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ABSTRACT
We introduce a novel approach for high-dimensional regression with theoretical guarantees. The new
procedure overcomes the challengeof tuningparameter selectionof Lasso andpossesses several appealing
properties. It uses an easily simulated tuning parameter that automatically adapts to both the unknown
random error distribution and the correlation structure of the design matrix. It is robust with substantial
efficiency gain for heavy-tailed random errors while maintaining high efficiency for normal random errors.
Comparing with other alternative robust regression procedures, it also enjoys the property of being equiv-
ariant when the response variable undergoes a scale transformation. Computationally, it can be efficiently
solved via linear programming. Theoretically, under weak conditions on the random error distribution, we
establish a finite-sample error bound with a near-oracle rate for the new estimator with the simulated
tuning parameter. Our results make useful contributions to mending the gap between the practice and
theory of Lasso and its variants. We also prove that further improvement in efficiency can be achieved by a
second-stage enhancement with some light tuning. Our simulation results demonstrate that the proposed
methodsoftenoutperformcross-validated Lasso in various settings. Supplementarymaterials for this article
are available online.
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1. Introduction

Consider a linear regression model

Y = Xβ0 + ε, (1)

where Y = (Y1, . . . ,Yn)T is an n × 1 vector of responses, X is
an n×p centeredmatrix of covariates, β0 = (β01, . . . ,β0p)T is a
p×1 vector of unknown parameters, and ε = (ε1, . . . , εn)T is an
n× 1 vector of independent and identically distributed random
errors. We are interested in estimating β0 in the ultrahigh-
dimensional setting, where the number of covariates (features)
p can grow exponentially fast with the sample size n.

In the last decade, substantial progress has been achieved
in high-dimensional regression analysis. In particular, L1 reg-
ularized least squares regression techniques as represented by
Lasso (Tibshirani 1996; Chen, Donoho, and Saunders 2001),
Dantzig selector (Candes and Tao 2007), and their variants such
as SCAD (Fan and Li 2001), MCP (C. H. Zhang 2010), Capped
L1 (T. Zhang 2010), among others, have become popular tools.
The literature in this area is vast. We refer to Bühlmann and
van de Geer (2011) and the reviews of Fan and Lv (2010) and
Zhang and Zhang (2012) for a fuller list of references. Despite
the significant advances in algorithm and theory development,
at least two challenges remain.

The first challenge is to determine the right amount of
regularization in a computationally efficient way with proper
theoretical justification. Practical performance of regularized
high-dimensional regression depends crucially on the choice
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of tuning parameter λ, which prescribes the level of penalty
or shrinkage. For Lasso, it is well understood that the optimal
choice of λ depends on both the random error distribution
and the design (see, e.g., Meinshausen and Bühlmann 2006;
Zhao and Yu 2006; Bunea, Tsybakov, and Wegkamp 2007;
Van de Geer 2008; Zhang and Huang 2008; Bickel, Ritov, and
Tsybakov 2009; Wainwright 2009). However, theory is often
derived while fixing λ at an ideal value τσ

√
log p/n, where σ is

the standard deviation of the random error distribution and τ is
some positive constant. Estimation of σ in high dimensions
is itself a very difficult problem (Fan, Guo, and Hao 2012;
Sun and Zhang 2012; Dicker 2014; Yu and Bien 2019). To
circumvent this difficulty, practitioners often employ cross-
validation to select λ. Several recent work shed light on the
properties of cross-validated Lasso (e.g., Homrighausen and
McDonald 2013; Chatterjee and Jafarov 2015; Chetverikov,
Liao, and Chernozhukov 2016; Homrighausen and McDonald
2017; Feng and Yu 2019). Comparing with the corresponding
theory for Lasso with fixed theoretical choice of λ, these results,
however, generally require stronger regularity conditions and
have less sharp bounds. There still exits an important gap
between the theory and practice of Lasso. See also Wu and
Wang (2020) for a recent survey on tuning parameter selection
for high-dimensional regression.

The second challenge is concerned with how to properly
handle heavy-tailed error contamination in high dimensions
so that one achieves robustness while maintaining efficiency at
the normal error setting. Heavy-tailed error contamination is
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ubiquitous in high-dimensional microarray data, climate data,
insurance claim data, e-commerce data, and many other appli-
cations. For such data, Gaussian or sub-Gaussian error assump-
tion is rarely justified. Direct application of standard procedures
can result in biased estimation and misleading conclusions.
Heavy-tailed errors also affect the choice of tuning parameter.

It is important to note that the above two challenges are
usually intertwined. Solutions focusing on only one aspect of
the two issues run the risk of making the other aspect more
challenging. Several authors (Fan, Li, and Wang 2017; Loh
2017; Sun, Zhou, and Fan 2020) recently made important
contributions to high-dimensional M-estimation based on
Huber’s loss which possesses desirable robustness properties.
Lozano, Meinshausen, and Yang (2016) proposed a minimum
distance estimator. Wang et al. (2013) investigated robust
regression based on exponential squared loss. Avella-Medina
and Ronchetti (2018) studied robust penalized quasilikelihood.
Prasad et al. (2020) considered robust variant of gradient
descent and proved theoretical guarantees. However, these
work have not fully addressed the challenge of selecting λ

and may even require some additional tuning parameter to
achieve robustness. For example, Huber’s loss function contains
an additional tuning parameter and in general penalized
Huber regression requires cross-validation for tuning parameter
selection. An alternative robust loss function is the least absolute
deviation loss (or more generally, quantile loss) (see, e.g.,
Belloni, Chernozhukov, andWang 2011; Bradic, Fan, andWang
2011; Wang, Wu, and Li 2012; Wang 2013; Fan, Fan, and Barut
2014). Although being robust, this loss may incur significant
efficiency loss for normal random errors. On the other hand, an
interesting stream of research has investigated how to alleviate
the difficulty of selecting λ for Lasso. The scaled Lasso of Sun
and Zhang (2012) iteratively estimates the regression parameter
and σ . The square-root Lasso (Belloni, Chernozhukov, and
Wang 2011) eliminates the need to calibrate λ for σ but does
not adjust for the design matrix. TREX (Lederer and Müller
2015; Bien et al. 2016, 2018) automatically adjusts λ for both
the tail of the error distribution and the design matrix but
the modified loss function is no longer convex. Sabourin,
Valdar, and Nobel (2015) adopted a permutation approach
and Chichignoud, Lederer, and Wainwright (2016) developed a
novel testing procedure to select λ. Yu and Bien (2019) proposed
the organic Lasso and derived a prediction error bound under
weaker assumptions on the design matrix with a theoretical
choice of the tuning parameter that does not depend on σ .
These, however, have not addressed the robustness challenge
and may have suboptimal performance for heavy-tailed errors.
For example, the theory of scaled Lasso requires the Gaussian
error assumption. Estimating σ is particularly challenging for
high-dimensional regression with heavy-tailed errors.

This article makes a useful contribution to the high-
dimensional regression literature by showing that a rather
simple solution exists that addresses these two challenges
simultaneously. Our new procedure is inspired by Jaeckel’s
dispersion function withWilcoxon scores (Jaeckel 1972), which
plays an important role in classical nonparametric statistics
due to its robustness and efficiency properties. In the low-
dimensional setting (p < n), regression with Wilcoxon loss
function was investigated by Wang and Li (2009), Wang, Kai,

and Li (2009), Leng (2010), Feng, Zou, andWang (2012), among
others. However, they required computationally intensive
tuning and did not study the theory in high dimensions as
is done in this article. Here, we carefully develop a new L1
regularized estimator based on this dispersion function with
theoretical guarantees in the ultrahigh-dimensional setting.
We demonstrate that the new estimator achieves several goals
simultaneously.

• The new estimator is convenient to implement. It is the
solution to a convex optimization problem and can be
obtained by linear programming. Its tuning parameter λ

can be easily simulated and automatically adjusts to both
the random error distribution and the design matrix cor-
relation structure without sacrificing the severity of vanilla
assumptions.

• Theoretically, we derive a nonasymptotic L2 estimation
error bound for the L1 regularized new estimator with
simulated tuning parameter in ultrahigh dimensions under
mild regularity conditions. Let q be the number of nonzero
regression coefficients of the underlying model. We prove
that with high probability the L2 estimation error bound
achieves the rate O(

√
q log p/n), the same near-oracle

bound for Lasso with the theoretical tuning parameter (see
Theorem 1 in Section 2.3). However, we do not need the
sub-Gaussian error assumption as Lasso does or the lower-
order moment assumption as Huber-loss based procedures
require.

• For random errors with distributions symmetric about
zero, our modeling parameter xTi β0 coincides with the
conditionalmean.However, we do not require the symmetric
random error assumption. For iid random errors, since
Jaeckel’s dispersion function is invariant to a location
change, xTi β0 differs from the conditional mean only by a
constant. In particular, the slopes in β0 still bear the same
interpretation as the effects of the covariates on the condi-
tional mean. This is different from some alternative robust
methods which may imply an altered interpretation on what
parameters are directly estimated due to the modified loss
function.

The new estimator is very close to Lasso for normal random
errors and is robust with substantial efficiency gain for heavy-
tailed errors. Figure 1, corresponding to Example 1 in Section 4,
provides an example of the robust and efficient behavior of the
proposed new estimators. The left panel of Figure 1 displays the
boxplots of the L2 estimation error of four different estimators
for normal error distribution; while the plots in the right panel
are for the heavy-tailed mixture normal error distribution. It
is worth emphasizing that our conditions on the random error
distribution are much weaker than the sub-Gaussian condition
and permit heavy-tailed distributions such as Cauchy distribu-
tion. Due to the strong nonsmoothness of Jaeckel’s dispersion
function, advanced empirical processes techniques are needed
to establish the theory for the new estimator comparing with
that for the L1 regularized least squares estimator.

As another contribution of the article, we show that a second-
stage enhancement can further improve the estimation effi-
ciency due to the reduction of the bias induced by the L1
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Figure 1. Boxplots for L2 estimation error for four different procedures in Example 1.

penalty. This is motivated by the work on nonconvex penal-
ized regression such as SCAD (Fan and Li 2001), MCP (C.
H. Zhang 2010), Capped L1 (T. Zhang 2010), which recognize
that Lasso tends to overshrink large coefficients and leads to
biased estimate. This second step does require some tuning but
fairly light. The tuning parameter for this step can be efficiently
computed via a high-dimensional BIC procedure (Chen and
Chen 2008). Theoretically, we prove that with high probability
the second-stage estimator possess the strong oracle property,
that is, it is exactly equal to what one would obtain if the
underlying data generative model is known in advance. With
high probability, the zero coefficients are estimated to be exactly
zero. For estimating nonzero coefficients, we derive interesting
efficiency results: the resulted estimator is almost as efficient
as the oracle least squares estimator for normal random errors;
and can be substantially more efficient for heavy-tailed random
errors. Indeed, the asymptotic relative efficiency (ARE) is shown
to be the same as that of the one-sample Wilcoxon test with
respect to the t-test. This implies that the ARE is as high as 0.955
for normal error distribution, and can be significantly higher
than one formany heavier-tailed distributions. In particular, the
efficiency of using the Jaeckel’s dispersion loss function with
Wilcoxon score is about 1.5 times that of using the absolute
deviation (orL1 loss) function if the randomerror distribution is
normal. In fact, the asymptotic efficiency of Jaeckel’s dispersion
loss function with Wilcoxon score amounts to what would be
achieved when one combines quantile losses at infinitely many
quantiles, see Section 3 for more discussions.We also rigorously
establish the proposed high-dimensional BIC is consistent for
variable selection.

The rest of the article is organized as follows. In Section 2,
we introduce the L1 regularized new estimator based on
Jaeckel’s dispersion function with Wilcoxon scores and derive
the nonasymptotic near-oracle L2 estimation error bound.
Section 3 introduces a second-stage enhancement for further
bias reduction and efficiency improvement. It presents a strong
oracle property and a consistency result for a high-dimensional
BIC procedure. Monte Carlo simulations and a real data
example are reported in Section 4 to demonstrate the superior
performance of the proposed estimators. Section 5 concludes
the article with some discussions. The Appendix provides the
proofs of themain theory. The supplementarymaterials contain
additional technical and numerical results.

2. TheMethodology

2.1. Background

Inmodel (1), all parameters are allowed to depend on the sample
size n, but the dependence is suppressed in the notation for
simplicity. The regression parameter β0 is sparse in the sense
that most of its components are zero.

The Lasso estimator is the solution to the regularized least
squares minimization problem

β̂
Lasso

(λ) = argminβ

{
(2n)−1

n∑
i=1

(Yi − xTi β)2 + λ||β||1
}
,

(2)

where xTi = (xi1, . . . , xip) is the ith row of X, ||β||1 denotes
the L1-norm of β and λ denotes the tuning parameter. The
magnitude of λ controls the complexity of the model. A larger
value of λ indicates heavier shrinkage.

The optimal choice of λ involves a careful trade-off. Moti-
vated by the Karush–Kuhn–Tucker condition for convex opti-
mization (Boyd and Vandenberghe 2004), the general principal
of tuning parameter selection for penalized regression (Bickel,
Ritov, and Tsybakov 2009) suggests that λ should satisfy λ ≥
n−1||XTε||∞, where || · ||∞ denotes the infinity norm. As
an example, if the random errors are independent N(0, σ 2)
variables and the design matrix is normalized such that each
column has L2-norm equal to

√
n, then the above lower bound

is satisfied with high probability by the choice λ = τσ
√
log p/n

for some positive constant τ .
On the other hand, the theory of Lasso reveals that λ is

an important factor appearing in its estimation error bound.
Motivated by the subgradient condition of Lasso (Bickel, Ritov,
and Tsybakov 2009; Bühlmann and van de Geer 2011), it is
known that on the event{

2n−1||XTε||∞ ≤ λ
}
. (3)

Lasso enjoys the near-oracle error bound: ||̂βLasso(λ)−β0||2 ≤
γ0

√qλ, where || · ||2 denotes the Euclidean norm of a vector, γ0
is a constant depending on n and p only through the structure
of the scaled Gram matrix n−1XTX, and q is the sparsity index
or the number of nonzero coefficients in β0. This suggests it is
desirable to choose a small λ such that the event (3) holds with
high probability.
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2.2. The NewMethod

We will study the following L1 regularized estimator of β0:

β̂(λ) = argminβ∈Rp

{[
n(n − 1)

]−1 ∑ ∑
i�=j

× ∣∣(Yi − xTi β) − (Yj − xTj β)
∣∣ + λ

p∑
k=1

|βk|
}
. (4)

The loss function in (4) has its origin in classical nonpara-
metric statistics (see, e.g., Hettmansperger andMcKean 1998 for
an introduction).Minimizing this loss is equivalent tominimiz-
ing Jaeckel’s dispersion function (Jaeckel 1972) with Wilcoxon
scores:

√
12

n∑
i=1

[
R(Yi − xTi β)

n + 1
− 1

2

]
(Yi − xTi β),

where R(Yi − xTi β) denotes the rank of Yi − xTi β among Y1 −
xT1 β , . . . ,Yn − xTnβ . This article emphasizes other interesting
and important features of Jaeckel’s dispersion function in the
high-dimensional regression setting. The new estimator β̂(λ)

is the solution to a convex optimization problem and can be
obtained by linear programming (see Section 4.2). In terms of
statistical performance, we will show that the new estimator
behaves very similarly as Lasso for normal random errors and
remains robust with potential significant efficiency gains under
heavy-tailed errors for which the cross-validated Lasso could
break down.

First, the loss function in (4) is invariant to a location change.
Under weak conditions, β0 is the minimizer of the population
version of the loss function. This is different from most other
robust methods which alter the least squares loss function by
truncation or downweighting. The corresponding population
parameter of the altered loss function may no longer be the
regression parameter in the original model (see Fan, Li, and
Wang 2017). This property can be easily seen by noting that
the population version of our loss function can be expressed as
E
∣∣(εi − εj) − (xi − xj)T(β − β0)

∣∣, which is minimized at β0,
as εi − εj has a symmetric distribution about zero whenever
the random errors are independent and identically distributed
(iid). In model (1), the intercept term is absorbed into εi and
can be identified with an additional location constraint on εi,
however, what we estimate using this loss function does not
depend onwhat location constraint is imposed on εi. In particu-
lar, for random errors with distributions symmetric about zero,
xTi β0 coincides with the conditionalmean. However, symmetric
random error distribution assumption is not required. For iid
random errors, β0 still bears the interpretation as the effects
of the covariates on the conditional mean. This is different
from Huber’s loss function which combines L2 and L1 loss
with an additional tuning parameter. The minimizer of Huber
loss approximates β0 when the additional tuning parameter is
carefully tuned to diverge.

Second, it was noted in Parzen, Wei, and Ying (1994) in a
different setting that the gradient function of our loss func-
tion is completely pivotal, which as we will show, leads to an
appealing tuning-free property of the new estimator in the high-
dimensional setting. This allows the procedure to circumvent

the difficulty of tuning parameter selection. We write

Qn(γ ) = [
n(n − 1)

]−1 ∑ ∑
i�=j

∣∣(εi − εj) − (xi − xj)Tγ
∣∣. (5)

Then, the loss function in (4) is Qn(β − β0). Denote the
subgradient of Qn(γ ) at γ = 0 (or equivalently β = β0) by
Sn = ∂Qn(γ )

∂γ

∣∣
γ=0. Motivated by the general principal of tuning

parameter selection discussed in Section 2.1, we choose λ such
that

P
(
λ > c||Sn||∞

) ≥ 1 − α0, (6)

for a given small α0 > 0 and a theoretical constant c > 1, where
c is a theoretical constant that does not depend n or p.

Direct computation yields

Sn = [
n(n − 1)

]−1 ∑ ∑
i�=j

(xj − xi)sign(εi − εj)

= −2
[
n(n − 1)

]−1
n∑
j=1

xj
( n∑
i=1,i�=j

sign(εj − εi)
)
,

where sign(t) = 1 if t > 0, = −1 if t < 0, and = 0 if
t = 0. Denote ξj = ∑n

i=1,i�=j sign(εj − εi), j = 1, . . . , n. It is
important to observe that ξj is closely related to the rank of εj
among {ε1, . . . , εn}. Denote rank(εj) = rj, then

ξj =
n∑

i=1,i�=j
sign(εj − εi) = (rj − 1) + (−1)(n − rj)

= 2rj − (n + 1).

Lemma 1 characterizes the distribution of the subgradient Sn.

Lemma 1. Assume model (1) holds, then Sn = −2
[
n(n −

1)
]−1XTξ , where the n-dimensional random vector ξ = 2r −

(n + 1), with r following the uniform distribution on the per-
mutations of the integers {1, 2, . . . , n}.

We refer to this property of the gradient function as the
completely pivotal property, as it does not depend on the error
distribution. It is straightforward to simulate the distribution
of ||Sn||∞ since {r1, . . . , rn} can be simulated by generating a
random permutation of the integers between 1 and n. Moreover,
the simulations can be easily paralleled. For any given c > 1 and
α0, we suggest to take λ equal to

λ∗ = cG−1
||Sn||∞(1 − α0), (7)

where G−1
||Sn||∞(1 − α0) denotes the (1 − α0)-quantile of the

distribution of ||Sn||∞.
The simulated λ∗ does not depend on the pre-estimation

of any unknown population quantity and automatically adjusts
to both the random error distribution and the structure of the
design matrix X. In the numerical studies in Section 4.1, we
considered data generative models corresponding to a vari-
ety of error distributions and different covariance matrices for
the distribution of X. It is interesting to compare the above
completely pivotal property of Sn with the partial pivotal prop-
erty of square-root Lasso. The gradient function of the loss
function of square-root Lasso, evaluated at β0, has the form
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(
∑n

i=1 ε2i )
1/2 ∑n

i=1 xiεi, which does not depend on σ but its
distribution still depends on the distribution of εi. As a result,
square-root Lasso circumvents the difficulty of tuning λ for σ

but does not adjust to other aspects of the error distribution nor
the design matrix. Moreover, Hebiri and Lederer (2013) reveals
that the standard tuning parameters that do not depend on the
design matrix Xmay lead to suboptimal performance of Lasso.

Remark 1. The work of Parzen, Wei, and Ying (1994) also
revealed that the completely pivotal property also holds for the
L1 loss function. This was also recognized in Belloni, Cher-
nozhukov, and Wang (2011) and Wang (2013) for penalized
quantile regression. However, direct use of quantile loss may
potentially result in significant efficiency loss for normal ran-
dom errors. Indeed, the asymptotic efficiency analysis in Sec-
tion 3 reveals that when the second-stage enhancement is imple-
mented, the efficiency of using the Wilcoxon loss function is
about 1.5 times that of using the absolute deviation (or L1 loss)
function if the random error distribution is normal for estimat-
ing the nonzero coefficients. Alternative robust loss functions
such as Huber loss usually do not possess the pivotal property.

Remark 2. Let β̂(λ∗,Y,X) be the estimator in (4) with the
simulated tuning parameter λ∗ in (7), given the response vector
Y and the design matrix X. It is easy to see β̂(λ∗, bY,X) =
bβ̂(λ∗,Y,X) for any nonzero constant b. This equivariance
property is convenient for coherent interpretation of results
from regularized regression. This property is not shared by
robust high-dimensional regression procedure based onHuber’s
loss function.Note that whenYhas a scale change, the simulated
tuning parameter λ∗ remains the same when it is computed
using the transformed data.

2.3. Near-Oracle Rate of the L2 Error Bound

We consider the estimator β̂(λ∗), which is obtained by setting
λ = λ∗ in (4). Themain result of this subsection establishes that
β̂(λ∗) enjoys the same near-oracle rate for the L2 error bound as
Lasso does when its λ is fixed at a theoretical value.

Let A = {j : β0j �= 0, j = 1, . . . , p} be the index set of
nonzero coefficients in β0. The cardinality ||A||0 = q is the
sparsity size of the underlying data generative model, where
|| · ||0 denotes the L0 norm and q is allowed to depend on the
sample size n. For a given index set B ∈ {1, 2, . . . , p}, let xB
denote the p-dimensional vector that has the same coordinates
as x on the index set B and zero coordinates on Bc. For a matrix
D, we use ξmin(D) and ξmax(D) to denote the smallest eigenvalue
and the largest eigenvalue of D, respectively.

For the constant c in (6), define c̄ = c+1
c−1 and consider the

following cone set

� =
{
γ ∈ Rp : ||γ Bc ||1 ≤ c̄||γ B||1, B ⊂ {1, 2, . . . , p} and

||B||0 ≤ q
}
.

We impose the following regularity conditions to facilitate
our technical derivation.

(C1) (Conditions on the design) There exists a positive constant
b1 such that |xij| ≤ b1 for all 1 ≤ i ≤ n, 1 ≤ j ≤ p.

The covariates are empirically centered in the sense that
n−1 ∑n

i=1 xij = 0, for 1 ≤ j ≤ p.
(C2) (Lower restricted eigenvalue condition) There exist some

positive constant b2 such that

inf
γ∈�

n−1γ TXTXγ

||γ ||22
≥ b2.

(C3) (Conditions on the random error) The random errors εi
are independent and identically distributed with density
function f (·). Let ζij = εi − εj, 1 ≤ i �= j ≤ n. Let
F∗(·) denote the distribution function of ζij and let f ∗(·)
denote the corresponding probability density function.
There exists a positive constants b3 such that f ∗(t) ≥ b3
uniformly in {t : |t| ≤ q

√
log p/n}.

The above conditions are mild for theoretical analysis of
high-dimensional regression. Condition (C1) is common for
fixed design regression and can be relaxed under additional
technicality. For example, we can allow b1 to diverge to ∞ at
an appropriate rate and the error bound derived in this article
still holds with probability approaching one. Alternatively, we
can consider random designs and the results of the article hold
for sub-Gaussian designmatrix. The lower restricted eigenvalue
condition is also standard to studying the error bound for Lasso-
type estimators. The lower bound only needs to hold for γ in the
cone set �.

Remark 3. It is worth emphasizing that our assumptions on the
random error distribution (condition (C3)) are considerably
weaker than what are usually imposed in the literature for high-
dimensional regression. Existing theoretical work on Lasso
often requires εi to have a sub-Gaussian distribution. Although
the class of sub-Gaussian distribution is large, it excludes
many commonly encountered heavy-tailed distributions. For
example, the χ2-distribution is not sub-Gaussian. Square-root
Lasso requires εi to have finite variance. Existing work on high-
dimensional robust regression based onHuber loss also imposes
moment conditions on εi, for example, Fan, Li, andWang (2017)
assume E(|εi|k) is bounded for some k ≥ 2, and Sun, Zhou, and
Fan (2020) assume E(|εi|(1+δ)) is bounded for some δ > 0.
These assumptions exclude heavy-tailed error distributions
such as Cauchy distribution, which is not sub-Gaussian and
does not have a finite mean.

Before presenting the main theorem, we first state a useful
lemma.

Lemma 2.

(i) Let γ̂ (λ) = β̂(λ) − β0. For any λ ≥ c||Sn||∞, we have
γ̂ (λ) ∈ �.

(ii) Assume condition (C1) is satisfied. There exists a universal
constant c0 = 4

√
2b1c, where c is the constant in (7), such

that for any positive constant l > 1,

P
(
c||Sn||∞ < lc0

√
log p/n

)
≥ 1 − 2 exp

( − (l2 − 1) log p
)
. (8)

(iii) If p > (2/α0)
1/3 where α0 is the positive constant in (7),

then λ∗ < 2c0
√
log p/n.
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Remark 4. Part (i) of Lemma 2 states that γ̂ (λ) belongs to the
cone set � with an appropriate choice of λ. Part (ii) implies that
with high probability c||Sn||∞ has an upper bound lc0

√
log p/n.

Part (iii) implies that under mild conditions on p, the simulated
tuning parameter λ∗ has an upper bound 2c0

√
log p/n. It is

worth emphasizing that the statement in (iii) is deterministic,
which follows by combining (ii) with the observation that λ∗ is
defined as the (1 − α0)-quantile of the distribution of c||Sn||∞.
The proof of Lemma 2 is given in the Appendix. Although
the upper bound in (iii) has a simple form and is of the same
order of the theoretical value of λ, it tends to be larger than
the simulated tuning parameter value, whichwe recommend for
real data applications as the latter automatically adjusts for the
error distribution or the design matrix.

In the following theorem,we provide a nonasymptotic bound
for the L2 estimation error of β̂(λ∗).

Theorem 1. Suppose conditions (C1)–(C3) hold. If p >

(2/α0)
1/3, then the estimated L1-penalized Wilcoxon rank

regression estimator β̂(λ∗), where λ∗ is defined in (7), satisfies

||̂β(λ∗) − β0||2 ≤ 8(1 + c̄)c0
b2b3

√
q log p

n
(9)

with probability at least 1 − α0 − exp(−2 log p).

Theorem 1 proves that the L2 error bound of β̂(λ∗) achieves
the same near-oracle rate as Lasso has with theoretical choice of
λ. The requirement p > (2/α0)

1/3 is very weak. For α0 = 0.01,
this amounts to requiring p ≥ 6. The proof of Theorem 1 is
given in theAppendix, and uses advanced empirical process the-
ory techniques to overcome the challenge of the nonsmoothness
of Jaeckel’s dispersion function. The results are of independent
interest as the techniques can be applied to handle other nons-
mooth loss functions.

3. Bias Reduction and Efficiency Improvement for
High-Dimensional Heavy-Tailed Data

3.1. A Second-Stage Enhancement

We next consider a second-stage enhancement by using β̂(λ∗)
as an initial estimator. The major goal is to further reduce
the mean-squared error in the high-dimensional setting at the
presence of heavy-tailed errors, comparing with standard least-
squares based penalized regression procedures. This is achieved
by a combination of an appropriate loss function (rank loss
introduced earlier) and the use of a nonconvex penalty function.
It is now widely recognized that L1 penalty tends to over-
penalize large coefficients, since the magnitude of L1 penalty
increases linearly with the magnitude of the coefficient. We
prove that with high probability the second-stage estimator
possesses the strong oracle property, that is, it is equal to the
estimator one would obtain if the underlying model is known
in advance. This implies that: (1) one can recover the support of
the generativemodel with high probability; (2) one can estimate
the nonzero coefficients more efficiently.

Let the initial estimator β̃
(0) = (β̃

(0)
1 , . . . , β̃(0)

p )T be β̂(λ∗),
the L1 regularized estimator defined in (4) with simulated tun-

ing parameter λ∗. The second-stage estimator is defined as

β̃
(1) = argminβ

{[
n(n − 1)

]−1 ∑∑
i�=j

× ∣∣(Yi − xTi β) − (Yj − xTj β)
∣∣ +

p∑
k=1

p′
η(|β̃(0)

k |)|βj|
}
,

(10)

where p′
η(·) denotes the derivative of some nonconvex penalty

function pη(·), where η > 0 is a tuning parameter. The second
stage estimator is motivated by the local linear approximation
algorithm of Zou and Li (2008) in the lower-dimensional case
for penalized likelihood setting. The penalty function is only
assumed to satisfy some general conditions. More specifically,
pη(t) is increasing and concave for t ∈ [0,+∞) with a con-
tinuous derivative p′

η(t) on (0,+∞). It has a singularity at the
origin, that is, p′

η(0+) > 0. Without loss of generality, the
penalty function can be standardized such that p′

η(0+) = η.
Furthermore, there exist constants a1 > 0 and a2 > 1 such that
p′
η(t) ≥ a1η, ∀ 0 < t < a2η; and p′

η(t) = 0, ∀ t > a2η. Two
popular choices of nonconvex penalty functions satisfying these
conditions are the SCAD penalty function (Fan and Li 2001)
and the MCP penalty function (C. H. Zhang 2010). The SCAD
penalty function is given by

pη(|β|) = η|β|I(0 ≤ |β| < η)

+aη|β| − (β2 + η2)/2
a − 1

I(η ≤ |β| ≤ aη)

+ (a + 1)η2

2
I(|β| > aη),

for some a > 2. The MCP function has the form

pη(|β|) = η
(
|β| − β2

2aη

)
I(0 ≤ |β| < aη) + aη2

2
I(|β| ≥ aη),

for some a > 1. In practice, these two popular choices lead to
similar performance.

3.2. Statistical Properties of Second-Stage Estimation

We first consider the property of the oracle estimator while
allowing the underlying model dimension to diverge. Without
loss of generality, we assume that the first q components ofβ0 are
nonzero and the remaining p − q components are zero. Hence,

we can write β0 =
(
βT
01, 0Tp−q

)T
, where 0p−q denotes a (p− q)-

vector of zeros. Let x1i be the subvector of xi that consists its first
q components, i = 1, . . . , n. It is assumed that (x1i,Yi) are in
general positions (Koenker 2005) and that there is at least one
continuous covariate in the true underlying model. Condition
(C2) implies that ξmin

(
n−1XT

AXA
) ≥ b2, where XA denotes the

n×qmatrix that consists of the columns ofXwhose indices are
in A.

Let

Ln(β1) =
∑∑

i�=j

∣∣(Yi − xT1iβ1) − (Yj − xT1jβ1)
∣∣

and β̂
(o)
1 = argminβ1

Ln(β1). The oracle estimator for β0 is

β̂
o =

(
β̂

(o)T
1 , 0Tp−q

)T
. In other words, this is the estimator we



1706 L. WANG ET AL.

would obtain if the support of the generative model is known.
Lemma 3 provides the convergence rate of the oracle estimator
when the number of nonzero coefficients q = |A| is diverging
with the sample size n.

Lemma 3. Assume conditions (C1) and (C3) hold and that q =
o(n). Then,

||̂β(o)
1 − β01||2 = Op(q1/2n−1/2).

Note that if q is fixed, then this reduces to the classical rate of
convergence. The proof of Lemma 3 is given in the Appendix.
The kth subgradient of the unpenalized loss function

[
n(n −

1)
]−1 ∑∑

i�=j
∣∣(Yi − xTi β) − (Yj − xTj β)

∣∣ is given by

δk(β) = [
n(n − 1)

]−1 ∑ ∑
i�=j

(xjk − xik)

×sign
(
Yi − Yj − (xi − xj)Tβ

)
−[

n(n − 1)
]−1 ∑∑

i�=j
(xjk − xik)

×vijI
(
Yi − Yj = (xi − xj)Tβ

)
,

where vij ∈ [−1, 1], k = 1, 2, . . . , p. Lemma B in the supple-
mentary materials characterizes the important properties of the
gradient functions when being evaluated at the oracle estimator.

Theorem 2 states that the second-stage estimator β̃
(1) pos-

sesses the strong oracle property with high probability.

Theorem 2. Assume the conditions of Theorem 1 are satisfied.
Suppose q = O(nc1), η = O(n−(1−c2)/2), min1≤j≤q |β0j| ≥
bn−(1−c3)/2, p = exp(nc4) for some positive constants b and ci
(i = 1, . . . , 4) such that 2c1 < c2 < c3 ≤ 1 and c1 + c4 < c2. We
have

P
(
β̃

(1) = β̂
(o)) ≥ 1 − α0 − hn,

where hn → 0 as n → ∞.

Remark 5. Let β̃
(1)
1 be the subvector containing the first q

elements of β̃
(1). Theorem 2 indicates that

√
n(β̃(1)

1 − β01)
follows an asymptotic normal distribution in the case q is fixed.
It follows from the theory of the classical nonparametric esti-
mator based on Jaeckel’s Wilcoxon-type dispersion function
(Hettmansperger and McKean 1998) that the relative efficiency
(ARE) of β̃

(1)
1 with respect to the least-squares oracle for esti-

mating β01 has the form ARE = 12σ 2( ∫
f 2(u)du

)2, where σ 2

is the random error variance. It is worth noting that this ARE
is the same as that of the one-sample Wilcoxon rank test with
respect to the t-test. The ARE is as high as 0.955 for normal
error distribution, and can be significantly higher than one for
many heavier-tailed error distributions. For instance, ARE is
1.5 for the double exponential distribution, and is 1.9 for the
t distribution with 3 degrees of freedom. For symmetric error
distributions with finite Fisher information, the ARE is known
to have a lower bound equal to 0.864 (see, e.g., Hettmansperger
and McKean 1998, Theorem 1.7.6). Although theoretically it
is possible to introduce nonconvex penalized rank-based loss
with adaptive optimal weights to obtain an efficient estimator

(first-order equivalent toMLE), the weights nonetheless depend
on the unknown error density function, see the discussions in
Naranjo and McKean (1997) for the classical low-dimensional
setting. In the high-dimensional setting, it is usually challenging
to estimate the random error density function.

Remark 6. It is interesting to note that the above ARE is equiv-
alent to that of composite quantile regression (Zou and Yuan
2008) when K, the number of quantiles, goes to infinity. The
objective function of composite quantile regression involves a
mixture of quantile objective functions at different quantiles
(the suggested value of K for practical use is 19). As a result,
besides the regression parameters one also needs to estimate K
additional parameters corresponding to K different quantiles of
the error distribution.

3.3. High-Dimensional BIC for Tuning Parameter Selection

As the main objective of the second step is to alleviate the
bias due to the over-fitting of L1 penalty, it is intuitive to not
tune η by cross-validation which aims for prediction optimality.
Motivated by Chen and Chen (2008), we propose a modified
high-dimensional BIC criterion for selecting η. Let β̃

(1)
n (η) =

(β̃
(1)
n1 (η), . . . , β̃(1)

n1 (η))T denote the estimator defined in (10)
with the tuning parameter value η. Let Aη = {j : β̃

(1)
nj (η) �=

0, j = 1, . . . , p} be the index set of the selected model and ACη
be its complement; and let

β̂η = argminβ∈Rp, β
ACη

=0

{[
n(n − 1)

]−1 ∑ ∑
i�=j

×∣∣(Yi − xTi β) − (Yj − xTj β)
∣∣}.

Define the high-dimensional BIC (HBIC) for selecting η as

HBIC(η) = log
{∑ ∑

i�=j

∣∣(Yi − xTi β̂η) − (Yj − xTj β̂η)
∣∣}

+ |Aη| log log nn
log p, (11)

where |Aη| denotes the cardinality of set Aη. We select the value
of η that minimizes HBIC(η).

As we observe in Section 4.2, HBIC can be computationally
fast. High-dimensional BIC-type criterion for nonconvex penal-
ized regression has been recently investigated byChen andChen
(2008), Wang and Li (2009), Wang, Kim, and Li (2013), Lee,
Noh, and Park (2014), Peng and Wang (2015), among others.
For nonconvex penalized least-squares regression with fixed p,
Wang, Li, and Tsai (2007) proved that cross-validation leads to
a tuning parameter that would yield an over-fitted model with
a positive probability. Wang, Kim, and Li (2013) established the
consistency of high-dimensional BIC for penalized least squares
regression. Lee, Noh, and Park (2014) established the consis-
tency of high-dimensional BIC for penalized quantile regres-
sion. However, the results in these earlier work do not apply to
our setting. To rigorously prove the consistency of the HBIC in
(11), themain challenge is to establish a uniform approximation
of aU-process that involves nonsmooth functions over a class of
models.
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Table 1. Simulation results for Example 1.

Error Method L1 error L2 error ME FP FN

N(0, 0.25)

Lasso 0.83 (0.03) 0.28 (0.00) 0.05 (0.00) 13.48 (0.46) 0 (0)√
Lasso 0.70 (0.01) 0.26 (0.00) 0.05 (0.00) 11.58 (0.29) 0 (0)
SCAD 0.24 (0.01) 0.14 (0.00) 0.02 (0.00) 0 (0) 0 (0)

Rank Lasso 0.59 (0.01) 0.28 (0.00) 0.10 (0.00) 6.23 (0.23) 0 (0)
Rank SCAD 0.16 (0.00) 0.11 (0.00) 0.01 (0.00) 0 (0) 0 (0)

N(0, 1)

Lasso 1.54 (0.04) 0.57 (0.01) 0.20 (0.01) 13.08 (0.43) 0 (0)√
Lasso 1.41 (0.03) 0.54 (0.01) 0.21 (0.01) 11.46 (0.33) 0 (0)
SCAD 0.46 (0.02) 0.28 (0.01) 0.06 (0.00) 0 (0) 0 (0)

Rank Lasso 1.24 (0.02) 0.59 (0.01) 0.37 (0.00) 6.32 (0.23) 0 (0)
Rank SCAD 0.41 (0.02) 0.28 (0.01) 0.04 (0.00) 0 (0) 0 (0)

N(0, 2)

Lasso 2.16 (0.05) 0.80 (0.01) 0.41 (0.01) 12.32 (0.31) 0 (0)√
Lasso 2.07 (0.04) 0.78 (0.01) 0.42 (0.01) 11.52 (0.27) 0 (0)
SCAD 0.66 (0.03) 0.38 (0.01) 0.11 (0.01) 0 (0) 0 (0)

Rank Lasso 1.79 (0.04) 0.82 (0.01) 0.76 (0.02) 6.65 (0.23) 0 (0)
Rank SCAD 0.81 (0.03) 0.52 (0.02) 0.10 (0.00) 0 (0) 0 (0)

MN

Lasso 3.02 (0.12) 1.12 (0.04) 0.81 (0.04) 12.00 (0.35) 0 (0)√
Lasso 3.10 (0.11) 1.09 (0.04) 0.93 (0.05) 14.23 (0.27) 0 (0)
SCAD 0.91 (0.05) 0.54 (0.03) 0.21 (0.02) 0.38 (0.04) 0 (0)

Rank Lasso 0.14 (0.00) 0.07 (0.00) 0.04 (0.00) 6.85 (0.22) 0 (0)
Rank SCAD 0.03 (0.00) 0.02 (0.00) 0.03 (0.00) 0 (0) 0 (0)

√
2t4

Lasso 3.42 (1.21) 1.18 (0.02) 0.77 (0.02) 15.52 (0.54) 0 (0)√
Lasso 3.01 (0.06) 1.10 (0.02) 0.79 (0.02) 12.58 (0.30) 0 (0)
SCAD 0.86 (0.03) 0.52 (0.02) 0.21 (0.01) 0 (0) 0 (0)

Rank Lasso 2.20 (0.04) 1.02 (0.02) 1.44 (0.03) 7.39 (0.25) 0 (0)
Rank SCAD 1.21 (0.04) 0.78 (0.03) 0.18 (0.01) 0 (0) 0 (0)

Cauchy

Lasso 7.32 (0.16) 3.16 (0.03) 10.92 (0.52) 5.84 (0.38) 2.17 (0.08)√
Lasso 9.31 (0.20) 3.45 (0.06) 10.83 (0.52) 6.93 (0.28) 2.16 (0.08)
SCAD 6.73 (0.11) 3.45 (0.05) 20.39 (0.39) 0.00 (0.00) 3.00 (0.00)

Rank Lasso 2.60 (0.05) 1.27 (0.02) 3.73 (0.20) 6.00 (0.20) 0 (0)
Rank SCAD 1.89 (0.07) 1.21 (0.04) 2.32 (0.19) 0 (0) 0 (0)

Let �n = {η : |Aη| ≤ kn}, where kn > q represents a
rough estimate of an upper bound of the sparsity size of the
underlying model and is allowed to diverge to ∞. We select the
tuning parameter η̂ = argminη∈�nHBIC(η). Theorem 3 shows
that under some general regularity conditions, HBIC achieves
model selection consistency. The proof of Theorem 3 is given in
the supplementary materials.

Theorem 3 (Consistency of HBIC). Assume the conditions of
Theorem 2 are satisfied, and that kn log(p ∨ n) = o(

√
n).

Assume β∗
min � max

{√
log(log n)

n log p,
√

q log q
n

}
, where β∗

min =
min{|β0j| : j ∈ A}. Then

P(Aη̂ = A) → 1, as n → ∞,
where A = {j : β0j �= 0, j = 1, . . . , p}.

4. Numerical Studies

4.1. Monte Carlo Examples

This subsection summarizes the simulation results from three
experiments. Additional simulation results are reported in the
supplementary materials. We compare the performance of
the cross-validated Lasso (standard Lasso with cross-validated
choice of tuning parameter), the square root Lasso (denoted
by

√
Lasso), SCAD (Fan and Li 2001), Rank Lasso (the L1

regularized estimator in (4)), and Rank SCAD (the two-
stage estimator in (10) with the SCAD penalty). The cross-
validated Lasso is computed using the R package glmnet

(Friedman, Hastie, and Tibshirani 2010). The square-root Lasso
is computed using the R package flare (Li et al. 2018). For
Lasso or square root Lasso, the tuning parameter is chosen
based on a 5-fold cross-validation as usually recommended
in the literature. We compute the SCAD estimator using the
function “glmnet” in R package glmnet. The initial estimator
is selected as the Lasso estimator, by “cv.glmnet” function. For
Rank Lasso, the tuning parameter λ∗ is obtained by simulation
based on 500 repetitions using (7) with α0 = 0.10 and c = 1.01.

Example 1 (Comparison under different random error distribu-
tions). We simulate random data from the regression model
Yi = XT

i β0 + εi, i = 1, . . . , n, where Xi is generated from a
p-dimensional multivariate normal distributionNp(0,�) and is
independent of εi. In this example, we take n = 100, p = 400,
and β0 = (

√
3,

√
3,

√
3, 0, . . . , 0)T . The correlation matrix �

has a compound symmetry structure: �(i,j) = 0.5 for i �= j;
and �(i,j) = 1 for i = j. We consider six different distributions
for εi: (1) normal distribution with mean 0 and variance 0.25
(denoted by N(0, 0.25)); (2) normal distribution with mean 0
and variance 1 (denoted by N(0, 1)); (3) normal distribution
with mean 0 and variance 2 (denoted by N(0, 2)); (4) mixture
normal distribution ε ∼ 0.95N(0, 1) + 0.05N(0, 100) (denoted
by MN); (5) ε ∼ √

2t(4), where t(4) denotes the t distribution
with 4 degree of freedom; and (6) ε ∼ Cauchy(0, 1), where
Cauchy(0, 1) denotes the standard Cauchy distribution.

Table 1 summarizes the average (and standard error) of the
L1 estimation error, the L2 estimation error, the model error
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Table 2. Simulation results for Example 2.

Error Method L1 error L2 error ME FP FN

N(0, 0.25)

Lasso 12.91 (0.08) 2.06 (0.01) 2.69 (0.03) 46.78 (0.27) 0.73 (0.05)√
Lasso 9.27 (0.10) 1.40 (0.01) 1.01 (0.02) 53.56 (0.29) 0.52 (0.04)
SCAD 6.66 (0.12) 1.47 (0.02) 1.12 (0.03) 7.37 (0.27) 3.87 (0.12)

Rank Lasso 5.81 (0.05) 1.08 (0.01) 0.71 (0.01) 33.19 (0.40) 0 (0)
Rank SCAD 4.40 (0.05) 1.05 (0.01) 0.57 (0.01) 1.70 (0.11) 2.34 (0.05)

N(0, 1)

Lasso 16.48 (0.15) 2.56 (0.02) 3.65 (0.06) 50.06 (0.31) 2.48 (0.07)√
Lasso 16.52 (0.16) 2.50 (0.02) 3.23 (0.06) 53.45 (0.36) 2.65 (0.08)
SCAD 9.94 (0.16) 2.11 (0.03) 2.27 (0.05) 5.87 (0.27) 6.23 (0.10)

Rank Lasso 9.15 (0.09) 1.68 (0.02) 1.78 (0.03) 32.95 (0.34) 0.27 (0.03)
Rank SCAD 6.95 (0.09) 1.63 (0.02) 1.40 (0.03) 3.99 (0.17) 2.64 (0.06)

N(0, 2)

Lasso 20.31 (0.15) 3.14 (0.02) 5.11 (0.07) 50.78 (0.28) 4.01 (0.10)√
Lasso 20.64 (0.16) 3.16 (0.02) 5.12 (0.07) 50.9 (0.33) 4.25 (0.1)
SCAD 15.31 (0.25) 3.12 (0.04) 5.08 (0.13) 8.30 (0.30) 8.32 (0.12)

Rank Lasso 12.61 (0.12) 2.3 (0.02) 3.37 (0.06) 33.92 (0.35) 0.59 (0.05)
Rank SCAD 10.11 (0.13) 2.33 (0.03) 2.89 (0.07) 5.74 (0.21) 3.25 (0.08)

MN

Lasso 25.12 (0.47) 3.87 (0.07) 8.11 (0.26) 49.51 (0.37) 6.18 (0.19)√
Lasso 25.02 (0.44) 3.88 (0.07) 7.93 (0.27) 48.19 (0.49) 6.12 (0.20)
SCAD 20.40 (0.57) 4.03 (0.10) 8.90 (0.39) 9.05 (0.30) 10.57 (0.23)

Rank Lasso 5.36 (0.10) 0.97 (0.02) 0.61 (0.02) 36.7 (0.48) 0 (0)
Rank SCAD 4.62 (0.09) 1.10 (0.02) 0.64 (0.02) 1.15 (0.10) 2.53 (0.05)

√
2t4

Lasso 24.76 (0.20) 3.78 (0.03) 7.38 (0.11) 50.82 (0.32) 6.13 (0.11)√
Lasso 24.56 (0.20) 3.77 (0.03) 7.42 (0.11) 48.68 (0.34) 6.14 (0.11)
SCAD 20.46 (0.31) 4.07 (0.05) 8.66 (0.21) 8.81 (0.24) 10.76 (0.13)

Rank Lasso 16.33 (0.17) 2.96 (0.03) 5.58 (0.12) 35.06 (0.36) 1.17 (0.07)
Rank SCAD 14.38 (0.23) 3.21 (0.05) 5.61 (0.16) 8.17 (0.23) 5.30 (0.15)

Cauchy

Lasso 48.07 (0.53) 8.46 (0.14) 42.38 (1.65) 25.73 (0.98) 19.35 (0.31)√
Lasso 45.66 (0.46) 8.15 (0.13) 44.69 (1.90) 23.12 (0.87) 19.57 (0.30)
SCAD 36.53 (0.30) 7.40 (0.08) 249.49 (13.23) 11.19 (0.75) 21.20 (0.31)

Rank Lasso 30.59 (0.51) 5.33 (0.08) 19.97 (0.65) 35.48 (0.35) 6.81 (0.26)
Rank SCAD 32.92 (0.57) 6.78 (0.12) 25.7 (0.82) 8.68 (0.27) 13.81 (0.25)

(denoted by ME), number of false positive variables (FP), and
number of false negative variables (FN) for the six methods
based on 200 simulation runs.More specifically, for an estimator
β̂ from a given method, its L1 error is ||̂β − β0||1; its L2
error is ||̂β − β0||2; its model error is (β̂ − β0)

T�X(β̂ − β0)
where �X is the population covariance matrix of X. FP is the
number of noise covariates that are selected in the model; and
FN is the number of active variables that are not selected in the
model.

We have the following important observations. (1) Even for
normal errors, Rank Lasso performs slightly better (particularly
with respect to the false positives) compared with the cross-
validated Lasso and square-root Lasso. This is probably due to
the fact its tuning parameter is optimally chosen. It is worth
pointing out that Rank Lasso uses the same tuning parame-
ter (around 0.39) for all six error distributions. This choice is
observed to have uniform good performance across different
error distributions. SCAD and Rank SCAD perform similarly,
and both outperform other methods for normal errors. (2) For
heavy-tailed errors, the robustness and efficiency gain of Rank
Lasso is substantial. Rank SCAD is observed to further improve
the performance of Rank Lasso with respect to estimation error
and variable selection performance. For example, for normal
mixture error distribution, the average L1 estimator error for
cross-validated Lasso or square-root Lasso is above 3, while that
of Rank Lasso is 0.14 and that of Rank SCAD is 0.03. The new
procedures also yield smaller false positives and false negatives
rates for heavy-tailed errors.

Example 2 (More challenging setting with a denser model and
weaker signals). Here, we consider the same data generative
model as in Example 1 except that β0 = (2, 2, 2, 2, 1.75, 1.75,
1.75, 1.5, 1.5, 1.5, 1.25, 1.25, 1.25, 1, 1, 1, 0.75, 0.75, 0.75, 0.5, 0.5,
0.5, 0.25, 0.25, 0.25, 0p−25)

T , where 0p−25 is a (p − 25)-
dimensional vector of zeros. Comparing with Example 1, this
is a considerably more challenging scenario with 25 active
variables and a number of weak signals. Table 2 summarizes the
simulation results. We observe similar results as in Example 1.
Rank Lasso improve both the estimation and prediction
accuracy in all cases. Rank SCAD further improves the model
selection performance.

Example 3 (Comparisons under different design matrices). We
consider the same data generative model as in Example 1 but
with the following three different choices of �: (1) the com-
pound symmetry correlated correlation matrix with correlation
coefficient 0.8 (�1); (2) the compound symmetry correlation
matrix with correlation coefficient 0.2 (�2); and (3) the AR(1)
correlation matrix with autocorrelation coefficient 0.5 (�3). For
each choice of�, we consider three different error distributions:
N(0, 1), the mixture normal distribution in Example 1, and
Cauchy distribution. The simulation results are summarized in
Table 3. Note that Table 1 contains the simulation results on
compound symmetry correlationmatrix with correlation coeffi-
cient 0.5. The tuning parameter selection of L1 regularized new
estimator automatically adapts to the design matrix. In all cases
considered in this example, the new procedures display superior
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Table 3. Simulation results for Example 3.

� Error Method L1 error L2 error ME FP FN

�1

N(0, 1)

Lasso 2.42 (0.06) 0.88 (0.02) 0.17 (0.00) 14.42 (0.46) 0 (0)√
Lasso 2.22 (0.04) 0.83 (0.01) 0.15 (0.00) 13.09 (0.30) 0 (0)
SCAD 0.68 (0.03) 0.40 (0.02) 0.06 (0.00) 0 (0) 0 (0)

Rank Lasso 2.23 (0.04) 0.91 (0.01) 0.25 (0.01) 11.48 (0.28) 0 (0)
Rank SCAD 0.55 (0.02) 0.34 (0.01) 0.04 (0.00) 0 (0) 0 (0)

MN

Lasso 4.87 (0.18) 1.75 (0.06) 0.76 (0.04) 12.30 (0.25) 0 (0)√
Lasso 4.79 (0.17) 1.72 (0.06) 0.75 (0.04) 12.23 (0.26) 0 (0)
SCAD 2.87 (0.17) 1.63 (0.09) 0.78 (0.06) 0.61 (0.05) 0.56 (0.05)

Rank Lasso 0.27 (0.01) 0.11 (0.00) 0.00 (0.00) 12.29 (0.27) 0 (0)
Rank SCAD 0.05 (0.00) 0.04 (0.00) 0.00 (0.00) 0 (0) 0 (0)

Cauchy

Lasso 8.70 (0.17) 3.65 (0.05) 5.33 (0.25) 5.54 (0.30) 2.73 (0.04)√
Lasso 11.14 (0.17) 4.31 (0.09) 4.56 (0.18) 7.85 (0.23) 2.73 (0.54)
SCAD 6.48 (0.08) 3.25 (0.03) 25.31 (0.23) 0.00 (0.00) 3.00 (0.00)

Rank Lasso 5.11 (0.11) 2.03 (0.04) 1.27 (0.04) 11.52 (0.26) 0 (0)
Rank SCAD 4.07 (0.17) 2.16 (0.08) 1.19 (0.01) 1.12 (0.08) 0.91 (0.05)

�2

N(0, 1)

Lasso 1.21 (0.04) 0.45 (0.01) 0.18 (0.01) 13.08 (0.62) 0 (0)√
Lasso 0.99 (0.02) 0.44 (0.01) 0.17 (0.00) 6.50 (0.23) 0 (0)
SCAD 0.42 (0.01) 0.26 (0.01) 0.07 (0.00) 0 (0) 0 (0)

Rank Lasso 0.94 (0.01) 0.55 (0.01) 0.39 (0.01) 1.34 (0.09) 0 (0)
Rank SCAD 0.32 (0.01) 0.20 (0.01) 0.04 (0.00) 0.56 (0.07) 0 (0)

MN

Lasso 2.49 (0.10) 0.92 (0.03) 0.82 (0.05) 11.37 (0.35) 0 (0)√
Lasso 2.18 (0.08) 0.93 (0.03) 0.81 (0.05) 7.65 (0.23) 0 (0)
SCAD 0.87 (0.04) 0.48 (0.02) 0.25 (0.02) 0.41 (0.04) 0 (0)

Rank Lasso 0.11 (0.00) 0.07 (0.00) 0.01 (0.00) 1.62 (0.11) 0 (0)
Rank SCAD 0.03 (0.00) 0.02 (0.00) 0.00 (0.00) 0.40 (0.04) 0 (0)

Cauchy

Lasso 5.90 (0.10) 2.97 (0.01) 10.00 (0.24) 3.78 (0.32) 2.15 (0.08)√
Lasso 12.00 (0.37) 3.75 (0.11) 11.19 (0.52) 18.63 (0.33) 1.86 (0.08)
SCAD 6.33 (0.10) 3.21 (0.03) 13.87 (0.24) 0.00 (0.00) 3.00 (0.00)

Rank Lasso 2.36 (0.05) 1.35 (0.03) 2.31 (0.08) 1.45 (0.09) 0 (0)
Rank SCAD 1.15 (0.05) 0.76 (0.03) 0.56 (0.04) 0.72 (0.06) 0 (0)

�3

N(0, 1)

Lasso 0.80 (0.03) 0.36 (0.01) 0.14 (0.00) 9.38 (0.60) 0 (0)√
Lasso 0.71 (0.01) 0.35 (0.01) 0.12 (0.00) 4.47 (0.15) 0 (0)
SCAD 0.48 (0.02) 0.29 (0.01) 0.08 (0.00) 0.39 (0.04) 0 (0)

Rank Lasso 0.64 (0.01) 0.43 (0.01) 0.25 (0.01) 0 (0) 0 (0)
Rank SCAD 0.41 (0.02) 0.25 (0.01) 0.04 (0.00) 1.11 (0.13) 0 (0)

MN

Lasso 1.53 (0.06) 0.67 (0.02) 0.59 (0.04) 7.12 (0.33) 0 (0)√
Lasso 1.55 (0.06) 0.68 (0.02) 0.57 (0.04) 6.32 (0.19) 0 (0)
SCAD 1.07 (0.05) 0.60 (0.03) 0.34 (0.03) 0.45 (0.05) 0 (0)

Rank Lasso 0.08 (0.00) 0.05 (0.00) 0.00 (0.00) 0 (0) 0 (0)
Rank SCAD 0.04 (0.00) 0.02 (0.00) 0.00 (0.00) 0.62 (0.05) 0 (0)

Cauchy

Lasso 4.96 (0.04) 2.69 (0.04) 11.44 (0.40) 2.57 (0.24) 1.75 (0.09)√
Lasso 8.99 (0.37) 3.33 (0.12) 11.91 (0.67) 9.78 (0.23) 1.49 (1.17)
SCAD 6.63 (0.13) 3.41 (0.06) 18.61 (0.45) 0.00 (0.00) 3.00 (0.00)

Rank Lasso 1.51 (0.03) 0.99 (0.02) 1.37 (0.05) 0 (0) 0 (0)
Rank SCAD 1.27 (0.06) 0.82 (0.04) 0.38 (0.03) 0.63 (0.05) 0 (0)

performance with notable improvement even for normal error
distribution and substantial improvements for the heavy-tailed
error distributions.

4.2. Computational Aspects

The new estimator in (4) is the minimizer of a convex objective
function and can be conveniently solved via linear program-
ming. With the aid of slack variables ξ+

ij , ξ
−
ij , and ζk, the convex

optimization problem in (4) can be equivalently rewritten as

min
β ,ξ ,ζ

{[
n(n − 1)

]−1 ∑ ∑
i�=j

(ξ+
ij + ξ−

ij ) + λ

p∑
k=1

ζk
}

subject to ξ+
ij − ξ−

ij = (Yi − Yj) − (xi − xj)Tβ ,
i, j = 1, 2, . . . , n;

ξ+
ij ≥ 0, ξ−

ij ≥ 0, i, j = 1, 2, . . . , n;

ζk ≥ βk, ζk ≥ −βk, k = 1, 2, . . . , p.

This is a linear programming problem and can be solved using
existing optimization software packages. The second-stage
estimator in (10) can be computed similarly by incorporating
weights. The major computational barrier is due to the U-
statistics structure of the loss function in (4), where the sum
consists of O(n2) terms. An effective approach to alleviate
this challenge is to adopt a resampling technique called
incomplete U-statistic (Clémençon, Colin, and Bellet 2016),
which reduces the computational complexity of the loss
function to O(n). Our numerical results below demonstrate
that this approximation scheme substantially improves the
computation time without deteriorating the quality of the final
estimators.
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Table 4. Comparison of computation time.

Error Method L1 error L2 error ME FP FN Time (sec)

N(0, 1)

Lasso 0.83 (0.03) 0.28 (0.00) 0.05 (0.00) 13.48 (0.46) 0 (0) 0.44√
Lasso 0.70 (0.01) 0.26 (0.00) 0.05 (0.00) 11.58 (0.29) 0 (0) 8.08
SCAD 0.24 (0.01) 0.14 (0.00) 0.02 (0.00) 0 (0) 0 (0) 0.93

Rank Lasso 1.07 (0.02) 0.55 (0.01) 0.35 (0.01) 4.31 (0.19) 0 (0) 0.54
Rank SCAD 0.47 (0.01) 0.26 (0.01) 0.05 (0.00) 0 (0) 0 (0) 3.72

Cauchy

Lasso 7.32 (0.16) 3.16 (0.03) 10.92 (0.52) 5.84 (0.38) 2.17 (0.08) 0.87√
Lasso 9.31 (0.20) 3.45 (0.06) 10.83 (0.52) 6.93 (0.28) 2.16 (0.08) 10.20
SCAD 6.73 (0.11) 3.45 (0.05) 20.39 (0.39) 0.00 (0.00) 3.00 (0.00) 0.79

Rank Lasso 3.84 (0.11) 1.82 (0.05) 3.45 (0.19) 7.05 (0.25) 0 (0) 0.49
Rank SCAD 2.86 (0.12) 1.64 (0.07) 2.41 (0.17) 0.38 (0.05) 0 (0) 3.72

Table 5. Analysis of eQTL data: results based on 100 random partitions.

Method L1 error L2 error Model size

Lasso 0.075 (0.001) 0.011 (0.000) 19.50 (1.09)√
Lasso 0.074 (0.001) 0.011 (0.000) 19.09 (0.88)

SCAD 0.083 (0.001) 0.015 (0.000) 5.04 (0.27)
Rank Lasso 0.080 (0.001) 0.014 (0.001) 6.72 (0.27)
Rank SCAD 0.077 (0.001) 0.012 (0.001) 8.17 (0.39)

We consider the simulation setup in Example 1 with N(0, 1)
error and Cauchy random error. The results are summarized in
Table 4. The last column of the table reports the computational
time per simulation run (measured by seconds) for each pro-
cedure with tuning parameter computation time included. We
observe that Rank Lasso has computational time comparable to
cross-validated Lasso (implemented by the R package glmnet
with default options) for normal error distribution, and can
be slightly faster than cross-validated Lasso for heavy-tailed
Cauchy error distribution. Furthermore, Rank SCAD can be
implemented quite efficiently.

4.3. A Real Data Example

Weuse a genetic dataset to illustrate the performance of the new
Wilcoxon rank based procedures. Scheetz et al. (2006) investi-
gated gene regulation in the mammalian eye to identify genetic
variation relevant to human eye disease based on expression
quantitative trait locus (eQTL) mapping data. The dataset we
analyze contains expression values on 300 probes (after pre-
processing) from 120 twelve-week-old male offspring of rats.
The response variable is the expression of gene TRIM32, a
gene identified to be associated with human hereditary diseases
of the retina, corresponding to probe 1389163_at. The sample
standard deviation of TRIM32 is 0.14.

We conducted 100 random partitions of the dataset. For each
partition, we randomly select 60 rats as the training data and
the other 60 as the testing data. Regularized regression is fitted
using the training data with the performance being evaluated
on the testing dataset. Table 5 summarizes the average (with the
standard error in the parenthesis) of the L1 prediction error,
L2 prediction error and model size, respectively, across 100
partitions.We observe that the new rank based procedures tends
to select a sparser model with similar predictive performance
comparing with Lasso and square-root Lasso.

5. Conclusions and Discussions

The article proposes a new approach for high-dimensional
regression. Comparing to Lasso, the proposed L1 regularized
new estimator achieves several goals simultaneously: it keeps
the convex structure for convenient computation, has a tuning
parameter that can be easily simulated and automatically
adapts to both the error distribution and the design matrix,
and is equivariant to scale transformation of the response
variable. Moreover, the L2 estimation error bound of the new
estimator achieves the same near-oracle rate as Lasso does. It has
similar performance as Lasso does with normal random error
distribution and can be substantially more efficient with heavy-
tailed error distribution. Rank Lasso enjoys the tuning-free
property in the sense that its tuning parameter selection does
not depend on unknown population quantities. In particular, it
does not depend on the variance of the noise. The efficiency
of Rank Lasso can be further improved via a second-stage
enhancement with some light tuning.

There is also different line of work on model selection on the
Lasso solution path with the goal of asymptotically identifying
the true model (see Chen and Chen 2008; Wang, Li, and Leng
2009; Fan and Tang 2013, among others). These methods, how-
ever, are not robust to heavy-tailed errors.

Rather than choosing λ to control the L∞ bound of the
noises (Bickel, Ritov, andTsybakov 2009), Sun andZhang (2013)
recently investigated an interesting alternative that chooses λ to
control a sparse L2 measure of the noises. For scaled Lasso, they
showed that a penalty level with order smaller than

√
log p/n

can still be valid and that it can lead to faster convergence rate in
some settings. It will be interesting to investigate this alternative
in our proposed setting in the future.

Appendix: Proofs of Theorem 1 and Theorem 2

The results in Lemma 1 are straightforward. The proofs of Lemmas 2
and 3 are given in the supplementary materials.

Proof of Theorem 1. Write Ln(γ ) = Qn(γ ) + λ∗||β0 + γ ||1, where
Qn(γ ) is defined in (5). Then

γ̂ (λ∗) = β̂(λ∗) − β0 = argmin
γ

Ln(γ ).

It follows from Lemma 2 that P
(
γ̂ (λ∗) ∈ �

) ≥ 1 − α0 and λ∗ <

2c0
√
log p/n. Let hn = √

n−1q log p. Denote

�∗ = {
γ ∈ Rp : γ ∈ �, ||γ ||2 = �hn

}
, (A.1)
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where � = 8(1+c̄)c0
b2b3 with c0 being the universal positive constant in

Lemma 2. We have

P
(||γ̂ (λ∗)||2 ≤ �hn

) ≥ 1 − P
(||γ̂ (λ∗)||2 ≤ �hn

∣∣γ̂ (λ∗) ∈ �
)

−P
(
γ̂ (λ∗) /∈ �

)
≥ P

(
inf||γ ||2≥�hn,γ∈�

Ln(γ ) > Ln(0)
)

− α0

≥ P
(

inf
γ∈�∗ Ln(γ ) > Ln(0)

) − α0, (A.2)

where the second inequality is due to the convexity of Ln(γ ) (e.g.,
Hjort and Pollard 2011). To see this, for an arbitrary point s outside
the L2 ball centered at 0 with radius �hn, we can write it as s = lu,
where u is a unit vector and l > �hn is a positive constant. The
convexity of Ln(γ ) implies that

(
1− l−1�hn

)
Ln(0)+ l−1�hnLn(s) ≥

Ln(�hnu). Hence, l−1�hn
(
Ln(s) − Ln(0)

) ≥ Ln(�hnu) − Ln(0) ≥
inf ||γ ||2=�hn(Ln(γ ) − Ln(0)). This implies (A.2).

We first note that ∀ γ ∈ �∗,
λ∗∣∣||β0 + γ ||1 − ||β0||1

∣∣
≤ λ∗||γ ||1 = λ∗(||γA||1 + ||γAc ||1

) ≤ λ∗(1 + c)||γA||1
≤ λ∗(1 + c)√q||γA||2 ≤ λ∗(1 + c)√q�hn
≤ 2c0(1 + c)�h2n, (A.3)

where the second inequality follows because γ ∈ �∗, and the third
inequality follows by applying the Cauchy–Schwartz inequality. Let
Q(γ ) = E{Qn(γ )}. We have

inf
γ∈�∗

{
Ln(γ ) − Ln(0)

}
≥ inf

γ∈�∗
{
Q(γ ) − Q(0)

} − sup
γ∈�∗

∣∣Qn(γ ) − Qn(0) − Q(γ ) + Q(0)
∣∣

− λ∗(1 + c)√q�hn. (A.4)

By Knight’s identity (Koenker 2005),

Qn(γ ) − Qn(0)

= [n(n − 1)]−1 ∑ ∑
i�=j

(xi − xj)Tγ
[
I(ζij < 0) − 1/2

]

+ [n(n − 1)]−1 ∑ ∑
i�=j

∫ (xi−xj)Tγ

0

[
I(ζij ≤ s) − I(ζij ≤ 0)

]
ds.

In the above expression, the first term has mean 0 and the second term
is always nonnegative. Hence,

Q(γ ) − Q(0) = [n(n − 1)]−1 ∑ ∑
i�=j

∫ (xi−xj)Tγ

0

[
F∗(s) − F∗(0)

]
ds

= [n(n − 1)]−1 ∑ ∑
i�=j

∫ (xi−xj)Tγ

0

×[
F∗(s) − F∗(0)

]
dsI

{
(xi − xj)Tγ > 0

}
+[n(n − 1)]−1 ∑ ∑

i�=j

∫ (xi−xj)Tγ

0

×[
F∗(s) − F∗(0)

]
dsI

{
(xi − xj)Tγ ≤ 0

}
= I1 + I2,

where the definition of Ii, i = 1, 2, is clear from the context. By the
mean value theorem, for some ξij between 0 and (xi − xj)Tγ , we have

I1 = [n(n − 1)]−1 ∑∑
i�=j

∫ (xi−xj)Tγ

0
f ∗(ξij)sdsI

{
(xi − xj)Tγ > 0

}

≥ 0.5b3[n(n − 1)]−1 ∑∑
i�=j

[
(xi − xj)Tγ

]2I{(xi − xj)Tγ > 0
}
,

by condition (C3). To evaluate I2, we apply the transformation of
variable t = −s and obtain for some ξij between 0 and |(xi − xj)Tγ |,

I2 = [n(n − 1)]−1 ∑ ∑
i�=j

∫ −(xi−xj)Tγ

0

×[
F∗(0) − F∗(−t)

]
dtI

{
(xi − xj)Tγ ≤ 0

}
≥ [n(n − 1)]−1 ∑ ∑

i�=j

∫ |(xi−xj)Tγ |
0

f ∗(ξij)tdtI
{
(xi − xj)Tγ ≤ 0

}
≥ 0.5b3[n(n − 1)]−1 ∑ ∑

i�=j

[
(xi − xj)Tγ

]2I{(xi − xj)Tγ ≤ 0
}
.

Hence, by condition (C2),

Q(γ ) − Q(0) ≥ 0.5b3[n(n − 1)]−1 ∑∑
i�=j

[
(xi − xj)Tγ

]2
= b3n−1

n∑
i=1

γ TxixTi γ ≥ b2b3||γ ||22 = b2b3�2h2n.

(A.5)

Write Wn(γ ) = supγ∈�∗
∣∣Qn(γ ) − Qn(0) − Q(γ ) + Q(0)

∣∣ and
h(εi, εj) = ∣∣(εi − εj) − (xi − xj)Tγ

∣∣ − ∣∣εi − εj|. Note that
|h(εi, εj)| ≤ ∣∣(xi − xj)Tγ

∣∣ ≤ 2b1||γ ||1 ≤ 2b1(1 + c̄)||γA||1
≤ 2b1(1 + c̄)√q||γA||2 ≤ 2b1(1 + c̄)√q�hn.

Hence, if we perturb one observation of the dataset, the value ofWn(γ )

changes at most c0(1 + c̄)n−1√q�hn, where c0 = 4
√
2b1c. By the

bounded difference inequality, ∀ t > 0,

P
(
Wn(γ ) − E{Wn(γ )} > t

) ≤ exp
(

− 2nt2

c20(1 + c̄)2q�2h2n

)
. (A.6)

LetMn = �n/2�, the smallest integer greater than or equal to n/2.
Let σi, i = 1, . . . , n, denote a Rademacher sequence independent of
ε1, . . . , εn, such that P(σi = 1) = P(σi = −1) = 1/2. We have

E
{
Wn(γ )

} = E
(

sup
γ∈�∗

1
n!

∣∣∣ ∑
π

M−1
n

Mn∑
i=1

(
h(επ(i), επ(Mn+i)

−E{h(επ(i), επ(Mn+i))
}∣∣∣)

≤ 2
n!

∑
π

E
(

sup
γ∈�∗

∣∣∣M−1
n

Mn∑
i=1

σih(επ(i), επ(Mn+i))
∣∣∣)

≤ 4
n!

∑
π

E
(

sup
γ∈�∗

∣∣∣M−1
n

Mn∑
i=1

σi(xπ(i) − xπ(Mn+i))
Tγ

∣∣∣)

≤ 4
n!

∑
π

sup
γ∈�∗

||γ ||1E
(∣∣∣∣∣∣M−1

n

Mn∑
i=1

σi(xπ(i)

−xπ(Mn+i))
∣∣∣∣∣∣∞)

≤ 4(1 + c̄)√q�hn
1
n!

∑
π

E
(

max
1≤j≤p

∣∣∣M−1
n

Mn∑
i=1

σi(xπ(i)j

−xπ(Mn+i)j)
∣∣∣),

where the equality is a result of Lemma A.1 of Clémençon, Lugosi,
and Vayatis (2008) on U-statistic with the first sum taking over all
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permutations π of {1, . . . , n}; the second inequality follows from the
symmetrization theorem (van der Vaart and Wellner 1996); the third
inequality is due to the contraction theorem (Ledoux and Talagrand
2013); while the last inequality follows because supγ∈�∗ ||γ ||1 ≤ (1 +
c̄)√q||γA||2. Applying Lemma 14.12 of Bühlmann and van de Geer
(2011), we have

E
(

max
1≤j≤p

∣∣∣M−1
n

Mn∑
i=1

σi(xπ(i)j − xπ(Mn+i)j)
∣∣∣)

≤ 4b1
{
n−1 log(p + 1) +

√
2n−1 log(p + 1)

}
≤ 8b1

√
n−1 log p,

for all n sufficiently large. This implies E
{
Wn(γ )

} ≤ 6(1 + c̄)c0�h2n.
Now we take t = (1 + c̄)c0�h2n in (A.6). This gives

P
(
Wn(γ ) − E{Wn(γ )} > (1 + c̄)c0�h2n

√
n−1q log p

)
≤ exp(−2 log p).

Hence, Wn(γ ) ≤ 7(1 + c̄)c0�h2n with probability at least 1 −
exp(−2 log p). Combining this result with (A.4) and (A.5), we have
with probability at least 1 − exp(−2 log p),

inf
γ∈�∗

(
Ln(γ ) − Ln(0)

) ≥ b2b3�2h2n − 7(1 + c̄)c0�h2n

−2c0(1 + c)�h2n
= (b2b3� − 7(1 + c̄)c0)�h2n > 0.

Hence, P
(||γ̂ (λ∗)||2 ≤ �hn

)
> 1 − α0 − exp(−2 log p).

Proof of Theorem 2. Let β̃
(0) = (β̃

(0)
1 , . . . , β̃(0)

p )T be the initial esti-
mator obtained from the L1 penalized Wilcoxon rank regression. By
Theorem 1, sup1≤j≤p |β̃(0)

j − β0j| ≤ b̃
√
q log p/n for some positive

constant b̃ with probability at least 1 − α0 − exp(−2 log p). By the
conditions of Theorem 2, we have

√
q log p/n = O(n−(1−c1−c4)/2).

By Lemma B in the supplementary materials, for the oracle estimator
β̂

(o) there exist v∗ij which satisfies v∗ij = 0 if Yi − Yj �= (xi − xj)T β̂
(o),

and v∗ij ∈ [−1, 1] if Yi − Yj = (xi − xj)T β̂
(o), such that for δk(β̂

(o)
)

with vij = v∗ij, we have with probability approaching one, δk(β̂
(o)

) = 0,

k = 1, . . . , q; and |δk(β̂(o)
)| < a1η, k = q+1, . . . , p. Consider δk(β̂

(o)
)

with vij = v∗ij. Define the following two events,

Fn1 = {|β̃(0)
j − β0j| > η, for some 1 ≤ j ≤ p

}
,

Fn2 = {|δk(β̂(o)
)| ≥ a1η, for some q + 1 ≤ k ≤ p; or δk(β̂

(o)
) �= 0

for some 0 ≤ k ≤ q
}
,

where β̂
(o) = (β̂

(o)
1 , . . . , β̂(o)

p )T is the oracle estimator. Define Gn =
Fcn1∩Fcn2. By Theorem 1 and LemmaC in the supplementarymaterials,
for all n sufficiently large, we have P

(
Gn

) ≥ 1 − α0 − hn, where hn =
o(1).

We observe, for all n sufficiently large on the eventGn, |β̃(0)
j | < a2η

for q+1 ≤ j ≤ p, and |β̃(0)
j | ≥ |β0j|−|β̃(0)

j −β0j| ≥ a2η, for 1 ≤ j ≤ q.

By the assumptions on the penalty function, we have p′
η(|β̃(0)

j |) = 0

for 1 ≤ j ≤ q; and p′
η(|β̃(0)

j |) ≥ a1η for q + 1 ≤ j ≤ p. Therefore, on

the event Gn, the second-stage estimator β̃
(1) can be expressed as the

solution to the following convex optimization problem:

β̃
(1) = argminβ

[
n(n − 1)

]−1 ∑ ∑
i�=j

∣∣(Yi − xTi β) − (Yj − xTj β)
∣∣

+
p∑

k=q+1
p′
η(|β̃k|)|βk|. (A.7)

By the property of the subgradient of a convex function, we have, ∀ β ∈
Rp,

[
n(n − 1)

]−1 ∑ ∑
i�=j

∣∣(Yi − xTi β) − (Yj − xTj β)
∣∣

≥ [
n(n − 1)

]−1 ∑ ∑
i�=j

∣∣(Yi − xTi β̂
(o)

) − (Yj − xTj β̂
(o)

)
∣∣

+
p∑

k=1
δk(β̂

(o)
)(βk − β̂

(o)
k )

= [
n(n − 1)

]−1 ∑ ∑
i�=j

∣∣(Yi − xTi β̂
(o)

) − (Yj − xTj β̂
(o)

)
∣∣

+
p∑

k=q+1
δk(β̂

(o)
)(βk − β̂

(o)
k ).

Hence, ∀ β ∈ Rp,

{[
n(n − 1)

]−1 ∑∑
i�=j

∣∣(Yi − xTi β) − (Yj − xTj β)
∣∣

+
p∑

k=q+1
p′
η(|β̃(0)

k |)|βk|
}

−
{[
n(n − 1)

]−1 ∑∑
i�=j

∣∣(Yi − xTi β̂
(o)

) − (Yj − xTj β̂
(o)

)
∣∣

+
p∑

k=q+1
p′
η(|β̃(0)

k |)|β̂(o)
k |

}

≥
p∑

k=q+1

{
p′
η(|β̃(0)

k |) + δk(β̂
(o)

)sign(βk)
}
|βk|

≥
p∑

k=q+1

{
a1η − |δk(β̂(o)

)|
}
|βk| ≥ 0

since β̂
(o)
k = 0 for k = q+1, . . . , p. The inequality is strict unless βk =

0 for k = q+1, . . . , p. This implies onGn, β̃
(1) = (β̃

(1)T
1 , 0Tp−q)

T with

β̃
(1)
1 = argminβ1

[
n(n−1)

]−1 ∑∑
i�=j

∣∣(Yi−xT1iβ1)− (Yj−xT1jβ1)
∣∣.

Hence, β̃(1) is the oracle estimator.

Supplementary Materials

The supplementary material contains additional technical proofs and
numerical results.
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