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ABSTRACT

Feature screening plays an important role in the analysis of ultrahigh dimensional data. Due to complicated
model structure and high noise level, existing screening methods often suffer from model misspecification
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and the presence of outliers. To address these issues, we introduce a new metric named cumulative

divergence (CD), and develop a CD-based forward screening procedure. This forward screening method
is model-free and resistant to the presence of outliers in the response. It also incorporates the joint
effects among covariates into the screening process. With a data-driven threshold, the new method can
automatically determine the number of features that should be retained after screening. These merits
make the CD-based screening very appealing in practice. Under certain regularity conditions, we show that
the proposed method possesses sure screening property. The performance of our proposal is illustrated
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through simulations and a real data example. Supplementary materials for this article are available online.

1. Introduction

Regression analysis with ultrahigh dimensional covariates arises
in many scientific fields such as agriculture, biomedicine, eco-
nomics, finance, and genetics. It is desirable to identify the
important covariates that are truly influential to the response.
Traditional best subset selection methods are computationally
infeasible in the presence of ultrahigh dimensional covariates.
In the past two decades, many regularization methods, such
as LASSO (Tibshirani 1996), SCAD (Fan and Li 2001), adap-
tive LASSO (Zou 2006), and Dantzig selector (Candes and
Tao 2007), have been proposed for variable selection. However,
when the covariates are ultrahigh dimensional, Fan, Samworth,
and Wu (2009) stated that these regularization methods suffer
from the simultaneous challenges of computational expediency,
statistical accuracy, and algorithmic stability.

To deal with ultrahigh dimensionality, Fan and Lv (2008)
suggested screening out most unimportant covariates before
implementing an elaborative variable selection. They proposed
a sure independent screening procedure (SIS) for linear models
using marginal Pearson correlation between each covariate and
the response. Since the seminal work of Fan and Lv (2008),
feature screening has received extensive attention in the past
decade. In particular, Wang (2009) proposed a forward regres-
sion and Chang, Tang, and Wu (2013) suggested a marginal like-
lihood ratio test to screen out unimportant covariates in linear
models. Li et al., (2012) suggested replacing Pearson correlation
with Kendall’s rank correlation in the presence of outliers. Ma,
Li, and Tsai (2017) proposed quantile partial correlation for

feature screening in linear quantile regression. Fan and Song
(2010) and Xu and Chen (2014) suggested maximum likelihood
estimate and Mai and Zou (2013) proposed Kolmogorov-
Smirnov statistic to screen out unimportant features in
generalized linear models. Fan, Feng, and Song (2011) and He,
Wang, and Hong (2013) suggested nonparametric screening
procedures for additive models. Song, Yi, and Zou (2014)
proposed an independent screening procedure for varying
coefficient models. These model-based screening procedures
are effective if the working model is close to the underlying true
model, and may be very ineffective otherwise.

To minimize the impact of model misspecification, several
model-free screening methods have been developed. For
instance, Zhu et al. (2011) proposed a sure independent ranking
and screening procedure for a general class of index models.
Li, Zhong, and Zhu (2012) suggested distance correlation
for feature screening, which can simultaneously deal with
grouped covariates and multivariate response. Shao and Zhang
(2014) introduced martingale difference correlation to perform
screening as long as the mean function of the response is
concerned. These model-free methods are favored when we are
lack of prior information on the regression structure. However,
most of them are based on marginal correlations and are
vulnerable in the presence of outliers.

In the present work, we develop a model-free forward screen-
ing procedure for ultrahigh dimensional data. Forward screen-
ing is related to but much more challenging than conditional
screening. For conditional screening, the conditioning set is
fixed. However, for our proposed forward screening procedure,
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the conditioning set is iteratively updated in a data-driven fash-
ion. Moreover, existing conditional screening procedures are
model-based and there is little literature on model-free condi-
tional screening (Wang 2009; Xu and Chen 2014; Barut, Fan, and
Verhasselt 2016). To the best of our knowledge, how to design a
model-free forward screening has not been studied yet. We aim
to fill in this gap in this article. To this end, we first introduce the
concept of cumulative divergence (CD), a new correlation met-
ric to characterize functional dependence. We show that the CD
is robust to the presence of outliers in the conditioning variable.
We further propose a CD-based forward screening procedure.
At each step of the forward screening, a new covariate will be
added to an active index set based on its conditional CD with
the response. This procedure stops when the conditional CD of
all remaining covariates is less than a certain threshold. Com-
pared with marginal screening methods, the forward screening
incorporates the joint correlation among the covariates. With a
data-driven threshold, our proposal can adaptively determine
the number of features that should be retained after screening.
Therefore, it is convenient for implementation without ad hoc
tuning steps. Due to its robust property, our proposal performs
well even when the underlying true model is misspecified. It is
also robust in the presence of outliers. This appealing property
makes the CD-based forward screening attractive for handling
ultrahigh dimensional noisy data. Under some regularity con-
ditions, we show that our forward screening method possesses
the sure screening property in the terminology of Fan and Lv
(2008). We further demonstrate the finite sample performance
of the proposed procedures through simulations and a real data
example.

We summarize the major contributions of this paper as fol-
lows. (1) The proposed forward screening approach is distin-
guished from marginal screening approaches in that the joint
correlations among the covariates are taken into account by the
proposed forward screening procedure and yet are ignored by
the marginal screening methods (Zhu et al. 2011; Li, Zhong, and
Zhu 2012). (2) The proposed forward screening procedure is
model-free, and hence robust to model misspecification. Thus,
the proposed procedure is different from existing model-based
forward regression and conditional screening methods (Wang
2009; Xu and Chen 2014; Barut, Fan, and Verhasselt 2016). This
model-free property is very appealing in ultrahigh dimensional
data analysis, especially when we are often lack of information
on the underlying regression structure. (3) We propose the
CD to quantify deviation from mean independence. The CD is
robust to the presence of outliers in the conditioning variable, is
thus different from the martingale difference correlation (Shao
and Zhang 2014). Our proposed CD-based forward screening
approach inherits this robustness property and is robust to the
presence of outliers in the response.

This paper is organized as follows. In Section 2, we introduce
the notion of CD and study its properties. In Section 3,
we propose a model-free forward screening procedure and
establish its sure screening property. In Section 4, we assess the
finite sample performance of our proposed forward screening
procedure through comprehensive numerical studies. Some
concluding remarks are given in Section 5. All technical
details are relegated to the appendix and a supplementary
document.

2. The Cumulative Divergence

In each step of the forward screening procedure to be developed,
we have to determine whether a covariate should be selected
through testing whether the conditional mean function of the
response variable is independent of this covariate. This moti-
vates us to start with a simplified problem by testing mean
independence that

Hy : E(Y | X) = E(Y) almost surely versus H; : otherwise.
(1)

Let ()NC, ?) be an independent copy of (X,Y). We assume
var(X) > 0and 0 < var(Y) < oo throughout. We do not
require var(X) < oo. Let © < " stand for “the statements
on both the left- and the right-hand sides are equivalent," and
supp(X) stand for the support of the conditioning variable X.
We first note that

E(Y | X) = E(Y) almost surely
< E(Y | X < x9) = E(Y), forall xg € supp(X)
& cov{Y, 1(X < x9)} = 0, forall xp € supp(X)
& E[cov?]Y,1(X < X) | X}] = 0. (2)

This motivates us to define the cumulative covariance (CCov)
and the CD as follows.

Definition 2.1. Assume var(X) > 0and 0 < var(Y) < oo.
The cumulative covariance, denoted CCov(Y | X), and the CD,
denoted CD(Y | X), between random variables X and Y are
defined, respectively, by

def

CCov(Y | X) Z E[cov*{V,1(X < X) | X}] and  (3)

CD(Y | X) £ CCov(Y | X)/var(Y). (4)

The definition of CD allows for var(X) = oo, indicating that

the distribution of X can be heavy tailed. Since the rank of X is

used in the definition of CCov(Y | X), this also indicates that

CD(Y | X) is robust to outliers in the conditioning variable X.

The following theorem states that the CD possesses several other
appealing properties.

Theorem 1. The CD has the following properties.

1. Assume var(X) > 0and 0 < var(Y) < oo, then 0 < CD(Y |
X) <1/4and CD(Y | X) = Oifand onlyif E(Y | X) = E(Y)
almost surely. In addition, CD(X | Y) = CD(Y | X) = 0if
F(y | X) = F(y) forall y € R, where F(y | X) = pr(Y < y |
X)and F(y) = pr(Y < y),fory € R.

2. For a,b € R with a # 0, and an arbitrary strictly monotone
transformation M(X), CD(Y | X) = CD{aY + b | M(X)}.

3. If X and Y are jointly normal with Pearson correlation p,
thenCD(Y | X) =CD(X | Y) = ,02/(2\/§7t). In particular,
CD(X | X) = 1/ (24/37).

4. Let X be an independent copy of X. If Y is normal
and all involved moments exist, CD(Y | X)/var(Y) =
E[E*{oF(X | Y)/0Y | X}].

The first assertion of Theorem 1 indicates that CD(Y | X) isa
useful measure to detect whether the conditional mean function
of Y depends on X functionally. In particular, CD(Y | X) = 0
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Figure 1. The power curves of the Pearson correlation test (dashed line marked with circles), the Kendall’s rank correlation test (dotted line marked with plus signs), the
martingale difference correlation test (dotdash line marked with cross signs), the distance correlation test (longdash line marked with diamond signs) and the CD test (solid
line marked with star signs), respectively. In Figure 1 (A), both X and ¢ are standard normal. In Figure 1 (B), X follows Cauchy distribution and ¢ is standard normal.

if and only if E(Y | X) = E(Y). This ensures that the CD is a
useful tool to test (1). In general, CD(Y | X) # CD(X | Y) even
if var(X) = var(Y). If X and Y are independent, then CD(Y |
X) =CD(X | Y) = 0;and if X and Y are jointly normal, CD(Y |
X)=CDX | V).

The second assertion of Theorem 1 indicates that the CD is
invariant with respect to strictly monotone transformation of
X. This invariant property matches the fact that E(Y | X) =
E{Y | M(X)} and is, however, not shared by other popular cor-
relation measures, such as Pearson correlation, martingale dif-
ference (Shao and Zhang 2014), or distance correlation (Székely,
Rizzo, and Bakirov 2007; Székely and Rizzo 2009). This property
implies that the CD is robust against model misspecification and
the presence of outliers, because it merely uses the rank rather
than the observed values of X. The virtue of robustness makes
the associated forward screening procedure to be developed in
Section 3 potentially attractive for ultrahigh dimensional noisy
data.

The third assertion of Theorem 1 implies that, when X
and Y are jointly normal with Pearson correlation p and unit
variance, our proposed CD is closely related to other popular
correlation measures through p. In particular, Kendall’s rank
correlation (Huber and Ronchetti 2009) equals to 2 arcsin(p) /7,
the squared martingale difference correlation equals to p?{4(1—
V3 + 7/3)}712, and the squared distance correlation is
{,o arcsin(p) + (1 — p2)1/2 — parcsin(p/2) — (4 — p?)/? +
1}/(1 + /3 = V/3).

A sample version of the CD can be conveniently constructed.
Specifically, let {(X;, Y;),i = 1,...,n} be arandom sample from
the joint distribution of (X, Y). We estimate CCov(Y | X) and
CD(Y | X), respectively, by

CCov(Y | X)

n n ’

En3 Z |:Z(Yi -Y) {I(Xi < Xj) — F"(Xj)}:| and
j=1 i=1

CD(Y | X)

def

L CCov(Y | X)/var(Y), (5)

where

n n
YE ! Z Yi, Fu(X;) £l Z 1(X; < Xj) and
i=1 i=1

n
var(Y) = n! Z(Yi —-Y)>

i=1

To decide critical values in the test for the hypothesis (1), we
propose a wild bootstrap procedure as follows. Define ¢; =
Y; — Y and Y} = Y + ase;, where g; satisfies pr(a; = 1) =
pr(a; = —1) = 1/2. The wild bootstrap sample is {(X;, Y}),i =
1...,n}. We repeat the wild bootstrap procedure m times to

obtain (/ZI\)(I)(Y* | X),...,(/Zl\)(m)(Y* | X). Denote 1 the
(1 — &)-th quantile of {CD"(Y* | X),...,CD"™ (v* | X)}.
We reject Hy at the significance level « if @(Y | X) calculated
from the original sample {(X;, Y;),i = 1,...,n} is greater than
7 and accept Hy otherwise.

We conduct a simulation study to compare the finite-sample
performance of the CD with that of four commonly-used cor-
relation: Pearson correlation, rank correlation, distance corre-
lation and martingale difference correlation. We consider two
scenarios for generating the conditioning variable X. In the first
scenario X is standard normal and in the second scenario X
follows Cauchy distribution. Let Y = cexp(—X?) + &, where
& ~ N(0,1). We set ¢ = 0.0, 0.5, 1.0, 1.5 and 2.0. The null
hypothesis Hy in (1) holds true when ¢ = 0. We set the sample
size n = 100 and summarize the simulation results in Figure 1
when the significance level &« = 0.05.

It can be clearly seen from Figure 1 that the sizes of all
tests are close to the significance level « = 0.05. Both
the Pearson correlation and the rank correlation test fail
to detect the nonmonotone mean dependence. The CD
test is much more powerful than both the martingale dif-
ference correlation test and the distance correlation test
when X follows Cauchy distribution. This simulated example
empirically confirms that the robustness property of the CD
test.
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3. A Forward Screening Procedure

In this section, we propose a model-free forward screening pro-
cedure based on the CD. This new forward screening procedure
inherits the appealing properties of the CD.

To ease subsequent presentation, we introduce the following
notations. Let Y be the response and x = (Xj, ..., Xp)" be the p-
dimensional covariate vector. Let F be a working index set and
F*¢beits complement. Both 7 and F* are subsets of {1,2,.. ., p}.

def

We define xr = {Xj, k € F} the covariate vector indexed by F
and X 7 £ var(xr). Let | F| stand for the cardinality of . We
assume throughout that E(x) = 0 for simplicity.

The goal of feature selection is to identify the smallest index
set A such that

Y1l x| x4, (6)

where L stands for statistical independence. Model (6) implies
immediately that F(y | x) = F(y | x4), for y € R. Therefore,
identifying x 4 which satisfies model (6) is equivalent to seeking
for the smallest index set

def

A = {k:F(y|x) depends functionally on
XiforyeR, k=1,...,p}

Model (6) covers a wide variety of existing models. Interested
readers can refer to Section 2.1 of Zhu et al. (2011) for details.
We first note that model (6) ensures that Y Il X; | xx for
allk € F¢andall A € F. Therefore, given a working index
set F, assessing whether Xy, k € F°, is truly important for the
response variable Y amounts to testing the hypothesis that

Hy: Y 1L X | xF versus Hj : otherwise. (7)

The law of iterated expectations implies immediately that

E{Xy —EXk | x7) | Y} = E{EX | xF,Y) — EXx | xF) | Y}

Under Hy in (7), EXx | x7,Y) = EXr | xFr), and hence
E{Xx — E(Xx | x7) | Y} = 0. Under H; in (7), Xy is dependent
upon Y even when xr is given. Thus, it is reasonable to
expect that E(Xy | x7r,Y) # EXx | xr) and accordingly
E{Xx — E(Xx | x7) | Y} # 0. These, together with Theorem 1,
motivate us to use wg £ CD{Xx — E(Xx | xF) | Y} to test
).

To ensure that w7 has nontrivial power in test for (7), we
further assume that

Al.E{dF(y | x)/0Xy} # O for some y € R, forall k € A.

It is remarkable that (6) ensures that E{0F(y | x)/0Xyx} =
0forall y € R, andall k € A° This fact, together with
Assumption Al, ensures that the important and the unimpor-
tant covariates are separable, which is stated in Theorem 2.

Theorem 2. Under Hy in (7), we have wyr = 0. If we fur-
ther assume that x is normal and Assumption Al holds, then

min max wgF > 0.
F:FNA#D ke FNA

Theorem 2 guarantees that, if all the truly important covari-
ates have been selected into F already, then for any k € F*, we
have wy 7 = 0. However, if there are a few important covariates
that have not been found yet, that is, 7 N A # &, then there
must exist k € F° N A such that max wgr > 0. This

ke F*NA

motivates us to reject Hy in (7) when the sample version of

max g is sufficiently large.
ke FnA ! Y23t

How to estimate w7 is a nontrivial task because it involves
estimating E(Xx | xr). A fully nonparametric estimate of
E(Xx | xr) is apparently undesirable, especially when x £ is high
dimensional. In the present context, we assume that

A2.E(Xy | xF) = g7 (XF, Bk 7)> where g 7 is known and
By F is unknown.

We allow E(Xx | xr) to be a general parametric function.
When x follows elliptically contoured distribution, E(X) | x7)
is indeed a linear function of xr, for all k and F < {1,...,p}.
Examples of elliptically contoured distribution include multi-
variate normal distribution, multivariate t-distribution, sym-
metric multivariate Laplace distribution, and multivariate logis-
tic distribution, etc.

Let {(x;, Yi),i = 1,...,n} be a random sample from (x, Y),
where each covariate, for notational clarity, is assumed to be
marginally standardized to have zero mean and unit variance
in advance. To carry out the CD test for (7), we estimate wy
by

n n 2
OnF=n""* |:Z 1(Y; < Yj){Xi —gk|f(xif,ﬁkf)}] /
j=1 Li=1

n

> X - @iz By s

i=1

where By, is obtained through the nonlinear least squares.
That is,

n
By = argmin Y (X — gur(xiF By}’ (8)

KF =1
We reject Hy in (7) when @z is sufficiently large. Decid-
ing the critical value for the CD test amounts to studying
the asymptotic distribution of @y r. Let g,’cl F &7, Byr)
g,’c’l]_-(x_r, Bir) andgl/c’l/]_.(x;, By 7) be the first, the second and
the third derivatives of gy 7 (xz, By r) with respect to By r,
respectively. We denote gl/l,k\ (X7, By ) the I;-th component
ofg]/clf(x;, Bir)s gl/l/lz,k\]-‘(xf’ By 7) the (I1, 1)-th component
of gyr&xF,Byr) and g, =7, Byr) the (,h,53)-th
component ongl’f(x;, By 7). Let 87 < Xx — E(Xy | x7) and

C be a generic constant. We assume the following conditions.

(B1) There exists # > 0 such that p = ofexp(an”)} for any
a> 0.

(B2) For any working index set 7 C {1,2,...,p} and k € F¢,
EX) = GEG) ) = C Ellg jyr&xr Byr)l®) < G
gk 7 (xFs By )| < Grr(xF) with E[{G 7 (xF)}*] < G
18}, 477 Byr)l < Gip () with EHGr 7 ()} ]
=< Glg 1, jr &F> Byr)| = Gub i r (x7) with E[{Gyy1, 4 7
AN = Clgl 7 CF B < Gl (XF) with
E[{G]1[213)k|]:(x_7:)}4] < C,foralll}, b, 13 and ﬂkl}"

(B3) There exists ¢y such that ||ZJ;_-1||oo < ¢ for all p, where

Ao & mlax > |ajm| stands for the infinity norm of the

m
matrix A = (ay,).



Condition (B1) allows p to diverge exponentially faster than n.
Condition (B2) is widely used to study the asymptotic behavior
of nonlinear least-squares estimation. See, for example, Jennrich
(1969) and White (1981). This condition can be simplified
dramatically when gy 7 (x7, By ) is linear. Theorem 3 requires
condition (B3) holds true for | F| = o(n'/?). Many precision
matrices satisfy Condition (B3). In particular, if we denote
Z;-l = (0_1,m)|F|x|F| and let o_; 1, equal 1 if | = m and
rn otherwise, then this condition is satisfied as long as |r,| <
(co—D/(F|—1).If E;_-l is a banded or block-diagonal matrix
and each row has d nonzero entries, for example, o_1 j,, equals
lifl=m,rifl < |l —m| < dand 0if || — m| > d, condition
(B3) simply requires |r| < (co — 1)/(d — 1). Condition (B3)
can also be satisfied by many other sparse precision matrices. If

1. . -
37 is a power-decay matrix, say, 0_ 1 j = pp "

,for |pa| < 1,
condition (B3) is satisfied as long as (1 — ,o,lfl) < ¢o(1 — pp).
Condition (B3) is also implied by |Z7 ! < ¢o. Similar
conditions are also assumed in the literature. See, for example,
Mai, Zou, and Yuan (2012, pp. 34-35) and Bickel and Levina

(2008, p. 2580).

Theorem 3. In addition to Conditions (B1)-(B3), we further
assume | F| = o(n!/?).

1. Under Hy in (7), we have, wyr = 0 and pr(n@ku: <
q kiF) — pr(Qur <q) — 0, forany g € R*, where

o0
Qur =y )\j,ku:sz(l), ki F is defined in (B1), ij(l)s are
=1

independent x2(1) random variables, Aj k| F$ are nonnegative
constants that depend on the joint distribution of (Xi, x7, Y)
and E (Qk|_7:) =1

2. Under H; in (7) and if wyr > 0 for k € F*, we have
pr{nl/z(@ku: —wiF) < t} — pr (Tk|}- < t) — 0, for any
t € R, where Ty is a normal random variable with mean
zero and variance Ay F and Ay r is defined in (B3).

The condition | F| = o(n'/%) seems somewhat stringent. By
refining Assumption A2, such as E(Xy | xr) = gkr(X 2Bk r)
this condition can be weakened to | F| = o(n!/?). This condi-
tion is in line with that of Huber (1973), Fan and Peng (2004) and
Tan and Zhu (2018). We impose this condition because By, r is
unknown and has to be estimated from data. We do not impose
sparsit}i\assumption on By, r but we do require the convergence

rate of By = be fast enough to ensure the weak convergence of

@i 7. The requirement on §k| F can be met under the condition
that | F| = o(n'/%).

Theorem 3 shows that @y £ is root-n consistent under Hy and
n-consistent under Hy, indicating that the CD test has nontrivial
power in test for (7). We adopt the wild bootstrap procedure
introduced in Section 2 to determine critical values.

Next we adapt our proposed CD test for (7) with a working
index set F to a forward screening procedure for ultrahigh
dimensional feature selection in model (6). The rationale of our
proposed forward screening procedure is as follows. If Hp in (7)
is rejected, we update F with F U {k}, because Xj is possibly
influential for Y. With the updated F, we further consider
testing (7) until Hy is accepted for all k € F*. It is reasonable
to expect A € F when the forward screening procedure stops.
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To provide theoretical justification for our proposal, we assume
the following condition.

A3. There exist a positive constant C and @ € [0,1/2) such
that
. —w
FROALD keFina THT 7 cn ©)

Assumption A3 requires that the signal strength of the truly
important covariates, conditional on the covariates x 7 that have
already been selected, is strong enough to be detectable. It is also
justified in Theorem 2. This assumption is different from the
marginal signal assumptions used in the screening literature in
that the marginal signal strength is quantified through setting
the working index set F to be a null set. See, for example,
condition 3 in Fan and Lv (2008), condition E in Fan and Song
(2010), condition C in Fan, Feng, and Song (2011), condition
(Cl) in Zhu et al. (2011), and condition (C2) in Li, Zhong, and
Zhu (2012). It is generally required that the marginal signal
strength of all truly important covariates must be greater than
a certain threshold in the existing screening literature. By con-
trast, Assumption A3 quantifies the signal strength of the truly
important covariates conditional on the selected covariates xr,
which ensures that wyz plays a similar role as the regression
coefficients in linear models. Similar assumptions are also made
in theliterature. See, for example, condition (C3) in Wang (2009,
page 1513) and condition 1 in Barut, Fan, and Verhasselt (2016,
page 1270). These assumptions are generally regarded as mild
and reasonable.

To establish the sure screening property for the proposed
screening procedure, we further assume the following condi-
tions.

(B4) The cardinality of A satisfies |A| = on'>~ryfory €
(0,1/5].

(B5) Let M and v be two generic positive constants. Assume
that E|Xg|™ < m!M™ 2v/2forallm > 2,k =1,2,... ,D-
Assume in addition that E|gyr(xF,Boxr)|™ <

m!M™=2y/2 and E|gl/1)k‘]_-(x}-,ﬂ0)k|}.)|m < m!M"2v/2
forallm > 2, F € {1,2,...,p}and k € F*.

Assumption (B4) is also a technical condition and is closely
related to the assumption that | F| = o(#!/°) used in Theorem 3.
Condition (B5) is milder than the sub-Gaussian assumption
(Buldygin and Kozachenko 1980, Lemma 1).

Theorem 4. Suppose that Conditions (B1)-(B5) and Assump-
tion A3 are satisfied. If we further assume |F| = o(n'/?),
3/5—2w —1 > O0andsetv < Cn~" /2 in the forward screening
procedure, then pr (mil’l}‘:]—‘tﬁA#g MaXke Fen A Ok F > v) —
lasn — oo.

Theorem 4 ensures that the proposed procedure can retain
all important covariates with an overwhelming probability if
v is chosen properly. Such a desirable property is referred to
as the sure screening property. The CD is a robust correlation
metric, and our forward screening procedure is also robust to
model misspecification. Such merits are particularly appealing
for analyzing ultrahigh dimensional data in the absence of prior
knowledge of model structure and data quality. Unlike existing
model-free marginal screening methods, the proposed method
is a stepwise procedure, which incorporates joint correlation
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among ultrahigh dimensional features in the forward screening
process. It thus provides more reliable results in practice. With
a data-driven choice of v, the procedure adaptively determines
the number of features to be retained after selection. This makes
the implementation of our proposed forward screening method
practically convenient, since our proposal does not require addi-
tional ad hoc tuning steps.

We describe the algorithm for our proposed forward screen-
ing procedure as follows.

Step 1. Start with an initial index set F = @.
Step 2. For all k € ¢, calculate @y r. Denote k* =
argmax wy r. If Ops| 7 > v, update F with F U {k*}. The
keF¢
data-driven v will be determined as follows.

(2) Generate X+ = g7 (XiF, ﬂk*|f) + ad; ik 7 1=
1,2,...,n, where&k*u: Xijer gk*|]:(x,]:,ﬂk*‘]:) and
a; are independent and identically distributed random
weights satistying pr(a; = 1) = pr(a; = —1) = 1/2.
We calculate oy 7 = @{Xk* —E(Xj+ | xF) | Y} using
{(Xik*>xif) Yi)) i= 1) 2) I 1’[}

(b) Repeat the above wild boostrap procedure for B times to
obtain 5,((11;, ’23,((3]_—, cen EE,(CE)J_— Set v to be the (1 —a)-th

upper quantile of {ZT)\,(;)l 7> Zo\,(ﬁ)l Faeeos ED,EE‘) 7. We update

the working index set F with F U {k*} if &+ > v.

Step 3. Repeat Step 2 until no covariate can be added into the
working index set F.

Assumption A2 requires that the minimal signal strength
be greater than Cn~®, and Theorem 4 requires the cutoff v to
be smaller than one half of the minimal signal strength. These
requirements ensure that our proposal possesses the desirable
sure screening property. In practice, however, the magnitude of
minimal signal strength is generally unknown. Consequently,
how to choose an optimal cutoff v is not straightforward. To
put our proposed procedure into practice, at each step and for
each covariate, we choose o = 0.01 and set the cutoff to be the
99-th percentile of asymptotic null distribution of @y r in our
algorithm. This works satisfactorily in our numerical studies.

4. Numerical Studies
4.1. Simulations

In this section, we conduct Monte Carlo simulations to assess
the finite sample performance of the CD-based forward screen-
ing procedure. For convenience of presentation, we refer to our
proposed forward screening method as C-FS. We compare C-
FS with the following five competitors: the forward regression
designed for linear model by Wang (2009, FR), the least absolute
shrinkage and selection operator proposed by Tibshirani (1996,
LASSO), the sure independent ranking and screening procedure
proposed by Zhu et al. (2011, SIRS), the distance correlation
based sure independence screening procedure proposed by Li,
Zhong, and Zhu (2012, DC-SIS), and the Pearson correlation
based sure independence screening procedure proposed by Fan
and Lv (2008, SIS).

To determine the number of features to be retained after
screening, we use a BIC-type criterion for FR, as suggested

by Wang (2009). The model size (tuning parameter) of the
LASSO was chosen by 10-fold cross-validation. For SIRS, DC-
SIS and SIS, we follow the convention by retaining 1/ log(n)]
top ranked covariates into the screened model. It should be
noted that our C-FS algorithm automatically determines the
screening size with a wild bootstrap procedure.

We adopt the following criteria to evaluate the performance
of above methods.

1. Pina: With a given size, Pipq is the empirical probability that
an influential covariate is retained after screening.

2. P With a given size, Py is the empirical probability that
all the influential covariates are retained after screening.

3. FPR: Let A be the index set of the retained covariates and
A be the index set of truly influential covariates. The false
positive rate (FPR) is defined as I.A \ Al/|A¢], where A \A
is the index set of irrelevant covariates that are retained after
screening and | M| denotes the cardinality of the set M.

4. TPR: The true positive rate (TPR) is defined as |A NA|/|A|,
where A N A denotes the set of influential covariates that are
correctly retained after screening

We report both the mean and the standard errors of the FPR
and TPR values based on 500 repetitions. We set the sample size
n = 200, the covariate dimension p = 3000 and the bootstrap
times B = 1000.

Example 1. We generate data from a linear model Y = g'x +
coe, where B = (5,5,5,—15p1/2,0,...,0)", ¢ = 1ife ~
N(0,1) and ¢¢ = 0.1 if & ~ t(1). We consider the following
two scenarios to generate the covariate x = (X,. .. , Xp)T.

(1) The elliptical case: The covariate x is drawn from multi-
variate normal population with mean zero and covariance
matrix X = (0jj)pxp where oy = 1,i = 1,...,p, 0ig =
o4i = p/* fori #4,and ojj = p,fori # j,i # 4andj # 4.

(2) The nonelliptical case: Setx = > 12(var(z)) 2z — E(z)},
where X is defined in the first scenario, z = (Z;, . . . Zp)",

Zys are independent of each other and follow x2(2) distri-
bution.

In the above two scenarios, we set p to be 0.1,0.5 and 0.9,
respectively, to stand for small, moderate and high correlation.
This example was also used by Fan and Lv (2008) and Zhu et
al. (2011). The simulation results are summarized in Tables 1
and 2.

In this example, Xy is marginally independent of Y. It is
thus not surprising to observe from Table 2 that SIRS, DC-SIS
and SIS fail to retain Xy, as they consider only the marginal
effects. The performance of LASSO is decent for p = 0.1 and
e ~ N(0,1), but it deteriorates sharply as p increases. Both
FR and C-FS perform well when ¢ is normal. However, when
& ~ t(1) and x is elliptical, FR has an average TPR as low as 0.77
for p = 0.9. In this scenario, FR is also quite unstable in terms
of the large standard deviations. By contrast, the proposed C-FS
attains stable and satisfactory performance in all scenarios. The
simulation results when x follows nonelliptical distribution are
quite similar to those when x follows elliptical distribution.

Example 2. We consider three models where Y depends on x4
nonlinearly.
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Table 1. The mean and the standard errors of both the FPR and the TPR values based on 500 repetitions for Example 1.

p =0.1 p =05 p =09
€ Method FPR TPR FPR TPR FPR PR
Mean std Mean std Mean std Mean std Mean std Mean std
When x follows elliptical distribution
C-FS 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
FR 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
N, 1) LASSO 0.01 0.00 1.00 0.00 0.06 0.00 0.75 0.00 0.04 0.00 0.75 0.00
! SIRS 0.00 0.00 0.75 0.00 0.01 0.00 0.75 0.01 0.01 0.00 0.59 0.29
DC-SIS 0.00 0.00 0.75 0.00 0.01 0.00 0.75 0.02 0.01 0.00 0.58 0.29
SIS 0.00 0.00 0.75 0.00 0.00 0.00 0.75 0.00 0.01 0.00 0.60 0.28
C-FS 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
FR 0.00 0.00 0.90 0.29 0.00 0.00 0.90 0.29 0.00 0.00 0.77 0.42
{1 LASSO 0.00 0.00 0.84 0.35 0.03 0.02 0.63 0.27 0.02 0.02 0.52 0.34
SIRS 0.01 0.00 0.75 0.01 0.01 0.00 0.75 0.02 0.01 0.00 0.62 0.27
DC-SIS 0.01 0.00 0.75 0.04 0.01 0.00 0.74 0.06 0.01 0.00 0.59 0.28
SIS 0.01 0.00 0.72 0.14 0.01 0.00 0.71 0.16 0.01 0.00 0.51 0.33
When x follows nonelliptical distribution

C-FS 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
FR 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
N@©,1) LASSO 0.01 0.01 1.00 0.00 0.06 0.00 0.75 0.00 0.04 0.00 0.75 0.00
! SIRS 0.01 0.00 0.75 0.02 0.01 0.00 0.74 0.05 0.01 0.00 0.59 0.28
DC-SIS 0.01 0.00 0.75 0.02 0.01 0.00 0.74 0.05 0.01 0.00 0.59 0.27
SIS 0.01 0.00 0.75 0.02 0.01 0.00 0.74 0.04 0.01 0.00 0.62 0.25
C-FS 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
FR 0.00 0.00 0.94 0.21 0.00 0.00 0.93 0.21 0.00 0.00 0.85 0.30
£(1) LASSO 0.00 0.00 0.86 0.32 0.03 0.02 0.62 0.28 0.02 0.02 0.49 0.35
SIRS 0.00 0.00 0.75 0.00 0.01 0.00 0.74 0.05 0.01 0.00 0.57 0.29
DC-SIS 0.01 0.00 0.75 0.04 0.01 0.00 0.74 0.06 0.01 0.00 0.56 0.30
SIS 0.01 0.00 0.71 0.15 0.01 0.00 0.69 0.18 0.01 0.00 0.50 0.32

Table 2. The empirical probabilities Pj,q and P, based on 500 repetitions for Example 1.

p =0.1 p =05 p =09
Method
¢ Pind Pail Pind Pail Pind Pali
X X, X3 Xa ALL X X X3 Xa ALL X1 X X3 Xa ALL
When x follows elliptical distribution
C-FS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
N@©,1) LASSO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00
! SIRS 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.79 0.79 0.79 0.00 0.00
DC-SIS 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.76 0.77 0.78 0.00 0.00
SIS 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.81 0.80 0.81 0.00 0.00
C-FS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FR 0.90 0.90 0.90 0.89 0.89 0.90 0.90 0.91 0.90 0.89 0.77 0.77 0.77 0.77 0.76
t(1) LASSO 0.85 0.85 0.86 0.79 0.79 0.84 0.83 0.83 0.00 0.00 0.70 0.70 0.70 0.00 0.00
SIRS 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.83 0.82 0.83 0.00 0.00
DC-SIS 0.99 1.00 0.99 0.00 0.00 0.99 0.99 0.99 0.00 0.00 0.80 0.78 0.78 0.00 0.00
SIS 0.95 0.96 0.96 0.00 0.00 0.95 0.95 0.94 0.00 0.00 0.69 0.68 0.68 0.00 0.00
When x follows nonelliptical distribution
C-FS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
N0, 1) LASSO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00
! SIRS 1.00 1.00 1.00 0.01 0.01 0.99 0.99 0.99 0.00 0.00 0.78 0.80 0.80 0.00 0.00
DC-SIS 1.00 1.00 1.00 0.01 0.01 0.99 0.99 0.99 0.00 0.00 0.77 0.80 0.80 0.00 0.00
SIS 1.00 1.00 1.00 0.01 0.01 0.99 1.00 0.99 0.00 0.00 0.83 0.83 0.84 0.00 0.00
C-FS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FR 0.94 0.94 0.95 0.93 0.91 0.93 0.93 0.93 0.95 0.90 0.83 0.82 0.83 0.91 0.78
') LASSO 0.88 0.87 0.88 0.80 0.80 0.83 0.83 0.82 0.00 0.00 0.65 0.66 0.65 0.00 0.00
SIRS 1.00 1.00 1.00 0.00 0.00 0.99 0.99 0.99 0.00 0.00 0.76 0.76 0.76 0.00 0.00

DC-SIS 1.00 1.00 1.00 0.00 0.00 0.99 0.99 0.99 0.00 0.00 0.75 0.74 0.74 0.00 0.00
SIS 0.94 0.94 0.96 0.00 0.00 0.92 0.93 0.92 0.00 0.00 0.65 0.66 0.69 0.00 0.00
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Table 3. The mean and the standard errors of both the FPR and the TPR values based on 500 repetitions for Example 2.

x follows elliptical distribution

x follows nonelliptical distribution

Method e~N(@O1 e ~t(1) e ~N(@O,1) e ~t(1)
FPR TPR FPR TPR FPR TPR FPR TPR
Mean std Mean std Mean std Mean std Mean std Mean std Mean std Mean std
C-FS 0.01 0.00 0.98 0.06 0.01 0.00 0.98 0.07 0.01 0.00 0.97 0.07 0.01 0.00 0.98 0.07
FR 0.00 0.00 0.88 0.18 0.00 0.00 0.25 0.40 0.00 0.00 0.63 0.28 0.00 0.00 0.21 0.34
(@ LASSO 0.00 0.00 0.83 0.28 0.00 0.00 0.22 0.38 0.00 0.00 0.45 0.44 0.00 0.00 0.14 0.32
SIRS 0.01 0.00 0.90 0.10 0.01 0.00 0.86 0.09 0.01 0.00 0.98 0.07 0.01 0.00 0.97 0.08
DC-SIS 0.01 0.00 0.91 0.10 0.01 0.00 0.44 0.42 0.01 0.00 0.98 0.08 0.01 0.00 0.48 0.46
SIS 0.01 0.00 0.94 0.10 0.01 0.00 0.32 0.41 0.01 0.00 0.84 0.27 0.01 0.00 0.31 0.42
C-FS 0.00 0.00 0.98 0.06 0.00 0.00 1.00 0.03 0.00 0.00 0.99 0.04 0.00 0.00 1.00 0.02
FR 0.00 0.00 0.60 0.28 0.00 0.00 0.19 0.35 0.00 0.00 0.44 0.23 0.00 0.00 0.14 0.24
®) LASSO 0.00 0.00 0.54 0.42 0.00 0.00 0.17 0.35 0.00 0.00 0.15 0.29 0.00 0.00 0.04 0.17
SIRS 0.01 0.00 0.96 0.08 0.01 0.00 0.96 0.08 0.01 0.00 0.99 0.04 0.01 0.00 1.00 0.03
DC-SIS 0.01 0.00 0.98 0.06 0.01 0.00 0.41 0.46 0.01 0.00 0.96 0.14 0.01 0.00 0.39 0.46
SIS 0.01 0.00 0.93 0.15 0.01 0.00 0.29 0.41 0.01 0.00 0.60 0.30 0.01 0.00 0.22 0.33
C-FS 0.01 0.00 0.95 0.09 0.01 0.00 0.99 0.05 0.01 0.00 0.94 0.11 0.01 0.00 0.98 0.06
FR 0.00 0.00 0.89 0.12 0.00 0.00 0.48 0.40 0.00 0.00 0.88 0.14 0.00 0.00 0.49 0.39
© LASSO 0.00 0.00 0.96 0.09 0.00 0.00 0.43 0.42 0.00 0.00 0.93 0.12 0.00 0.00 043 0.42
SIRS 0.01 0.00 0.73 0.10 0.01 0.00 0.76 0.09 0.01 0.00 0.70 0.13 0.01 0.00 0.73 0.10
DC-SIS 0.01 0.00 0.72 0.11 0.01 0.00 0.74 0.12 0.01 0.00 0.69 0.12 0.01 0.00 0.70 0.13
SIS 0.01 0.00 0.73 0.10 0.01 0.00 0.54 0.29 0.01 0.00 0.72 0.11 0.01 0.00 0.53 0.28

(@) Y=X; 4+ 0.8X3 + 0.6X3 + 0.4X4 + 0.2 exp(X20 + coé).

(b) Y = X; + 0.8Xz + 0.6(Xs5 + 1)? + 0.4X3, + 0.2 exp(|X20 +
1| + ¢cpée).

(©) Y = B1(X1)Xz + B2(X1) X3 + B3(X1) Xy + B4(X1) X5 + coe.

In all three models, € and ¢j are generated in the same way as in
Example 1. In Example 2(a) and 2(b), we consider two scenarios
for generating x.

1. The elliptical case: The covariate x is drawn from multivariate
normal population with mean zero and covariance matrix
T = (0.5 .

2. The nonelliptical case: Set x = > V2(var(z)) "2z — E(z)},
where ¥ = (O.S‘i_j|)pxp, 2E (Zy,. .. »Zp)", Zxs are indepen-
dent and follow x2(2) distribution.

In Example 2(c), we generate U; and U, independently from
uniform distribution on [0, 1], and set X; = (U; + U,)/2,
LX) = 4(1 — X}), Bo(X1) = 3{l + sin2n X))}, B3 (X)) =
2{1 + (1 — X1)3/2}, and B4(X1) = exp(|X1]). Define X =
(Zx + 3U1)/4, k = 2,3,...,p, where Z;s are independently
drawn from (1) the standard normal distribution in the elliptical
case and (2) the x2(2) distribution in the nonelliptical case.
The simulation results for Example 2 are charted in Tables 3
and 4. In Example 2(a), none of SIRS, DC-SIS or SIS is able
to identify X5 as an important covariate. This is because these
methods are relatively sensitive to the transformation of vari-
ables. When & ~ (1), the new C-FS is the only method that has
satisfactory performance. This confirms the robustness behav-
ior of C-FS. In Example 2(b), those model based methods, such
as FR, LASSO and SIS, fail to retain all the important covariates,
because the linear model assumption is violated. In comparison,
the model free methods (C-FS, SIRS, DC-SIS) perform relatively
better. The performance of C-FS is the best, due to its robustness
property against the outliers in the response. In Example 2(c),
the marginal screening methods, such as SIRS, DC-SIS, and
SIS, fail to detect X; in all scenarios. Both C-FS and LASSO

outperform FR when ¢ is normal, our C-FS is the only method
that remains satisfactory performance when & ~ #(1).

4.2. An Application

We further illustrate the performance of the proposed C-FS
method through a rat eye expression dataset, which was pre-
viously studied by Scheetz et al. (2006) and Huang, Ma, and
Zhang (2008). This dataset consists of 31,042 probe sets of
120 twelve-week-old male rats, yet only 18,976 probes were
sufficiently expressed. The response variable TRIM32 is among
these 18,976 probes. This probe was found to cause Bardet-Bied]l
syndrome (Chiang et al. 2006). We rank the remaining 18,975
probes according to their variances and retain only 3000 probes
with the largest variances. Our analysis is based on the selected
3000 probes, in addition to the probe TRIM32. The goal is to
identify the probes that affect the expression level of TRIM32

considerably.
The sample size n = 120 is small compared with the covariate
dimension p = 3000. We apply the aforementioned six fea-

ture selection/screening methods to this dataset and denote the
retained covariates as x 7. We order the entries of A according to
the relative importance of each retained covariate. Specifically,
for SIS, DC-SIS, and SIRS, A is the index set of the covariates
with s largest marginal effects; for C-FS, FR, and LASSO, A is
the index set of the first s covariates that enter the active set.

We assess the performance of these methods as follows.
Given a model size s, we fit an additive model

Y =) fiiXi) + ex (10)

j=1

where k = 1,. .., 6 represents C-FS, FR, LASSO, SIRS, DC-SIS,
and SIS, respectively. The subscript kj denotes the jth element in
Ay and s is set from 1 to 10. We stop our comparison at the 10th
step because the C-FS algorithm with critical values decided by
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Table 4. The empirical probabilities P;,q and Py based on 500 repetitions for Example 2.

Method e~ NO e ~t(1)
Pind Pl Pind P
When x follows elliptical distribution

X X X3 Xa Xo0 ALL X1 X X3 Xa X0 ALL
C-FS 1.00 1.00 0.99 0.93 0.97 0.90 1.00 1.00 1.00 0.97 0.91 0.90
FR 0.96 0.97 0.91 0.62 0.96 0.58 0.28 0.29 0.27 0.20 0.20 0.19
@) LASSO 0.92 0.94 0.90 0.70 0.71 0.62 0.25 0.25 0.24 0.19 0.15 0.15
SIRS 1.00 1.00 1.00 1.00 0.48 0.48 1.00 1.00 1.00 1.00 0.32 0.32
DC-SIS 1.00 1.00 1.00 1.00 0.56 0.56 0.53 0.53 0.52 0.48 0.14 0.14
SIS 1.00 1.00 1.00 0.99 0.71 0.71 0.37 0.37 0.37 0.33 0.14 0.13
C-FS 1.00 0.96 1.00 1.00 0.96 0.91 1.00 0.99 1.00 1.00 0.99 0.98
FR 0.59 0.38 0.67 0.64 0.73 0.10 0.21 0.15 0.22 0.22 0.16 0.11
(b) LASSO 0.59 0.55 0.57 0.53 0.48 0.31 0.18 0.18 0.18 0.17 0.12 0.1
SIRS 1.00 1.00 1.00 0.98 0.84 0.83 1.00 1.00 1.00 0.99 0.82 0.82
DC-SIS 1.00 1.00 1.00 0.97 0.95 0.91 0.44 0.43 0.42 0.39 0.34 0.32
SIS 0.96 0.95 0.93 0.88 0.95 0.76 0.31 0.31 0.29 0.29 0.23 0.19

X X2 X3 Xa X5 ALL X1 X2 X3 X4 X5 ALL
C-FS 1.00 1.00 1.00 0.96 0.78 0.75 1.00 1.00 1.00 1.00 0.94 0.94
FR 0.99 1.00 1.00 0.93 0.56 0.51 0.45 0.59 0.64 0.45 0.28 0.24
© LASSO 0.89 1.00 1.00 0.99 0.90 0.80 0.24 0.53 0.54 0.46 0.36 0.22
SIRS 0.00 0.99 0.99 0.93 0.73 0.00 0.00 1.00 1.00 0.97 0.81 0.00
DC-SIS 0.00 0.99 1.00 0.92 0.69 0.00 0.00 0.99 0.99 0.94 0.76 0.00
SIS 0.00 1.00 1.00 0.94 0.72 0.00 0.00 0.78 0.79 0.64 0.49 0.00

When x follows nonelliptical distribution

X1 X X3 X4 X20 ALL X1 X2 X3 Xq X20 ALL
C-FS 1.00 1.00 0.98 0.89 1.00 0.86 1.00 1.00 0.98 0.93 0.99 0.89
FR 0.67 0.69 0.54 0.27 0.97 0.21 0.23 0.26 0.17 0.09 0.32 0.08
@ LASSO 0.52 0.54 0.46 0.28 0.48 0.26 0.16 0.17 0.14 0.08 0.14 0.08
SIRS 1.00 1.00 1.00 1.00 0.88 0.88 1.00 1.00 1.00 1.00 0.83 0.83
DC-SIS 0.99 1.00 0.99 0.98 0.93 0.91 0.52 0.53 0.51 0.46 0.40 0.37
SIS 0.84 0.87 0.81 0.71 0.98 0.67 0.32 0.32 0.31 0.25 0.35 0.22
C-FS 0.99 0.96 1.00 1.00 1.00 0.95 1.00 0.99 1.00 1.00 1.00 0.99
FR 0.16 0.08 0.50 0.53 0.90 0.00 0.06 0.03 0.16 0.20 0.27 0.00
(b) LASSO 0.09 0.08 0.21 0.18 0.22 0.04 0.03 0.02 0.06 0.05 0.06 0.01
SIRS 1.00 1.00 1.00 0.98 0.99 0.97 1.00 1.00 1.00 0.99 1.00 0.98
DC-SIS 0.96 0.96 0.98 0.88 0.99 0.86 0.39 0.39 0.42 0.36 0.41 0.33
SIS 0.37 037 0.63 0.66 0.96 0.24 0.15 0.14 0.24 0.26 0.32 0.08

X X X3 Xa X5 ALL X1 X X3 Xa X5 ALL
C-FS 1.00 0.99 0.97 0.95 0.78 0.73 1.00 1.00 1.00 0.98 0.91 0.89
FR 0.96 1.00 0.98 0.92 0.55 0.49 0.48 0.62 0.63 0.45 0.29 0.24
© LASSO 0.82 1.00 0.99 0.99 0.87 0.73 0.26 0.53 0.54 0.45 0.35 0.22
SIRS 0.00 0.99 0.95 0.89 0.66 0.00 0.00 1.00 0.99 0.95 0.70 0.00
DC-SIS 0.00 0.99 0.99 0.88 0.59 0.00 0.00 0.99 0.99 0.92 0.60 0.00
SIS 0.00 1.00 0.99 0.92 0.69 0.00 0.00 0.78 0.77 0.66 0.44 0.00

bootstrap stops at this step. In other words, all remaining null
hypotheses are accepted at the significance level 0.01 and there
is no need to add additional covariates.

We estimate the unknown functions f; by the R package
mgcv, where the adjusted R? and the explained deviance are
summarized in Table 5. Since the deviance explained is defined
as the proportion of the null deviance explained by the fitted
model, the method with larger deviance has a better perfor-
mance. From Table 5, we observe that, as s increases, the pro-
posed C-FS tends to outperform all other marginal effect based
methods. This is partly because these procedures may fail to
identify some truly important covariates. In comparison, the
performances of C-FS, FR and LASSO are relatively satisfactory

as they consider the joint effects. Among these methods, the
proposed C-FS has the highest R? and explained deviance.

We use the five-fold cross-validation to further compare the
prediction performance. Specifically, we randomly partition the
dataset into five equal sized subsamples, denoted Dy, ..., Ds.
For each subsample Dy, we use the remaining four subsamples
to fit model (10) with s = 10, then calculate the mean squared
prediction error on the subsample Dy. We repeat this procedure
such that the prediction is performed on each subsample exactly
once. The mean squared prediction error of C-FS, FR, LASSO,
SIRS, DC-SIS and SIS are 0.43, 0.74, 0.49, 0.78, 0.45, and 0.60,
respectively. In this example, the C-FS gives the best prediction,
followed by the DC-SIS and the LASSO.
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Table 5. The adjusted A2 and the explained deviance of the six methods.

Model Adjusted RZ Dev.explained

size C-FS FR LASSO SIRS DC-SIS SIS C-FS FR LASSO SIRS DC-SIS SIS
1 033 0.62 0.62 033 033 0.62 035 0.62 0.62 035 0.35 0.62
2 0.63 0.68 0.68 0.68 0.68 0.68 0.66 0.69 0.69 0.71 0.69 0.69
3 0.66 0.70 0.68 0.69 0.69 0.69 0.71 0.71 0.70 0.71 0.71 0.71
4 0.72 0.72 0.70 0.70 0.70 0.70 0.74 0.73 0.72 0.73 0.71 0.72
5 0.72 0.74 0.70 0.74 0.70 0.70 0.75 0.75 0.73 0.77 0.72 0.72
6 0.79 0.75 0.73 0.76 0.71 0.73 0.83 0.77 0.77 0.80 0.73 0.77
7 0.81 0.76 0.74 0.76 0.72 0.74 0.84 0.78 0.77 0.80 0.74 0.77
8 0.81 0.77 0.77 0.75 0.72 0.73 0.84 0.79 0.80 0.79 0.74 0.77
9 0.82 0.77 0.77 0.75 0.71 0.74 0.86 0.79 0.81 0.80 0.74 0.78
10 0.84 0.78 0.77 0.74 0.73 0.74 0.88 0.80 0.81 0.78 0.76 0.78

5. Concluding Remarks

In this article, we proposed a CD-based forward screening pro-
cedure, which is model-free and robust to the presence of out-
liers in the response. By using a stepwise searching framework,
the proposed procedure incorporates joint correlations among
features in the screening process and thus provides more reliable
results in applications.

In general, this forward screening procedure shares similar
spirit to the iterative screening approaches (Zhu et al. 2011;
Zhong and Zhu 2015). However, how to decide model sizes
for the iterative screening approaches and how to study their
theoretical properties are rarely discussed in existing litera-
ture. Equipped with our proposed model-free forward screen-
ing procedure, a data-driven method is proposed to determine
which covariates should be retained. We also show that our
proposed forward screening procedure possesses the desirable
sure screening property.

A model-free and robust method is often computationally
intensive. Our experiences shows that the proposed C-FS pro-
cedure is more computationally demanding than other proce-
dures. This is possibly caused by stepwise searching and adaptive
thresholding, which make the proposed method more reliable
and fully automatic. We conjecture that a simplified procedure
may lead to less computational cost with a small sacrifice of
numerical stability. In our simulation setup, each run takes no
more than 4 min on average for n = 200 and p = 3,000 on PC
Intel Core2 Duo T9600 2.8GHz 4GB RAM server. This numer-
ical cost is often acceptable in practice. It would be interesting
to further develop a more efficient algorithm for the CD-based
method.

APPENDIX: LEMMAS AND PROOFS OF THEOREMS
Appendix A: Some Lemmas

Lemma 1. (Bernstein’s Inequality, Van and Wellner (1996, Lemma
2.2.11)) Let X1,X2,...,Xn be independent random variables with
mean 0 and E|X;|" < m!M™ 2y;/2 for every m > 2and i =
1,2,...,n, where M and v; are positive constants. Then

2

&
X X o1+ X <2 el I
pri{lXi + Xz +... + Xyl > &} < eXP{ 2(u+Ms)}

n
forv > Z V.
i=1

For notational clarity, we denote s = | F| in what follows.

Lemma 2. If s = o(nl/S) and conditions (B1)-(B5) hold true, then for
any k € F¢, and ¢, = Cn™", C and k are positive constants,
pr{(Bix — Boj ) Bir — Bojr) > &n}

< ZSCXP(—CIHS_ISn),

where ¢; is a positive constant and B | 7 is defined by argminE{X} —
Bur
&k F 7, By p) Y.

Proof of Lemma 2. The proof is given in the supplementary document.
O

Appendix B: Proof of Theorems

Proof of Theorem 2. 'We prove the first part. Under Hy, for any y € R,
we have

E{1(Y < pEXy | xp)} = E[E{1(Y <y) | x£} Xk]

= E[E{1(Y < y) | x5, Xp} Xk]

= E{1(Y < p)EX | xF, Xp)}

= E{1(Y < y)Xi}.
This completes the proof of the first part. Next we prove the second part.
Define £(y) = {£1(),...,& M)} “E {0F(y | ) /0x}. Stein’s lemma
yields that £(y) = > LE(1(Y < ¥)x}. Assumption Al ensures that,
for any k € A, there exists some y € R such that £(y) # 0. Next, we
show that for any F satisfying 7 N A # &, max wyx > 0holds.

ke FNA
Define Qg 7(y) ) E[1(Y < p{X) — EXk | xx)}]. The normality of
x indicates EXg | xr) = ﬂil}_x]:, where By 7 = Z;_-IZ]:JC. Thus,
QuF() = (LB} ) [BY < »Xi) E1(Y < y)x'}]". Without
loss of generality, we assume (xr, Xy) be the first |F| + 1 elements of
x. It follows that
QF» = Bz DA F+1,0Fl+1) x (- F1-1) ZED)
= (ks — Tk FEZF ZFSED),

where 7, 7, = E(XT}—IX}‘Z), for Fi,F2 € 8. Under model (6),

Qr() = Crrna — ZkrEF ZF Fen A% FenA(). This yields

that
2
Y rFw)
ke FenA

= Y Erna0) Cirna — EkFEF EFFNA)’
keFNA

x & Fen A ()



= ErnaA0) EFrnaFind — ErnaArEy ZrFnA)’
X &EFena®)-
Define

IF T FFNA )

def
Erugend = (z}"ﬂA,J—' T FenAFnA

Because (X Fen g, Fen A — Z].‘CQA)].‘Z._FIZ]:’]:CQA)_I is sub-matrix

of E;-‘lu(]—'fmA)’ we have

—1 —
pmax(EFen A, Fnd — ZFnAFEF ZFFnA) )
< pmax(E U rena))

Accordingly,

-1
Pmin(EFenA,F7enA — ZFnAFEF LF,FnA)
> Pmin(Z}'U(FfﬂA)) > Pmin(X),
where pmin(M) and pmax (M) represent the maximum and minimum

eigenvalue of matrix M, respectively. This leads to that

max 2
KB 4 FeF )

= FnATh Y Q0
keFnA

> |F N A ppin (EFen A FenA
-1
~ T rnAFZr ZFFnAE FeaaWEFNnAD)
> |F N AT i (B)E e 4 DE Fena (D) > 0,

for some y € R. This completes the proof of the second part of
Theorem 2. O

For notational clarity, we denote wyF o E(X; | xr) in what

follows.

Proof of Theorem 3. Define

n

Cnp F ) =12 1Y < ) (X — gy FiFs By s} s
i=1
fory e R.
By Taylor’s expansion, it follows that

n

CnpF ) =n" 2y 1Y < ) (X — gryF i Bog F))
i=1

+ E{1(Y < )’)g]/q]:(x}"ﬂO,k\]—')}T(ﬁH}" —BoxF)

(S.1) in the supplement gives that

n
Cnp F () =n 12 > VigrF K XiFs Yis y)
i=1
+ 0p(1), where
VinrF ik Xir Yiy) = 1Y < Xk — gyF iz Bo g 7))
+ E{1(Y < )/)g;/q]:(x}',ﬂo,k\]—‘)T}
o Xk — g F (i oy 7))

&7 &iF Bo | F):

and Ty r =E [{g,’d]_-(Xﬁ ﬂo,k|]—')} {g,’d]_-(Xﬁ Boj7) }T]
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Suppose Hy in (7) holds true. Theorem 2 ensures that o F = 0.
Let {g 7 (-) be a mean zero Gaussian process with covariance function

covitFro), tnr )t = ElVrXexr Yy Vigr e xr,
Y;y2)}. Itis easy to verify that E{¢,, ¢ ()} = o(1) and E{{ik‘]_-(y)} =
d
cov{ly 7, S Fr W} + o(1). Thus, we have ¢ () — rr(),
d
and consequently f_"fg {ik‘]_-(y)an(y) — fj'ooj {ﬁlf(y)dF(y).
This, together with the fact that » @{(Xk - uF) | Y} =
. P d
f:foo {ik‘]_—(y)an(y), yields that n CCov{(Xy — ugr) | Y} —

j:s {Ig‘]_.(y)dF(y) (Kuo 1975). Therefore,

+00 5
—00

o0
—— d
CCOV{(Xg — iy 7) | YY = Y A (D).
j=1

-1

> . -1~ d
By Slutsky’s theorem, it follows that ”Kk|_;-“°k| F— Zf‘il Ak F ij (D),
where

K E[I(Y < DXk — gy 7> Bog 7))
T+ E{I(Y < ?)g;d]:(x]-‘»ﬂo,li-')T}zk_\.l?-‘
2
Xk — g 7 %7, Bojy 7))V 7 X F ’ﬁo»klf)] /

var{Xy — grF (XiF> Bo )} (B1)

Suppose Hj in (7) holds true. Recall that
Cony _ _ —-1/2 2
GOt = 1) | ¥) = [ 05712050500 lFy)

= /[n‘l/zg,,,k|f(y) = E{Viyr X x7, Y3 9)}
+ E{Vi 7 Xp x5 Vs ) 2dPu(y)

= /2E{Vk|]—‘(Xk>x}'> Y§}’)}[”71/2§n,k|.7-'(}’)
— E{Viyr Xiox7, Vs p)1dFu(y)

+ [ Bz Goxm Yidra) + op(n )

= / 2E(Viy 7 (X X7, Yipn V28, g 7 () dF(y)
— 2CCov{(Xg — ) | Y}
+ [ BV o s, YipdFu) + 0p (7).
Thus,
CCov{(Xg — pky7) | Y} — CCov{ (Xt — iy 7) | Y}
=n"! Xn:zi,k|; + oP(n_1/2),
i=1

with

Zigr =2 [/ E{Vigr Ko xF, Vs )} Vi 7 Kiks Xi 7> Yis y)dF (y)

—CCov{(Xk — iy F) | Y]
+ EX{Viy r (X X7, Y3 i)} — CCov{ (Xk — g 7) | Y),
(B2)

where the expectation is taken with respect to (Xj,xr,Y). By the
central limit theorem, n!/2 [@{(Xk = ugF) | Y} — CCov{(Xy —
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Ui F) | Y}] converges in distribution to A/(0, g]fl ]_-), where glfl F o

var(Z; kg 7)- By Slutsky’s theorem, we have nl/z(@d}- — Wy F) LN
N (0, Ay ), where
2

AnF = s/ (var — g 7)) (B3)

This completes the proof of Theorem 3. O

The uniform consistency of @z paves the road for proving Theo-
rem 4.

Proposition 1. Under conditions (B1)-(B5), for any &, > 0, there exists
positive constants ¢y, ¢2,¢3, ¢4 and sufficiently small s, € (0,2/¢ey)
such that

ri max|wg r — o, |>8]
p ’keF K F — Ok F| > n

< O[p exp{nlog(l — eps¢, /2)/3} +pexp(—c1nsfl)

+pn exp(—cznsfl) + psexp(—c3ns

+ ps exp(—C4ns_2€n)].

Set &4, = Cn™¥, for some constants C > 0 and « > 0. If there exists
¥ > Osuchthatp = o{exp((ml?)} foranya > 0and3/5—2« — 0 > 0,
then

max pr max|6k]:—a)k]:|>Cn_K}—>Oasn—>oo.
Fi| Fl=o(n/%) {ke}'“ | |

Proof of Proposition 1. The proof is given in the supplementary docu-
ment. O

Proof of Theorem 4. For notational clarity, we define the random

event E;y = {There exists an index set F, such that7¢ N A #

@ and max @y F < v}. For such an F, we have, by Assumption
keFenA

A3, max wpr — max ok Fr > Cn~ P — v. Consequently,
keFNA kIl F ke FNA K7 q y
max (wpr — Ok F)> max oy r— max oxr >Cn @ /2.
ke FNnA kI kF ke FNA kI ke FnA kIF /

Define the random event E; = { max (g F — 6k| F) >

ke FNA
Cn~? /2, for F in E; } The above discussions imply that E; C Ej.
It follows that

r min max o r >V | =1—pr(E}) >1—pr(E).
P (J—':]—'COA;AQ keFena AT ) pr(E1) P

Proposition 1 implies that pr(Ez) — 0, which completes the proof of
Theorem 4. O
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