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This paper concerns statistical inference for longitudinal data with ul-
trahigh dimensional covariates. We first study the problem of constructing
confidence intervals and hypothesis tests for a low-dimensional parameter
of interest. The major challenge is how to construct a powerful test statistic
in the presence of high-dimensional nuisance parameters and sophisticated
within-subject correlation of longitudinal data. To deal with the challenge,
we propose a new quadratic decorrelated inference function approach which
simultaneously removes the impact of nuisance parameters and incorporates
the correlation to enhance the efficiency of the estimation procedure. When
the parameter of interest is of fixed dimension, we prove that the proposed es-
timator is asymptotically normal and attains the semiparametric information
bound, based on which we can construct an optimal Wald test statistic. We
further extend this result and establish the limiting distribution of the estima-
tor under the setting with the dimension of the parameter of interest growing
with the sample size at a polynomial rate. Finally, we study how to control
the false discovery rate (FDR) when a vector of high-dimensional regression
parameters is of interest. We prove that applying the Storey (J. R. Stat. Soc.
Ser. B. Stat. Methodol. 64 (2002) 479-498) procedure to the proposed test
statistics for each regression parameter controls FDR asymptotically in lon-
gitudinal data. We conduct simulation studies to assess the finite sample per-
formance of the proposed procedures. Our simulation results imply that the
newly proposed procedure can control both Type I error for testing a low di-
mensional parameter of interest and the FDR in the multiple testing problem.
We also apply the proposed procedure to a real data example.

1. Introduction. Longitudinal data are ubiquitous in many scientific studies in biology,
social science, economy and medicine. The major challenge in traditional longitudinal data
analysis is how to construct more accurate estimates for regression coefficients by incorporat-
ing the within-subject correlation. Liang and Zeger (1986) proposed a generalized estimating
equation (GEE) method to improve efficiency by using working correlation structure. Qu,
Lindsay and Li (2000) proposed a quadratic inference function (QIF) approach to further im-
prove the GEE method. Theoretical results for GEE and QIF have been well established by
these authors for longitudinal data with fixed dimensional covariates.

In many scientific studies such as genomic studies and neuroscience researches, the di-
mension of covariates d can far exceed the sample size n. Due to space limitation, we present
two concrete motivating examples in the Supplementary Material, where d is comparable
to n and d is much larger than n. Motivated by these applications, it is of great interest to
develop statistical inference procedures for longitudinal data with ultra-high dimensional co-
variates. Variable selection and model selection for longitudinal data have been studied by
Wang and Qu (2009), Xue, Qu and Zhou (2010) and Ma, Song and Wang (2013) under the
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finite dimensional setting. Wang, Zhou and Qu (2012) proposed penalized GEE methods un-
der the setting of d = O(n). However, theories developed in the aforementioned works are
not applicable for ultra-high dimensional setting with log d = o(n).

Some statistical inference procedures have been developed for independent and identically
distributed (i.i.d.) observations with logd = o(n). van de Geer et al. (2014), Javanmard and
Montanari (2013) and Zhang and Zhang (2014) developed a debiased estimator for i.i.d. data
under linear and generalized linear models, and constructed confidence intervals for low-
dimensional parameters. Ning and Liu (2017) proposed a hypothesis testing procedure based
on a decorrelated score function method for i.i.d. data, and Fang, Ning and Liu (2017) further
extended the method to the partial likelihood for survival data. These existing methods and
theories are not applicable for longitudinal data under the high-dimensional setting, due to
the following two challenges. First, the construction of the optimal QIF (or GEE) depends on
the existence of the inverse of the sample covariance matrix of a set of high-dimensional es-
timating equations (Qu, Lindsay and Li (2000)). When the number of features is greater than
the sample size, the matrix is not invertible, and, therefore, the quadratic inference function
is not well defined. Second, the existing estimation result (Wang, Zhou and Qu (2012)) does
not hold under the regime logd = o(n) so that their penalized estimator cannot be used as the
initial estimator for asymptotic inference. Due to these difficulties, the existing debiased and
decorrelation methods are not applicable to the quadratic inference function for ultra-high
dimensional longitudinal data.

In this paper we propose a new inference procedure for longitudinal data under the regime
logd = o(n) by decorrelating the QIF. We first consider how to construct confidence inter-
vals and hypothesis tests for a low-dimensional parameter of interest. Specifically, we start
by constructing multiple decorrelated quasi-score functions following the generalized esti-
mating equations (GEE) instead of the likelihood or partial-likelihood function developed
in the literature. Each decorrelated quasi-score function aims to capture a particular correla-
tion pattern of the repeated measurements, specified by a basis of correlation matrices. Unlike
Wang, Zhou and Qu (2012), who estimated the nuisance parameters by penalized generalized
estimating equations with unstructured correlation matrix, we estimate the nuisance parame-
ter under the working independence assumption. This is crucial to guarantee the fast rate of
convergence of a preliminary estimator under the regime logd = o(n). Then, we propose to
optimally combine the multiple decorrelated quasi-score functions to improve the efficiency
of the inference procedures using the generalized method of moment. The resulting loss func-
tion is a quadratic form of the decorrelated quasi-score functions, and, therefore, we call it
quadratic decorrelated inference function (QDIF). Since the dimensionality of the estimating
equations is reduced by using the decorrelated quasi-score functions, its sample covariance
matrix is invertible with high probability. Thus, the proposed QDIF is always well defined,
whereas the QIF may not exist in high dimensions. In theory, the asymptotic properties of the
estimator corresponding to QDIF are studied in the following two regimes. First, when the
parameter of interest is of fixed dimension, we show that the proposed estimator is asymp-
totically normal and attains the semiparametric information bound, based on which we can
construct an optimal Wald test statistic. Second, when the dimension of the parameter of in-
terest grows with the sample size at a polynomial rate, we give the characterization of the
limiting distribution of the proposed estimator and the associated test statistic.

To further broaden the applicability of the proposed method, we study the following mul-
tiple testing problem:

Hoj:p; =0 versus H;:p;#0,

for j=1,...,d, where B* = (B1, ..., Ba)! is regression coefficient vector. The null hypoth-
esis Ho; is rejected if our test statistic for ,B;.k is greater than a cutoff. To guarantee most
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of the rejected null hypothesis being real discoveries, we aim to control the false discov-
ery rate (FDR) within a given significance level by choosing a suitable cutoff for our test
statistics. Due to the correlation among repeated measurements, the test statistics for differ-
ent null hypothesis Hp; become correlated which makes the FDR control challenging. While
the Benjamini—-Hochberg method can control FDR if the test statistics are independent or
positively dependent (Benjamini and Hochberg (1995), Benjamini and Yekutieli (2001)), un-
fortunately, these dependence structures do not hold for our test statistics. To control FDR,
we apply the procedure in Storey (2002) which is known to be more powerful than the
Benjamini-Hochberg method. Our main result shows that the proposed method can control
FDR asymptotically under the dependent test statistics. The intuition is that, by decorrelat-
ing the quasi-score function, the correlation among different test statistics becomes weak
so that the correlation only contributes to the higher order terms in the FDR approximation
which can be well controlled. The proof of this result relies on a moderate deviation lemma
of Liu (2013), who applies the Benjamini—-Hochberg procedure to control FDR under Gaus-
sian graphical models. While the FDR control under linear models is recently studied by
Barber and Candeés (2015), Grazier G’Sell et al. (2016), the corresponding sequential pro-
cedure and the knockoff method cannot be directly extended to the longitudinal data, due to
the dependence structure. To the best of our knowledge, how to control FDR in the analysis
of longitudinal data under the generalized linear model remains an open problem. Finally,
we note that the proposed method is a general recipe for correlated data which can be easily
modified to handle family data and clustered data. To facilitate the presentation, we consider
the longitudinal data throughout the paper.

Paper organization. The rest of this paper is organized as follows. In Section 2 we propose
the QDIF method and the resulting estimator. We further derive the asymptotic distribution
of the estimator and construct the test statistic and confidence interval. In Section 3 we con-
sider the FDR control problem. In Section 4 we investigate the empirical performance of the
proposed methods using simulation examples and real data example. The proof and technical
details are deferred to Appendix. Proofs of technical lemmas are given in the Supplementary
Material of this paper (Fang, Ning and Li (2020)).

Notation. We adopt the following notation throughout this paper. For a vector v =
(1,...,v9)T € R and 1 < g < oo, we define |vll, = (X0, [v;]9)/2, and let |[v]o =
| supp(v)|, where supp(v) = {j : v; # 0} and |A| is the cardinality of a set A. Denote
[Vllco = maxi<j<q |vi| and v®2 = yv!. For a matrix M = [Mji] € R4 Tet || M||max =
maxi<;jk<d |Mjil, [MIl1 =3k IMji| and [M|lcc = max; > |M ji|. If the matrix M is sym-
metric, we let Apin(M) and Amax (M) be the minimal and maximal eigenvalues of M, respec-
tively. W_’e denote by I; the d x d identity matrix. For S C {1,...,d}, let vg ={v; : j € S},
and let S be the complement of S. The gradient and subgradient of a function f(x) are de-
noted by V f(x) and 9f (x), respectively. Let Vg f (x) denote the gradient of f (x) with respect
to xs. For two positive sequences, a, and b,, we write a,, < b, if C < a, /b, < C’ for some
constants C, C’ > 0. Similarly, we use a < b to denote a < Cbh for some constant C > 0.
For a sequence of random variables X,,, we write X,, ~» X, for some random variable X if
X, converges weakly to X, and we write X,, —  a, for some constant a if X, converges in
probability to a. Given a, b € R, let a v b and a A b denote the maximum and minimum of a
and b, respectively. For notational simplicity, we use C, C’ to denote generic constants, and
their values may change from line to line.

2. Inference in high-dimensional longitudinal data. Let Y;; denote the response vari-
able for the jth observation of the ith subject, where j =1,...,m; and i = 1,...,n. Let
X;j e R? denote the corresponding d-dimensional covariates. Our proposed procedures are
still directly applicable for the setting in which m;s are different from subject to subject, but
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the correlation structure such as the AR and compound symmetry retains the same. We re-
fer to the Supplementary Material for further discussion. In most applications m is relatively
small comparing with n and d, and we assume throughout the paper that m is fixed.

Denote by X; = (X;1,..., Xim)T e R4 and Y; = (Yi1, ..., Yim)T € R™. We further
assume that (X;,Y;),i =1, ..., n are independent, while the within-subject observations are
correlated.

2.1. Quadratic inference function in low-dimensional setting. Under the framework of
generalized linear models, we assume that the regression function follows E(Y;; | X;;) =
;Lij(n;"j), where 1;;(-) is a known function and n}; = Xl.Tjﬁ* with B* being the regression
coefficient vector. Liang and Zeger (1986) proposed the GEE method to incorporate the
within subject correlation to improve the estimation efficiency of B*. A brief description
of this method is given in the Section S.2 of the supplementary material (Fang, Ning and Li
(2020)). The GEE yields consistent estimators for any working correlation structure, while
the resulting estimator can be far less efficient when the working correlation structure is
misspecified. To overcome this drawback, Qu, Lindsay and Li (2000) proposed an alterna-
tive approach, called QIF, which avoids direct estimation of the correlation structure and
provides optimal estimator even if the working correlation structure is misspecified. Denote
by ni = it -y nim)T = (XL B, ... XD BT € R™, wi(B) = it mi1), - - ., thim(Mim)} T €
R™, and V; = Cov(Y;|X;) is the true covariance matrix of Y;. We can decompose V; as

Vi= Al.1 / 2(ﬂ)RAi1 /2 (B). Here, R is the corresponding correlation matrix, and A; (8) is a di-
agonal matrix in which the (j, j)th entry is the variance of Y;;, given the covariates, and
can be written as [A;(B)];; = ¢V;;j(uij), where ¢ is the dispersion parameter and V;;(-) is
a given variance function. We further assume that V;;(u;;(n)) = Ml’ -(n) which corresponds
to the canonical link function under generalized linear models (whille we do not impose the
distributional assumptions as in GLMs). As seen later, the quasi-score function (2.1) is pro-
portional to the dispersion parameter ¢, and thus the root of the quasi-score function does not
depend on ¢. For simplicity, we assume ¢ = 1 in the rest of the paper.

In QIF it is assumed that R™! can be approximated by the linear space generated by some
known basis matrices Ty, ..., Tk, that is, Z,{;I ay Ty, where ay, ...,ax are unknown pa-
rameters. Given these basis matrices, the quasi-score function of B is defined as

S XTAPBTAT Y - wi(B)

i=1

1 & 1

2D B =-) sl =- :
i=1 n

S XTAZBTkAT 2 B{Y: — i (B))

i=1
The QIF proposed by Qu, Lindsay and Li (2000) is

1 n
(2.2) 0.(8) =gl (B)C,'g.(B) where C, = - > g (B)g! (B).
i=1

which combines the quasi-score function g, (f) using the generalized method of moment.
Naturally, we estimate 8 by

o~

(2.3) B= arg;nin 0n(B).

Qu, Lindsay and Li (2000) showed that ﬁ is 4/n-consistent and efficient under the classical
fixed dimensional regime. The “large n, diverging d”” asymptotics is studied under the gen-
eralized additive partial linear models by Wang et al. (2014) when d = o(n'/3). The variable
selection consistency of the penalized QIF estimator is established under the same conditions.
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While the estimation and variable selection properties of the penalized GEE and QIF meth-
ods have been investigated under the regime d = O (n*) for some « < 1, how to perform
optimal estimation and inference by incorporating the unknown correlation structure remains
a challenging problem under the ultra-high dimensional regime, that is, logd = o(n®) for
some « > 0. In particular, to optimally combine the quasi-score function in QIF, one has to
calculate C, ! in (2.2). However, C,, ! does not exist when d > n. This is the main difficulty
for extending the QIF method to high-dimensional data.

2.2. Optimal inference under high-dimensional setting. In this section we consider how
to make inference on a low-dimensional component of the parameter 8 in longitudinal data.
We focus on the high-dimensional regime, that is, logd = o(n*) for some o > 0 which is
a more challenging setting in comparison with existing works. For ease of presentation, we
partition the vector 8 as f§ = o7, yDT, where 6 is a dy-dimensional parameter of inter-
est with dy < n and y is a high-dimensional nuisance parameter with dimension d — dp.
Our goal is to construct the confidence region and test the hypotheses Hy : 8 = 0 vs.
Hi : 0* #0. Similarly, we denote the corresponding partition of X; by X; = (Z;, U;), where
Zi=Zi,....,Zin)T eR™D and U; = (Usy,...,Ujp)T € R™*@=) Tn this section we
assume that there exists an initial estimator E which converges to the true B* sufficiently fast.
Section 2.3 presents a procedure to construct such an initial estimator .

Before we propose the new procedure, we note that inference in high-dimensional prob-
lems has been studied under the linear and generalized linear models with independent data
(Javanmard and Montanari (2013), Ning and Liu (2017), van de Geer et al. (2014), Zhang
and Zhang (2014)). Their methods require the existence of a (pseudo)-likelihood function
and a penalized estimator such as Lasso. One may attempt to apply their methods to the as-
sociated quasi likelihood of longitudinal data. However, this simple approach is only feasible
under the working independence assumption and in general leads to suboptimal results as
the within-subject correlation is ignored (Liang and Zeger (1986)). To increase the efficiency,
one may incorporate the within-subject correlation and apply their methods to the quadratic
inference function Q,, in (2.2). As explained above, the matrix C,, in (2.2) is not invertible in
high dimensions, and the function Q,, is not well defined. Thus, we cannot directly apply the
existing methods for efficient inference in high-dimensional longitudinal data.

To address the challenges, we propose a novel quadratic decorrelated inference function
(QDIF) approach. Our proposed method relies on the generalized estimating equations and
is distinguished from the methods that directly correct the bias of the Lasso type estimators.
Instead, we modify the decorrelation idea in Ning and Liu (2017) to construct estimating
equations that are insensitive to the impact of high-dimensional nuisance parameters. As
aforementioned, how to design the decorrelation step is challenging in the setting of high-
dimensional longitudinal data, as a (pseudo)-likelihood function is not available. Unlike the
decorrelated score function constructed from the likelihood in Ning and Liu (2017), we con-
struct a decorrelated quasi-score function directly from the generalized estimating equations
in (2.1). Borrowing the idea from the QIF method, we replace the inverse of correlation
matrix R™! in GEE by Zle a; Ty, for some unknown parameters ai,...,ag and some
pre-specified basis matrices Ty, ..., Tx. Forany 1 <i <n and 1 <k < K, we define the
decorrelated quasi-score function for subject i with correlation basis Ty as

S e 1/2 % -12 4 ~
(2.4) Si®) = (Zi — UWO AP BYTA; P BY; — i (0.9)).
where Wk cRU _EO) XdO,Ato be defined later, is an estimator of the decorrelation matrix for the
kth basis Ty and B := (@, 77)7 is an initial estimator defined in Section 2.3. In comparison
with the component of the standard quasi-score function g,(8) in (2.1), Six (@) decorrelates
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the score functions for Z; and U; by projection via W Denote

n
Hiyo=n""Y UIA?BTAB)Z;,
i=1

n
Hiyy =n"' Y UTABTA B,
i=1

1/2 172
Hiyo =E{U] A% (B")TiA,; % (B%) Zi},

1/2 1/2
H;,, =E{UTA}*(B*)TA)(8*)U,).

and Hygg is defined similarly. Then, we define the estimator Wk in (2.4) as

Wk—argmm Ztr (Z; —U; W)TAI/Z(ﬁ)TkAl/2

w nl 1
+ 1) wul,
k.l

where wy; is the (k,[)th element of W, and A is a tuning parameter. This estimator Wk is
introduced to estimate the true decorrelation matrix

(2.6) Wi =H,,, Hiyo.

B)(Zi —U;W)}
(2.5

Then, we define the decorrelated quasi-score function of 6 by combining Six(0)’s from the
different basis matrices,

Y Sii(6)
_ 1 no 1 i=1
2.7) Si(0)=-3 Si(6)=-
= .
> Sik(®6)
i=1

Note that the decorrelated quasi-score function S, (0) is of dimension do K instead of dimen-
siondK as g,(B) in (2.1). As dy- K < n in our setting, this decgrrelated quasi-score function
can be used to define the optimal quadratic inference function Q, (). In particular, given our

. . ~ AT _ .
initial estimator 8 = (6, yT)T, we define our QDIF estimator as

(2.8) 6 = argmin 0, () where 0, () =nS, (@) C'S,(0).
0cO,

Here, ©, = {# e R% : |9 — §||2 <cd, 1/ 2} is a neighborhood around the initial estimator ()
for some small constant ¢ > 0, and

2.9 C=n""Y Si(0)S] () c RAKxdoK
i=1

Since 0,(8) is generally a nonconvex function of 6, there may exist multiple local solutions,
especially when dy is large. To alleviate these issues, we propose the above localized esti-
mator by minimizing 0,(0) in a small neighborhood around the initial estimator 0. In the
theoretical analysis, we show that 0,(0) is strongly convex for # € ®,, with probability tend-
ing to one. Thus, any off-the-shelf convex optimization algorithm is applicable to solving the
problem (2.8).
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2.3. An initial estimator based on working independence structure. As seen in the pre-
vious section, the decorrelated quasi-score function (2.4) requires the knowledge of an initial
estimator of 8. In this subsection, we shall construct such an initial estimator in the ultra-high
dimensional regime, that is, logd = o(n*) for some « > 0.

Since the initial estimator is only used to estimate the nuisance parameter in (2.4), we
allow the estimator to be less efficient in terms of incorporating the within-subject depen-
dence. The following penalized maximum quasi-loglikelihood estimator under the working
independence structure serves this purpose,

o~

(2.10) B = argmin L,,(B) + P (B),
B

where

1 Mij(XiT,ﬂ) Yii—u
L,(B)=—— f T du.
p n 22 Vij (u)

i=1j=1"Yij

Here, £,,(B) is known as the negative quasi loglikelihood under the working independence
assumption, and P, (-) is a penalization term encouraging sparsity of ﬁ with some tuning pa-
rameter A > 0. The penalization term can be either convex, such as Lasso (Tibshirani (1996)),
or nonconvex (e.g., SCAD (Fan and Li (2001))). Before we pursue the statistical properties
of B further, let us introduce some definitions.

DEFINITION 1 (Subexponential variable and subexponential norm). A random variable
X is called subexponential if there exists some positive constant K such that P(]X| >
t) <exp(l —t/Ky) for all # > 0. The subexponential norm of X is defined as || X||y, =
sup, p~ (E[X|P)!/P.

Furthermore, denoting by s = ||8*||o the sparsity of B*, we impose the following assump-
tions:

ASSUMPTION 2.1. Assume that the error ¢;; = Y;; — w;j (Xl.Tjﬂ*) is subexponential,
that is, |l€;jlly, < C for some constant C > 0. The covariates are uniformly bounded,

max,e[n] 1Xilloo =O(1).

Note that the subexponential and bounded covariate assumptions are technical assumptions
in concentration inequalities and hold in most applications. Similar assumptions are widely
used in the literature, for example, van de Geer et al. (2014) and Ning and Liu (2017), for
analyzing high-dimensional generalized linear models.

ASSUMPTION 2.2. ForanysetS C {1, ...,d}, where |S| < s and any vector v belonging
to the cone C(£,S) = {ve R?: Ivslli <&llvslli1}, it holds that

vIV2L,(B*)v

= in 2 = Mmin > 0.
0+£veC(£,S) Ivsll3

RE(E, S; V2L, (8Y))

This assumption is known as the restricted eigenvalue condition (Bithlmann and van de
Geer (2011)) and provides the necessary curvature of the loss function within a cone. Specif-
ically, it bounds the minimal eigenvalue of the Hessian matrix V22, (8*) from below within
the cone C(&, S). Under Assumptions 2.1 and 2.2 and the technical conditions in Section 2.4,
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if . < \/n—!logd and P;(B) = A||B||1, a simple modification of Theorem 5.2 in van de Geer
and Miiller (2012) implies

_ logd
@.11) ||ﬁ—ﬁ*||qzop<sl/4,/£> forg=1,2,
n

n m

2.12) %ZZ[XS(B_ﬂ*)]z:O]P(slc;gd)

i=1j=1

The rate in (2.11) shows that even if we ignore the correlation structure, the penalized max-
imum quasi-loglikelihood estimator still converges to 8* with the optimal rate in the high-
dimensional regime. Assumption 2.2 can be further relaxed by using nonconvex penalties
and more tailored statistical optimization algorithms as discussed in Fan et al. (2018), Loh
and Wainwright (2013), Wang, Kim and Li (2013), Zhao, Liu and Zhang (2018). It can be
easily verified that Assumption 2.2 holds under the conditions in the next subsection and the
minimum eigenvalue condition on the population matrix E(X iTX i). For ease of presentation,
we assume that Assumptions 2.1 and 2.2 hold throughout our later discussion, and, therefore,
the rate of convergence (2.11) and (2.12) is achieved.

2.4. Theoretical properties. In this subsection we establish the asymptotic distribution
of @ in (2.8). In the analysis we assume m, K are fixed, and n, d increase to infinity with
logd = o(n*) for some « > 0. To make the proposed framework more flexible, we allow dy
to diverge together with n and d. We note that the theoretical results also hold for fixed dj.

To facilitate our discussion, we impose some technical assumptions. Let

@13) S50 = (2 = VW) A B TAT (B Y — (6. 7)),
(2.14) S:0) = (ST ), ..., S 0)" e RVK,

be the “ideal” versions of Ek (#) and S (0), respectively. Also, we let

(2.15) g0(0%) =E{VS(0%)}

denote the population version of the gradient of S*(#) at 8, and let

(2.16) C* =E[S;(6*)S! (6™))

denote the population version of the matrix C.

ASSUMPTION 2.3. The decorrelation matrix W} is column-wise sparse, that is,
maxeerdy] [(Wi).ello < s/, for 1 < k < K. maxgeix)maxien) |[UiWilloo = O(1) and
max,-e[n] mane[m] |X5ﬂ*| = O(l)

ASSUMPTION 2.4. The mean function w;;(-) is third order continuously differentiable
and satisfies

max  {ui; (n5), 1/ () 1 (), 1 (i)} = OQ).

i€[n], jelm]

ASSUMPTION 2.5. The eigenvalues of Ty and C* are bounded, that is, c!<
)\min(Tk) =< )\max(Tk) =< C for any 1 =< k =< K, C_l =< )\min(c*) =< }\max(c*) =< C. In addi-
tion, the following eigenvalue conditions on the design matrix hold, A, (E(X l.TX ) >Cc!
and Apax (E(ZiT Z;)) < C for some constant C > 0.



2630 E. X. FANG, Y. NING ANDR. LI

Assumption 2.3 specifies the sparsity of W and the bounded covariate effect which ensure
the fast rate of convergence of the estimators Wy ’s. To understand the sparsity assumption on
Wi, letus consider dy = 1. Denote Z; = A'2Z; and U; = AV2U,. If there exists W* € R4~1
such that

(2.17) Z;=U;W"+§ and E@|U;)=0,
we can verify that Wi = W* for any 1 < k < K. For instance, if u;;(n;;) is a quadratic

function (corresponding to the Gaussian response) and (Z;;, U T)T ~N@O,X)forl<j<m
follows the Gaussian design, then (2. 17) holds and the sparsity assumpt10n on W} (and W* in
(2.17)) is implied by the sparsity of £ ! which is a standard condition for high-dimensional
inference in the generalized linear model (van de Geer et al. (2014)).

Assumption 2.4 provides some local smoothness conditions of ;(-)’s around »}’s, and it
is easy to verify that this assumption is satisfied for many commonly used regression func-
tions w;;(-). In Assumption 2.5 we require the basis matrices Ty to be positive definite. In
practice, we usually choose the following matrices as the bases: Ty an identity matrix I,
T, a matrix of diagonal elements set to be 0’s and off-diagonal elements set to be 1’s, T; a
matrix with two main diagonals set to be 1’s and 0’s elsewhere and T, with 1’s on the corners
(1,1) and (m, m) and O elsewhere. As shown by Qu, Lindsay and Li (2000), the commonly
used equal correlation and AR(1) models can be written as the linear combination of the
above four basis matrices. However, the matrices T», T3 and T4 are not positive definite.
To meet Assumption 2.5, we can add an identity matrix to T; and define T; =T; + Al
for some constant A > 0. The eigenvalue condition on C* in Assumption 2.5, as we shall
see later, guarantees the existence of the asymptotic variance which is even essential in the
low-dimensional setting. Finally, the minimum eigenvalue condition on E(X; T'X;) is used to
verify the restricted eigenvalue condition for W, and the maximum eigenvalue condition on
E(ZZT Z;) is used to control |[Hgggl2, especially when dy diverges.

Denote ||A|| ., :=max; ) ; |A;;| to be the maximum absolute column sum of the matrix A.
The following lemma shows the rate of convergence of the estimation and prediction errors
of Wy:

LEMMA 2.6. Under Assumptions 2.1,2.2,2.3,2.4 and 2.5, if » < ) =< /n~!logd and

S4/ % =o0(1), we have

— logd

sup ||Wk—WZHL] :(’)]p(max(s,s/) i ),

1<k<K n
1 & — —~

p tr(gz[vxwk Wi (W —w;zn)
I<k=K i=1

_ Op(max(s,s’)dologd)’

n

where W; = Ail/z(ﬁ*)TkAil/z(ﬂ*)-

Based on Lemma 2.6, we first establish the rate of convergence of the decorrelated estima-
tor @ in (2.8).

THEOREM 2.7. Under Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5, if A < ./ < \/n—1logd,
and asn,d — oo,

(2.18)

X{ do {do(s v s')logd(logn)*}'/? (svs') logdlogn} "
9 b = 0 b
nl/2 nl/2 nl/2



TEST OF SIGNIFICANCE FOR HIGH-DIMENSIONAL LONGITUDINAL DATA 2631

then the rate of convergence of the estimator 0 is
(2.19) |6 — 6%, = Op(v/do/n).

When the dimension of 8* diverges, the convergence rate (2.19) is comparable to Theo-
rem 3.6 of Wang (2011) in which the author showed that the convergence rate of the GEE
estimator is Op(y/d/n) with diverging number of covariates d = o(n'/?). This also agrees
with our condition dy = o(n'/?) in (2.18). When d is fixed, (2.19) implies that the estimator
has the standard root-n rate under the sparsity condition (s Vv s”) logd logn = o(n'/?) which
agrees with the weakest possible assumption in the literature for generalized linear models
up to logarithmic factors in d and n (van de Geer et al. (2014)).

In order to conduct valid inference, we need to understand the asymptotic distribution of
the estimator. The following main theorem of this section establishes the asymptotic normal-
ity of our estimator 9.

THEOREM 2.8. Under Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5, if A < X < /n~1 logd,

and as n,d — 00,

d}* dof(s v 5" logd(logn)*}1/% dy/*(s v s") logd logn
ax\ iz /2 ; L1/2

=o(D),

(2.20)

then the estimator 0 satisfies, as dy — 00,

n@* 07z, 0% —0) —do
V2do

where X9 = {80(0*)T C* g0 (0*)} " and gy (0) is defined in (2.15). If dy is fixed, we have

(2.21) ~ N(0, 1),

(2.22) V(0 —0%) ~ N(0, g).

Theorem 2.8 characterizes the asymptotic distribution of the decorrelated estimator. In
particular, we note that Theorem 2.8 holds whether or not the inverse of the within-subject
correlation matrix R™! is correctly specified via the basis matrices {Ty}. Thus, similar to the
classical QIF and GEE methods, our estimator is robust to the specification of the within-
subject dependence structure.

When d diverges, (2.21) can be interpreted as n(0* — 5)T20_1(0* —0) ~ Xaz,o, and one
can further approximate X[%O by N (dy, 2dp). To justify the normal approximation of the decor-

related estimator, the required condition dy = o(n'/3) in (2.20) is stronger than that in Theo-
rem 2.7, and again it is comparable to the condition in Theorem 3.8 of Wang (2011). When
do is fixed, (2.22) implies that the estimator is asymptotically normal under the same sparsity
condition (s V s")logdlogn = o(n'/?) as in Theorem 2.7. Moreover, if R™! = Zle ar Ty
is correctly specified, as shown in Corollary 2.10, our estimator g is semiparametrically effi-
cient.

In order to use the above result to construct confidence regions and statistical tests, we
need to estimate the asymptotic variance X in (2.21). This can be accomplished by using
the plug-in estimator

(2.23) To={80)"C '@ "
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LEMMA 2.9. Under the same assumptions as in Theorem 2.8, we have as dy — 00,
n@® —0)Ts," 0% —8) —do
+2dy
where Xy and fg are defined in (2.21) and (2.23), respectively. If dy is fixed,
n(®* —8) Ty (0% —8) v x5

~ N (0, 1),

where on denotes the chi-square distribution with dy degrees of freedom.

Consider the following hypothesis testing problem:
Hy:0*=0 versus H;:0*#£0.
Based on the above result, we define the Wald-type test statistic as follows,
(2.24) T,=n0 £,'9.

Lemma 2.9 implies that the distribution of the test statistic T, can be approximated by a
chi-squared distribution with dy degrees of freedom under Hy. In addition, we can obtain an
asymptotic (1 — ) x 100% confidence region of 6*:

(0:00-0)7S5' 00 <x3 o)

where Xgo,l— o denotes the (1 — a) x 100%th percentile of a chi-square distribution with dp
degrees of freedom.

To conclude this section, we compare the efficiency of the proposed estimator with the
decorrelated estimator based on the quasi likelihood. The latter corresponds to the special
case of the estimator (2.8) with K = 1 and T| = I. Consider the case dy = 1. We denote the
estimator by 6;. The following corollary shows that our estimator is more efficient than 67 and
attains the semiparametric information bound. Thus, the proposed QDIF method provides the
optimal inference for high-dimensional longitudinal data.

COROLLARY 2.10. Assume that the assumptions in Theorem 2.8 hold. By taking T| =1,
we obtain Avar(6) < Avar(f;), where Avar denotes the asymptotic variance of the estimator.
Moreover, if the true correlation matrix R satisfies R™! = Zle ar Ty for some constants
ai,...,ag and (2.17) holds, then the proposed estimator 6 is semiparametrically efficient.

3. False discovery rate control. In the previous section we develop valid inferential
methods to test a low-dimensional parameter of interest in high-dimensional longitudinal
data. However, in many practical applications, the parameter of interest may not be prespec-
ified. Instead, we are interested in simultaneously testing all d hypotheses with 6 = f;, that
is, Ho; : ,3;‘ =0 versus Hj; : ,8}‘ #0forall j=1,...,d. The knowledge of which null hy-
potheses are rejected can help us identify important features in the longitudinal data. When
conducting multiple hypothesis tests, it is a common practice to control the false discovery
rate (FDR) to avoid spurious discoveries. Under the high-dimensional setting, due to the po-
tential dependence among test statistics, how to control FDR is a challenging problem. In this
direction, Liu (2013) and Barber and Candes (2015) applied the Benjamini—Hochberg proce-
dure and the knockoff procedure to control the FDR under the Gaussian graphical model and
linear model, respectively. Both of their methods crucially depend on the linearity structure
and are not directly applicable to the generalized linear model, let alone generalized estimat-
ing equations for longitudinal data. Thus, the FDR control for high-dimensional longitudinal
data is still largely unexplored while it is of substantial practical importance.
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In this section we extend the procedure discussed in the previous section to control the
FDR in multiple hypothesis testing for Hy; : ,3* =0vs. Hy;: ,8* # 0 where j =1,...,d.

We first construct the test statistic A,; = na ,32 for hypothe51s Hy;, where & 52 f is defined

as in (2.23). Then, we obtain the asymptotic p-value P; =1 — x; (An i), where x{ 2(. -) is the
cumulative distribution function of a chi-squared random variable with degree of freedom 1.
Given a decision rule that rejects Ho; if and only if P; < u for some cutoff u, we define the
false discovery proportion (FDP) and false discovery rate (FDR) as

2 jes, L(Pj <u)
max{}_;erq) L(Pj <u), 1}

where Sp = {j : ,B* 0} denotes the set of true null hypotheses. Given the desired FDR level
o, we aim to ﬁnd the cutoff u, such that FDR () < «. However, in practice we cannot
directly compute FDP(x) and FDR(u) as the set Sy is unknown. To approximate FDP(u),
we utilize the following procedure proposed by Storey (2002) which is known to be more
powerful than the Benjamini-Hochberg procedure. Let ¢ € (0, 1) be a tuning parameter. For
any u € (0, 1), we define

FDP(x) =

and FDR(u) = E[FDP(u)],

() -u-d
max{Z?zl 1{P; <u}, 1}

(3.1) FDP, (1) :=
as an approximation of FDP(u), where

d
w(t):= min{(l/d) Z HP;>t}/(1—1),1¢.
j=1

Comparing (3.1) with FDP(u), the denominators are identical. For the numerator, by tak-
ing expectation we have that E(}_;cs) 1(Pj <u)) ®u - |Sol, as Pj ~ Uniform(0, 1) asymp-
totically for all j € Sp. It turns out the quantity 7 (¢) in (3.1) tends to slightly overesti-
mate |Sp|/d, the proportion of null hypotheses among all hypotheses. To see this, we have
Eld - w(0)] ~ [Sol + X j¢s, P(Pj = 1)/(1 — 1), where }_ ;45 P(P; > 1)/(1 — 1) is usually
small as P; are close to 0 if j ¢ Sp. This leads to a slightly conservative cutoff. How-
ever, we show in the proof that this overestimation is asymptotically negligible, that is,
|Sol/((t) - d) — 1 in probability as |Sp|/d — 1 in the setting of a sparse high-dimensional
model. Since |Sp|/d < 1, we force 7 (t) < 1 by taking the minimum with 1 in the definition
of ().

Given F’D\Pt (u), we define 1 ; to be the largest value of u such that F’I-)\R, (u) is controlled
at level «a:

g :=sup{0<u<l : FDP, (1) <al.

Then, we reject all the null hypotheses of which the corresponding p-values are below uy ;.
It is easily seen that the well known Benjamini—-Hochberg procedure corresponds to choos-
ingm(t)=11n F/ﬁP, (u). By introducing 7 (¢) < 1, the cutoff of p-values #,,; is no smaller
than that in the Benjamini—-Hochberg procedure and, therefore, leads to more discoveries.
Thus, the method is more powerful than the Benjamini-Hochberg procedure. In the litera-
ture the theoretical justification of the Storey (2002) procedure requires that the p-values are
independent and uniformly distributed under the null hypothesis. To prove the validity of
the procedure, the main technical difficulty is that the p-values from the proposed test statis-
tics are not independent, and their distribution holds only asymptotically. For 1 < j <d, we
define

Aij =120, (B))C 20 (B} 20 (B))CT" - S5 (B)) /o
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where g 8 Cj and S;.kj (,3}“) denote the corresponding gy, C* and S;*(ﬁ}k) in the previous

section for ,8;’-‘ and sz is defined in (2.21) with do = 1. Denote A :={(j, k) : j #k, |Qx| =
(log d)_s/ 2}, where €2 j; is the correlation between A;; and A;. For some constant C > 0, let

S1={j:1Bjl=C %} denote the set of strong signals. As the main result in this section,
the following theorem shows that our procedure controls the FDR and FDP asymptotically:

THEOREM 3.1. Assume that Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5 hold for all B; and
s =< s'. In addition, assume n~?s(logd)(logn) = o(1/logd), s/d = o(1), |Si| — o0, d =
On%) for some constant C > 0, and

(3.2) 3 42041207 o((logd)~>2).
(j.k)eA

Let ¢ > 0 be a small constant. For any t € [c, 1), we have as n,d — o0,

FDP(iiy;) <a and FDR(uy,) <« in probability.

In the following, we comment on the conditions in the theorem. First, we require
n~VY 2s(log d)(logn) = o(1/logd) which is identical to the condition in Theorem 2.8 for
fixed dp up to a logarithmic factor of d. This guarantees the validity of the p-values un-
der the null, asymptotically. Since we consider the sparse model, most 8;’s are 0 implying
s/d = o(1). We also require the number of strong signals tends to infinity, |S;| — oo, which
is needed to control FDP. We require d = O(n€) to apply the moderate deviation lemma
of Liu (2013). While we cannot allow d to grow exponentially fast in n as in Theorem 2.8,
by choosing C > 1 d can still be much larger than n. Finally, (3.2) imposes conditions on
the correlation of the test statistics. Recall that €2 is the correlation between A;; and Aji.
Denote A;j ={1 <k <d:|Qjl > (logd)™>/?}. If |2jx| < a for some constant a < 1, then

(3.2) holds under the assumption |.A;| = o(d %_‘3) for some small § > 0. In particular, under
(2.17) and Assumption 2.3, we can show that |4;| < s and therefore (3.2) is true, provided
d is sufficiently large. Thus, the FDR and FDP control is still feasible under dependent test
statistics, provided their correlation satisfies (3.2).

4. Numerical studies. In this section we evaluate the numerical performance of our pro-
posed method by Monte Carlo simulation and a real data example. We further provide more
simulation results in Supplementary Material Section S.4.

4.1. Simulation studies. We first assess the empirical performance of the proposed
method using simulated data. In all settings we randomly select s out of the d components
to be nonzero. We consider two settings where the nonzero components are all 1’s (in what
follows we refer to this setting as Dirac), or each of the nonzero components are generated
from a uniform distribution over [0, 2], independently. We consider linear model where each
Yii=X lTJ B +e€ j»and €;; follows a normal distribution with variance equals 1. Note that the
noise ¢;; s are correlated with other €;;:’s, as specified later. The cardinality s of the active set
is setas 5, 10 or 20; we let d = 200, 500, 1000, and n» = 50, 100. In each simulation we gener-
ate the covariate X;; ~ N(0, X) € R for each (i, J), where the (k, £)th element of X equals
,o'k*“, and p = 0.25,0.4,0.6 or 0.75. We set m = 3 or 5, and we take the within-subject
correlation to be either equal-correlation model or AR(1) model. In our method we include a
broad class of matrices as the basis for the inverse of the correlation matrix. Specifically, we
generate data from either the equal-correlation model or AR(1) model and include the basis
matrices discussed in Section 2.4. For ease of presentation, we investigate Type I error, false
discovery rate and power of our method.
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TABLE 1
Empirical Type I error rate (%) under equal correlation with correlation parameter being 0.5. The nominal level
is set to be 5%

p=0.25 p=04 p=0.6 p=0.75
(n,d) K Dirac UJ0, 2] Dirac Ulo0, 2] Dirac uUlo0, 2] Dirac uU[o0, 2]
m=73
(50, 200) 5 5.9 5.5 5.5 5.3 5.8 4.7 4.4 4.6
10 5.9 5.9 5.2 4.8 4.8 5.8 5.1 4.9
20 6.1 5.7 5.9 4.8 6.2 6.0 5.4 5.5
(100, 500) 5 5.6 5.4 5.7 5.2 6.0 5.9 4.7 5.1
10 5.8 5.2 5.5 5.3 5.8 5.3 3.9 5.4
20 5.7 49 54 49 5.6 4.0 6.2 5.7
(100, 1000) 5 5.3 5.7 5.8 5.5 5.8 6.3 5.1 4.5
10 5.9 5.4 5.3 5.5 5.3 5.1 4.0 4.3
20 6.1 5.8 5.6 5.7 5.5 43 6.8 6.2
m=>5
(50, 200) 5 5.5 5.2 5.3 5.2 5.4 5.1 5.0 4.8
10 5.3 5.2 5.3 5.1 4.9 5.5 5.3 5.0
20 5.3 5.4 54 5.3 5.7 5.3 5.3 5.6
(100, 500) 5 5.3 5.3 5.5 5.3 5.4 5.6 49 5.2
10 5.5 5.4 5.4 5.1 5.6 5.5 4.7 4.8
20 5.5 5.3 5.3 5.0 4.8 4.4 5.8 5.9
(100, 1000) 5 5.2 5.5 5.5 54 5.5 5.8 5.3 5.4
10 5.6 5.7 5.0 5.6 5.2 5.3 4.4 4.5
20 5.9 5.6 5.3 5.5 5.4 4.8 5.7 6.0

We first consider the empirical Type I error. Specifically, we apply the proposed method
to test the null hypothesis Hy : 8] = 0, which we assume to be true in our setting. The tuning
parameters A and A" are determined by the five-fold cross validation. The simulation is re-
peated 1000 times. We report the empirical Type I error at 5% significance level in Tables 1
and 2. It is clearly seen that the proposed test can control the empirical Type I errors at the de-
sired nominal level. This implies the asymptotic distribution of our test statistic is reasonably
accurate in finite sample.

Next, we consider the empirical false discovery rate by applying the methods described
in Section 3. In particular, we simultaneously test all  hypotheses that Hy; : 7 = 0 for all
j=1,...,d. After getting d different p-values, we apply the proposed method under the
level @« = 0.1 or 0.2. Under the same data generating schemes for investigating empirical
Type I error, we repeat the simulation 1000 times and report the averaged false discovery
rate in Tables 3 and 4. We find that the empirical false discovery rates are well controlled
under different settings. Furthermore, we plot the empirical false discovery rate against the
nominal false discovery rate from zero to one in Figure 1 under several settings. Our approach
well controls the false discovery rate for different desired levels. It is worth noting that, in the
second subfigure, the empirical FDR deviates from the nominal one as the maximum possible
false discovery rate is (d — s)/d = 90% when (s, d) = (20, 200).

Finally, we investigate the empirical power of the proposed test and compare it with some
other high-dimensional inference procedures—the debiased Lasso method (van de Geer et al.
(2014), Zhang and Zhang (2014)) and the decorrelation method (Ning and Liu (2017)) by
pretending all observations are independent. In particular, we test Hp : 81 = 0, under the
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TABLE 2
Empirical Type I error rate (%) under AR-correlation structure with correlation parameter being 0.6. The
nominal level is set to be 5%

p=0.25 p=04 p=0.6 p=0.75
(n,d) s Dirac Ulo0, 2] Dirac U[o0, 2] Dirac UJo0, 2] Dirac Ul0, 2]
m=3
(50, 200) 5 5.4 5.3 5.4 5.5 5.2 5.0 5.3 5.1
10 4.6 5.1 5.4 4.8 5.1 5.3 5.1 5.2
20 5.8 5.7 5.2 5.5 5.6 5.2 4.7 54
(100, 500) 5 5.4 5.1 5.6 5.3 5.5 5.3 5.2 5.3
10 5.5 5.6 5.7 5.4 5.8 5.6 5.3 5.5
20 5.6 4.8 5.8 5.3 5.3 4.5 4.6 4.6
(100, 1000) 5 5.3 5.4 4.8 4.7 5.3 5.9 5.7 5.6
10 5.4 5.6 5.3 5.4 5.5 5.3 4.6 4.4
20 6.1 5.8 5.6 5.7 5.5 5.3 5.9 5.7
m=>5
(50, 200) 5 5.2 5.2 5.3 5.6 5.1 5.2 5.4 5.0
10 5.1 5.3 5.2 5.1 5.3 5.2 5.2 5.3
20 5.5 5.6 5.3 5.4 5.5 5.1 4.8 5.3
(100, 500) 5 5.3 5.3 5.4 5.5 54 5.2 5.1 5.2
10 5.2 5.7 5.6 5.5 4.8 4.9 5.2 5.6
20 5.5 5.8 5.5 5.4 5.6 5.2 4.9 4.7
(100, 1000) 5 5.5 5.7 5.4 5.6 5.5 5.6 54 5.7
10 5.6 5.7 5.2 5.5 5.6 5.4 5.2 5.3
20 5.8 6.1 5.8 5.7 6.0 5.9 4.5 4.3

Dirac setting, where the signal of B; gradually increase from 0 to 0.7, and we investigate
the empirical rejection rate for different settings. The results are summarized in Figure 2. As
expected, our QDIF approach achieves better empirical power, especially when the signal is
weak and s is relatively large. This is in line with our theoretical results.

4.2. BMI dataset. We further evaluate our method using a BMI genomic dataset from
the Framingham Heart Study (FHS). This is a long-term, ongoing cardiovascular study be-
ginning in 1948 under the direction of the National Heart, Lung and Blood institute (NHLBI)
on residents of the City of Framingham, Massachusetts. The objective is to identify the im-
portant characteristics that contribute to cardiovascular disease. We refer to Jaquish (2007)
for more details of the study. Recently, 913,854 SNPs from 24 chromosomes have been geno-
typed from the Offspring Cohort study. We investigate the issue of obesity as the body mass
index (BMI), where BMI = weight (kg)/height (m)?. Our dataset contains BMI of 977 sam-
ples, where each sample’s BMI value is collected at 26 times. Since there are some missing
values presented in the response of different samples, we first adopt n = 234 samples with
time points m;’s ranging from three to seven where their BMI values are recorded. The non-
rare SNPs genotypes from the 23 chromosomes are also recorded. Taking the BMI values
as response variables Y, we first screen the features by regressing the BMI values on each
of the SNPs and only keep the SNPs with marginal P-value less than 0.05. This reduces the
dimension to d = 4294. Then, for the jth SNP we treat this covariate as Z in Section 2 and
the rest of the covariates as U. We apply the proposed QDIF method to test whether the jth
SNP is associated with BMI, where we use the same basis matrices as in the simulations. The
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TABLE 3
Empirical false discovery rate (%) at level « = 0.1 and 0.2 under equal-correlation structure with correlation
parameter being 0.5

p=0.25 p=04 p=0.6 p=0.75
(n,d) s o 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2
m=3
(50, 200) 5 9.3 19.1 9.6 19.6 8.9 18.9 10.6 20.8
10 8.8 19.3 9.2 18.9 9.3 20.7 10.4 21.0
20 8.7 18.7 8.8 18.8 9.4 19.3 9.4 20.9
(100, 500) 5 9.6 19.2 10.3 20.2 11.0 20.9 10.9 21.3
10 9.7 20.1 9.5 21.1 8.7 20.8 8.8 20.8
20 9.4 18.9 9.2 18.9 10.5 20.3 11.1 21.3
(100, 1000) 5 10.4 20.8 9.5 20.7 9.2 21.3 9.4 20.6
10 9.5 21.2 9.2 20.6 9.1 20.9 9.8 20.9
20 9.3 21.8 8.9 21.5 8.7 22.0 12.1 214
m=>5
(50, 200) 5 9.5 19.7 9.4 19.5 9.2 19.3 10.0 20.5
10 9.1 19.5 9.6 19.2 9.1 21.3 10.7 20.4
20 9.2 19.1 9.0 19.0 9.5 18.9 9.8 18.9
(100, 500) 5 9.3 20.5 9.7 21.0 10.6 20.3 10.2 20.7
10 9.5 19.7 9.6 21.3 9.8 20.4 9.5 21.3
20 9.7 19.4 9.5 19.2 9.5 19.3 10.9 18.5
(100, 1000) 5 9.8 20.4 10.8 20.4 8.9 19.3 9.6 19.5
10 9.2 20.7 9.3 20.4 9.3 20.5 9.5 20.7
20 9.1 21.0 10.5 19.2 9.2 21.7 11.3 20.6

obtained p-value is recorded as P; as in Section 3. We repeat this procedure for all the SNPs
which yields a sequence of p-values Py, ..., P;. When we select important SNPs based on
these p-values, we need to account for the fact that we have been looking at a large number
of candidate SNPs (the so called multiple testing effect). Failure to account for the multiple
testing effect causes irreproducibility of the results and may yield misleading scientific con-
clusions. Given the practical importance of this problem, we developed a rigorous result on
the FDR control. Applying our result to the data analysis, we find that the 12,289th position
of the 1st chromosome, 681st, 756th and 19,880th SNPs of the 10th chromosome, and 1189th
and 12,075th SNPs of the 20th chromosome are the significant SNPs under the FDR at 10%.
Interestingly, it is known that the 10th and 20th chromosomes are related to obesity (Dong
et al. (2003)) which matches our results that the significant SNPs are mostly located at the
10th and 20th chromosomes.

5. Technical lemmas and proofs.

5.1. Technical lemmas. In this subsection we provide some technical lemmas used in our
proofs in Sections 2 and 3. The proofs of these technical lemmas are given in the Supplemen-
tary Material, Fang, Ning and Li (2020).

The first lemma on the rate of convergence of random matrices in the spectral norm is
derived from the matrix Bernstein’s inequality and is fundamental for the rest of the proof.
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TABLE 4

Empirical false discovery rate (%) at level o« = 0.1 and 0.2 under AR-correlation structure with correlation

parameter being 0.6

p=0.25 p=04 p=0.6 p=0.75
(n,d) s a: 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2
m=3
(50, 200) 5 9.6 20.3 9.8 20.4 10.1 20.5 9.7 19.4
10 9.4 20.3 9.5 20.8 10.4 19.5 9.8 20.9
20 10.8 19.5 10.6 21.2 10.0 19.3 9.6 18.8
(100, 500) 5 10.3 20.6 10.5 20.5 9.5 20.1 10.3 19.8
10 10.4 19.5 9.6 20.3 9.5 20.8 10.4 21.0
20 8.9 20.8 9.3 19.2 8.8 21.0 8.7 20.9
(100, 1000) 5 10.5 20.6 10.6 20.7 9.3 19.2 9.2 20.3
10 10.5 20.7 10.8 19.5 10.2 19.4 9.7 20.4
20 8.7 20.5 11.3 20.7 10.4 20.1 10.9 20.6
m=>5
(50, 200) 5 10.3 20.1 10.0 20.3 9.8 20.5 9.9 19.8
10 9.7 20.3 9.6 20.8 10.4 19.4 9.4 20.7
20 9.6 19.5 9.5 19.3 10.5 20.9 10.8 20.8
(100, 500) 5 9.5 20.3 9.8 20.6 9.6 19.7 20.4 204
10 9.4 20.8 10.1 20.7 10.9 20.8 9.3 20.8
20 10.3 20.5 9.2 21.1 10.5 20.9 9.1 19.5
(100, 1000) 5 10.7 20.8 10.5 19.5 9.8 20.0 9.6 19.5
10 10.6 20.5 10.8 20.9 9.2 20.8 8.9 21.1
20 11.0 21.2 9.3 19.6 9.5 20.3 8.8 18.7
Empirical FDR for (n,s,d,m) = (50,20,200,5) Empirical FDR for (n,s,d,m) = (100,20,500,3) Empirical FDR for (n,s,d,m) = (100,20,1000,5)
] under AR(1) Model ] under AR(1) Model ; under AR(1) Model
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Nominal FDR Nominal FDR Nominal FDR
FI1G. 1. Empirical FDR of the proposed method in AR(1) and equal correlation models, where we take the

correlation parameter as 0.75.
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Empirical Power for (n,s,d,m)=(50,20,200,5) Empirical Power for (n,s,d,m)= (100 10,500,3) Empirical Power for (n,s,d,m ) (100,20,1000,5)
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FI1G. 2.  Empirical power for quadratic decorrelated inference (QDIF), debiased Lasso and decorrelation meth-
ods under AR(1) and equal correlation models, where we take the correlation parameter as 0.75.

LEMMA 5.1, Suppose that Assumptions 2.1-2.5 and U108 _ (1) pold. Then,

max [[VS;(6*) — goc(0%)[, = Op(\/dologdo/n),

1<k<K
1& #\ T * *
max ;Z(Z,-—U,-Wk) W, (Z; — U;W§) —gor(6%)
(5.1) o 2

= Op(y/dologdy/n),

max, |- Zz W, Z, —E(Z;V;Z)) 2_OP( dologdy/n),
and
(5.2) H ZS* 0*)S:7 (%) — C* :OP(\/dologdo(logn)z/n).
i=1 2

LEMMA 5.2. Recall that (0) = VS, (0) and go(0) = E{VS}(0)}. Under the conditions
in Theorem 2.7, we have

() Ndologd
|8@) — g0(6")], = op(\/@),
50°) o0, = s 2012 )

LEMMA 5.3.  Recall that C=n""Y"_, §;@)ST (@) in (2.9), where S; (0) = {S:1(0), ...,
Sik ) and C* = E{S7(6*)S; (0* YT} in (2.16), where S70*) = (5767, ..., ;“K(G*))T.
Under the conditions in Theorem 2.7, we have

~ d, Nlogd(l 2
||C—C*||2=(’)]p<\/ o(s Vv s')logd(logn) )

n
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LEMMA 5.4. Under the same conditions as in Theorem 2.7, we have,

Q * 1 - * *
Sni (60 )_;Zsik(o )
i=1

max

dy*(s v's") logdlogn>
1<k<K ’

:O]p(
) n

LEMMA 5.5.  Recall that Q};(0) = S;;(0)T C*~'S5(8), where S*(6) = 1 Y"1, S¥(6). Un-
der the same conditions as in Theorem 2.7, we have

(v0;0)1, =05, 2),
1v3,(6%) - v 0;6"),

_o (do{(s v s') log d(log )2} /2 N dy*(s v's") logdlogn>
- n n ’

LEMMA 5.6. Let c be a small constant. Under the conditions in Theorem 2.7, uniformly
over |0 — 0% < cdo_l/2 it holds that with probability tending to one

0n(0) — 0,(0%) — V0.(6°)(6 — %) = C6 — 0%

for some positive constant C.

LEMMA 5.7. Suppose Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5 hold for all ﬁ}'-‘ for j €

[d], and suppose that A < )/ < \/n—1logd and n_l/zs(logd)(logn) =o0(1/logd). Let the
“ideal” version of,gj be

1 1 #\ ok—1 x\1—1 $\ ek—1 % ( ok
(5.3) ;X;Aij = ;;{goj(ﬂj)cj ng(:Bj)} ng(/Bj)Cj 'Sij(ﬂj)’

where g, i Cj and S} (ﬂ;‘) denote corresponding gy, C* and S} (ﬁ;’-‘) in the previous section
for 8%, and let the ideal version offj be

(14
Ti:ﬁffjl(ZZA”)’
i=1

where o is defined in (2.21). We have that ﬁ,g j converges to ﬁ Y Aij such that as
n— oo,

= Op(n~2s(logd)(logn)),

~ 1 &
max «/ﬁﬂj — WZAU
i=1

J€Ho
and

max |f,~ — Tl = Op(n_l/zs(logd)(logn)).
J

LEMMA 5.8. Suppose the conditions in Theorem 3.1 hold. Let rq be any sequence such
that rg — 00 as d — 00, and rg = o(|S1|). Then, we have

> jes, UPj <u}
sup
rq/d<u<l u- |SO|

—1|— 0,

in probability.
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5.2. Proof of main results.

PROOF OF THEOREM 2.7. Since [|6* — 8] < Jslogd/n < cdo_l/2 under condition
(2.18), we claim that | 0* lies in ®,, with probability tending to one. By the definition of 0, it
holds that Q,(0) < Q,,(8*) which further implies

0n(0) — 04 (0%) — V0,(0%)(8 — 0%) < —V 0,,(6%)(6 — 07).

By Lemma 5.6, the left hand side is lower bounded by cui)’ — 0*||%. Thus, by Cauchy—
Schwarz inequality,

Cl6 075 <V 0a(67)],16 — 07,
< (V0. (6%) - VOO, + VO, 67)],)]0 — 6%,
Together with Lemma 5.5, we have 16 — 0% |2 = Op(/do /n) which completes the proof. [J

PROOF OF THEOREM 2.8. We first note that

~ o~ ~ - do slogd ( 1 >
0—06),<|6—06" 0—0%, <, — = —
180l = 5= 0]+ [0 = 07], < 2+ |25 —or(

This implies ] belongs to the interior of ®,. By the first order optimality condition, 0 satisfies
860)TC'S,(6) =0 where 8(0) = 3S,,(9)/06.

By the mean-value theorem for vector valued functions, for each component of Sy (0)
say (S, (0))1 there exists 0J = ;‘10* + - {1)0 for some ¢; € [0, 1] such that (S (0)
S, (0%)) ji= =[3(S, (0 1)) j/00] 17 (@ — 6*). For notational simplicity we suppress the subscript j
in 0 ;j and write it as

80)"C'{S,(0%) +E0) (0 —6%)} =0.
Thus, we have
(5.4) {86)"C'8(0)}(0 — 6*) = —g(®)" C 'S, (67).
Define
T, =[{80)"C'86)) " — {20(6")" C*'go(67)} '] - 8®) C'S,,(67),

T2 = {go(6°) C* o (%)) {g«?ﬂe—lﬁn (6) — g0(07) T

_ly Z where &; = —{g0(0%)" C*'g0(0%)} g0 (6*)" C*'SF(6").

3

Then, it holds that 0 — 0% = -T,—-T,+ é Putting together Lemmas 5.2, 5.3 and 5.4, we
can show that

17112 = op(dg/z 4 dolls v s/“‘)gd“‘)g”)z}l/z)
n n

with some tedious algebraic manipulation similar to the proof of Lemma 5.6. In addition, we
can show that

3/2 ’ 21172 1/2 /
d, do{(s\/s)lo d(logn)“} (s vs')logdlogn
17202 = 0p( EaQogmy}~ 1 4 osteen),
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Combining the above results, we have
166 —¢],

3/2 / 211/2 172 ’
d, do{(s v s")1ogd(logn d,""(s vs')logdlogn
_O(n+0{( )g(g)}+o( ) log g).

n n

To show the limiting distribution of n(é—o)Tz; l(’0v—l9),we first note that
dy |6 0"z, (6 07) & %, 8]
<dy |0 —0" 8"z, B -0 + [ 2,0 -0~ B)]]
<dy n[|0 - 0" —E[,|Z5" 1,10 — 0%, + 1€12|Z5 " |,16 — 0% — E],]

n [dg/z do{(s v 5) log d (logn)?}1/2 do/ (s\/s/)logdlogn:|d0

~ dé/z n n n 172

=op(1)
by Theorem 2.7 and the assumed conditions. Thus, it suffices to show the limiting distribution
of €' X, 'E. Note that E[|Z, /¢, |13 S E|SF6%)]3 < d:/*. Theorem 1.1 in Bentkus (2003)
1mphes
3/2

sup
BeB

1 &
P(mZZo UZ!;’,-EB)—}P’(NEB) <
i=1

where B is the set of all Euclidean balls in R%, C is a positive constant and N =
(N1, ..., Ng,) are dy independent N (0, 1). Finally, we obtain for any ¢ € R,

P(”’;‘Tza_lé —dp - t)

70 _
ni/2

/2do
2 3/2
V2o L
do N2—1 cd)” ¢ cd)?
Z 5 nl/2 <I>(t)+d1/2+ /2’

where ®(-) is the c.d.f. of a standard normal distribution and C’ is a absolute constant from
the standard Berry—Esseen bound. The same probability can be lower bounded by using the
same argument. Thus, as dy, n — oo, (ngT):o_lé — dp)/+/2dy converges weakly to N (0, 1).
When dp is fixed, the Layponov condition for l 1 vT &, holds for any v € R% and thus

, DI v7'E; ~ N(0,v" Zyv). Finally, we obtaln (2.22) by applying the Cramer—Wald
device. O

PROOF OF THEOREM 3.1.  For notational simplicity we suppress the dependence of Ug.t
on t. By the definition of FDP(«) and FDP; (u), we have

(S0l Ejesy UPs = )
7d 1S

We first show that (i - [So) ™' 32 jes, 1{Pj < u} — 1 in probability. We prove a moderate
deviation result for this quantity. By assumption, we have |S;| — oo. Let rgy be a sequence

(5.5) FDP(ii,,) = FDP; (i) -
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such that ry; — 0o as d — o0, and rg = 0(|S1|). We first prove that P(iiy < ry/d) — 0 as
n — o0. Note that

1- X%(Zlogd) =2(1 — ®(,/2logd)) < \/2/7(d 2logd) ™! <rq/d.
Hence, for any j € S, we have
(5.6) P(Pj <rq/d) =P(Anj = 1 = x; *(ra/d)) = P(Anj > 2logd).
Recall that V,; := /n B i — ,8;’.‘) /& . By extending the proof of Theorem 2.8, we get
(5.7 lim  max suﬂg{P(an <x)—®(x)|=0.

n—>00 je(l,...d} ye
For any j € 51, we have
~ 12
Anpj =n,§]2~/62 = {Vuj +/nB}/5})"

Therefore, we have that
P(Anj <2logd) <P(|V,j +/npj/a| < 2logd)
< P(=|Vyjl +v/n|B}]/G < \/210gd)

<P(CC'\/logd — (logd)"/* < /2logd)
+ P(|Vaj| > (logd)'/%),

where in the last inequality we used the condition that | ,B;f| > C+/(logd)/n for j € S and
1/6 > C'.If CC’ > +/3,hence CC’/logd — (logd)'/* > /2Togd for large enough d. More-
over, by (5.7)

max P(|V,,;| > (logd)"/*)
JES]
< m%x|IP(|an| > (logd)'/*) —2{1 — ®((logd)"/*)}| 4 2{1 — ®((logd)'/*)}
JEO1

— 0.

Hence, we get max jes, P(A,j < 2logd) — 0. Therefore, by (5.6) we conclude that P(P; <
rq/d) — 1, uniformly, over j € S;. Therefore, we have

1 rd
@jesl P<Pj - E) o
which implies that 1/|S511)_ s, 1{Pj <rq/d} — 1in L, and in probability. Hence, we have
= () -rq IS rd
PR CID = b < ragdy = S e 1Py < rafd) 11T
As rg = 0(|S1|), we conclude that F/ﬁP, (ra/d) — 0 < « in probability, and hence by the
definition of %, we obtain
(5.8) Py = rq/d) — 1.
Hence, by (5.8) and Lemma 5.8 we conclude that (@7, - |So|) ™! 2jes, UPj < Uy} — 1in
probability. Finally, by the definition of 7 (¢), we have
1Sol 1Sol

m()d min(Z?zl {P; =1}/(1— 0.d)
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If Y9_ 1{P; > 1}/(1 — 1) < d, we have
Sl _ |Sol(1 —1) _ |Sol(1 —1)
n(t)d d-— Z‘}Zl WPy <t} d—(Xjes, T2 jgs)UPj =1}
We have |Sol/d — 1 and (1/|Sol) 2_j¢s, 1{Pj <t} < (d — |Sol)/ISol — O in probability.

Moreover, given any ¢ € [c, 1), for d large enough, we have t > r;/d. Hence, by Lemma (5.8)
we have (1/[S0]) X jes, 1{Pj <t} — t in probability. Hence, we conclude that |Sp|/ (7 (2) -
d) — 1in probability. On the other hand, if Z;Ll 1{P; >t}/(1—1) > d, wehave |Sp|/(r ()"
d)=15o|/d — 1.

Putting together the above results and by (5.5), we get FDP(iiy) < o and similarly
FDR(#y) < « in probability, hence concluding the proof. [
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SUPPLEMENTARY MATERIAL

Supplement to “Test of significance for high-dimensional longitudinal data’ (DOI:
10.1214/19-A0S1900SUPP; .pdf). The supplement consists of several technical lemmas
along with their proofs, additional numerical results and numerical comparisons.
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