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In multiple change-point analysis, one of the major challenges is to es-
timate the number of change-points. Most existing approaches attempt to
minimize a Schwarz information criterion which balances a term quantify-
ing model fit with a penalization term accounting for model complexity that
increases with the number of change-points and limits overfitting. However,
different penalization terms are required to adapt to different contexts of mul-
tiple change-point problems and the optimal penalization magnitude usually
varies from the model and error distribution. We propose a data-driven selec-
tion criterion that is applicable to most kinds of popular change-point detec-
tion methods, including binary segmentation and optimal partitioning algo-
rithms. The key idea is to select the number of change-points that minimizes
the squared prediction error, which measures the fit of a specified model for
a new sample. We develop a cross-validation estimation scheme based on an
order-preserved sample-splitting strategy, and establish its asymptotic selec-
tion consistency under some mild conditions. Effectiveness of the proposed
selection criterion is demonstrated on a variety of numerical experiments and
real-data examples.

1. Introduction. Change-point detection has received enormous attention due to the
emergence of an increasing amount of temporal data. It is a process of detecting mean,
variance, or distributional changes in time-ordered observations, and becomes an integrated
part of modeling, estimation and inference. Comprehensive reviews of various existing ap-
proaches to the inference of multiple change-points (MCP) can be found, for instance, Chen
and Gupta (2012) and Aue and Horváth (2013).

The determination of the number of change-points K in a dataset has been central to mul-
tiple change-point analysis for decades. It is often approached as a model selection problem,
since K drives the model dimension. Bayesian information criterion (BIC, Schwarz (1978))
has become very popular in the change-point problems, for instance, see Yao (1988), Bai
and Perron (1998), Braun, Braun and Müller (2000), Fryzlewicz (2014), Zou et al. (2014)
and Wang, Zou and Yin (2018), and the asymptotic consistency of the resulting estimator
of K has been established in particular contexts of interest. While the BIC is well grounded
for general models, different BIC terms are required to adapt to different contexts of MCP
problems, and more importantly, the optimal penalization magnitude usually varies from the
model and error distribution (Hannart and Naveau (2012), Zhang and Siegmund (2007)).
Several ad-hoc criteria for the change-point problem were also proposed, for instance, by
Lavielle (2005) and Birgé and Massart (2001). Although these approaches could be visually
useful in practice, their theoretical justification remains an open problem.

This article develops a new procedure that attempts to circumvent those limitations while
improving the performance of existing criteria. Our strategy is to select the number of change-

Received November 2017; revised October 2018.
MSC2010 subject classifications. 62H12.
Key words and phrases. Cross-validation, dynamic programming, least-squares, model selection, multiple

change-point model, selection consistency.

413

http://www.imstat.org/aos/
https://doi.org/10.1214/19-AOS1814
http://www.imstat.org
mailto:nk.chlzou@gmail.com
mailto:ghwang.nk@gmail.com
mailto:rzli@psu.edu
http://www.ams.org/mathscinet/msc/msc2010.html


414 C. ZOU, G. WANG AND R. LI

points that minimizes the squared prediction error, which measures the fit of a specified model
for a new sample. A new estimation scheme is developed based on the sample splitting, select-
ing the estimated number of change-points yielding the smallest estimated squared prediction
error. Specially, we divide the sample by the parity of the time order, being even or odd, result-
ing in a 2-fold cross-validation (CV) with order-preserved sample-splitting which is tailored
for the change-point problem. The r-fold CV has been widely used to assess the quality of
regression and classification models (Shao (1993), Yang (2007)), while analogous results for
change-point problems seem rare. This may be because it is well recognized that under a
parametric regression framework, the r-fold CV, which performs similar to the Akaike in-
formation criterion (AIC), tends to select the model with the optimal prediction performance
(Zhang (1993)), while the BIC tends to identify the true sparse model well (Yang (2005)).
Interestingly, asymptotic selection consistency of the proposed procedure can be established
under some mild conditions, ensuring that the estimated number of change-points equals to
the true one with probability tending to one. This may contradict with our intuition but can
be understood by carefully examining the connection and difference between the linear re-
gression and change-point problem; see Section 3.2 for details. The only related work we
noticed is Arlot and Celisse (2011) which proposed to use a CV-based empirical risk instead
of the commonly used least-squares loss function under a univariate mean change model with
heterogeneity. However, no theoretical results and numerical evidences on the estimation of
the number of change-points were provided.

Our selection criterion and its CV estimation are presented in Sections 2 and 3, respec-
tively, using a unified parametric framework which includes classical univariate or multivari-
ate location and scale problems, ordinary least-squares, generalized linear models, and many
others as special cases, provided that the corresponding objective (likelihood or loss) func-
tion can be recast into their asymptotically equivalent least-squares problems. The proposed
selection criterion makes minimum requirements on the change-point detection approach,
and can be applied to almost all kinds of change detection algorithms, such as the local dis-
crepancy based detection (Cao and Wu (2015), Niu and Zhang (2012)), binary segmentation
and its variants (Fryzlewicz (2014)), and least-squares or likelihood methods via a dynamic
programming algorithm (Bai and Perron (2003), Hawkins (2001), Yao (1988)). The pro-
posed procedure could be also applicable for some other settings with minor modifications,
including nonparametric models and correlated cases which are discussed in Section 3.3. In
Section 4, numerical experiments indicate that the proposed criterion delivers superior perfor-
mance in a variety of simulated and real examples. Section 5 concludes with some remarks,
and theoretical proofs are delineated in the Appendix. Some technical details and additional
numerical results are provided in the Supplementary Material (Zou, Wang and Li (2020)).

Notation. Let {x,x1, . . . ,xn} be a set of d-dimensional vectors and M be a positive defi-
nite matrix. Define the norm ‖x‖ = √

x�x and ‖x‖M = √
x�Mx. For any interval (l, r] with

l ≥ 0 and r ≤ n, denote x̄l,r = (r − l)−1 ∑r
i=l+1 xi . Let TL = (τ1, . . . , τL) be a set of L points

such that 0 < τ1 < · · · < τL < n. We introduce

S2
x (TL;M) =

L∑
l=0

τl+1∑
i=τl+1

(xi − x̄τl ,τl+1)
�M(xi − x̄τl ,τl+1),

where τ0 = 0 and τL+1 = n. Moreover, let T̃
L̃

= (τ̃1, . . . , τ̃L̃
) be another set of L̃ points such

that 0 < τ̃1 < · · · < τ̃
L̃

< n and we define S2
x (TL ∪ T̃

L̃
;M) = S2

x (sort(TL ∪ T̃
L̃
);M), where

sort(A) is the set of the sorted elements of A in ascending order. For a sequence an > 0, we
denote Xn � an if there exists some constant C > 0 such that Xn ≥ Can for large enough n

holds with probability approaching one.
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2. A unified model and selection criterion.

2.1. Model. Suppose we have a sequence of independent data observations Z =
{Z1, . . . ,Zn}, collecting from the multiple change-point model,

Zi ∼ m
(· | β∗

j

)
, τ ∗

j < i ≤ τ ∗
j+1, j = 0, . . . ,Kn; i = 1, . . . , n,(1)

where Kn is the true number of change-points, τ ∗
j ’s are the locations of these change-points

with the convention of τ ∗
0 = 0 and τ ∗

Kn+1 = n, β∗
j is a d-dimensional parameter vector of

interest and m(· | β∗
j ) represents the model structure of the segment j satisfying β∗

j 
= β∗
j+1.

Denote Zτj+1
τj = (Zτj+1, . . . ,Zτj+1) and let l(β;Zi ) be a plausible loss function for Zi so

that the minimizer of L(β;Zτj+1
τj ) = ∑τj+1

i=τj+1 l(β;Zi ), β̃(Zτj+1
τj ), is either a natural estimate

of β∗
j or at least a good surrogate for β∗

j when τj = τ ∗
j for j = 0, . . . ,Kn. The number of

change-points Kn is allowed to grow with the sample size n.
For example, we are frequently concerned with a univariate or multivariate mean change

problem, that is, d-variate observations Xi’s follow from

Xi = μ∗
j + εi , τ ∗

j < i ≤ τ ∗
j+1, j = 0, . . . ,Kn; i = 1, . . . , n,(2)

where μ∗
j is the true mean vector for the segment j and εi is a d-dimensional random vector

with mean zero and a positive definite covariance matrix �. By taking Zi = Xi and β∗
j = μ∗

j ,
(2) is a special case of (1). The most popular L(β; ·) may be the negative log-likelihood (up
to constant factors) under normality or the so-called quadratic loss (Yao (1988))

1

2

τj+1∑
i=τj+1

‖Xi − β‖2.(3)

Consider another example of identifying structural break in linear regression. Let Zi =
(yi,Xi), where yi ’s are the response observations and Xi’s are the d-variate explanatory
variables, and β∗

j ’s be the regression coefficients. The L(β; ·) can be chosen as the conven-
tional least-squares loss function (Bai and Perron (1998)) or some other robust loss function
(Bai (1998)) in the form of

τj+1∑
i=τj+1

ρ
(
yi −X�

i β
)
,(4)

where ρ(·) is a pre-specified function.

2.2. Criterion for measuring the goodness-of-fit. Next, we introduce a simple yet
effective criterion based on score functions which could avoid numerically obtaining
many β̃(Zτj+1

τj )’s under the paradigm of loss function L(β;Zτj+1
τj ). Note that very of-

ten E{s(β∗
j ;Zi )} ≈ 0, i ∈ (τ ∗

j , τ ∗
j+1], where s(·; ·) is the first-order derivative of l(β;Zi )

with respect to β . Ideally, given a γ , E{s(γ ;Zi )} 
= E{s(γ ;Zi′)} for i ∈ (τ ∗
j−1, τ

∗
j ] and

i ′ ∈ (τ ∗
j , τ ∗

j+1], which motivates us to consider a least-squares measure described below.
Given a candidate model, ML, which is specified by a set of change-points TL =

(τ1, . . . , τL) and the corresponding parameters μj ’s that are approximations to E{s(γ ;Zi )},
i ∈ (τj , τj+1], j = 0, . . . ,L, small values of

C(ML;Z) =
L∑

j=0

τj+1∑
i=τj+1

{
s(γ ;Zi ) − μj

}�Wn

{
s(γ ;Zi ) − μj

}
(5)
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may indicate a good fit of data. One can expect that inappropriate numbers of change-points
may lead to a large value of C(ML;Z), where Wn, possibly depending on γ , serves as a
rough scale estimator for standardization.

For instance, under the multivariate mean change model (2), s(γ ,Zi) = −(Xi − γ ) if the
loss function (3) is used. Accordingly, the C(ML;Z) becomes

L∑
j=0

τj+1∑
i=τj+1

(Xi − γ + μj )
�Wn(Xi − γ + μj ).

For another example, consider detecting the change in a univariate sequence where E(Xi) =
ν∗
j and Var(Xi) = σ 2V (ν∗

j ) with some function V (·) for τ ∗
j < i ≤ τ ∗

j+1, j = 0, . . . ,Kn.
Braun, Braun and Müller (2000) suggested using quasi-deviance as a goodness-of-fit crite-
rion, in our notation, l(μ, x) = ∫ x

μ (x − t)/V (t) dt . It can be easily checked that C(ML;Z) =∑L
j=0

∑τj+1
i=τj+1{(Xi − γ )/V (γ ) + μj }2Wn.

The role of C(ML;Z) can be more clearly understood by further decomposing it into

C(ML;Z) =
L∑

j=0

τj+1∑
i=τj+1

{
s(γ ;Zi) − s̄

(
γ ;Zτj+1

τj

)}�Wn

{
s(γ ;Zi ) − s̄

(
γ ;Zτj+1

τj

)}

+
L∑

j=0

nj

{
s̄
(
γ ;Zτj+1

τj

) − μj

}�Wn

{
s̄
(
γ ;Zτj+1

τj

) − μj

}
(6)

≡ S2
s (TL;Wn) +D(ML;Z),

where s̄(γ ;Zτj+1
τj ) = n−1

j

∑τj+1
i=τj+1 s(γ ;Zi ) and nj = τj+1 −τj . By noting that S2

s (TL;Wn)−
S2
s (TKn;Wn) could be quite large when L < Kn, S2

s (TL;Wn) would help prevent the under-
fitting. On the other hand, when L > Kn, S2

s (TL;Wn) does not decrease too much as L

increases, but the term D(ML;Z) would dominate D(MKn;Z) under certain conditions
on μj ’s. Thus, C(ML;Z) could be a useful measure to quantify the deviation from the true
model. In practice, the candidate model ML needs to be estimated based on the only available
sample and thus a cross-validation based estimation procedure is developed.

3. Cross-validation for change-points.

3.1. Algorithm. In this section, we propose a new selection criterion based on the esti-
mated C(ML; ·) through a special 2-fold cross-validation scheme. The key idea is to split
the data into one training set Z1 and one validation set Z2, where the training set Z1 is used
to construct a candidate model ML via a given change detection algorithm, and C(ML;Z2)

is estimated as the goodness-of-fit measured on the left-out validation set Z2. To further re-
duce the estimation variability due to splitting randomness, multiple data splittings can be
performed (Zhang (1993)). However, since the change-point problem has an intrinsic order
structure, randomly splitting may not be an ideal choice. A simple yet effective way is to use
the parity splitting, that is, dividing the sample into

ZO = {Z2t−1, t = 1, . . . , T } and ZE = {Z2t , t = 1, . . . , T },
one of which is set as the training set and the other is used for validation, where we assume
for convenience that n = 2T is even. Using this splitting strategy, the original change-point
structure can be preserved as much as possible and the difference between the training and
validation samples is minimal. Our procedure is described as follows.
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Suppose that a base change detection algorithm A(L;Z) and the largest possible number
of change-points KU

n are prespecified. The estimated number of change-points K̂n can be
obtained via the following Cross-validation with Order-Preserved Sample-Splitting (COPSS)
procedure.

Cross-validation with Order-Preserved Sample-Splitting (COPSS):

Step 1 (Initialization). Specify a proper γ and Wn. Compute s(γ ;Zi ) for i = 1, . . . , n.
Step 2 (Training). Given L, obtain the set of change-points T̂ O

L = (τ̂O
L,1, . . . , τ̂

O
L,L) based

on the ZO using the detection algorithm A(L;ZO). Then compute s̄(γ ;Z τ̂O
L,j+1

τ̂O
L,j

) for j =
0, . . . ,L based on ZO . Denote the resulting change-point model as M̂O

L .
Step 3 (Validation). Compute C(M̂O

L ;ZE) using (5) with μj ’s replaced by s̄(γ ;
Z

τ̂O
L,j+1

τ̂O
L,j

)’s.

Step 4 (Cross-validation). Repeat Steps 2–3 by interchanging ZO and ZE and obtain
C(M̂E

L;ZO).
Step 5 (Estimation). Set

K̂n = arg min
1≤L≤KU

n

{
C
(
M̂O

L ;ZE

) + C
(
M̂E

L;ZO

)}
as the estimated number of change-points.

To better understand the mechanism of our proposed procedure, we consider the classi-
cal univariate mean change-point problem for illustration. Assume a univariate sequence of
observations Xi’s follow from (2). The popular BIC minimizes

SBIC(L) = n

2
log

{
n−1

L∑
j=0

τ̂L,j+1∑
i=τ̂L,j+1

(Xi − X̄τ̂L,j ,τ̂L,j+1)
2

}
+ Lζn,(7)

where (τ̂L,1, . . . , τ̂L,L) is obtained by A(L;Z) based on the whole sample. The second term
of order ζn can be viewed as a penalty which is chosen to be slightly larger than the maximum
variation level (no change) so that it can dominate the first term of SBIC(L) under overfitting
models with high probability and in this case it is usually chosen as of order logn (Yao
(1988)).

Asymptotically speaking, as long as logn/ζn → c ∈ [0,∞) and ζn/n → 0, the BIC esti-
mator is consistent when the change magnitudes are fixed. However, the “optimal” penalty
is always not easy to be determined since it may depend on the change magnitudes and er-
ror distributions. In contrast, it can be verified that taking the quadratic loss function (3),
C(M̂O

L ;ZE) is equivalent to (up to a scale constant)

L∑
j=0

τ̂O
L,j+1∑

i=τ̂O
L,j+1

(
XE

i − X̄E

τ̂O
L,j ,τ̂O

L,j+1

)2 +
L∑

j=0

nj

(
X̄E

τ̂O
L,j ,τ̂O

L,j+1
− X̄O

τ̂O
L,j ,τ̂O

L,j+1

)2
,(8)

where the symbols with the superscripts “O” and “E” stand for the quantities based on the
sample ZO and ZE , respectively. In our CV-based procedure, the second term plays a similar
role to the “ζn” term in the BIC, that is, avoiding overfitting (see Section 3.2 for theoretical
discussion). As opposed to the BIC, the C(M̂O

L ;ZE) can be viewed as a data-driven penal-
ized loss function which greatly facilitates the determination of the number of change-points
in practice. This data-driven feature benefits from the use of sample-splitting and thus cer-
tain efficiency loss would be incurred. Intuitively, using the summation of C(M̂E

L ;ZO) and
C(M̂O

L ;ZE) may result in variance reduction that is verified by simulation in Section 4.
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REMARK 1. The γ and Wn need to be specified to implement our algorithm. In many
cases, such like the multivariate mean change-point model and change-point regression prob-
lem with least-squares loss function, it can be verified that the algorithm is invariant with
γ . In fact, our numerical results also reveal that the choice of γ is not crucial and thus we
recommend using β̃n ≡ arg minβL(β;Zn

1 ) (assumed to exist) as γ , when no preference is
given. The performance of our procedure is not sensitive to Wn either, because the Wn plays
only the role in standardizing the components of s(γ ;Zi ) so that they are aggregated in a fair
way. From the asymptotic analysis in Section 3.2 we can see that there is a minimal require-
ment for Wn, and hence we can even simply choose it as the identity matrix Id or the pooled
sample covariance matrix based on {s(γ ;Z1), . . . , s(γ ;Zn)}.

3.2. Theoretical justification. We now establish an asymptotic property regarding the se-
lection consistency of the COPSS procedure. The consistency property ensures that the result-
ing estimated number of change-points equals to the true one with probability approaching
one, when the change detection algorithm A(L;Z) performs reasonably well.

For ease of exposition, we introduce the following notation. Let T ∗
Kn

= (τ ∗
1 , . . . , τ ∗

Kn
). De-

note the minimal and maximal distance between change-points as λn = min0≤j≤Kn(τ
∗
j+1 −

τ ∗
j ) and λn = max0≤j≤Kn(τ

∗
j+1 − τ ∗

j ), respectively, and the minimal signal strength as

	n = min1≤j≤Kn ‖μ∗
j−1 − μ∗

j‖2. Given L ≥ 1, let T̂L = (τ̂L,1, . . . , τ̂L,L) be the estimated
change-points based on half of the data. For j = 0, . . . ,Kn, let μ∗

j = E{s(γ ;Zi )}, �∗
j =

Cov{s(γ ;Zi )} and Ui = s(γ ;Zi ) − μ∗
j , i ∈ (τ ∗

j , τ ∗
j+1]. Denote by σ(�∗

j ) and σ(�∗
j ) the

maximum and minimum eigenvalues of �∗
j for j = 0, . . . ,Kn, and moreover let σ =

max{σ(�∗
0), . . . , σ (�∗

Kn
)} and σ = min{σ(�∗

0), . . . , σ (�∗
Kn

)}. Also, denote the maximum
and minimum eigenvalues of Wn by ωn and ωn, respectively.

ASSUMPTION 1 (Noises). The �∗
j ’s are positive-definite matrices and there exists a pos-

itive integer m ≥ 2 such that E(‖�∗
j
−1/2Ui‖2m) < ∞ for i ∈ (τ ∗

j , τ ∗
j+1], j = 0, . . . ,Kn.

ASSUMPTION 2 (Detection Precision). If q = L − Kn ≥ 0, then there exist τ̂L,i1, . . . ,

τ̂L,iKn
belonging to T̂L such that max1≤j≤Kn |τ̂L,ij − τ ∗

j | ≤ δq,n holds with probability ap-
proaching one as n → ∞, where δq,n is some positive sequence.

ASSUMPTION 3 (Minimum Signal). The jump sizes ‖μ∗
j−1 − μ∗

j‖’s satisfy

λnωn	n

Knωnσλ
2/m
n

→ ∞ as n → ∞.(9)

REMARK 2. The moment conditions in Assumption 1 are used to control the supremum
of the objective function and is commonly used in the literature, for example, Yao and Au
(1989). Assumption 2 sets theoretical minimal requirements for the accuracy of the change-
points detected by the algorithm A(L;Z) when L ≥ Kn. This is reasonable because we can-
not expect that our selection procedure would work well if all the estimated change-points
are far away from the true ones. Under such circumstances, an appropriate algorithm gen-
erally results in a δq,n-neighborhood of the true location set in the sense that for each true
change-point there exists at least a point in the estimated set so that their distance is less than
δq,n (Harchaoui and Lévy-Leduc (2010)). The condition on δq,n will be made in Theorem 1.
We explicitly express the dependence of δq,n on q because for some algorithms different
estimation accuracies may be achieved with different values of q; see the discussions be-
low Theorem 1. The requirements on the smallest signal strength and distance between two
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change-points are made in Assumption 3 so that the change-points are asymptotically identi-
fiable. It can be further relaxed if (sub-)Gaussian noises are considered (Niu, Hao and Zhang
(2016)). Under the conventional assumption that Kn does not depend on n, τ ∗

j /n converges
to a constant for each j and the change magnitudes are fixed, Assumption 3 is valid when
m > 2.

It is worth noting that the conditions on the signal strength is made for ‖μ∗
j −μ∗

j−1‖ rather
than ‖β∗

j − β∗
j−1‖ in Assumption 3. Simply speaking, an implicit assumption here is that the

change in β would result in the change in E{s(γ ;Zi )} and consequently the segmentations
with s(γ ;Zi ) would be approximately equivalent to the original change-point model. In fact,
‖μ∗

j −μ∗
j−1‖ is often an increasing function of ‖β∗

j −β∗
j−1‖ for j = 1, . . . ,Kn. For example,

under the classical multivariate mean change-point model (2), μ∗
j −μ∗

j−1 = β∗
j −β∗

j−1. This
is also true if the quasi-deviance is used (Braun, Braun and Müller (2000)). Also, for the
regression problem with the loss function (4) being ρ(x) = x2/2, we will have s(γ ;Zi ) =
−Xi(yi −X�

i γ ), and thus μ∗
j − μ∗

j−1 = E(XiX�
i )(β∗

j − β∗
j−1).

THEOREM 1. Suppose that Assumptions 1–3 hold. If there exist positive sequences αq,n,
q = 0,1, . . . , satisfying that Kn log log δq,n = o(αq,n), and for L = Kn + q with q ≥ 1,

S2
U
(
T ∗

Kn
;Wn

) − S2
U
(
T̂L ∪ T ∗

Kn
;Wn

)
� ωnσαq,n,(10)

then our procedure is consistent in the sense that limn→∞ Pr(K̂n = Kn) = 1.

Intuitively speaking, the condition (10) implies that the reduction of total variation due
to adding the points in T̂L into the true set has a lower bound diverging to infinity. The
mechanism of locating change-points is usually to search for a model from the candidate
models so that the total variation is mostly reduced, and accordingly the condition (10) will
be roughly satisfied for some αq,n.

The condition Kn log log δq,n = o(αq,n) is quite mild and can be satisfied by many ef-
fective detection procedures. In particular, it holds for the binary segmentation (BS) method
(Venkatraman (1992)) with αq,n = log logλn, and for the optimal partitioning (OP) algorithm
(Auger and Lawrence (1989)) and local discrepancy (LD) based algorithm (Niu and Zhang
(2012)) with αq,n = ηq,n, where

ηq,n =
{

log logλn if q = 0,1,

logλn if q ≥ 2.

For q = 0, say the number of change-point is correctly specified, it is well known that the
change-point estimators obtained by the algorithms mentioned above are consistent with
the optimal rate Op(1) in a parametric setting, when the change magnitudes are fixed; see
Venkatraman (1992), Bai and Perron (1998), Hao, Niu and Zhang (2013) and the references
therein. Thus, this condition holds if Kn/ log logλn → 0. By Lemmas 4–5 given in the Ap-
pendix, we can verify that the case of q > 0 is also valid for those algorithms. This condition
also restricts the relationship between the Kn and sample size n. Faster divergence rate of Kn

may be possible, but more stringent conditions on the signal strength and tail probabilities of
Ui would be required.

REMARK 3. It is interesting to examine the case with 	n → 0. Generally, δq,n � 	−1
n

(Niu, Hao and Zhang (2016)), and thus Kn log log δq,n = o(αq,n) would not hold if the min-
imal signal strength goes to zero in a polynomial rate for q = 0,1. In such situations, the
COPSS procedure is likely to yield an overfitting model but with only one redundant change-
point since that condition may still hold for q = 2, at least for the LD or OP algorithm.
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We show in the next theorem that (10) holds when T̂L was obtained by the popular
BS and OP algorithms. Specifically, for a given model size L, the OP algorithm finds
the estimated change-point set by T̂L = arg minML

C(ML;Z). For the BS algorithm, let
τ̂1,1 = arg minM1

C(M1;Z), and then for 2 ≤ l ≤ L, one iteratively obtains

τ̂l,l = arg min
0≤k≤l−1

{
min
M1

C
(
M1;Z τ̂l,k+1

τ̂l,k+1

)}
,

where τ̂l,k = τ̂l−1,k for k = 1, . . . , l −1 with τ̂l,0 = 0 and τ̂l,l = n. The final estimated change-
point set is T̂L = (τ̂L,1, . . . , τ̂L,L). Note that the BS was typically used in conjunction with
a thresholding criterion. Consequently, the estimated change-point number depends on the
threshold and the procedure does not necessarily guarantee a model with any given size by
choosing a suitable threshold. Hence, we modify it as above so that the algorithm is in a
nested way. The BS will thereafter refer to this one which should not cause any confusion.

THEOREM 2. If Assumptions 1–3 hold and lim infn→∞(ωnσ )/(ωnσ) > 0, then the con-
dition (10) is valid for the optimal partitioning and binary segmentation algorithms with αq,n

being ηq,n and log logλn, respectively, and accordingly the selection procedure is consistent.

The proofs of Theorems 1–2 are given in the Appendix. The ideas of the proofs are similar
to that of Nishii (1984). When a correct model is compared with an underfitting model, the
first term of the criterion function S2

s (T̂ O
L ;Wn) in (6), which measures the goodness-of-fit of

the number and locations of the change-points obtained from the sample ZO on the sample
ZE , asymptotically dominates and the correct model is preferred; when comparing a simpler
correct model with a more complex correct model, the second term of the criterion function,
that is, the “penalty” term D(M̂O

L ;ZE), asymptotically dominates and the simpler model is
preferred. Hence, with probability approaching one, the CV criterion favors the true model
over either an underfitting model or an overfitting model. We also want to point out that the
condition (10) also holds for the LD algorithm such as the SaRa proposed by Niu and Zhang
(2012), with αq,n = ηq,n, but more conditions on a sliding window size is needed.

In general, under a large-sample framework, in which the number of variables p is fixed
and n goes to infinity, it has been pointed out in various models that the r-fold CV or the
delete-k CV (if lim infn→∞(n − k)/n > 0) is not consistent (Shao (1993), Zhang (1993)). If
the training sample size is negligible compared to n, then model consistency could be ob-
tained. This has been confirmed theoretically by Shao (1993, 1997) for the variable selection
problem in linear regression. It turns out that, when the goal is to identify the true model,
the proportion of data used for evaluation in CV needs to be dominating in size. Using a
very small proportion of the data for training is clearly not a good choice in our change-
point problem, because the accuracy of change-point detection algorithms heavily relies on
the sample size. On the other hand, under some high-dimensional or infinite-dimensional
models, different consistency behaviors are noted (Bai, Fujikoshi and Choi (2017), Yang
(2005)). In particular, Yang (2007) revealed interesting behaviors of CV: under some condi-
tions, with an appropriate choice of data splitting ratio, CV is consistent when it is applied
to compare between parametric and nonparametric methods or within nonparametric meth-
ods. These related findings shed light on understanding why the CV works in the MCP. In
fact, if the candidate number of change-points is L, the cardinality of the collection of can-
didate models is diverging with n, say

(n−1
L

)
, resulting in the validity of the condition (10).

From the proof of Theorem 1, we can tell that D(M̂O
L ;ZE) is approximately larger than

D(M̂O
Kn

;ZE) by an order of at least log logλn when L > Kn and thus (10) holds, whereas

S2
s (T̂ O

Kn
;Wn)−S2

s (T̂ O
L ;Wn) is just Op(1) which would result in the favor of the true model.
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However this is not the case in the classical regression problem where the number of vari-
ables is fixed and the cardinality of the collection of candidate models is accordingly fixed as
n → ∞.

For a clearer comparison, we consider the univariate sequence with K = 0, say no change-
point. It can be verified that in this case the major term in D(M̂O

K+1;ZE) −D(M̂O
K;ZE) is

of the form

max
1≤τ≤T −1

τ(T − τ)

T

(
X̄O

0,τ − X̄O
τ,T

)2
,

which is of Op(log logn) by the Darling–Erdős Theorem (Darling and Erdös (1956)). In
contrast, in the regression problem with only one candidate covariate, D(M̂O

K+1;ZE) reflects
only the difference between the two least-squares estimators obtained from ZE and ZO , and
thus D(M̂O

K+1;ZE) −D(M̂O
K+1;ZE) = Op(1); the CV will fail.

REMARK 4. From the proofs of Theorems 1–2, we can claim that our proposed proce-
dure is also consistent if we use classical r-fold (r > 2) CV to replace the parity splitting.
There is no general conclusion that the latter would outperform the commonly-used 5-fold
or 10-fold CV. Intuitively speaking, a 5-fold CV would help to obtain a more accurate train-
ing model as we use 80% data, preventing the model from undefitting to certain degree.
However, since the validation set with only 20% observations may not fully reflect the un-
derlying change-point structure, overfitting would often be incurred if the sample size is not
sufficiently large. Table S.3 in the Supplementary Material presents some results by using
both the classical and a slightly modified order-preserved multi-fold CV. Though the 2-fold
strategy in the COPSS procedure may not be always the optimal one, our numerical expe-
rience indicates that it is capable of providing balanced protection from the underfiting and
overfitting because this splitting method makes the training and validation sets the most sim-
ilar among all the choices of splitting. Considering its computational advantages, we would
recommend it for practical use when there is little prior information about the data. A ran-
dom assigning treatment in conjunction with our 2-fold splitting strategy as suggested by an
anonymous referee could improve in some scenarios especially when the sequence has some
systematical trend. More details can be found in the Supplementary Material.

3.3. Extensions.

3.3.1. Modified CV procedure for the PELT. The COPSS can be applied to most change
detection algorithms which seek for all possible segmentations with the number of change-
points 0 ≤ L ≤ KU

n . In contrast, there are other efficient approaches such as the Pruned Exact
Linear Time (PELT) Algorithm (Killick, Fearnhead and Eckley (2012)) which was designed
for identifying multiple change-points by directly minimizing a “loss” plus “penalty” func-
tion over all possible numbers and locations of change-points. Consequently, the PELT out-
puts a single number of estimated change-points instead of running over all possible candidate
models. The issue of specifying penalty terms for the PELT still remains open. The COPSS
would be helpful, say we may choose a suitable penalty term which produces a relatively
small squared prediction error over a sequence of penalization magnitudes. Although this
procedure cannot go over all candidate models as it is uncontrollable to obtain a one-to-one
correspondence from the model size to the penalization magnitude, it is able to considerably
alleviate the dependence on the manual choice of penalty term. Some numerical evidence can
be found in Section 4.
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3.3.2. A nonparametric setting. Without imposing any parametric modeling assumption,
consider the MCP based on independent data Z = {Xi}ni=1, such that

Xi ∼ Fj (x), τ ∗
j < i ≤ τ ∗

j+1, j = 0, . . . ,Kn; i = 1, . . . , n,

where Fj is the cumulative distribution (CDF) of the segment j satisfying Fj 
= Fj+1. Lee
(1996) and Zou et al. (2014) discussed localization-based and global-loss-based detection
algorithms using empirical CDF, respectively. Zou et al. (2014) and Haynes, Fearnhead and
Eckley (2017) studied the estimation of Kn by the BIC. Following Zou et al. (2014), we may
consider the criterion as

C(ML;Z) =
∫
u
Lu(ML)dw(u),(11)

where Lu is the negative joint nonparametric log-likelihood for each given candidate model
ML, namely,

Lu(ML) = −
L∑

j=0

(τj+1 − τj )
{
F̂

τj+1
τj (u) log

(
F̃

τj+1
τj (u)

)
+ (

1 − F̂
τj+1
τj (u)

)
log

(
1 − F̃

τj+1
τj (u)

)}
,

F̂
τj+1
τj (u) is the empirical CDF of the sample {Xτj+1, . . . ,Xτj+1} and w(u) is a nonnegative

weight function. In this case, the model ML is represented by a candidate set of change-
points (τ1 < · · · < τL) and the associated “pseudo” CDF F̃

τj+1
τj (u) for j = 0, . . . ,L. Accord-

ingly, C(M̂O
L ;ZE) can be obtained by taking A(L;ZO) as the method proposed by Lee

(1996), Zou et al. (2014) or its PELT version Haynes, Fearnhead and Eckley (2017).

3.3.3. Cases when unknown correlations exist. Though the asymptotic consistency of
our proposed estimator is established under the assumption that Zi ’s are independent, we
may expect that the procedure is also applicable for dependent cases. The main difficulty
lies in that the parity splitting would make ZO and ZE have similar error structures because
the nearest observations are usually most correlated. By adapting the idea of moving block
bootstrap for stationary series (Künsch (1989)), we suggest a pre-localizing procedure which
is capable of alleviating the effect of autocorrelations to certain degree. Our first step is to
locate the most influential points that have the largest local jump sizes quantified by certain
measures.

LOCALIZING ALGORITHM.

Step 1. Choose an appropriate integer ωn and take the change-point set as O = ∅.
Step 2. Initialize Ti = 0 for i = 1, . . . , n. For i = ωn, . . . , n − ωn, update Ti to be a two-

sample test statistic for the samples Z i
i−ωn

and Z i+ωn

i .
Step 3. For i = ωn, . . . , n − ωn, if i = arg maxi−ωn<j≤i+ωn

|Tj |, update O = O ∪ {i}.

The ωn is a sequence of sliding window lengths for which ωn/n → 0. Properties of using
local discrepancy measures to detect multiple change-points in univariate sequences have
been widely studied; see, for example, Lee (1996), Jeng, Cai and Li (2010) and Niu and
Zhang (2012). Unlike those works in which one specifies a threshold value to determine
which are the true change-points in O, the localizing algorithm aims only to help naturally
split the data into many subsets.

Denote O = {l1, . . . , lm−1}, where m = |O| + 1 and set l0 = 0, lm = n + 1. Intuitively, O
provides an overfitting of the true model, say it at least includes a small neighborhood of the
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true location set. Thus, the observations in each segment, divided by O, have approximately
the same parameters. This motives us to calculate the m estimated parameters β̃(Z lk+1

lk
) or

average scores s̄(γ ;Z lk+1
lk

), k = 0, . . . ,m − 1 and for simplicity they are denoted as X =
{X1, . . . ,Xm}. By this construction, the correlations among X are expected to be relatively
weak. The original change-point problem is now re-framed into the change-points detection
in this mean sequence of size m. Consequently, given a candidate model ML specified by
(τ1, . . . , τL) and (μ0,μ1, . . . ,μL), the criterion C(ML;Z) can be defined as

C(ML;X ) =
L∑

j=0

τj+1∑
i=τj+1

Ni

∥∥Xi − X̄(τj , τj+1)
∥∥2

+
L∑

j=0

τj+1∑
i=τj+1

Ni

∥∥μj − X̄(τj , τj+1)
∥∥2

,

where Ni = li+1 − li , and X̄(τj , τj+1) = ∑τj+1
i=τj+1 NiXi/

∑τj+1
i=τj+1 Ni is the weighted sample

mean vector of the segment (τj , τj+1]. The use of Ni distinguishes this objective function
from standard least-squares function (8), because the sequence {X1, . . . ,Xm} is heteroge-
neous with the variance of Xi being approximately proportional to Ni . Then, the proposed
CV procedure can be applied.

In this paper, we will use simulations to demonstrate the effectiveness of our proposed
algorithm discussed in Sections 3.3.1–3.3.3 but theoretical investigation certainly warrants
future research.

4. Numerical results. To evaluate the performance of our proposed COPSS procedure
which utilizes a special CV criterion for identifying the number of change-points, we mainly
compare with the BIC (or its variants by modifying the loss function and associated penaliza-
tion term) on a range of simulated and real examples. The two criteria are in conjunction with
a wide variety of change-point detection algorithms including OP algorithm (Bai and Perron
(2003), Braun, Braun and Müller (2000), Zou et al. (2014)), BS method (Matteson and James
(2014)) and its variant the wild binary segmentation (WBS) algorithm (Fryzlewicz (2014)),
LD-based detection procedure, the SaRa, proposed by Niu and Zhang (2012), and the PELT
(Haynes, Fearnhead and Eckley (2017), Killick, Fearnhead and Eckley (2012)). Several MCP
models are considered, reflecting changes in different aspects such as the location, scale, dis-
tribution and regression relationship. The data can be univariate, multivariate or in linear
model structure, either independent or correlated. Table 1 gives a short preview of all simu-
lated models and the associated CV criteria we will use. For the BIC to be compared, we will
either consider (7) with suitable penalty ζn tailored for a specific model in Table 1 or refer to
the related literature and adopt the default formulation.

To further specify a MCP model in Table 1, we examine two kinds of generation mecha-
nism of the number and locations of change-points (CP).

CP(A). Both the number and locations of change-points are fixed. We adopt the blocks
setting which is widely used in the literature (Fryzlewicz (2014)). Specifically, Kn = 11 and
T ∗

Kn
/n ≈ (0.10,0.13,0.15,0.23,0.25,0.40,0.44,0.65,0.76,0.78,0.81).

CP(B). Both the number and locations of change-points can vary with the sample size n.
We set Kn = �(logn)1.01� with �x� representing the largest integer not greater than x.
The corresponding change-points are set as τ ∗

j = j�n/(Kn + 1)� + Uniform{−a, a} with

a = �n1/4� for j = 1, . . . ,Kn, where Uniform{a, b} with integers a, b denotes the discrete
uniform distribution with support {a, a + 1, . . . , b}.



424 C. ZOU, G. WANG AND R. LI

TABLE 1
Preview of simulated models and the associated CV criteria. Detailed generation of the change signal (such like
θi ’s, σi ’s, θ i ’s, (αi ,β

�
i )’s, qi ’s and Fi ’s), together with other nuisance parameters (σ , p and q) are deferred in

the specific context. The symbols with the superscripts “O” and “E” stand for the quantities based on the ZO

and ZE , respectively. For a given L, the change-points τ̂L,j ’s are obtained on the basis of ZO by certain change
detection algorithm

No. Model C(M̂O
L ;ZE)

I Xi = θi + σεi
∑L

j=0
∑τ̂O

L,j+1

i=τ̂O
L,j +1

(XE
i − X̄O

τ̂O
L,j ,τ̂O

L,j+1
)2

II Xi = σiεi
∑L

j=0
∑τ̂O

L,j+1

i=τ̂O
L,j +1

(V E
i − V̄ O

τ̂O
L,j ,τ̂O

L,j+1
)2, Vi = logX2

i

III Xi = θ i + σεi
∑L

j=0
∑τ̂O

L,j+1

i=τ̂O
L,j +1

‖XE
i − X̄O

τ̂O
L,j ,τ̂O

L,j+1
‖2
Wn

,

Wn = diag−1{Cov(X)}
IV Yi = αi +X�

i βi + σεi
∑L

j=0
∑τ̂O

L,j+1

i=τ̂O
L,j +1

‖RE
i − R̄O

τ̂O
L,j ,τ̂O

L,j+1
‖2
Wn

,

Ri = (Yi , YiX�
i )�, Wn = Cov−1([1...X])

V Xi ∼ Multinomial(n0,qi )
∑L

j=0
∑τ̂O

L,j+1

i=τ̂O
L,j +1

‖XE
i − X̄O

τ̂O
L,j ,τ̂O

L,j+1
‖2
Wn

,

Wn = diag−1{Cov(X)}
VI Xi ∼ Fi(·) − ∫

u[∑L
j=0(τ̂O

L,j+1 − τ̂O
L,j ){F̂E

τ̂O
L,j+1

τ̂O
L,j

(u) log(F̂O

τ̂O
L,j+1

τ̂O
L,j

(u))

+ (1 − F̂E

τ̂O
L,j+1

τ̂O
L,j

(u)) log(1 − F̂O

τ̂O
L,j+1

τ̂O
L,j

(u))}]dw(u)

VII Xi = θi + σεi
∑L

j=0
∑τ̂O

L,j+1

i=τ̂O
L,j +1

NE
i (SE

i − S
O

τ̂O
L,j ,τ̂O

L,j+1
)2

εis ∼ ARMA(p, q) Si = X̄li ,li+1 , Si1,i2 = ∑i2
i=i1+1 NiSi/

∑i2
i=i1+1 Ni ,

l1, . . . , lm−1 local minimizers

We fix KU
n = 20 unless otherwise specified. For each example, 1000 replications is used

to approximate the distribution of K̂n − Kn, where K̂n is obtained by either the BIC or our
proposed COPSS procedure in conjunction with the change-point detection algorithms under
various examples specified in Table 1.

4.1. Univariate examples.

4.1.1. Mean change-point model. Detecting mean shift in a univariate time-series has
been widely discussed in the literature. In this section, four commonly used detection al-
gorithms, the OP, BS, WBS and PELT, are investigated. We consider the ready-made R-
packages “wbs” and “changepoint,” which implement the WBS and the PELT methods,
respectively. We apply the conventional BIC, see (7), for comparison. As we mentioned
earlier, the optimal penalization magnitude usually varies from the model and error distri-
bution. To get a broader picture of the performance comparison, we choose the penalty term
ζn = (logn)α with α = 1,1.3,1.5, as the order of magnitude logn has been shown to have
superior performance when the noises are independently and identically distributed (i.i.d.)
normal random variables (Fryzlewicz (2014)). To implement the PELT in conjunction with
the newly proposed COPSS procedure, we follow the guidelines in Section 3.3.1 and con-
sider a range of penalty values and choose the one yielding the minimum squared prediction
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error. For the other three algorithms, we apply each in the training step, examining them one
by one.

Model I-CP(A) is considered, where we set n = 2048. The signal function θi’s are cho-
sen as a piecewise constant function with Kn = 11 and the scale parameter σ is taken to

be 7. Four scenarios of the error distribution are considered: (i) εi
iid∼ N(0,1), (ii) εi

iid∼√
3 Uniform(−1,1), (iii) εi

iid∼ sin(2πi/n)/
∑n

j=1 sin(2πj/n) · N(0,1) and (iv) εi
iid∼ 0.25t3,

where Uniform(a, b) is the continuous uniform distribution with support [a, b] and tν is the
Student’s t-distribution with the degree of freedom ν.

Table 2 reports the distribution of K̂n − Kn together with its mean, standard deviation
(SD) and mean-squared error (MSE) for the BIC and the COPSS in conjunction with various
detection algorithms under Model I-CP(A) with Scenario (i). First of all, we observe that, in
terms of the probability of correctly identifying the true number of change-points, the perfor-
mance of the BIC could be seriously affected by different choices of penalization magnitude
for every detection algorithm. The COPSS performs reasonably well with the OP or WBS
algorithm, and has higher probability of correct identification than the BIC with α = 1.3 or
1.5 with the OP. As we can expect, the BIC with the conventional choice of α = 1 performs
better than the COPSS under Scenario (i), that is, the normal error. This can be understood
because the COPSS is in a data-driven nature; sacrificing certain estimation precision due
to the use of sample-splitting. Especially under the CP(A), there are a few short segments

TABLE 2
Distribution of K̂n − Kn together with its mean, standard deviation (SD) and mean-squared error (MSE) using
various detection algorithms under Model I. Scenario (i) and CP(A) are considered. Procedure using the BIC is

named by the rule “Algorithm-BIC-α,” where α is the tuning parameter appeared in the penalty;
“Algorithm-CV” stands for an detection algorithm followed by the COPSS procedure; we also report the

corresponding algorithm but with only a single C(M̂O
L ;ZE)- or C(M̂E

L ;ZO)-criterion, termed as
“Algorithm-CV-O” and “Algorithm-CV-E,” respectively

K̂n − Kn

Procedures ≤−3 −2 −1 0 1 2 ≥3 Mean SD MSE

OP-BIC-1 0.0 0.0 3.0 93.5 3.1 0.4 0.0 0.07 0.28 0.08
OP-BIC-1.3 0.0 0.1 34.7 65.1 0.1 0.0 0.0 0.35 0.48 0.35
OP-BIC-1.5 0.3 5.7 75.4 18.6 0.0 0.0 0.0 0.88 0.49 1.01
OP-CV-O 0.0 0.5 25.4 59.8 10.9 2.0 1.4 0.46 0.79 0.63
OP-CV-E 0.1 0.2 24.9 59.7 10.6 3.1 1.4 0.47 0.80 0.65
OP-CV 0.0 0.0 24.8 66.2 7.5 1.3 0.2 0.35 0.61 0.39

BS-BIC-1 0.0 0.0 3.8 65.7 26.5 3.8 0.2 0.39 0.61 0.47
BS-BIC-1.3 0.0 0.2 39.1 53.2 7.0 0.5 0.0 0.47 0.62 0.49
BS-BIC-1.5 0.5 4.7 77.6 16.4 0.8 0.0 0.0 0.89 0.50 1.02
BS-CV-O 0.0 0.4 13.8 30.8 24.6 17.2 13.2 1.30 1.67 3.80
BS-CV-E 0.1 0.2 12.9 28.7 28.6 15.3 14.2 1.31 1.64 3.79
BS-CV 0.0 0.0 9.9 27.7 32.6 18.6 11.2 1.20 1.32 2.75

WBS-BIC-1 0.0 0.0 5.1 87.6 6.5 0.8 0.0 0.13 0.38 0.15
WBS-BIC-1.3 0.0 0.1 32.4 66.6 0.9 0.0 0.0 0.34 0.49 0.34
WBS-BIC-1.5 0.4 4.5 74.8 20.2 0.1 0.0 0.0 0.85 0.49 0.96
WBS-CV-O 0.0 0.3 26.9 44.9 15.5 6.9 5.5 0.78 1.28 1.68
WBS-CV-E 0.1 0.4 27.7 41.9 15.8 6.9 7.2 0.89 1.46 2.24
WBS-CV 0.0 0.1 25.6 48.1 17.4 6.0 2.8 0.65 1.00 1.02

PELT-CV-O 0.0 0.4 25.5 65.3 5.7 1.8 1.3 0.40 0.74 0.56
PELT-CV-E 0.0 0.5 25.7 65.5 5.9 1.9 0.5 0.38 0.67 0.47
PELT-CV 0.0 0.1 25.2 68.9 5.0 0.8 0.0 0.32 0.55 0.34
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FIG. 1. Distribution of K̂n − Kn for the BIC and our CV criterion in conjunction with the OP, BS, WBS and
PELT algorithms under Scenarios (ii)–(iv) of Model I-CP(A).

whose length is only around 40. We only got 20 samples to fit the change-point models in
such segments and thus may be inefficient. As a consequence, the probability of missing one
change-point is a little high compared to the best BIC. Moreover, we found the PELT tends
to overestimate the number of change-points; the values of K̂n − Kn are almost all greater
than 2 for all the ζn’s and thus we omit those results in Table 2. This phenomenon has also
been reported by Fryzlewicz (2014) in all of the examples he studied. Interestingly, using
the COPSS procedure, this overfitting tendency disappeared and the probability of correct
identification is even slightly higher than the OP with the COPSS.

The superiority of the BIC with α = 1 does not always hold. Figure 1 depicts the distri-
bution of K̂n − Kn under Scenarios (ii)–(iv), which reveals that the performance of the BIC
with α = 1 is no longer the best and may be outperformed by the COPSS (corresponding to
CV in Figure 1) for most cases. Now, we can find the BIC with α = 1 performs the best under
Scenario (ii), that is, light-tailed noises, as in Scenario (i); while the BIC with α = 1.3 favors
Scenario (iii), that is, the heterogeneous case; and finally the BIC with α = 1.5 best suits
Scenario (iv), that is, heavy-tailed noise. Consequently, the “oracle” penalty always differs
from error to error and thus is not available when one has little knowledge about the data.
In contrast, the COPSS is clearly more robust from Table 2 and Figure 1, benefiting from
automatically adapting to the model and error distribution. Similar results under Model I-
CP(B) are provided in the Supplementary Material, from which we can also conclude that
the COPSS could achieve consistent estimation of Kn.

Table 2 also reports the results of the chosen algorithms followed by only a single
C(M̂O

L ;ZE)- or C(M̂E
L;ZO)-criterion, which reveals that our “crossed” training-validation

procedure (the CV) indeed results in variance reduction.

4.1.2. Variance change-point model. Ideas of detecting changes in mean can be eas-
ily extended to the variance change-point problem (Chen and Gupta (1997)). To facili-
tate the comparison, we consider again the PELT method with penalty values specified as



CONSISTENT SELECTION OF THE NUMBER OF CHANGE-POINTS 427

FIG. 2. Probability of correct identification and the MSE of K̂n − Kn against the sample size n = Cn · 2048 for
the PELT method and its CV implementation under Model II-CP(A).

ζn = (logn)α , α = 1,1.3,1.5, using the function “cpt.var()” in the R-package “changepoint”
as discussed in Section 3.3.1, we search a range of penalty values and use the CV criterion in
Table 1 to choose the best-fit model in order to implement the COPSS.

We take Model II with CP(A) as an illustration example, where we vary n = Cn · 2048
over a range of values Cn = 0.5,1,1.5, . . . ,5. The scale signal function σi’s are chosen as
a piecewise constant function with breaks at the Kn = 11 change-points and values between
change-points 1, 0.25, 1, 5, 1, 0.25, 1, 5, 1, 0.25, 1, 5. The noises are independently generated
as standardized t5.

Figure 2 depicts the probability of correct identification and the MSE of K̂n − Kn against
the sample size n for the PELT and its CV implementation. Again, we observe that the per-
formance of the PELT is sensitive to the penalization magnitude and unstable as the sample
size varying. The detection ability of the PELT with α = 1.5 appears better than our CV
implementation when n = 1024,2048 and exhibits a slightly increasing trend, but then drops
significantly as n continues to increase. In contrast, our CV criterion presents a steady growth
in the detection accuracy as more and more samples are gathered. In the meantime, the MSE
of our procedure decreases fast.

4.2. Multivariate examples.

4.2.1. Multivariate mean change-point model. MCP problem for multivariate observa-
tions has gained more and more attention as well. In this section, we compare the COPSS in
conjunction with the OP algorithm with a nonparametric method, ECP, proposed by Matteson
and James (2014). The ECP method involves specifying the level at which to sequentially test
if a proposed change point is statistically significant. In our simulation study, we use the de-
fault value 0.05 (see the R package “ecp”).

Model III with CP(A) is used here, where we fix n = 1024 and 2048. For simplicity,
each dimension of the signals θ i ’s are generated as the same as the signals θi ’s used in
Model I-CP(A). Two scenarios for the error distribution are considered: (i) εi = (ε�

i1,ε
�
i2)

�.

εi1
iid∼ Nd1(0,�1) with d1 = �d/2� and �1 = (0.5|i−j |), εi2

iid∼ Nd2(0,�2) with d2 = d − d1
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TABLE 3
Distribution of K̂n − Kn with its MSE for the ECP procedure and the COPSS (labelled as OP-CV) in

conjunction with the OP algorithm under Model III-CP(A)

d = 5 d = 10

K̂n − Kn K̂n − Kn

Scenario n Procedure −2 −1 0 1 2 MSE −2 −1 0 1 2 MSE

(i) 1024 ECP 0.0 0.0 94.1 5.0 0.8 0.10 0.0 0.0 94.0 4.6 1.4 0.10
OP-CV 0.3 10.8 84.5 3.3 1.1 0.20 4.2 36.9 53.1 4.0 1.2 0.69

2048 ECP 0.0 0.0 94.7 3.3 1.7 0.13 0.0 0.0 94.3 3.4 2.3 0.13
OP-CV 0.0 2.1 95.8 1.7 0.4 0.05 0.6 14.3 80.5 1.9 2.7 0.29

(ii) 1024 ECP 0.0 0.3 92.4 5.6 1.6 0.13 0.0 3.4 89.4 6.3 0.9 0.13
OP-CV 0.0 7.9 87.4 4.4 0.3 0.14 0.0 28.1 69.4 2.5 0.0 0.31

2048 ECP 0.0 0.0 92.9 5.6 1.3 0.13 0.0 0.0 91.3 6.5 2.0 0.16
OP-CV 0.0 0.0 97.0 2.6 0.3 0.05 0.0 0.9 97.8 1.3 0.0 0.02

and �2 = 0.3Id2 +0.71d21
�
d2

, and εi1 and εi2 are independent, where 1d denotes the d-variate

vector with all the components being one; (ii) εi = (εi1, . . . , εid)�, where εi1, . . . , εid1

iid∼
N(0,1), εi,d1+1, . . . , εid

iid∼ 0.6t5. We set the dimension d = 5,10 and adjust the scale param-
eter to σ = 2.8

√
d .

Table 3 presents the distribution of K̂n − Kn with its MSE for the ECP procedure and
the COPSS in conjunction with the OP algorithm under Scenarios (i)–(ii) with different con-
figurations of (n, d). In terms of the probability of correct identification, the ECP performs
quite robust and better than our approach when n is relatively small, while it is clear that the
performance of the COPSS will significantly improve, even outperforms the ECP, when the
sample size is doubled. In fact, the ECP can be also viewed as a “data-driven” procedure from
the aspect of determining the number of change-points because it uses a permutation step to
approximate the distribution of the test statistic. Hence, the ECP is more computationally ex-
tensive than the COPSS. Figure S2 in the Supplementary Material reports how the run-time
(in seconds) changes with the sample size n = Cn ·2048 of both procedures under Scenario (i)
for one replication using an Inter Xeon E5-2650v4 CPU. Our method is significantly faster
and the advantage is more prominent as n increases.

4.2.2. Change-point in regression coefficients. Another widely studied example is iden-
tifying structural breaks in regression model; see Bai and Perron (1998, 2003) for example.
In this section, we perform the OP algorithm described by Bai and Perron (2003) in con-
junction with their BIC and our CV criterion. For convenience, we will use the OP algorithm
implemented in the R package “strucchange” for both criteria (for our CV criterion, this OP
algorithm is used in the training step). For the BIC, we consider the conventional penalty
“the number of parameters × logn.”

We investigate Model IV with CP(B), where n = 512,1024 and thus Kn = 6,7 respec-
tively. We consider the signal vector used in Model I-CP(A), that is, γ = (0,14.64,−3.66,

7.32,−7.32,10.98,−4.39,3.29,19.03,7.68,15.37) and let γk−1 denote the kth element of
γ . We set αi ≡ 0 and βi = γmod(J0+j,11) for τ ∗

j < i ≤ τ ∗
j+1, j = 0, . . . ,Kn, where J0 is an in-

teger randomly sampling from {1, . . . ,11} and mod(a, b) is the modulo operator. Hence, the
signals is allowed to be random for each simulated replication. The covariate Xi’s are gener-
ated as Xi ∼ √

3σX{Uniform(−1,1)+ δ} with δ = 0 and 1 corresponding to the “Zero mean”
and “Nonzero mean” situations, respectively, where σX = 0.5 SD(β is) and SD({x1, . . . , xn})
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FIG. 3. Probability of correct identification under Model IV-CP(B) when n = Cn · 2048.

denotes the sample standard deviation of {x1, . . . , xn}. Three scenarios for the error distri-

bution are considered here: (i) εi
iid∼ N(0,1), (ii) εi

iid∼ t3, and (iii) an AR(1) sequence with
coefficient 0.5 and N(0,1) innovations and the noises are standardized to have unit variance.
Finally, the scale parameter σ is chosen such that SD({X�

i βi}ni=1)/SD(σεis) = 3 to control
the signal-to-noise ratio.

Figure 3 depicts Pr(K̂n = Kn) for the BIC and our CV criterion under different scenarios.
First, the performances of both procedures are not sensitive to the mean of response (δ = 0
or 1). Second, the BIC with the default penalization magnitude performs very well with nor-
mal noises, while it is outperformed by the CV under Scenarios (ii)–(iii). This demonstrates
that the order of the penalization magnitude logn may not be sufficient large to avoid overfit-
ting under the heavy-tailed or correlated noises. Third, the detection accuracy of our proce-
dure usually gets improved as the sample size increases.

4.2.3. Changes in multinomial distributions. In this section, we consider an example of
MCP for multinomial distributions, where the variance of the observations depends on their
mean. Braun, Braun and Müller (2000) embed this problem into a quasi-likelihood formu-
lation and utilized the minimum deviance rule to fit the model. To determine the number of
change-points, they also adopted the BIC with a penalty ζn = 0.5nα . In particular, they con-
sidered the multinomial observations, that is, Model V in Table 1, and aimed to identify the
breaks causing the changes in the probability vectors qi’s. They recommend using α = 0.23
based on extensive simulations, which will be served as a benchmark for our comparison. For
the COPSS, we adopt their algorithm in the training step, that is, given a candidate model size
L, we obtain the estimated change-points by minimizing the corresponding quasi-deviance
on the training samples.

Model V with CP(B) is used here, where we fix n = 1000 and vary n0 over a range of
values 40, 60, 800, 100, and the number of outcomes (i.e., the dimension of qi’s) takes value
in 2, 4, 10. Under CP(B), Kn = 7 and the locations of change-points vary from replica-
tion to replication. We follow the mechanism in Braun, Braun and Müller (2000) to gen-
erate qi’s. For each replication, the initial mean vector q = (q1, . . . , qd)� was obtained by
normalizing a set of uniform deviates, that is, qk = Uk/

∑d
l=1 Ul for k = 1, . . . , d , where

Uk ∼ Uniform(0,1). Jumps were made on the logistic scale, and the resulting vectors are
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FIG. 4. Probability of correct identification against the number of experiments n0 under Model V-CP(B).

normalized. To be specific, a new mean vector, say q′
k = (q ′

1, . . . , q
′
d)�, was obtained by

normalizing expit(logitqk + U ′
k) for k = 1, . . . , d , where U ′

k ∼ Uniform(−J,J ), logit is the
logistic transform, and expit is its inverse. We specify the jump size J = 1.2/

√
d .

Figure 4 plots the probability Pr(K̂n = Kn) against the number of experiments n0 for the
BIC and our CV criterion under different number of outcomes, which again indicates that the
BIC procedure is sensitive to the model variation but the performance of the COPSS (labelled
as CV in Figure 4) in methodology is relatively stable.

4.3. Extensions.

4.3.1. MCP for nonparametric models. Here we consider the nonparametric MCP set-
ting as described in Section 3.3.2. Zou et al. (2014) proposed a nonparametric maximum like-
lihood approach, NMCD, which used the BIC in conjunction with the OP algorithm to deter-
mine the number of change-points and they recommended using a penalty ζn = (logn)2.01/2.
Later, Haynes, Fearnhead and Eckley (2017) showed how the PELT can be applied to the
NMCD and proposed the ED-PELT algorithm. The authors also pointed out that “the PELT
requires a penalty to avoid under/over-fitting the model which can have a detrimental effect on
the quality of the detected change-points.” They then suggested using the CROPS algorithm
(Haynes, Eckley and Fearnhead (2017)), which performs many PELTs for penalty values
across a continuous range. In Haynes, Fearnhead and Eckley (2017), they used a “graphical”
approach suggested by Lavielle (2005) in order to choose the best segmentation, which re-
mains heuristic. In what follows, we show that the COPSS with the criterion (11) could be
helpful in this case. Specifically, we apply the idea as illustrated in Section 3.3.1 to specify the
optimal penalty values by running the ED-PELT over a range of candidate values, denoted as
ED-PELT-CV. For comparison, we use the ED-PELT (the R-package “changpoint.np”) with
the penalty terms ζn1 = 2 logn and ζn2 = (logn)2.01/2 as benchmarks (Haynes, Fearnhead
and Eckley (2017)).

For Model VI, we consider a simple substitution by adopting similar settings in Model I.
The change-points generation mechanism is taken as CP(A) with Kn = 11, and the sample
size n is chosen to be n = Cn ·1000 over a range of values Cn = 1, . . . ,10. We further specify
the signal function as what we used in Model I, and generate the noises as (i) independent
normal or (ii) AR(1) sequence with coefficient 0.5 and (χ2

1 − 1)/
√

2 innovations. The scale
parameter σ is specified so that SD(θis)/SD(σεis) = 1.

Figure 5 depicts the quantity Pr(K̂n − Kn) against the sample size n for the ED-PELT-CV
and the ED-PELT with two penalties. The ED-PELT with 2 logn penalty does not perform
well as it appears to be too small to avoid underfitting. The penalty ζn2 can provide accurate
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FIG. 5. Probability of correct identification against the sample size n under Model VI-CP(A), where ED-PELT-1
and ED-PELT-2 stand for the ED-PELT with penalties ζn1 and ζn2 respectively.

identification with the independence errors, but it is not an ideal one in the autoregressive
case. The ED-PELT algorithm combined with the CV procedure performs reasonably well in
most cases, and outperforms the benchmarks by a quite large margin when the independence
assumption is violated, which again demonstrates its adaptiveness in practice.

4.3.2. Changes for correlated sequences. As a final simulation example, we investigate
the performance of our modified CV criterion suggested in Section 3.3.3 for cases when
unknown correlations exist. To implement the localizing algorithm, we consider the SaRa
procedures, that is, using simple local two-sample mean test-statistics. The bandwidth h in
SaRa is chosen as h = �log(n)�. Once obtaining the set of the most influential points O,
we apply the OP algorithm in conjunction with our CV criterion (Table 1) to identify the
number of change-points. We name the above procedure as “SaRa-OP-CV.” As a benchmark,
we also apply the SaRa with h = �log(n)� directly to identify the best model, whose size is
determined by the BIC with the penalty ζn = logn. This procedure is named as “SaRa-BIC.”

Model VII with CP(A) is considered here, where we vary the sample size n = Cn · 2048
over a range of values Cn = 5,10,15,20. The signal function θi is as the same as in Model I
again, and the error ε is specified as ARMA(1,1) with parameters (φ,ϕ) and innovations
ε ∼ N(0, σ 2

ε ). The scale parameter σ is specified such as SD(θis)/SD(σεis) = 1. Four sce-
narios for the parameters (φ,ϕ,σε) are considered: (i) (0.9,0.5,0.30), (ii) (−0.9,0.5,0.74),
(iii) (−0.9,−0.5,0.30) and (iv) (0.9,−0.5,0.74) such that Var(εi) ≈ 1.

Figure 6 presents the boxplot of K̂n − Kn against the sample size n = Cn · 2048 for the
SaRa-BIC and the SaRa-OP-CV procedures under Scenarios (i)–(iv), from which we observe
that the SaRa-BIC performs unstably and tends to overestimate the number of change-points
except under Scenario (iii). In contrast, our SaRa-OP-CV procedure yields estimates fluctu-
ating around the true number of change-points, and the variation significantly reduces as the
sample size n increases.

4.4. Real-data examples. Here we revisit two examples appeared in the literature for
illustration. The first dataset, FTSE100, is contained in the R package “changepoint,” which
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FIG. 6. Boxplot of K̂n − Kn against the sample size n = Cn · 2048 for the SaRa-BIC and the SaRa-OP-CV
procedures under Scenarios (i)–(iv) of Model VII.

gives the daily returns of the UK FTSE 100 index from the Apr. 2, 1984 until Sep. 13, 2012.
Our interest is to detect any changes in the variance. We first implement the PELT method
with two penalty values ζn1 = logn and ζn2 = 2 logn which are two default values in the
“changepoint” package. The estimated number of change-points are, 80 and 32, respectively,
which differ much. We then run the PELT over a sequence of penalty values combined with
our CV procedure. By specifying the penalty yielding the minimum squared prediction error,
we obtain an estimate of the number of change-points as 30, which is quite close to the
estimate given under the penalty ζn2.

The second one is the example in Zou et al. (2014), where the authors considered detecting
possible changes in the proportion of the G + C composition of a human chromosome se-
quence. The ED-PELT algorithm with a penalty ζn = (logn)2.1/2 identifies 40 change-points,
while the COPSS procedure detects 37 change-points. By further examining the prediction
error in our CV criterion, we found the errors under the models with 37 and 40 candidate
change-points are quite close. These two examples suggest that the COPSS is indeed able to
provide a practical guide to determine the change-point number if no knowledge about the
data is available.

5. Concluding remarks. Determination of the number of change-points is a long-
standing problem. This paper proposes a CV-based procedure, COPSS, to select the number
of change-points under a unified framework. Interestingly, the COPSS is shown to be consis-
tent under mild conditions, and thus it could serve as a useful alternative to the classical BIC
or ad-hoc graphical approaches in practice. We conclude the article with three remarks. First,
our unified framework is developed using the score function. Though it is well recognized that
in many cases the score- and likelihood- (loss-) based methods are approximately equivalent,
the former may be sub-efficient especially when some nuisance parameters present. Thus, it is
of interest to thoroughly compare the finite-sample performance of the proposed method with
the likelihood-based method under some cases that the computation of β̃(Zτj+1

τj )’s is stable
and fast. Second, our numerical results show that the CV procedure may also work well under
large-dimensional or autocorrelated scenarios. Theoretical investigation is another interesting
topic for future study. Third, though the COPSS procedure is developed under the parametric
framework (1), some preliminary results given in the Supplementary Material show that it is
also applicable for the nonparametric regression with multiple change-points (or called jump
detection) (Loader (1996), Müller and Stadtmüller (1999)) in which the model is nonstation-
ary within each segment (Wu and Zhao (2007)). Asymptotic studies on the consistency of the
COPSS in such cases are desired.
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APPENDIX: PROOFS

Let {x,x1, . . . ,xn} and {y,y1, . . . ,yn} be two sets of d-dimensional vectors. Denote by
TL and T̃

L̃
two sets of L and L̃ points, respectively, as defined at the end of Section 1. We

introduce Sxy(TL;M) = ∑L
l=0 Rxy(τl, τl+1;M), where for each l = 0, . . . ,L

Rxy(τl, τl+1;M) =
τl+1∑

i=τl+1

(xi − x̄τl ,τl+1)
�M(yi − ȳτl ,τl+1).

By further introducing #l more points in the sub-interval (τl, τl+1), say TL,l = (τl,1, . . . , τl,#l
),

we extend the definition of Rxy to Rxy(τl,TL,l, τl+1;M) = ∑#l

k=0 Rxy(τl,k, τl,k+1;M)

with the convention of τl,0 = τl and τl,#l+1 = τl+1. Moreover, define Sxy(TL ∪ T̃
L̃
;M) =

Sxy(sort(TL ∪ T̃
L̃
);M). Note that S2

x = Sxx and R2
x = Rxx. Lastly, for any point τ ∈ (l, r),

denote x̃τ
l,r =

√
(τ−l)(r−τ)

r−l
(x̄l,τ − x̄τ,r ).

For notational convenience, we note that our estimation procedure can be reformulated as
follows. Suppose we have two independent sets of d-dimensional observations {O1, . . . ,On}
and {E1, . . . ,En} collected from the following multiple change-point model:

Oi = μ∗
j + �∗

j
1/2Ŭi ,

Ei = μ∗
j + �∗

j
1/2V̆i , i = τ ∗

j + 1, . . . , τ ∗
j+1, j = 0, . . . ,Kn,

where Ŭ1, . . . , Ŭn, V̆1, . . . , V̆n are independent standardized noises satisfying E(Ŭ1) = 0 and
Var(Ŭ1) = I, and Ŭτ∗

j +1, . . . , Ŭτ∗
j+1

, V̆τ∗
j +1, . . . , V̆τ∗

j+1
are identically distributed for each j =

0, . . . ,Kn. Further let θ i = μ∗
j , Ui = �∗

j
1/2Ŭi and Vi = �∗

j
1/2V̆i for i = τ ∗

j + 1, . . . , τ ∗
j+1,

j = 0, . . . ,Kn. Given L, let T̂L = (τ̂L,1, . . . , τ̂L,L) be the estimated change-points based on
{O1, . . . ,On}, the corresponding validation error on {E1, . . . ,En} can be formulated as

Err(L) =
L∑

l=0

τ̂L,l+1∑
i=τ̂L,l+1

(Ei − Ōτ̂L,l ,τ̂L,l+1)
�Wn(Ei − Ōτ̂L,l ,τ̂L,l+1)

= S2
E(T̂L;Wn) − S2

U(T̂L;Wn) − S2
V(T̂L;Wn) + 2SUV(T̂L;Wn)

+
n∑

i=1

(Ui −Vi )
�Wn(Ui −Vi ).

We will suppress the dependence on Wn, which should not cause any confusion. To make the
notation more readable, we let i index the observations, j the true change-points, and l the
candidate change-points. If j or l has already been used in the former context, we choose k

to be a substitution.
Before we present the proof of Theorem 1, we first state some useful lemmas.

LEMMA 1. Suppose Ŭ, Ŭ1, . . . , ŬN are i.i.d. such that E(Ŭ) = 0. If E(‖Ŭ‖2m) < ∞ for
some positive integer m ≥ 1, then as N → ∞,

max
0≤k1<k2≤N

(k2 − k1)‖ ¯̆Uk1,k2‖2 = Op

(
N2/m)

.

LEMMA 2 (Multivariate Darling–Erdős theorem). Suppose Ŭ, Ŭ1, . . . , ŬN are i.i.d. such
that E(Ŭ) = 0 and Var(Ŭ) = I. If E(‖Ŭ‖2+α) < ∞ for some α > 0, then

lim
N→∞ Pr

{
aN max

1≤k≤N
k1/2‖ ¯̆U1,k‖ − bd,N ≤ t

}
= exp

{− exp(−t)
}
,
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for all t , where aN = √
2 log logN , bd,N = 2 log logN + d/2 log log logN − log{�(d/2)}

and �(·) is the Gamma function.

LEMMA 3. Suppose Ŭ, Ŭ1, . . . , ŬN are i.i.d. such that E(Ŭ) = 0 and Var(Ŭ) = I. If
E(‖Ŭ‖3) < ∞, then

max
1≤k1<k2≤N

(k2 − k1)
1/2‖ ¯̆Uk1,k2‖�

√
logN.

Lemma 1 was obtained by Yao and Au (1989) under the univariate case, which can be eas-
ily extended to this multivariate version. Lemma 2 was obtained by Horváth (1993), which
extends the one-dimensional Darling–Erdős theorem in Darling and Erdös (1956). As a corol-

lary, we conclude that max1≤k≤N k‖ ¯̆U1,k‖2 = 2 log logN{1 + op(1)}. Lemma 3 presents the
lower bound for the terms in Lemma 1, whose proof is deferred in the Supplementary Ma-
terial. We will repeatedly use the above facts in the proofs of the following lemmas and
theorems. The proofs of Lemmas 4 and 5 are also given in the Supplementary Material.

LEMMA 4 (Variation on E). Suppose Assumptions 1–3 hold.

(i) For any T̂L with L < Kn,

S2
E
{
T̂L ∪ T ∗

Kn
\τ ∗

j ∪ {
τ ∗
j − ρn

} ∪ {
τ ∗
j + ρn

}} − S2
E
(
T ∗

Kn

)
≥ λn

8
ωn min

1≤j≤Kn

∥∥μ∗
j−1 − μ∗

j

∥∥2{
1 + op(1)

}
,

where ρn = λn/4.
(ii) For any T̂L with L ≥ 0, S2

E(T̂L) − S2
E(T̂L ∪ T ∗

Kn
) ≥ 0.

(iii) For any T̂L with L ≥ 0, S2
E(T ∗

Kn
) − S2

E(T̂L ∪ T ∗
Kn

) = Op(Lωnσ).

(iv) For any T̂Kn , S2
E(T̂Kn) − S2

E(T ∗
Kn

) = op(ωnσ log logλn).

LEMMA 5 (Variation on U). Suppose Assumptions 1–3 hold.

(i) For any T̂L with L < Kn, S2
U(T ∗

Kn
) − S2

U(T̂L ∪ T ∗
Kn

) = Op(Knωnσλ
2/m
n ) and

S2
U(T̂L) − S2

U(T̂L ∪ T ∗
Kn

) = Op(Knωnσ log logλn).

(ii) For any T̂Kn , S2
U(T ∗

Kn
) − S2

U(T̂Kn ∪ T ∗
Kn

) = Op(Knωnσ log log δ0,n) and S2
U(T̂Kn) −

S2
U(T̂Kn ∪ T ∗

Kn
) = Op(Knωnσ log log δ0,n).

(iii) For any T̂L with L = Kn + q and q ≥ 1, then S2
U(T̂L) − S2

U(T̂L ∪ T ∗
Kn

) =
ωnσ {op(log logλn) + Op(Kn log log δq,n)}.

PROOF OF THEOREM 1. For any L, we observe that

Err(L) − Err(Kn) = {
S2
E(T̂L) − S2

E(T̂Kn)
} + {

S2
U(T̂Kn) − S2

U(T̂L)
}

+ {
S2
V(T̂Kn) − S2

V(T̂L)
} + 2

{
SUV(T̂L) − SUV(T̂Kn)

}
.

It suffices to show that for any L 
= Kn, Pr{Err(L) − Err(Kn) > 0} → 1 as n → ∞. This can
be revealed by demonstrating the following facts.

Fact (A). If L < Kn, then:

(a) S2
E(T̂L) − S2

E(T̂Kn) ≥ λn/8ωn min
1≤j≤Kn

∥∥μ∗
j−1 − μ∗

j

∥∥2{
1 + op(1)

};
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(b) S2
U(T̂Kn) − S2

U(T̂L) = Op

(
Knωnσλ

2/m
n

);
(c) S2

V(T̂Kn) − S2
V(T̂L) = Op(Knωnσ);

(d) SUV(T̂L) − SUV(T̂Kn) = Op

(
Knωnσλ

2/m
n

)
.

Fact (B). If L = Kn + q with q ≥ 1, then:

(a) S2
E(T̂L) − S2

E(T̂Kn) = a nonnegative term + Op(Knωnσ)

+ op(ωnσ log logλn)

(b) S2
U(T̂Kn) − S2

U(T̂L) = S2
U
(
T ∗

Kn

) − S2
U
(
T̂L ∪ T ∗

Kn

) + op(ωnσαq,n);
(c) S2

V(T̂Kn) − S2
V(T̂L) = Op(Knωnσ);

(d) SUV(T̂L) − SUV(T̂Kn) = op

{
S2
U(T̂L) − S2

U(T̂Kn)
}
.

Verification of Fact (A). To show (a), consider the following identity:

S2
E(T̂L) − S2

E(T̂Kn) = {
S2
E(T̂L) − S2

E
(
T ∗

Kn

)} − {
S2
E(T̂Kn) − S2

E
(
T ∗

Kn

)}
.

We observe that S2
E(T̂L) ≥ S2

E{T̂L ∪ T ∗
Kn

\τ ∗
j ∪ {τ ∗

j − ρn} ∪ {τ ∗
j + ρn}}. By Lemma 4(i), we

have

S2
E(T̂L) − S2

E
(
T ∗

Kn

) ≥ λn

8
ωn min

1≤j≤Kn

∥∥μ∗
j−1 − μ∗

j

∥∥2{
1 + op(1)

}
.

Then by Lemma 4(iv), (a) follows. (b) follows from Lemma 5(i)–(ii) that

S2
U(T̂L) − S2

U(T̂Kn) = {
S2
U(T̂L) − S2

U
(
T ∗

Kn

)} − {
S2
U(T̂Kn) − S2

U
(
T ∗

Kn

)}
= Op

(
Knωnσλ

2/m
n

)
.

(c) can be obtained as a corollary of Lemma 4 and to verify (d), we just need to notice the
following fact:

SUV(l, r) − SUV(l, τ1, . . . , τL, r)

= ∑
0≤l1<l2≤L

Nτl1 ,τl1+1 + Nτl2 ,τl2+1

r − l
Ũ�

τl1 ,τl1+1WnṼτl2 ,τl2+1

and Ũ�WnṼ≤ (Ũ�WnŨ+ Ṽ�WnṼ)/2.

Verification of Fact (B). By Lemma 4(ii)–(iv), (a) holds. By Lemma 5(ii)–(iii) and As-
sumption 2, (b) holds. (c) can also be obtained as a corollary of Lemma 4. To verify (d), first
we can show that

SUV(T̂Kn) − SUV(T̂L) = {
SUV

(
T ∗

Kn

) − SUV
(
T̂L ∪ T ∗

Kn

)} + op(ωnσαq,n),

by using arguments similar to those in the verification of (b). By the assumption that
S2
U(T ∗

Kn
) − S2

U(T̂L ∪ T ∗
Kn

)� ωnσαq,n, it suffices to show that

SUV
(
T ∗

Kn

) − SUV
(
T̂L ∪ T ∗

Kn

) = op

{
S2
U
(
T ∗

Kn

) − S2
U
(
T̂L ∪ T ∗

Kn

)}
.

In fact, by the Cauchy–Schwarz inequality,∣∣SUV
(
T ∗

Kn

) − SUV
(
T̂L ∪ T ∗

Kn

)∣∣
≤ {

S2
U
(
T ∗

Kn

) − S2
U
(
T̂L ∪ T ∗

Kn

)}1/2{
S2
V
(
T ∗

Kn

) − S2
V
(
T̂L ∪ T ∗

Kn

)}1/2
.
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Hence the fact holds as {S2
U(T ∗

Kn
) − S2

U(T̂L ∪ T ∗
Kn

)}/(Knωnσ) → ∞.

Finally, according to Facts (A)–(B), we have, with an overwhelming probability, K̂n = Kn.
�

PROOF OF THEOREM 2. First, assume q ≥ 2. For each j = 0, . . . ,Kn, let τj and τj ′ be

any points such that τ ∗
j < τj < τj ′ < τ ∗

j+1 and T (j)
q = {τj } ∪ {τj ′ } ∪ Tq−2 where Tq−2 is a

set of q − 2 points satisfying that each point is located outside the interval [τ ∗
j , τ ∗

j+1]. By the

definition of OP algorithm, we observe S2
O(T̂L) ≤ min0≤j≤Kn minτ∗

j <τj<τj ′<τ∗
j+1

S2
O(T ∗

Kn
∪

T (j)
q ). We observe that

S2
U
(
T̂L ∪ T ∗

Kn

) = S2
O

(
T̂L ∪ T ∗

Kn

) ≤ S2
O(T̂L)

≤ min
0≤j≤Kn

min
τ∗
j <τj<τj ′<τ∗

j+1

S2
O

(
T ∗

Kn
∪ T (j)

q

)
= min

0≤j≤Kn

min
τ∗
j <τj<τj ′<τ∗

j+1

S2
U
(
T ∗

Kn
∪ T (j)

q

)
.

Then, for any j and the corresponding any τj and τj ′ ,

S2
U
(
T ∗

Kn

) − S2
U
(
T̂L ∪ T ∗

Kn

)
≥ S2

U
(
T ∗

Kn

) − S2
U
(
T ∗

Kn
∪ T (j)

q

)
≥ ωnσ

{
R2

Ŭ

(
τ ∗
j , τ ∗

j+1
) −R2

Ŭ

(
τ ∗
j , τj , τj ′, τ ∗

j+1
)}

≥ ωnσ
{
(τj ′ − τj )‖ ¯̆Uτj ,τj ′ ‖2 − (

τ ∗
j+1 − τ ∗

j

)‖ ¯̆Uτ∗
j ,τ∗

j+1
‖2}

.

Hence, by Lemma 3, S2
U(T ∗

Kn
) − S2

U(T̂L ∪ T ∗
Kn

) � ωnσ log(τ ∗
j+1 − τ ∗

j ) for any j . And by
the assumption that lim infn→∞(ωnσ )/(ωnσ) > 0, the conclusion follows. If q = 1, we can
similarly show that

S2
U
(
T ∗

Kn

) − S2
U
(
T̂L ∪ T ∗

Kn

) ≥ ωnσ max
0≤j≤Kn

max
τ∗
j <τ<τ∗

j+1

∥∥ ˜̆Uτ
τ∗
j ,τ∗

j+1

∥∥2

� ωnσ log logλn,

by using Lemma 2, which complete the proof.
For binary segmentation algorithm, the detection procedure is nested and thus

S2
U
(
T ∗

Kn

) − S2
U
(
T̂L ∪ T ∗

Kn

) ≥ S2
U
(
T ∗

Kn

) − S2
U
(
T̂Kn+1 ∪ T ∗

Kn

)
.

Again, we have

S2
U
(
T̂Kn+1 ∪ T ∗

Kn

) = S2
O

(
T̂Kn+1 ∪ T ∗

Kn

) ≤ S2
O(T̂Kn+1).

For each j = 0, . . . ,Kn, let τj be any point such that τ ∗
j < τj < τ ∗

j+1. By the construction of
the algorithm, we know that

S2
O(T̂Kn+1) ≤ min

0≤j≤Kn

min
τ∗
j <τj<τ∗

j+1

S2
O(τj ∪ T̂Kn).

We can similarly show that

S2
O(τj ∪ T̂Kn) = S2

O
(
τj ∪ T̂Kn ∪ T ∗

Kn

) + op(ωnσ log logλn)

= S2
U
(
τj ∪ T̂Kn ∪ T ∗

Kn

) + op(ωnσ log logλn).
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It follows that

S2
U
(
T ∗

Kn

) − S2
U
(
T̂Kn+1 ∪ T ∗

Kn

)
≥ max

0≤j≤Kn

max
τ∗
j <τj<τ∗

j+1

{
S2
U
(
T ∗

Kn

) − S2
U
(
τj ∪ T̂Kn ∪ T ∗

Kn

)} + op(ωnσ log logλn)

≥ max
0≤j≤Kn

max
τ∗
j <τj<τ∗

j+1

{
S2
U
(
T ∗

Kn

) − S2
U
(
τj ∪ T ∗

Kn

)} + op(ωnσ log logλn)

≥ ωnσ max
0≤j≤Kn

max
τ∗
j <τ<τ∗

j+1

∥∥ ˜̆Uτ
τ∗
j ,τ∗

j+1

∥∥2 + op(ωnσ log logλn). �
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