,1)T/\/p in this simulation. We consider the sample sizes (n,p) = (200,300),
(400, 600) and (800, 1200), such thatc, = p/n = 1.5. For each case we conduct 1000 simulations,
based on which we obtain the kernel density estimates of T, and 7). Figure 1 shows the curves
of the kernel density estimates along with the density curve of N (0, 1). It can be seen that the
estimated density curves of T, and T? are very close. This implies that the estimation error of the
asymptotic mean and variance of W, (1.9, k,) does not have a significant impact on the asymptotic
distribution of T,,. The tails of these estimated density curves are close to those of N (0, 1). This
means that the percentile of the limiting null distribution can serve as the critical value of the
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Fig. 2. Empirical power functions of T, Tcq and Twpr, with p/n = 1.5: the solid, dotted and dashed curves are the

empirical power curves of 7,,, Tcq and Twp, respectively; the top, middle and bottom rows correspond to z; ~ N (0, 1),

z; ~Ga4,2) —2andz ~ (3 /5)1721(5), respectively; and the left, middle and right columns correspond to n = 200,
400 and 800, respectively.

proposed test. The overall patterns of the density plots are similar across different combinations
of n and p, indicating that 7}, is robust to the population dimensionality when ¢, remains the
same.

3.3. Tpe I error rate and local power

We examine the Type I error rate and local power of the proposed test. We compare the perfor-
mance of the proposed empirical likelihood-based test with the test of Chen & Qin (2010), denoted
by Tcq, and the test of Wang et al. (2015), denoted by Twpr. Weset u = 8(2,1,. .., 1)T//n with
8§ =0,2,3,4.5,7. Thus we can examine the Type I error rate when § = 0 and the power when
8 £ 0.Asin §3.2 we set [, = n’/*logn, k, = (p/logp)'/? and a = (1,...,1)"//p. Figure 2
plots the rejection rates over 1000 simulations, i.e., the empirical power curves of T, Tcq and
TwpL under the p/n = 1.5 setting. All three tests are observed to maintain the Type | error rate
quite well. When z; ~ N (0, 1), the power curves are shown in the top row of Fig. 2, from which
it can be seen that (i) 7, has more power than Tcq and Twpr, for this local alternative; and (ii) the
power curves of Tcq and Twpr are very close, with no visible difference between them. This
is expected from the theoretical analyses of Chen & Qin (2010) and Wang et al. (2015). The

0zZ0z 1snbny |z uo Jasn AjisloAlun aje)s eluenjAsuuad Aq 0210L8S/L6S/S/L0L/8101eAawoIg/woo dnoolwapeoe//:sdiy woly papeojumoq



600 X. Cul, R. L1, G. YANG AND W. ZHOU
Table 1. Empirical power of T, with the choices (cl), (c2), and (c3), where « = e; when the

ith element of |Xx — ol is the largest, a is a random direction with ||| = 1, and o = 1,//p,
respectively, while keeping I, = n°/*logn and k, = (p/ log p)'/?
z ~ N(0, 1) 2 ~ Ga(4,2) — 2 z ~ (3/5)24(5)
5 (1) (2) (c3) (1) (2) (c3) (1) (c2) (c3)
0 0.169 0.023 0.062 0.199 0.026 0.036 0.186 0.032 0.048
2 0.194 0.112 0.153 0.211 0.142 0.164 0.199 0.135 0.166
3 0.237 0.242 0.331 0.251 0.262 0.343 0.233 0.258 0.308
4.5 0.305 0.517 0.616 0.309 0.528 0.644 0.341 0.556 0.646
7 0.521 0.922 0.958 0.538 0.924 0.961 0.506 0.912 0.956

middle row of Fig. 2 displays the power curves for z; ~ Ga(4,2) — 2 and indicates that 7}, is
more powerful than Tcq, which is more powerful than Twpr. The bottom row of Fig. 2 shows
the power curves for z; ~ (3/ 5)1/2¢(5); these exhibit the same pattern as in the top and middle
rows, indicating that 7}, is more powerful than the other two tests. In the Supplementary Material
we report results of the simulation under the setting of p/n = 1.2.

3.4. Sensitivity to a, I, and k,

We conduct some simulations to examine how sensitive the test is to the choices of «, /,, and
k,. We mainly focus on the setting of n = 400 and p/n = 1.5. First, we keep /, and k, fixed as
in § 3.3 and change «. That is, we consider the following choices:

(cl) [, = /4 logn, k, = (p/ logp)l/2 and @ = ¢; when the ith element of |[x — | is the

largest;
(c2) I, = n’/*logn, k, = (p/logp)'/? and « is a uniformly distributed random direction
with ||a|| = 1;

(c3) I, =n>*logn, ky = (p/logp)!/? and & = 1,//p.

The choices of /,, k, and « in (c3) are the same as in § 3.3. Table 1 shows the results, which
indicate that the choice (cl) fails to maintain the Type I error rate because it depends on the
sample. The choices of « in (c2) and (c3) maintain the Type I error rate well, with the « in (c3)
performing slightly better than that in (c2).

Next, we examine the impact of different choices of /,, by considering the following
scenarios:

(d1) I, = 0.57°/*log(n), ky = (p/logp)!/? and « = 1,,//p;
(d2) 1, = 2n>/*log(n), ky = (p/logp)!/? and & = 1,//p.

Table 2 shows that the results are robust with respect to the choice of /,,.
Third, we keep « and [, fixed as in § 2.3 and take the following:

(el) 1, = n*logn, ky, = 0.5(p/logp)/? and o = 1,//p;
(€2) I, = n/*logn, ky, = 2(p/logp)!/? and o = 1,//p.

The results are given in Table 3, from which it can be seen that the performance of the proposed
test is robust to these choices of &,,.
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Table 2. Empirical power of T, with the choices (d1) and (d2), where I, = 0.5n°/*logn and

1, = 2n°/*log n, respectively, while keeping « = 1,//p and k, = (p/ log p)!/?
z ~N(,1) z ~ Ga(4,2) — 2 2~ (3/5)21(5)
8 (1 (d2) (c3) 1) (d2) (c3) (d1 (d2) (c3)
0 0.041 0.033 0.062 0.058 0.049 0.036 0.046 0.051 0.048
2 0.163 0.147 0.153 0.169 0.149 0.164 0.156 0.156 0.166
3 0.326 0.316 0.331 0.330 0.341 0.343 0.336 0.375 0.308
4.5 0.632 0.626 0.616 0.656 0.632 0.644 0.656 0.656 0.646
7 0.957 0.951 0.958 0.976 0.953 0.961 0.957 0.966 0.956

Table 3. Empirical power of T, with the choices (el) and (e2), where k, = 0.5(p/ log p)'/? and
ky = 2(p/ logp)'/?, respectively, while keeping o = 1,//p andl, = n/*logn

z; ~ N(0,1) z ~ Ga(4,2) — 2 z; ~ (3/5)124(5)
) el e2 c3 el e2 c3 el e2 c3
0 0.042 0.051 0.062 0.038 0.028 0.036 0.053 0.047 0.048
2 0.131 0.198 0.153 0.118 0.168 0.164 0.120 0.174 0.166
3 0.243 0.382 0.331 0.232 0.378 0.343 0.226 0.387 0.308
45 0.522 0.708 0.616 0.510 0.717 0.644 0.502 0.689 0.646
7 0.918 0.971 0.958 0.895 0.976 0.961 0.897 0.980 0.956
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Supplementary material available at Biometrika online includes the proof of Lemma A2,
additional simulation results and a real-data example.

APPENDIX

Technical proofs
Proof of equation (5). Write the condition Y/

i=1 @;(X; — o) = Op as

0= wixi = io) = Gy (F = o) + @ni2 (2 + @) (% — o)

i=1
= Z{wz - ana)n+1/n + (2 + an)a)n+2/n}(xi — I'LO) — EI/ZZW,
i=1

where Z = (zy,...,2,) is a p x n matrix and w is an n X 1 vector whose ith element is w; — a,w,1/n +
(2 + a,)w,12/n. From Bai & Yin (1993), if p/n — ¢ > 1 then we know that Z'Z/p is an n x n matrix
whose smallest eigenvalue converges to (1 — ¢~'/?)? almost surely. That is, Amin(Z'Z/p) — (1 — c71/?)?
almost surely. Hence

)"min(ZTEZ/p) > )Vmin(E))\min(ZTZ/p) >0
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almost surely. If p = n, by Remark 4 in Pan & Zhou (2010) we know that A.,;, (ZTZ/p) > 0 almost surely.
So Z'¥Z /p is nonsingular almost surely. Multiplying 0 = X/2Zw by (Z'SZ /p)~'Z"£'/? /p on both sides
of the equality gives w = 0,,. This implies that

a, a, + 2
W; = — Wyt —
n

Wy (G=1,...,n).

On the other hand, from the condition Zf’;z w; = 1 we obtain

2 =l
w; = n(l—}—lan) nwﬂ+2 r=1,...,n)),
Wpt1 = I +a, + W

Hence it follows that

W (o, ky) = —2max

Dp42

n+2)a, 2n+2)w.
nlog —
n(l +a,) n
n+2
1+a,

+ log{ +(n+ Z)wn+2} + log{(n + Z)wn+2}}~

It can be shown that the solution to the above maximization problem is

1 n 2 172
wo=m 1—§n+<1+m§n> ,

where &, = (n + 2)/(1 4 a,). Hence, the explicit expression for W (u, k) is

1 no o\ 1 g 1 no 5\
W(no k) = =2 [nlog|1+-{1 - 1+—— logd-+ 2+ -(1+4——
(o, k) nlogl 1+ <+n+2§") +log 2+2+2< +n+2$”>
1 & 1 n 1/2
logl- -2+ (14 —¢
+ og{2 5 +2( +n+2§"> ,

and thus the proof of (5) is completed. O

We need the following two lemmas to prove Theorem 1. To facilitate the proof, the lemmas start with
the situation in which @, is setto /,/[|x — woll.

LeMMA Al. Suppose that Condition 1 or Condition 2 of Theorem 1 holds, a, = 1,/|1x — woll and
& =m+2)/(1+a,). Then

2nly (n +2)72 W (o, ka) — tr(2)
2r(ZH}2

— N(0,1)

in distribution as n — 00.

Proof. Condition 1 implies that all components of x are independent; the proof is trivial and is omitted.
Suppose that Condition 2 holds. It follows from the assumption ¢y < Apin (L) < Apax(X) < Cp that
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cop < tr(T) < Cop and ¢Zp < tr(T?) < C2p. Hence tr(X) = O(p) and tr(T?) = O(p). We next show
that £2 = 0,(1). By the definition of &,, we have that

(n+2)* _
N
< (n+2)?2tr(ZH}2 | nllx — poll* — tr(X) (n+27°w(%) )
S ni2 2tr(2))1/2 ni2 = ot

where the last equality holds because {n||x — wol* — tr(2)}/{2tr(ZH)}/2 = 0,(1), p/n = O(1) and
n>*/1, = o(1). Therefore, by Taylor’s expansion,

1/2
n

1+ ——&2) =1+mn, Al

(+n+2$n) +7 (A1)

and
2

 8(n+2)?

n

= 2 3254 2
=2t (L+h)PEL 0<hy <& A2)

n

Tn

The proof is then divided into three steps.

Step 1. We first show that

Define L; = —2nlog(l —n~'n,), L, = —2log(1 +§&,/2+4n,/2) and Ly = —2log(1 —&,/2+n,/2). Then,
substituting (A1) into (5) gives

W (o, kn) = Ly + Ly + L. (A4)
Using Taylor’s expansion for L;, we obtain
Ll = Znn + LR:
_ _ 1 2 1 3 R
L2 - (%—n + nn) + Z(%—n + nn) E(%_n + nn) + Lzs

1 1
L3 = _(_En + nn) + Z(_én + nn)2 - E(_én + 7’],,)3 + Lf,

where
2
n N
LR = - h < )
LS T - IS
LR _ (én + nn)4 |h | < Sn + M
27T A+ TS 2 P
R __ (_gn + nn)4 |h | < _‘i:n + Mn
3T R+t TH S 2 '

Then, by (A2), §2 = 0,(1) and the fact that n, = 0,(§2) = 0,(1), we have

4

L= 0p<;”> . L =0y, LS =0y, (A5)
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It follows from (A4) and (AS5) that

W (o k) = E1/2+12/2 — E204/6 — /2 + Oy (€D = £1/2 4 Oy (£)).

Step 2. We show that

ni?
2z} { e tr(2>} —~ N@©,1)
in distribution. Note that
nl> i} 5 { I } _
4 =n|x — +{——— — 1 {nlx— ol
oy o = = ol 1% — ol
According to Lemma S1, it suffices to prove
2 -
{2tr(z?)}"? {m - 1} nlx — woll*> = 0p(1).

From Lemma S1, ||x — poll = Op(1) as n — o0. So

12

o _i|=0,4".
(L + 11X = polD? ‘ P
Since tr(2?) > ¢jp and [ 'n’* — 0,
12
2wz} {_—" - 1} nl|x — woll* = Op{n/(pl,)} = 0,(1).
(I, + 1IF — nl)? ’ i/ (P ’

Step 3. We show that

2
(2tr(z?))1/2 {%W(Mo,kn) - tr(E)} — N(0,1)

in distribution. From (A3) it follows after some calculation that

2

2tr(z?)7? {% W (o, kn) — tr(Z)} = (2tr(TH)? {

nl?
(n+2)

where WR = O,[nl?(n 4 2)7*{tr(£%)}~/2£]. To prove (A6), it suffices to show that

W = o0,(1).
Since &, = (n+2)/(1 +a,),
i, s i (n+2)*
(n+2)2{2tr(X2)}/2 7" X (n+222tw(Z2)}2 4

O R R I e
N nl> [{2&(22)}1/2]

£ — tr(Z)} + Wk,

nl|x — pl? — tr(X) tr(X)

_ () P42y [

~X
2
nl?

72
() -

2(EH}12 {2 (EH}2

(A6)
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where the second-to-last equality follows from tr(X) = O(p), tr(X¥?) = O(p) and p/n = O(1), and the
last equality follows from the condition that n°/*/1, = o(1). This analysis implies that W* = 0,(1).

The proof of Lemma Al is thus completed. O
LEMMA A2. Under the assumptions of Lemma Al , it follows that

2nl(n 4 2) 72 W (1o, ky) — ()
{2tr(x2)})12

— N(0,1)

in distribution as n — oo.

The proof of Lemma A2 is given in the Supplementary Material.

Proof of Theorem 1. (i) Recall the notation tr(2), tr(£2?), fr(Q) and r(Q?) defined in § 2.3 and the
assumption that ¢y < Apin(X) < Anax (X) < Cy. It follows that

cop + kuco < tr(Q) < Cop + Cok,y  clp + cik, + cik? < tr(Q%) < Clp + Cok, + CliZ,

since ||| = 1.
Since k, = o(/p), we have tr(Q) = O(p) and tr(Q2?) = O(p). Furthermore, from Assumptions 1 and
2 it follows that «"Sa — a"Za = 0,(1) under || = 1. Under the assumption that ¢y < Amin(X) <

Amax(2) < Cy, we can show that if ||| = 1, then &' £%a = O(1) and o"S%a = O,(1).
In the proof of Lemma A2 we showed that fr(X) — tr(X) = O,(1) and tr(Z?) — tr(X?) = O,(1). Hence

tr(Q) — tr(Q) = O, (1) + 0, (k,), (R — tr(Q*) = 0,(1) + Oy (k) + 0, (k2). (A7)
Using (A7) and the same strategy as in the proof of Lemma A2, we obtain
2nl?
(n+2)?

2tr(Q)}'2 202 (1 + 2)"2W (110, ky) — tr(S2)
[{2&(92)}1/2 - ] 2tr(Q2)}1/2

T, = {2u(@?)}" { W (1o, kn) — tr(Z)}

+0p(1)

since k, = o(y/p). Because {2tr(Q2%)}!/2/{2 (2%} — 1 = 0,(1), it is sufficient to prove that

2N1—1/2 2nl; _
{2tr(29)} —(n 2 W (1o, ky) —tr(2) ¢ — N(0,1)

in distribution. We first show that &, = 0,(1), which follows from the calculation

g 2
n 1721

{I1% = woll* + kla™ & — po) I} = 0, (1)

since |a" (X — po)| = Op(n™"/?). In fact, " (¥ — o) = Op([varfa" (¥ — 1o)}1"*) = Op([a"E{(X — 20) X
(X — uo)"Yal’?) = Op{(@"n ' Za)?} = 0,(n"'7?), k, = o(y/p) and n/l, = o(1). By the same argument
as in Step 1 of the proof of Lemma A1, we have that

W (1o, kn) = &) 4 Op()).
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Similarly to Step 3 of the proof of Lemma A1, it can be shown that under the assumption n%/4 /1, = o(1),

nl>
it 22 5 =P
Then
nl? nl?
(n+2)? W (o, k) = (n+2)? Er% + Op(\/P)~
So we only need to prove that
21172 nl; 2 _
{2tr(§2 )} e £ —tr(Q2) 1 — N(0,1) (AB)

in distribution. The term on the left-hand side is
2t (@)} {n(x = poll® + kule" & — o)) — tr()} + 0,(1),

since [|X — woll* + kala"(x — po)l* = O,(1) and n¥/*/l, = o(1). Note that Ay (2)/{tr(Q*)}'/* =
O(k,/+/p) = o(1) and 1 — tr(Q2 0 )/tr(22*) > b?. Thus (A8) follows from Lemma S1 upon replacing X
by .

(ii) Under the local alternative i = o +n~"28u with |§] < C and |lu| = 1, we have the decomposition
_nllp = poll® + nkylot (1 — po)?
{2 tr(22)}1/2

_ [{2tr(92>}1/2 _ 1] oy W@ 0@ | nlle — ol + nkylaT (1 = po)?
" t))e TRy 2tr(Q2)}12

T,

b

where

o _ 2/ (1 22V (o, k) — () — i — ol + Kl (1 — o) P}
" {2tr(Q2)}112 '

Here the third and fourth terms are of order o, (1) since r(Q) —tr(Q) = 0,(1) +o0,(k,), r(Q?) —tr(Q?) =
Op(1) 4 0y (k}), nla™ (u — o) > < 1 and k, = o(/p).

Next, we use the same techniques as in the proof of Lemma A1 to show that 72 — N (0, 1) in distribution.
Under the local alternative u = o + n~'?8u,

2(n+2)* i} 2(n+2)?
£ < ———{lIx — woll® + kula" & — o) P} + —5—

IE B (8% /n + k,8*|o"ul*/n) = op(1).

The last equality follows from [|X — pol|* + k,la" (X — wo)|> = O,(1) and n>*/1, = o(1). As in Step 1 of
the proof of Lemma A1, T can be decomposed as

o = /(4 D087t (@) —nllln — mol + hale" (1 — o)y [ nl; 54}
" 2tr(Q2))1/2 "L+ 22 {m(@)) 2 |

Here the second term is of order o, (1) because

nl? . n(n +2)>2
(n+2)2{tr(Q)}2°" = Rftr(Q2)}12

(1% = poll® + kulo" & = p20) PY = 0y (D).
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For the first term we have that
nl?
(n+2)?
= n{llx — poll* + kale" (& — o) I} — tr(€2)
+ 2n{(Gx — )" (0 — o) + ke (X — ) (e — o) e}

12
_|_ _ n _ _ 1 - _ 2 + kn Tz _ 2
([ln+{||X—M0||2+kn|05T(x—Mo)|2}1/2]2 )"{"x ol + lola™G = 1o’}

= n{lI% = poll* + k" & — o)1’} = tr() + 0, (/1)

£2 —tr(Q) — nfllw — poll® + kala™ (u — 120) )

This follows from the fact that the second summand in the first equality is o0, (,/n) since

E{n(x — po)" (1 — mo)y> = n(w — o) " TT (0 — o) = o(n),
E{nk,o" (& — po)a’ (u — o)’ = kanfe" (i — o) Yo 'TT a0 = o(n),

while the last summand is o0, (4/n) since [|X — o> + kila" (X — wo)|* = O,(1) and n°/*/1, = o(1). O
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