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Abstract This chapter provides a selective review on feature screening methods for
ultra-high dimensional data. The main idea of feature screening is reducing the ultra-
high dimensionality of the feature space to a moderate size in a fast and efficient way
and meanwhile retaining all the important features in the reduced feature space.
This is referred to as the sure screening property. After feature screening, more
sophisticated methods can be applied to reduced feature space for further analysis
such as parameter estimation and statistical inference. This chapter only focuses
on the feature screening stage. From the perspective of different types of data, we
review feature screening methods for independent and identically distributed data,
longitudinal data and survival data. From the perspective of modeling, we review
various models including linear model, generalized linear model, additive model,
varying-coefficient model, Cox model, etc. We also cover some model-free feature
screening procedures.

1 Introduction

With the advent of modern technology for data collection, ultra-high dimensional
datasets are widely encountered in machine learning, statistics, genomics, medicine,
finance, marketing, etc. For example, in biomedical studies, huge numbers of mag-
netic resonance images (MRI) and functional MRI data are collected for each sub-
ject. Financial data is also of a high dimensional nature. Hundreds or thousands
of financial instruments can be measured and tracked over time at very fine time
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intervals for use in high frequency trading. This ultra-high dimensionality causes
challenges in both computation and methodology. Scalability is the major challenge
to ultra-high dimensional data analysis. Many traditional methods that perform well
for low dimensional data do not scale to ultra-high dimensional data. Other issues
such as high collinearity, spurious correlation, and noise accumulation (Fan and
Lv 2008, 2010) brings in additional challenges. Therefore, variable selection and
feature screening have been a fundamental problem in the analysis of ultra-high
dimensional data. For example, the issue of spurious correlation is illustrated by a
simple example in Fan and Lv (2008). Suppose we have a n× p dataset with sample
size n and the p predictors independently follow the standard normal distribution.
When p� n, the maximum absolute value of sample correlation coefficient among
predictors can be very large. Figure 1 shows the distributions of the maximum ab-
solute sample correlation with n = 60 and p = 1000,5000. Though the predictors
are generated independently, some of them can be highly correlated due to high-
dimensionality.

Fig. 1 Distributions of the maximum absolute sample correlation coefficient when n = 60, p =
1000 (solid curve) and n = 60, p = 5000 (dashed curve).

Over the past two decades, a large amount of variable selection approaches based
on regularized M-estimation have been developed. These approaches include the
Lasso (Tibshirani 1996), the SCAD (Fan and Li 2001), the Dantzig selector (Can-
des and Tao 2007), and the MCP (Zhang 2010), among others. However, these reg-
ularization methods may not perform well for ultra-high dimensional data due to
the simultaneous challenges of computational expediency, statistical accuracy, and
algorithmic stability (Fan, Samworth and Wu 2009). To improve the statistical per-
formance of regularization methods and reduce computational cost, a class of two
stage approaches is proposed. In the first stage, we reduce the number of features
from a very large scale to a moderate size in a computationally fast way. Then in
the second stage, we further implement refined variable selection algorithms such
as regularization methods to the features selected from the first stage. Ideally, we
select all the important features and may allow a few unimportant features entering
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our model in the first stage. The first stage is referred to as the feature screening
stage. We will only focus on the feature screening stage in this chapter.

Suppose we have p features X1, . . . ,Xp in the feature space and denote the true
index set of important variables by M?. The definition of M? may vary across dif-
ferent models. For example, in a parametric model associated with true parameters
β
? = (β ?

1 , . . . ,β
?
p )
>, M? is typically defined to be

M? = {1≤ j ≤ p : β
?
j 6= 0}.

Our goal in the feature screening stage is to select a submodel M̂ ⊂ {1, . . . , p} with
little computational cost such that M? ⊂ M̂ with high probability. This is referred
to as the sure screening property.

Definition 1 (Sure Screening). Let M? be the true index set of important features
and M̂ be the index set of selected important variables by some feature screening
procedure based on a sample of size n, then this feature screening procedure has the
sure screening property if

Pr(M? ⊂ M̂ )→ 1 as n→ ∞.

The sure screening property ensures that all the important features will be included
in the selected submodel with probability approaching to 1 as the sample size goes
to infinity. A trivial but less interesting choice of M̂ is M̂ = {1, . . . , p}, which
always satisfies the definition of sure screening. Here we assume the number of true
important features is much smaller than p. This kind of assumption is also known
as sparsity assumption in the sense that most of the entries in the true parameter β

?

are zero. Of interest is to find a M̂ whose cardinality is much smaller than p (i.e.,
|M̂ | � p) and meanwhile the sure screening holds.

2 Marginal, Iterative and Joint Feature Screening

2.1 Marginal feature screening

The most popular feature screening method is the marginal feature screening, which
ranks the importance of features based on marginal utility and thus is computation-
ally attractive. More specifically, the marginal feature screening procedure assigns
an index, say ω̂ j, to the feature X j for j = 1, . . . , p. This index ω̂ j measures the de-
pendence between the jth feature and the response variable. Then we can rank the
importance of all features according to ω̂ j and include the features ranked on the
top in the submodel. For example, in the setting of linear regression, the index ω̂ j
is chosen to be the absolute value of marginal Pearson correlation between the jth
feature and the response (Fan and Lv 2008). Features with larger absolute values of
ω̂ j are more relevant to the response and thus are ranked on the top. As a result, we
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include the top dn features in the submodel,

M̂dn = {1≤ j ≤ p : ω̂ j is among the top dn ones},

where dn is some pre-specified threshold. Note that the marginal feature screening
procedure only uses the information of jth feature and the response without looking
at all other features and thus it can be carried out in a very efficient way. A large
amount of literature have studied the sure screening property of various marginal
feature screening methods, see Fan and Lv (2008), Fan, Samworth and Wu (2009),
Fan, Feng and Song (2011), Li, Zhong and Zhu (2012), Fan, Ma and Dai (2014).

2.2 Iterative feature screening

As pointed out in Fan and Lv (2008), the marginal feature screening procedure may
suffer from the following two issues:

1. Some unimportant features that are highly correlated with important features
can have higher rankings than other important features that are relatively weakly
related to the response.

2. An important feature that is marginally independent but jointly dependent on
the response tends to have lower ranking.

The first issue says that the marginal feature screening has chance to include some
unimportant features in the submodel. This is not a big issue for the purpose of fea-
ture screening. The second one is a bigger issue, which indicates that the marginal
feature screening may fail to include all the important feature if it is marginally in-
dependent of the response. Absence of any important feature may lead to a biased
estimation. To overcome the two aforementioned issues, one can apply an itera-
tive feature screening procedure by iteratively carrying out the marginal screening
procedure. This iterative procedure was first introduced by Fan and Lv (2008) and
can be viewed as a natural extension of the marginal feature screening. At the kth
iteration, we apply marginal feature screening to the features survived from the
previous step and is typically followed by a regularization methods if a regres-
sion model is specified. Let M̂k be the selected index set of important variables
at the kth iteration and the final selected index set of important variables is given
by M̂ = M̂1∪M̂2∪ . . . , the union of all selected index sets. For example, Fan and
Lv (2008) uses the residuals computed from linear regression as the new response
and iteratively applies marginal feature screening based on Pearson correlation. The
iterative feature screening can significantly improve the simple marginal screening,
but it can also be much more computationally expensive.
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2.3 Joint feature screening

Another approach to improve the marginal screening is known as the joint screening
screening (Xu and Chen 2014, Yang, Yu, Li and Buu 2016). Many regularization
methods involves solving a optimization problem of the following form,

min
β

1
n

n

∑
i=1

`(xi,β ) subject to ‖β‖0 ≤ k, (1)

where `(·, ·) is some loss function of negative log-likelihood function. It is quite
challenging to solve the minimization problem in (1) especially in the ultra-high
dimensional setting. The joint screening approach approximates the objective func-
tion by its Taylor’s expansion and replaces the possibly singular Hessian matrix
with some invertible matrix. After the approximation, one can solve such optimiza-
tion problem iteratively in a fast manner. In many applications, one can obtain a
closed form at each iteration for the joint screening approach.

2.4 Notations and organization

We introduce some notations used this chapter. Let Y ∈R be the univariate response
variable and x = (X1, . . . ,Xp)

> ∈ Rp be the p-dimensional features. We observe a
sample {(xi,Yi)}, i = 1, . . . ,n from the population (x,Y ) with xi = (Xi1, . . . ,Xip)

>.
Let y = (Y1, . . . ,Yn)

> be the response vector and X = (x1, . . . ,xn)
> be the design

matrix. We use x( j) to denote the jth column of X and use 1(·) to denote the indicator
function. For a vector β = (β1, . . . ,βp)

> ∈ Rp, ‖β‖q = (∑
p
j=1 |β j|q)1/q denotes its

`q norm for 0 ≤ q ≤ ∞. In particular, ‖β‖0 = ∑
p
j=1 1(|β j| 6= 0) is the number of

non-zero elements in β and ‖β‖∞ = max1≤ j≤p |β j|. For a symmetric matrix M ∈
Rp×p, we use ‖M‖F and ‖M‖∞ to denote the Frobenius norm and supremum norm
respectively. Let λmin(M) and λmax(M) be the smallest and largest eigenvalue of
M. Let M be a subset of {1, . . . , p} and βM , a sub-vector of β , consists of β j
for all j ∈M . We use M? to denote the true index set of important features and
β
? = (β ?

1 , . . . ,β
?
p )
> denote the true parameter. We assume |M?|= s throughout this

chapter, where |M?| denotes the cardinality of the set M?.
In the rest of this chapter, we spend most of the efforts reviewing the marginal

feature screening methods as the marginal feature screening is the most popular
screening method. The iterative feature screening can be viewed as a natural exten-
sion of marginal feature screening. We will discuss the details on the iterative and
joint screening methods in one or two particular examples.

The rest of this chapter is organized as follows. In section 3, we introduce the
feature screening methods for independent and identically distributed data, which is
the most common assumption in statistical modeling. Many different models have
been developed for such data, including linear model, generalized linear model,
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additive model, varying-coefficient model, etc. However, this assumption is usually
violated in areas such as finance and economics. In section 4, we review the feature
screening methods that are developed for longitudinal data, that is, data is collected
over a period of time for each subject. In section 5, we review the feature screening
methods for survival data, which is widely seen in reliability analysis in engineering,
duration analysis in economics, and event history analysis in sociology, etc.

3 Independent and Identically Distributed Data

Independent and identically distributed (IID) data is the most common assump-
tion in statistical literature and a large amount of feature screening methods have
been developed for IID data. In this section, we review some of the widely used
feature screening methods for such data. Throughout this section, we assume that
{(xi,Yi)}, i = 1, . . . ,n is a random sample from the population (x,Y ).

3.1 Linear model

Let us consider the linear regression model,

Y = β0 +x>β + ε, (2)

where β0 is the intercept, β = (β1, . . . ,βp)
> is a p-dimensional regression coeffi-

cient vector, and ε is the error term. In the ultra-high dimensional setting, the true
regression coefficient vector β

? = (β ?
1 , . . . ,β

?
p )
> is assumed to be sparse, meaning

that most of the coefficients β ?
j are 0. The true index set of the model is defined as

M? = {1≤ j ≤ p : β
?
j 6= 0}.

We call the features with indices in the set M? important features. Fan and Lv
(2008) suggests ranking all features according to the marginal Pearson correlation
coefficient between individual feature and the response and select the top features
which have strong correlation with the response as important features. For a pre-
specified value νn(0 < νn < 1), the index set of selected features is given by

M̂νn = {1≤ j ≤ p : |ĉorr(x( j),y)| is among the top bνnnc largest ones},

where x( j) is the jth column of X, ĉorr denotes the sample Pearson correlation, and
bνnnc is the integer part of νnn. This procedure achieves the goal of feature screen-
ing since it reduces the ultra-high dimensionality down to a relatively moderate scale
bνnnc. This procedure is referred to as the sure independence screening (SIS). Then
appropriate regularization methods such as Lasso, SCAD and Dantzig selector can
be further applied to the selected important features. The corresponding methods
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are referred to as SIS-LASSO, SIS-SCAD and SIS-DS. This feature screening pro-
cedure is based on Pearson correlation and can be carried out in a extremely simple
way at very low computational cost. In addition to the computational advantage, this
SIS enjoys the sure screening property. Assume that the error is normally distributed
and the following conditions hold,

(A1) min j∈M? β ?
j ≥ c1n−κ and min j∈M? |cov(β ?−1

j Y,X j)| ≥ c2, for some κ > 0
and c1,c2 > 0.

(A2) There exists τ ≥ 0 and c3 > 0 such that λmax(Σ)≤ c3nτ , where Σ = cov(x)
is the covariance matrix of x and λmax(Σ) is the largest eigenvalue of Σ .

(A3) p > n and log p = O(nξ ) for some ξ ∈ (0,1−2κ).

Fan and Lv (2008) showed that if 2κ +τ < 1, then with the choice of νn = cn−θ for
some 0 < θ < 1−2κ− τ and c > 0, we have for some C > 0

Pr(M? ⊂ M̂νn)≥ 1−O(exp{−Cn1−2κ/ logn}). (3)

Conditions (A1) requires certain order of minimal signal among the important fea-
tures, condition (A2) rules out the case of strong collinearity and condition (A3)
allows p grows exponentially with sample size n. Equation (3) shows that the SIS
can reduce the exponentially growing dimension p down to a relatively small scale
dn = bνnnc = O(n1−θ ) < n, while include all important features in the submodel
with high probability. The optimal choice of dn relies on unknown parameters. It is
common to assume s/n→ 0 where s is the number of important features. In prac-
tice, one can conservatively set dn = n− 1 or require dn/n→ 0 with dn = n/ logn.
See more details in Fan and Lv (2008).

Marginal Pearson correlation is employed to rank the importance of features,
SIS may suffer from the potential issues with marginal screening. On one hand, SIS
may fail to select the important feature when it is jointly correlated but marginally
uncorrelated with the response. On the other hand, the SIS tends to select unimpor-
tant features which are jointly uncorrelated but highly marginally correlated with
the response. To address these issues, Fan and Lv (2008) also introduced an iter-
ative SIS procedure (ISIS) by iteratively replacing the response with the residuals
obtained from the linear regression using the selected features from the previous
step. The ISIS works as follows. In the first iteration, we select a subset of k1 fea-
tures A1 = {Xi1 , . . . ,Xik1

} using an SIS based model selection method such as SIS-
LASSO or SIS-SCAD. Then we regress the response Y over the selected features A1
and obtain the residuals. We treat the residuals as the new responses and apply the
same method to the remaining k2 = p− k1 features A2 = {X j1 , . . . ,X jk2

}. We keep
doing this until we get l disjoint subsets A1, . . . ,Al such that d = ∑

l
i=1 |Ai|< n. We

use the union A = ∪`i=1Ai as the set of selected features. In practical implemen-
tation, we can choose, for example, the largest l such that |A | < n. This iterative
procedure makes those important features that are missed in the previous step pos-
sible to re-enter the selected model. In fact, after features in A1 entering into the
model, those that are marginally weakly correlated with Y purely due to the pres-
ence of variables in A1 should now be correlated with the residuals.
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3.2 Generalized linear model and beyond

A natural extension of SIS is applying the feature screening procedure to generalized
linear models. Assume that the response Y is from an exponential family with the
following canonical form

fY (y,θ) = exp{yθ −b(θ)+ c(y)},

for some known functions b(·), c(·) and unknown parameter θ . Consider the fol-
lowing generalized linear model

E(Y |x) = g−1(β0 +x>β ), (4)

where g(·) is the link function, β0 is a unknown scalar, and β = (β1, . . . ,βp)
> is a

p-dimensional unknown vector. The linear regression model in (2) is just a special
case of (4) by taking g(µ) = µ . Without loss of generality, we assume that all the
features are standardized to have mean zero and standard deviation one. Fan and
Song (2010) proposes a feature screening procedure for (4) by ranking the maximum

marginal likelihood estimator (MMLE). For each 1≤ j ≤ p, the MMLE β̂
M
j is a 2-

dimensional vector and defined as

β̂
M
j = (β̂ M

j0 , β̂
M
j1)
> = argmin

β j0,β j1

1
n

n

∑
i=1

`(Yi,β j0 +β j1Xi j), (5)

where `(y,θ) =−yθ +b(θ)−c(y) is the negative log-likelihood function. The min-
imization problem in (5) can be rapidly computed and its implementation is robust
since it only involves two parameters. Such a feature screening procedure ranks the
importance of features according to their magnitude of marginal regression coeffi-
cients. The set of important features is defined as

M̂νn = {1≤ j ≤ p : |β̂ M
j1 |> νn},

where νn is some pre-specified threshold. As a result, we dramatically decrease the
dimension from p to a moderate size by choosing a large νn and hence the computa-
tion is much more feasible after screening. Although the interpretations and impli-
cations of the marginal models are biased from the full model, it is suitable for the
purpose of variable screening. In the linear regression setting, the MMLE ranking
is equivalent to the marginal correlation ranking. However, the MMLE screening
does not rely on the normality assumption and can be more easily to applied to
other models. Under proper regularity conditions, Fan and Song (2010) established
the sure screening property of the MMLE ranking. By taking νn = cn1−2κ for some
0 < κ < 1/2 and c > 0, we have

Pr(M? ⊂ M̂νn)→ 1 as n→ ∞.
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See more about the details about the conditions in Fan and Song (2010). This MMLE
procedure can handle the NP-dimensionality of order

log p = o(n(1−2κ)α/(α+2)),

where α is some positive parameter that characterizes the how fast the tail of dis-
tribution of features decay. For instance, α = 2 corresponds to normal features
and α = ∞ corresponds to features that are bounded. When features are normal
(α = 2), the MMLE gives a weaker result than that of the SIS which permits
log p = o(n1−2κ). However, MMLE allows non-normal features and other error dis-
tributions.

Fan, Samworth and Wu (2009) studied a very general pseudo-likelihood frame-
work in which the aim is to find the parameter vector β = (β1, . . . ,βp)

> that is sparse
and minimizes an objective function of the form

Q(β0,β ) =
1
n

n

∑
i=1

`(Yi,β0 +β
>xi), (6)

where the function `(·, ·) can be some loss function or negative log-likelihood func-
tion. This formulation in (6) includes a lot of important statistical models including

1. Generalized linear models: All generalized linear models, including logistic
regression and Poisson log-linear models, fit very naturally into the framework.

2. Classification: Some common approaches to classification assume the response
takes values in {−1,1} also fit the framework. For instance, support vector ma-
chine (Vapnik 2013) uses the hinge loss function `(Yi,β0+x>i β ) = (1−Yi(β0+
x>i β ))+, while the boosting algorithm AdaBoost (Freund and Schapire 1997)
uses `(Yi,β0 +x>i β ) = exp{−Yi(β0 +x>i β )}.

3. Robust fitting: Instead of the conventional least squares loss function, one may
prefer a robust loss function such as the `1 loss `(Yi,β0+x>i β ) = |Yi−β0−x>i β |
or the Huber loss (Huber 1964), which also fits into the framework.

Fan, Samworth and Wu (2009) suggests to rank the importance of features ac-
cording to their marginal contributions to the magnitude of the likelihood function.
This method can be viewed as a marginal likelihood ratio screening, as it builds on
the increments of the log-likelihood. The marginal utility of the jth feature X j is
quantified by

L j = min
β0,β j

n−1
n

∑
i=1

`(Yi,β0 +Xi jβ j).

The idea is to compute the vector of marginal utilities L = (L1, . . . ,Lp)
> and rank

the features according to the marginal utilities: the smaller L j is, the more impor-
tant X j is. Note that in order to compute L j , we only need to fit a model with two
parameters, β0 and β j, so computing the vector L can be done very quickly and
stably, even for an ultrahigh dimensional problem. The feature X j is selected if the
corresponding utility L j is among the dn smallest components of L. Typically, we
may take dn = bn/ lognc. When dn is large enough, it has high probability of select-
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ing all of the important features. The marginal likelihood screening and the MMLE
screening share a common computation procedure as both procedures solve p opti-
mization problems over a two-dimensional parameter space. Fan and Song (2010)
showed that these two procedures are actually equivalent in the sense that they both
possess the sure screening property and that the number of selected variables of the
two methods are of the same order of magnitude.

Fan, Samworth and Wu (2009) also proposes an iterative feature screening pro-
cedure, which consists of the following steps.

Step 1. Compute the vector of marginal utilities L = (L1, . . . ,Lp)
> and select the

set Â1 = {1 ≤ j ≤ p : L j is among the first k1 smallest ones}. Then apply a pe-
nalized (pseudo)-likelihood, such as Lasso and SCAD, to select a subset M̂ .

Step 2. For each j ∈ {1, . . . , p}/M̂ , compute

L(2)
j = min

β0,β j ,βM̂

1
n

n

∑
i=1

L(Yi,β0 +x>
i,M̂

β
M̂

+Xi jβ j), (7)

where xi,M̂ denotes the sub-vector of xi consisting of those elements in M̂ . Then
select the set

Â2 = { j ∈ {1, . . . , p}/M̂ : L(2)
j is among the fist k2 smallest ones}.

Step 3. Use penalized likelihood to the features in set M̂ ∪ Â2,

β̂ 2 = argmin
β0,β Â2

,β
M̂

1
n

n

∑
i=1

`(Yi,β0 +x>
i,M̂

β
M̂

+x>
i,Â2

β
Â2
)+ ∑

j∈M̂∪Â2

pλ (|β j|),

where pλ (·) is some penalty function such as Lasso or SCAD. The indices of
β̂ 2that are non-zero yield a new estimated set M̂ .

Step 4. Repeat Step 2 and Step 3 and stop once |M̂ | ≥ dn.

Note that L(2)
j can be interpreted as the additional contribution of feature X j given the

presence of features in M̂ . The optimization problem in Step 2 is a low-dimensional
problem which can be solved efficiently. An alternative approach in Step 2 is to
substitute the fitted value β̂

M̂1
from the Step 1 into (7). Then the optimization in

(7) only involves two parameters and is exactly an extension of Fan and Lv (2008).
To see this, let ri = Yi−x>

i,M̂
β

M̂
denote the residual from the previous step and we

choose the square loss function, then

`(Yi,β0 +x>
i,M̂

β
M̂

+Xi jβ j) = (ri−β0−β jXi j)
2.

Without explicit definition of residuals, the idea of considering additional contribu-
tion to the response can be applied to a much more general framework.
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3.3 Nonparametric regression models

Fan, Feng and Song (2011) proposes a nonparametric independence screening (NIS)
for ultra-high dimensional additive model of the following form,

Y =
p

∑
j=1

m j(X j)+ ε, (8)

where m j(X j) is assumed to have mean zero for identifiability. The true index set of
important features is defined as

M? = {1≤ j ≤ p : Em2
j(X j)> 0}.

To identify the important features in (8), Fan, Feng and Song (2011) considers the
following p marginal nonparametric regression problems

min
f j∈L2(P)

E(Y − f j(X j))
2, (9)

where P denotes the joint distribution of (x,Y ) and L2(P) is the family of square
integrable functions under the measure P. The minimizer of (9) is f j = E(Y |X j) and
hence E f 2

j (X j) can be used as marginal utility to measure the importance of feature
X j at population level. Given a random sample {(xi,Yi)}, i = 1, . . . ,n, f j(x) can be
estimated by a set of B-spline basis. Let B(x) = (B1(x), . . . ,BL(x))> be a B-spline
basis and β j = (β j1, . . . ,β jL)

> be the corresponding coefficients for the B-spline
basis associated with feature X j. Consider the following least squares,

β̂ j = argmin
β j

1
n

n

∑
i=1

(Yi−β
>
j B(Xi j))

2.

Thus f j(x) can be estimated by f̂ j(x) = β̂
>
j B(x). The index set of selected submodel

is given by
M̂νn = {1≤ j ≤ p : ‖ f̂ j‖2

n ≥ νn},

where ‖ f̂ j‖2
n = n−1

∑
n
i=1 f̂ j(Xi j)

2 and νn is some pre-specified threshold. The NIS
ranks the importance according to the marginal strength of the marginal nonpara-
metric regression. Under the regularity conditions, Fan, Feng and Song (2011)
shows that by taking νn = c1Ln−2κ , we have

Pr(M? ⊂ M̂νn)≥ 1− sL[(8+2L)exp(−c2n1−4κ L−3)+6Lexp(−c3nL−3)],

where L is the number of B-spline basis, s = |M?| and c2,c3 are some positive
constants. It follows that if

log p = o(n1−4κ L−3 +nL−3), (10)
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then Pr(M? ⊂ M̂νn)→ 1. It is worthwhile to point out that the number of spline
bases L affects the order of dimensionality. Equation (10) shows that the smaller the
number of basis functions, the higher the dimensionality that the NIS can handle.
However, the number of basis functions cannot be too small since the approximation
error would be too large if we only use a small number of basis functions. After
the feature screening, a natural next step is to use penalized method for additive
model such as penGAM proposed in Meier, Van de Geer and Bühlmann (2009) to
further select important features. Similar to the iterative procedure in Fan, Samworth
and Wu (2009), Fan, Feng and Song (2011) also introduces an iterative version
of NIS, namely INIS-penGAM, by carrying out the NIS procedure and penGAM
alternatively. We omit the details here.

Varying coefficient model is another important nonparametric statistical model
that allows us to examine how the effects of features vary with some exposure vari-
able. It is a natural extension of classical linear models with good interpretability
and flexibility. Varying coefficient model arises frequently in economics, finance,
epidemiology, medical science, ecology, among others. For an overview, see Fan
and Zhang (2008). An example of varying coefficient model is the analysis of cross-
country growth. Linear model is often used in the standard growth analysis. How-
ever, a particular country’s growth rate will depend on its state of development and it
would make much more sense if we treat the coefficients as functions of the state of
development, which leads to a standard varying coefficient model (Fan and Zhang
2008). In this example, state of development is the exposure variable.

Consider the following varying coefficient model,

Y =
p

∑
j=1

β j(U)X j + ε, (11)

where U is some observable univariate exposure variable and the coefficient β j(·) is
a smooth function of variable U . In the form of (11), the features X j enter the model
linearly. Such nonparametric formulation allows nonlinear interactions between the
exposure variable and the features. The true index set of important features is defined
as

M? = {1≤ j ≤ p : E(β 2
j (U))> 0},

with model size s = |M?|. Fan, Ma and Dai (2014) considered a nonparametric
screening procedure by ranking a measure of the marginal nonparametric contribu-
tion of each feature given the exposure variable. For each feature X j, j = 1, . . . , p,
consider the following marginal regression

min
a j ,b j

E[(Y −a j−b jX j)
2|U ]. (12)

Let a j(U) and b j(U) be the solution to (12) and we have

b j(U) =
Cov[X j,Y |U ]

Var[X j|U ]
and a j(U) = E(Y |U)−b j(U)E(X j|U).
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The marginal contribution of X j for the response can be characterized by

ω j = ‖a j(U)+b j(U)X j)‖2−‖a0(U)‖2, (13)

where a0(U) = E[Y |U ] and ‖ f‖2 = E f 2. By some algebra, it can be seen that

ω j = E
[
(Cov[X j,Y |U ])2

Var[X j|U ]

]
.

This marginal utility ω j is closely related to the conditional correlation between X j
and Y since ω j = 0 if and only if Cov[X j,Y |U ] = 0. On the other hand, if we assume
Var[X j|U ] = 1, then the marginal utility ω j is the same as the measure of marginal
functional coefficient ‖b j(U)‖2.

Suppose we have a random sample {(xi,Yi,Ui)}, i = 1, . . . ,n. Similar to the set-
ting of additive model, we can estimate a j(U), b j(U) and a0(U) using B-spline
technique. Let B(U) = (B1(U), . . . ,BL(U))> be a B-spline basis and the coefficients
of B-splines can be estimated by the following marginal regression problems

(η̂ j, θ̂ j) = min
η j ,θ j

n−1
n

∑
i=1

(Yi−B(Ui)
>

η j−B(Ui)
>

θ jXi j)
2,

η̂0 = min
η0

n−1
n

∑
i=1

(Yi−B(Ui)
>

η0)
2,

where η0 = (η01 , . . . ,η0L)
>, η j = (η j1 , . . . ,η jL)

>, and θ j = (θ j1 , . . . ,θ jL)
> are

the B-spline coefficients for a0(U), a j(U) and b j(U), respectively. As a result,
â j(U), b̂ j(U) and â0(U) can be estimated by

â j(U) = B(U)>η̂ j, b̂ j(U) = B(U)>θ̂ j, and â0(U) = B(U)>η̂0.

The sample marginal utility for screening is

ω̂ j = ‖â j(U)+ b̂ j(U)‖2
n−‖â0(U)‖2

n,

where ‖ f (U)‖2
n = n−1

∑
n
i=1 f (Ui)

2. The submodel is selected by

M̂νn = {1≤ j ≤ p : ω̂ j ≥ νn}.

Under regularity conditions, Fan, Ma and Dai (2014) established the sure screen-
ing property for their proposed screening procedure if the dimensionality satisfies
log p = o(n1−4κ L−3) for some 0 < κ < 1/4, which is of the same order for the ad-
ditive model setting. An iterative nonparametric independence screening procedure
is also introduced in Fan, Ma and Dai (2014), which repeatedly applies the feature
screening procedure followed by a moderate-scale penalized method such as group-
SCAD (Wang, Li and Huang 2008).

Instead of using the marginal contribution in (13) to rank the importance of fea-
tures, Liu, Li and Wu (2014) proposed a screening procedure based on conditional
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correlation for varying-coefficient model. Given U , the conditional correlation be-
tween X j and Y is defined as the conditional Pearson correlation

ρ(X j,Y |U) =
cov(X j,Y |U)√

cov(X j,X j|U)cov(Y,Y |U)
.

Then E[ρ2(X j,Y |U)] can be used as a marginal utility to evaluate the importance
of X j at population level. It can be estimated by the kernel regression (Liu, Li and
Wu 2014). The features with high conditional correlations will be included in the
selected submodel. This procedure can be viewed as a natural extension of the SIS
by conditioning on the exposure variable U .

3.4 Model-free feature screening

In previous sections, we have discussed model-based feature screening proce-
dures for ultra-high dimensional data, which requires us to specify the underly-
ing true model structure. However, it is quite challenging to correctly specify the
model structure on the regression function in high-dimensional modeling. Mis-
specification of the data generation mechanism could lead to large bias. In practice,
one may do not know what model to use unless the dimensionality of feature space
is reduced to a moderate size. To achieve greater realism, model-free feature screen-
ing is necessary for high-dimensional modeling. In this section, we review several
model-free feature screening procedures.

Recall that under the parametric modeling, the true index set of important fea-
tures M? is defined as the indices of nonzero elements in β

?. Since no assumption
is made on the specification of the model, there is no such true parameter β

? and
thus we need to redefine the true index set of important features M?. Let Y be the re-
sponse variable and x = (X1, . . . ,Xp)

> be the p-dimensional covariate vector. Define
the index set of important features as

M? = {1≤ j ≤ p : F(y|x) functionally depends on X j for any y ∈Ψy},

where F(y|x) = Pr(Y < y|x) is the conditional distribution function of Y given x
and Ψy is the support of Y . This indicates that conditional on xM? , Y is statistically
independent of xM c

?
, where xM? is a s-dimensional sub-vector of x consisting of all

X j with j ∈M? and M c
? is the complement of M?.

Zhu, Li, Li and Zhu (2011) considered a general model framework under which
F(y|x) depends on x only through B>xM? , where B is a s×K unknown parameter
matrix. In other words, we assume F(y|x) = F(y|B>xM?). Note that B may not be
identifiable. What is identifiable is the space spanned by the columns of B. However,
the identifiability of B is of no concern here because our primary goal is to identify
important features rather than estimating B itself. This general framework covers
a wide range of existing models including the linear regression model, generalized
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linear models, the partially linear model (Hardle, Liang and Gao 2012), the single-
index model (Hardle, Hall and Ichimura 1993), and the partially linear single-index
model (Carroll, Fan, Gijbels and Wand 1997), etc. It also includes the transformation
regression model with a general transformation h(Y ).

Zhu, Li, Li and Zhu (2011) proposes a unified screening procedure for this gen-
eral framework. Without loss of generality, assume E(X j) = 0 and Var(X j) = 1.
Define Ω(y) = E[xF(y|x)]. It then follows by the law of iterated expectations that
Ω(y) = E[xE(1(Y < y|x))|x] = cov(x,1(Y < y)). Let Ω j(y) be the jth element of
Ω(y) and define

ω j(y) = E(Ω 2
j (y)), j = 1, . . . , p.

Under certain conditions, Zhu, Li, Li and Zhu (2011) showed that

max
j∈M c

?

ω j < min
j∈M?

ω j uniformly for p,

and ω j = 0 if and only if cov(B>xM? ,X j) = 0. These results reveal that the quantity
ω j is in fact a measure of the correlation between the marginal covariate X j and the
linear combination B>xM? and hence can be used as a marginal utility. Here are
some insights. If X j and Y are independent, so are X j and 1(Y < y). Consequently,
Ω j(y) = 0 for all y ∈Ψy and ω j = 0. On the other hand, if X j and Y are dependent,
then there exists some y ∈Ψy such that Ω j(y) 6= 0, and hence ω j must be positive.
In practice, one can employ the sample estimate of ω j to rank the features. Given
a random sample {(xi,Yi)}, i = 1, . . . ,n, and assume the features are standardized in
the sense that n−1

∑
n
i=1 Xi j = 0 and n−1

∑
n
i=1 X2

i j = 1 for all j. A natural estimator for
ω j is

ω̃ j =
1
n

n

∑
k=1

{
1
n

n

∑
i=1

Xi j1(Yi < Yk)

}2

.

An equivalent expression of ω̃ j is ω̂ j = n2/(n− 1)(n− 2)ω̃ j, which is the corre-
sponding U-statistic of ω̃ j. We use ω̂ j as the marginal utility to select important
features and the selected submodel is given by

M̂νn = {1≤ j ≤ p : ω̂ j > νn}.

This procedure is referred to as sure independent ranking screening (SIRS). Zhu,
Li, Li and Zhu (2011) established the consistency in ranking (CIR) property of the
SIRS, which is a stronger result than the sure screening property. It states that if
p = o(exp(an)) for some fixed a > 0, then there exists some constant sδ ∈ (0,4/δ )
where δ = min j∈M? ω j−max j∈M c

?
ω j such that

Pr(max
j∈M c

?

ω̂ j < min
j∈M?

ω̂ j)≥ 1−4pexp{n log(1−δ sδ/4)/3}. (14)

Since p = o(exp(an)), the right hand side of (14) approaches to 1 with an expo-
nential rate as n→ ∞. Therefore, SIRS ranks all important features above unim-
portant features with high probability. Provided that an ideal threshold is available,
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this property would lead to consistency in selection, that is, a proper choice of the
threshold can perfectly separate the important and unimportant features. In practice,
one can choose the threshold with the help of extra artificial auxiliary variables.
The idea of introducing auxiliary variables for thresholding was first proposed by
Luo, Stefanski and Boos (2006) to tune the entry significance level in forward se-
lection, and then extended by Wu, Boos and Stefanski (2007) to control the false
selection rate of forward regression in linear model. Zhu, Li, Li and Zhu (2011)
extended this idea to choose the threshold for feature screening as follows. We
generate d auxiliary variables z ∼ Nd(0,Id) such that z is independent of x and Y
and we regard (p+ d)-dimensional vector (x>,z>)> as the new features. The nor-
mality of z here is not critical here. We know that min j∈M? ω j > maxl=1,...,d ωp+l
since we know z is truly unimportant features. Given a random sample, we know
mink∈M? ω̂k > maxl=1,...,d ω̂p+l holds with high probability according to the consis-
tence in ranking property. Let Cd = maxl=1,...,d ω̂p+l , the set of selected features is
given by

M̂Cd = {1≤ k ≤ p : ω̂k >Cd}.

Li, Zhong and Zhu (2012) proposed a model-free feature screening procedure
based on the distance correlation. This procedure does not impose any model as-
sumption on F(y|x). Let u ∈ Rdu and v ∈ Rdv be two random vectors. The distance
correlation measures the distance between the joint characteristic function of (u,v)
and the product of marginal characteristic functions of u and v (Székely, Rizzo and
Bakirov 2007). To be precise, let φu(t) and φv(s) be the characteristic functions of
u and v respectively, and φu,v(t,s) be the joint characteristic function of (u,v). The
squared distance covariance is defined as

dcov2(u,v) =
∫
Rdu+dv

|φu,v(t,s)−φu(t)φv(s)|2w(t,s)dtds,

where w(t,s) is some weight function. With a proper choice of the weight function,
the squared distance covariance can be expressed in the following closed form,

dcov2(u,v) = S1 +S2−2S3,

where S j, j = 1,2,3 are defined as

S1 = E{‖u− ũ‖du‖v− ṽ‖dv},
S2 = E{‖u− ũ‖du}E{‖v− ṽ‖dv},
S3 = E{E(‖u− ũ‖du |u)E(‖v− ṽ‖dv |v)},

where (ũ, ṽ) is an independent copy (u,v) and ‖a‖d stands for the Euclidean norm
of a ∈ Rd . The distance correlation (DC) between u and v is defined as

dcorr(u,v) =
dcov(u,v)√

dcov(u,u)dcov(v,v)
.
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The distance correlation has many appealing properties. The first property is that
distance correlation is closely related to the Pearson correlation. If U and V are two
univariate normal random variables, the distance correlation dcorr(U,V ) is a strictly
increasing function of |ρ|, where ρ is the Pearson correlation between U and V . This
property implies that the DC-based marginal feature screening procedure is equiva-
lent to the SIS in Fan and Lv (2008) for linear regression if features and errors are
normally distributed. The second property is that dcorr(u,v) = 0 if and only if u and
v are independent (Székely, Rizzo and Bakirov 2007). Note that two univariate ran-
dom variables U and V are independent if and only if U and T (V ), a strictly mono-
tone transformation of V , are independent. This implies that a DC-based feature
screening procedure can be more effective than the Pearson correlation based pro-
cedure since DC can capture both linear and nonlinear relationship between U and
V . In addition, DC is well-defined for multivariate random vectors, thus DC-based
screening procedure can be directly used for grouped predictors and multivariate
response. These remarkable properties make distance correlation a good candidate
for feature screening.

Given a random sample {(ui,vi)}, i = 1, . . . ,n from (u,v), the squared distance

covariance between u and v is estimated by d̂cov
2
(u,v) = Ŝ1 + Ŝ2−2Ŝ3, where

Ŝ1 =
1
n2

n

∑
i=1

n

∑
j=1
‖ui−u j‖du‖vi−v j‖dv ,

Ŝ2 =
1
n2

n

∑
i=1

n

∑
j=1
‖ui−u j‖du

1
n2

n

∑
i=1

n

∑
j=1
‖vi−v j‖dv ,

Ŝ3 =
1
n3

n

∑
i=1

n

∑
j=1

n

∑
k=1
‖ui−uk‖du‖v j−vk‖dv .

Similarly, we can define the sample distance covariances d̂cov(u,u) and d̂cov(v,v).
Accordingly, the sample distance correlation between u and v is defined by

d̂corr(u,v) =
d̂cov(u,v)√

d̂cov(u,u)d̂cov(v,v)
.

Let y = (Y1, . . . ,Yq)
> be the response vector with support Ψy, and x = (X1, . . . ,Xp)

>

be the covariate vector. Here we allow the response to be univariate or multivariate
and assume q is a fixed number. For each j = 1, . . . , p, we can calculate the sample
distance correlation d̂corr(X j,y). Based on the fact that dcorr(X j,y) = 0 if and only
if X j and y are independent, d̂corr(X j,y) can be used as a marginal utility to rank
the importance of X j. Therefore, the set of important variables is defined as

M̂νn = {1≤ j ≤ p : d̂corr(X j,y)> νn},
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for some pre-specified threshold νn. This model-free feature screening procedure
is known as DC-SIS. Under certain moment assumptions and with the choice of
νn = cn−κ for some constants c and κ , Li, Zhong and Zhu (2012) showed that DC-
SIS enjoys the sure screening property. This DC-SIS allows for arbitrary regression
relationship of Y onto x, regardless of whether it is linear or nonlinear. It also per-
mits univariate and multivariate responses, regardless of whether it is continuous,
discrete, or categorical. Note that the SIRS in Zhu, Li, Li and Zhu (2011) requires
that F(y|x) depends on x through a linear combination B>xM? . Comparing with
SIRS, this DC-SIS is completely model-free and it does not require any model as-
sumption on the relationship between features and the response. Another advantage
of DC-SIS is that it can be directly utilized for screening grouped variables and
multivariate responses while SIRS can only handle univariate response. An iterative
version of DC-SIS was proposed in Zhong and Zhu (2015) to address the issues of
marginal feature screening.

3.5 Feature screening for categorical data

Plenty of feature screening methods have been proposed for models where both the
features and the response are continuous. In practice, we are also interested in the
situation where features and/or response are categorical data. Fan and Fan (2008)
proposed a marginal t-test screening for the linear discriminant analysis and showed
that it has the sure screening property. Fan and Song (2010) proposed a maximum
marginal likelihood screening for generalized linear models and rank variables ac-
cording to the magnitudes of coefficient, which can be applied directly to the logistic
regression.

Mai and Zou (2012) introduced a nonparametric screening method based on
Kolmogorov-Smirnov distance for binary classification. It does not require any mod-
eling assumption and thus is robust and has wide applicability. Let Y be the label
and takes value in {−1,1} and let F+ j(x) and F− j(x) denote the conditional CDF of
X j given Y = 1,−1, respectively. Define

K j = sup
−∞<x<∞

|F+ j(x)−F− j(x)|.

The sample version of K j is defined as

Kn j = sup
−∞<x<∞

|F̂+ j(x)− F̂− j(x)|,

where F̂+ j(x) and F̂− j(x) are the empirical CDF of X j given Y = 1,−1 respectively.
This screening procedure is called Kolmogorov filter due to the fact that Kn j is
actually the Kolmogorov-Smirnov test statistic for testing the equivalence of two
distributions. By definition, Kn j is invariant under any strictly monotone univariate
transformations applied to individual feature. Mai and Zou (2012) recommended
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using the Kolmogorov filter to select the submodel

M̂dn = {1≤ j ≤ p : Kn j is among the first dn largest ones}.

Mai and Zou (2015) extended the idea of Kolmogorov filter to a wide variety of
applications including multi-class classification, Poisson regression and so on by
slicing the response. The resulting procedure is a nonparametric model-free feature
screening procedure that works with discrete, categorical or continuous features.

Cui, Li and Zhong (2015) developed an effective model-free and robust feature
screening procedure for ultra-high dimensional discriminant analysis with a possi-
bly diverging number of classes. Without specifying a regression model, define the
true index set of important features by

M? = {1≤ j ≤ p : F(y|x) functionally depends on X j}.

Let Y be a categorical response with K categories {y1, . . . ,yK}, and assume X
is a continuous univariate feature. Let F(x|Y ) = Pr(X ≤ x|Y ) be the conditional
distribution function of X given Y . Denote by F(x) = Pr(X ≤ x) the unconditional
distribution function of X and Fk(x) = Pr(X ≤ x|Y = yk) the conditional distribution
function of X given Y = yk. If Fk(x) = F(x) for all x and k = 1, . . . ,K, then X and Y
are independent. Based on this observation, Cui, Li and Zhong (2015) proposed the
following index

MV(X |Y ) = E[Var(F(X |Y ))]

to measure the dependence between X and Y . Let pk = Pr(Y = yk) > 0, then
MV(X |Y ) can be written as

MV(X |Y ) =
K

∑
k=1

pk

∫
(Fk(x)−F(x))2dF(x). (15)

Equation (15) implies that MV(X |Y ) can be represented as the weighted average of
Cramer-von Mises distances between the conditional distribution of X given Y = yk
and the unconditional distribution function of X . Cui, Li and Zhong (2015) showed
that MV(X |Y ) = 0 if and only if X and Y are statistically independent. Another
appealing property of MV(X |Y ) is that it characterizes both linear and nonlinear
relationships, making it a good marginal utility for ultra-high dimensional discrim-
inant analysis.

Let {(Xi,Yi)}, i = 1, . . . ,n be a random sample from the population (X ,Y ). Define
p̂k = n−1

∑
n
i=1 1(Yi = yk), F̂(x) = n−1

∑
n
i=1 1(Xi ≤ x), and F̂k(x) = n−1

∑
n
i=1 1(Xi ≤

x,Yi = yk)/p̂k. Based on the Cramer-von Mises representation (15), MV(X |Y ) can
be estimated by its sample counterpart

M̂V(X |Y ) = n−1
K

∑
k=1

n

∑
i=1

p̂k(F̂k(Xi)− F̂(Xi))
2.
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For each of the features X j, j = 1 . . . , p, we can compute the sample version of the
index M̂V(X j|Y ) between X j and Y . We select the submodel by

M̂νn = {1≤ j ≤ p : M̂V(X j|Y )> νn},

for some pre-specified threshold νn. This MV-based screening procedure is referred
to as MV-SIS. The sure screening property holds for MV-SIS under very mild mo-
ment conditions of features and it does not require the regression function of Y onto
x to be linear. It is worth noting that MV-SIS is insensitive to heavy-tailed distribu-
tions of features and potential outliers due to the robustness of conditional distribu-
tion function. Furthermore, the sure screening property holds even when number of
classes diverges.

In reality, one may also encounter the situation in which both the features and
the response are categorical. Huang, Li and Wang (2014) proposed a chi-square
based feature screening procedure for such situation. The ides is to construct a chi-
square test statistic for each pair of feature and response. Let Yi ∈ {1, . . . ,K} be the
class label of response, and xi = (Xi1, . . . ,Xip)

> be the associated categorical fea-
tures. For simplicity, assume each Xi j is binary though the method and theory can be
readily applied to multi-class categorical features. Define Pr(Yi = k) = πyk,Pr(Xi j =
k) = π jk, and Pr(Yi = k1,Xi j = k2) = πy j,k1k2 . Those quantities can be estimated by
their sample counterparts π̂yk = n−1

∑
n
i=1 1(Yi = k), π̂ jk = n−1

∑
n
i=1 1(Xi j = k) and

π̂y j,k1k2 = n−1
∑

n
i=1 1(Yi = k1)1(Xi j = k2), respectively. Subsequently, for each fea-

ture, a chi-square type statistic can be constructed as

∆̂ j =
K

∑
k1=1

2

∑
k2=1

(π̂yk1 π̂ jk2 − π̂y j,k1k2)
2

π̂yk1 π̂ jk2

,

which is a natural estimator of

∆ j =
K

∑
k1=1

2

∑
k2=1

(πyk1 π jk2 −πy j,k1k2)
2

πyk1π jk2

.

Obviously, features with larger values of ∆̂ j are more relevant to the response. As a
result, the submodel is selected by

M̂νn = {1≤ j ≤ p : ∆̂ j > νn},

where νn > 0 is some pre-specified threshold. Note that n∆̂ j has an asymptotic dis-
tribution χ2

K−1, where χ2
K−1 is the chi-squared distribution with degrees of freedom

K − 1. Then M̂νn can be defined in terms of p-value. Let p̂ j = Pr(χ2
K−1 > n∆̂ j)

and M̂νn can be equivalently expressed as M̂νn = {1≤ j ≤ p : p̂ j < pνn} for some
0 < pνn < 1. When the number of categories of features are different from each
other, then features involving more categories are more likely to have larger ∆ j val-
ues, regardless of whether the feature is important or not. Based on this observation,
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it is more appropriate to use the p-values p̂ j as the marginal utility to select the im-
portant features instead of using ∆̂ j. Assume the jth feature has R j categories, the
p-value p̂ j can be obtained from the Pearson chi-squared test of independence with
degrees of freedom (K−1)(R j−1).

Huang, Li and Wang (2014) suggested using the following maximum ratio cri-
terion to determine how many features should be included in the submodel. Let
{k1, . . . ,kp} be a permutation of {1, . . . , p} such that ∆̂k1 ≥ ∆̂k2 ≥ ·· · ≥ ∆̂kp. Re-
call that the true model size is |M?| = s. As long as j + 1 ≤ s, we should have
∆̂k j/∆̂k j+1 → c j, j+1 in probability for some c j, j+1 > 0. On the other hand, if j > s,

we should have both ∆̂k j and ∆̂k j+1 converge towards to 0 in probability. If their

convergence rates are of the same order, we should have ∆̂k j/∆̂k j+1 = O(1). If

j = s, we expect ∆̂k j → c j > 0 while ∆̂k j+1 → 0 in probability. This makes the ratio

∆̂k j/∆̂k j+1 → ∞. They suggest selecting the top d̂ features as submodel where

d̂ = argmax
0≤ j≤p−1

∆̂k j/∆̂k j+1

and ∆̂0 is defined to be 1. That is, we include the d̂ features with the largest ∆̂ j in
the submodel.

4 Time-dependent Data

4.1 Longitudinal data

Instead of observing independent and identically distributed data, one may observe
longitudinal data, that is, the features may change over time. More precisely, longi-
tudinal data, also known as panel data, is a collection of repeated observations of the
same subjects over a period of time. Longitudinal data differs from cross-sectional
data in that it follows the same subjects over a period of time, while cross-sectional
data are collected from different subjects at each time point. Longitudinal data is
often seen in economy, finance studies, clinical psychology, etc. For example, lon-
gitudinal data is often seen in event studies, which tries to analyze what factors drive
abnormal stock returns over time, or how stock prices react to merger and earnings
announcements.

Time-varying coefficient model is widely used for modeling longitudinal data.
Consider the following time-varying coefficient model,

y(t) = x(t)>β (t)+ ε(t), t ∈ T, (16)

where x(t)= (X1(t), . . . ,Xp(t))> are the p-dimensional covariates, β (t)= (β1(t), . . . ,
βp(t))> are the time-varying coefficients, ε(t) is a mean zero stochastic process, and
T is the time interval in which the measurements are taken. In model (16), t need not
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to be calendar time, for instance, we can set t to be the age of a subject. In general,
it is assumed that T is a closed and bounded interval in R. The goal is to identify
the set of true important variables, which is defined as

M? = {1≤ j ≤ p : ‖β j(t)‖2 6= 0},

where ‖β (t)‖2 =
1
|T |
∫

T β 2(t)dt and |T | is the length of T .
Suppose there is a random sample of n independent subjects {xi(t),Yi(t)}, i =

1, . . . ,n from model (16). Let tik and mi be the time of the kth measurement
and the number of repeated measurement for the ith subject. Y (tik) and xi(tik) =
(Xi1(tik), . . . ,Xip(tik))> are the ith subject’s observed response and covariates at time
tik. Based on the longitudinal observations, the model can be written as

Yi(tik) = xi(tik)>β (tik)+ εi(tik),

where β (tik) = (β1(tik), . . . ,βp(tik))> is the coefficient at time tik. Song, Yi and Zou
(2014) considered a marginal time-varying coefficient model for each j = 1, . . . , p,

Yi(tik) = β j(tik)Xi j(tik)+ εi(tik).

Let B(t) = (B1(t), . . . ,BL(t))> be a B-spline basis on the time interval T , where L
is the dimension of the basis. For the ease of presentation, we use the same B-spline
basis for all β j(t). Under smoothness conditions, each β j(t) can be approximated
by the linear combination of B-spline basis functions. For each j, consider marginal
weighted least square estimation based on B-spline basis

γ̂ j = argmin
γ jl

n

∑
i=1

wi

mi

∑
k=1

(
Yi(tik)−

L

∑
l=1

Xi j(tik)Bl(tik)γ jl

)2

,

where γ j = (γ j1, . . . ,γ jL)
> is the unknown parameter and γ̂ j = (γ̂ j1, . . . , γ̂ jL)

> is its
estimate. Choices of wi can be 1 or 1/mi, that is equal weights to observations or
equal weights to subjects. See Song, Yi and Zou (2014) for more details on how to
obtain γ̂ j. The B-spline estimator of βk(t) is given by β̂ j(t) = γ̂

>
j B(t). The selected

set of features is given by

M̂νn = {1≤ j ≤ p : ‖β̂ j(t)‖2 ≥ νn},

where νn is a pre-specified threshold. To evaluate ‖β̂ j(t)‖2, one can take N equally
spaced time points t1 < · · · < tN in T , and compute ‖β̂N j(t)‖2 = N−1

∑
N
i=1 β̂ 2

j (ti).

As long as N is large enough, ‖β̂N j(t)‖2 should be close enough to ‖β̂ j(t)‖2. This
varying-coefficient independence screening is referred to as VIS and enjoys the sure
screening property (Song, Yi and Zou 2014). An iterative VIS (IVIS) was also in-
troduced in Song, Yi and Zou (2014), which utilizes the additional contribution of
unselected features by conditioning on the selected features that survived the previ-
ous step.
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Cheng, Honda, Li and Peng (2014) proposed a similar nonparametric indepen-
dence screening method for the time varying-coefficient model. In their setting, they
allow some of the important features simply have constant effects, i.e.,

Yi(tik) =
q

∑
j=1

Xi j(tik)β j +
p

∑
j=q+1

Xi j(tik)β j(tik)+ εi(tik).

The first q coefficients β j, j = 1, . . . ,q do not change over time. Cheng, Honda, Li
and Peng (2014) points out that it is very important to identify the nonzero con-
stant coefficients because treating a constant coefficient as time varying will yield a
convergence rate that is slower than

√
n.

Both Song, Yi and Zou (2014) and Cheng, Honda, Li and Peng (2014) ignore
the covariance structure of ε(t) and carry out the feature screening on a working
independence structure. Chu, Li and Reimherr (2016) extended the VIS by incor-
porating within-subject correlation and dynamic error structure. They also allow
baseline variables in their model, which are believed to have impact on the response
based on empirical evidence or relevant theories and are not subject to be screened.
These baseline features are called Z-variables and the longitudinal features to be
screened are called X-variables. Consider the following model,

Yi(tik) =
q

∑
j=1

β j(tik)Zi j(tik)+
p

∑
j=1

β j(tik)Xi j(tik)+ εi(tik), (17)

where Z-variables are the known important variables by prior knowledge and X-
variables are ultra-high dimensional features. It is assumed that εi(t) have variances
that vary across time, are independent across i (between subjects) and correlated
across t (within the same subject). Incorporating the error structure into the model
estimation is expected to increase screening accuracy. Chu, Li and Reimherr (2016)
proposed a working model without any X-variables to estimate the covariance struc-
ture,

Yi(tik) = β
w
0 +

q

∑
l=1

β
w
l (tik)Zil(tik)+ ε

w
i (tik). (18)

Although model (18) is mis-specified, valuable information about the covariance
structure can still be gained. Standard ordinary least squares and regression spline
technique can be applied to (18) (Huang, Wu and Zhou 2004), and we can obtain
the corresponding residuals ri(tik) . Let V (tik) be a working variance function for
ε(tik) and it can be approximated by V (tik)≈ ∑

L
l=1 αlBl(tik), where B1(t), . . . ,BL(t)

is a B-spline basis. The coefficients αl , l = 1, . . . ,L can be estimated by minimizing
the following least squares

α̂ = (α̂1, . . . , α̂L)
> = min

α1,...,αL

n

∑
i=1

mi

∑
k=1

(
r2

i (tik)−
L

∑
l=1

αlBl(tik)

)2

.
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Then define V̂ (tik) = ∑
L
l=1 α̂lBl(tik). Denote by Ri the mi×mi working correlation

matrix for the ith subject. A parametric model can be used to estimate the working
correlation matrix. These models include autoregressive (AR) structure, stationary
or non-stationary M-dependent correlation structure, parametric families such as the
Matern. Now assume we obtain the working correlation matrix Ri based on some
parametric model, then the weight matrix for ith subject is given by

Wi =
1
mi

V̂−1/2
i R−1

i V̂−1/2
i ,

where V̂i is the mi×mi diagonal matrix consisting of the time-varying variance

V̂i =


V̂ (ti1) 0 . . . 0

0 V̂ (ti2) . . . 0
...

...
. . .

...
0 0 . . . V̂ (timi)

 .

For each j, define a marginal time-varying model with the jth X-variable,

Yi(tik) =
q

∑
l=1

βl jZil(tik)+β j(tik)Xi j(tik)+ εi(tik). (19)

Using the B-spline technique and the weight matrix Wi, one can obtain the weighted
least squares estimate for model (19), and thus the fitted value Ŷ ( j)(tik), see Chu, Li
and Reimherr (2016) for a detailed description. Then the weighted mean squared
errors are given by

û j =
1
n

n

∑
i=1

(yi− ŷ( j)
i )>Wi(yi− ŷ( j)

i ),

where yi = (Y (ti1), . . . ,Y (timi)
> and ŷ( j)

i = (Ŷ ( j)(ti1), . . . ,Ŷ ( j)(timi))
>. Note that a

small value of û j indicates a strong marginal association between the jth feature
and the response. Thus, the selected set of important variables is given by

M̂νn = {1≤ j ≤ p : û j ≤ νn}.

This procedure has sure screening property, meaning that with probability tending
to 1, all important variables will be included in the submodel defined by M̂νn pro-
vided certain conditions are satisfied. See the supplementary material of Chu, Li and
Reimherr (2016).

Different form the B-spline techniques, Xu, Zhu and Li (2014) proposed a gen-
eralized estimating equation (GEE) based sure screening procedure for longitudi-
nal data. Without risk of confusion, we slightly abuse the notations here. Let yi =
(Yi1, . . . ,Yimi)

> be the response vector for the ith subject, and Xi = (xi1, . . . ,ximi)
>

be the corresponding mi× p matrix of features. Suppose the conditional mean of Yik
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given xik is
µik(β ) = E(Yik|xik) = g−1(x>ikβ ),

where g(·) is a known link function, and β is a p-dimensional unknown parameter
vector. Let Ai(β ) be an mi×mi diagonal matrix with kth diagonal element σ2

ik(β ) =
Var(Yik|xik), and Ri be an mi×mi working correlation matrix. The GEE estimator
of β is defined to be the solution to

G(β ) = n−1
n

∑
i=1

X>i A1/2
i (β )R−1

i A1/2
i (β )(yi−µ i(β )) = 0, (20)

where µ i(β )= (µi1(β ), . . . ,µimi(β ))
>. Let g(β )= (g1(β ), . . . ,gp(β ))

>=E(G(β )).
Then g j(0) can be used as a measure of the dependence between the response and
the jth feature. Let R̂i be an estimate of Ri. Then Ĝ(0) is defined as

Ĝ(0) = n−1
n

∑
i=1

X>i A1/2
i (0)R̂−1

i A−1/2
i (0)(yi−µ i(0)).

Hence, we would select the set of important features using

M̂νn = {1≤ j ≤ p : |Ĝ j(0)|> νn},

where Ĝ j(0) is the jth component of Ĝ(0) and νn is a pre-specified threshold. If
we consider the linear regression model Yi = x>i β + εi, the GEE function in (20)
reduces to

G(0) = n−1
n

∑
i=1

xi(Yi−x>i β ).

Therefore, for any given νn, the GEE based screening (GEES) selects the submodel
using

M̂νn = {1≤ k ≤ p : n−1|x>( j)y|> νn},

where y = (Y1, . . . ,Yn)
> and x( j) is the jth column of the design matrix X =

(x1, . . . ,xn)
>, which coincides with the original SIS proposed in Fan and Lv (2008).

One desiring property of GEES is that even the working correlation matrix structure
of R̂ is mis-specified, all the important features will be retained by the GEES with
probability approaching to 1.

4.2 Time-series data

The analysis of time-series data is common in economics and finance. For example,
the market model in finance relates the return of an individual stock to the return
of a market index or another individual stock. Another example is the term struc-
ture of interest rates in which the time evolution of the relationship between interest
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rates with different maturities is investigated. In this section, we briefly review some
feature screening methods in time series. The SIS (Fan and Lv 2008) was originally
proposed for linear regression and assume the random errors follow normal distribu-
tion. Yousuf (2018) analyzes the theoretical properties of SIS for high dimensional
linear models with dependent and/or heavy tailed covariates and errors. They also
introduced a generalized least squares screening (GLSS) procedure which utilizes
the serial correlation present in the data. With proper assumptions on the moment,
the strength of dependence in the error and covariate processes, Yousuf (2018) estab-
lished the sure screening properties for both screening procedures. GLSS is shown
to outperform SIS in many cases since GLSS utilizes the serial correlation when
estimating the marginal effects.

Yousuf (2018)’s work is limited to the linear model and ignore some unique
qualities of time series data. The dependence structure of longitudinal data is too
restrictive to cover the type of dependence present in most time series. Yousuf and
Feng (2018) studied a more general time series setting. Let y = (Y1, . . . ,Yn)

> be the
response time series, and let xt−1 = (Xt−1,1, . . . ,Xt−1,m)

> denote the m predictor se-
ries at time t−1. Given that the lags of these predictor series are possible covariates,
let zt−1 = (xt−1, . . . ,xt−h) = (Zt−1,1, . . . ,Zt−1,p) denote the p-dimensional vector of
covariates, where p = mh. The set of important covariates is defined as

M? = {1≤ j ≤ p : F(yt |Yt−1, . . . ,Yt−h,zt−1) functionally depends on Zt−1, j},

where F(yt |·) is the conditional distribution function of Yt . The value h represents
the maximum lag order for the response and predictor series. The value of h can
be pre-specified by the user, or can be determined by some data driven method.
Yousuf and Feng (2018) proposed a model-free feature screening method based on
the partial distance correlation (PDC). More specifically, the PDC between u and v,
controlling for z, is defined as

pdcor(u,v;z) =
dcor2(u,v)−dcor2(u,z)dcor2(v,z)√

1−dcor4(u,z)
√

1−dcor4(v,z)
, (21)

if dcor(u,z),dcor(v,z) 6= 1, otherwise pdcor(u,v;z) = 0. For more details and inter-
pretation of PDC, see Székely and Rizzo (2014). pdcor(u,v;z) can be estimated by
its sample counterpart p̂dcor(u,v;z) which replaces dcor by d̂cor in (21).

The corresponding feature screening procedure PDC-SIS was introduced in
Yousuf and Feng (2018). They first define the conditioning vector for the lth lag
of predictor series k as Sk,l = (Yt , . . . ,Yt−h,Xt−1,k, . . . ,Xt−l+1,k) with 1 ≤ l ≤ h.
Besides that a certain number of lags of Yt are included in the model, the con-
ditioning vector also includes all lower order lags for each lagged covariate of
interest. By including the lower order lags in the conditioning vector, PDC-SIS
tries to shrink towards submodels with lower order lags. For convenience, let
C = {S1,1, . . . ,Sm,1,S1,2, . . . ,Sm,h} denote the set of conditioning vectors where
Ck+(l−1)∗m = Sk,l is the conditioning vector for covariate Zt−1,(l−1)∗m+k. The se-
lected submodel is
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M̂νn = {1≤ j ≤ p : |p̂dcor(Yt ,Zt−1;C j)| ≥ νn}. (22)

The PDC-SIS attempts to utilize the time series structure by conditioning on
previous lags of the covariates. Yousuf and Feng (2018) also proposed a different
version, namely PDC-SIS+, to improve the performance of PDC-SIS. Instead of
only conditioning on the previous lags of one covariate, PDC-SIS+ also conditions
on additional information available from previous lags of other covariates as well.
To attempt this, PDC-SIS+ identifies strong conditional signals at each lag level and
add them to the conditioning vector for all higher order lag levels. By utilizing this
conditioning scheme we can pick up on hidden significant variables in more distant
lags, and also shrink toward models with lower order lags by controlling for false
positives resulting from high autocorrelation, and cross-correlation.

5 Survival Data

5.1 Cox model

Survival analysis is a branch of statistics for analyzing the expected duration of time
until one or more events happen, such as death in biological organisms and failure
in mechanical systems. This topic is referred to as reliability theory or reliability
analysis in engineering, duration analysis or duration modeling in economics, and
event history analysis in sociology. It is inevitable to analyze survival data in many
scientific studies since the primary outcomes or responses are subject to be cen-
sored. The Cox model (Cox 1972) is the most commonly used regression model
for survival data. Let T be the survival time and x be the p-dimensional covariate
vector. Consider the following Cox proportional hazard model

h(t|x) = h0(t)exp{x>β}, (23)

where h0(t) is the unknown baseline hazard functions. In survival analysis, survival
time T is typically censored by the censoring time C. Denote the observed time by
Z = min{T,C} and the event indicator by δ = 1(T ≤C). For simplicity we assume
that T and C are conditionally independent given x and the censoring mechanism is
non-informative. The observed data is an independently and identically distributed
random sample {(xi,zi,δi)}, i = 1, . . . ,n. Let t0

1 < · · ·< t0
N be the ordered distinct ob-

served failure times and (k) index its associate covariates x(k). R(t) denotes the risk
set right before the time t: R(t) = {i : zi ≥ t}. Under Equation (23), the likelihood
function is

L(β ) =
N

∏
k=1

h0(z(k))exp(x>(k)β )
n

∏
i=1

exp{H0(zi)exp{x>i β}},



28 Wanjun Liu and Runze Li

where H0(t) =
∫ t

0 h0(s)ds is the corresponding cumulative baseline hazard func-
tion. Consider the ‘least informative’ nonparametric modeling for H0 with the form
H0(t) = ∑

N
k=1 hk1(t0

k ≤ t), then H0(zi) = ∑
N
k=1 hk1(i∈R(t0

k )). Consequently the log-
likelihood becomes

`(β ) =
N

∑
k=1
{log(hk)+x>(k)β}−

n

∑
i=1

{
N

∑
k=1

hk1(i ∈R(t0
k ))exp(x>i β )

}
. (24)

Given β , the maximizer of (24) is given by ĥk = 1/∑i∈R(t0
j )

exp{x>i β}. Plugging in
the maximizer, the log-likelihood function can be written as

`(β ) =

(
n

∑
i=i

δix>i β −
n

∑
i=1

δi log

{
∑

k∈R(ti)
exp{x>k β}

})
, (25)

which is also known as the partial likelihood (Cox 1972).

5.2 Feature screening for Cox model

A marginal feature screening procedure is developed in Fan, Feng and Wu (2010).
The marginal utility û j of the feature X j is defined as the maximum of the partial
likelihood only with respect to X j,

û j = max
β j

(
n

∑
i=i

δiXi jβ j−
n

∑
i=1

δi log

{
∑

k∈R(ti)
exp{Xk jβ j}

})
. (26)

Here Xi j is the jth element of xi = (Xi1, . . . ,Xip)
>. Intuitively, a larger marginal

utility indicates that the associated feature contains more information about the sur-
vival outcome. One can rank all features according to the marginal utilities from the
largest to the smallest and define the selected submodel

M̂νn = {1≤ j ≤ p : û j > νn}.

Zhao and Li (2012) proposed to fit a marginal Cox model for each feature,
namely the hazard function has the form h0(t)exp{β jX j} for feature X j. Let Ni(t) =
1(zi ≤ t,δi = 1) be independent counting process for each subject i and Yi(t) =
1(zi ≥ t) be the at-risk processes. For k = 0,1, . . . , define

S(k)j (t) = n−1
n

∑
i=1

Xk
i jYi(t)h(t|xi),

S(k)j (β , t) = n−1
n

∑
i=1

Xk
i jYi(t)exp{βXi j}.
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Then the maximum marginal partial likelihood estimator β̂ j is defined as the solu-
tion to the following estimating equation

U j(β ) =
n

∑
i=1

∫ C

0

Xi j−
S(1)j (β , t)

S(0)j (β , t)

dNi(t) = 0. (27)

Define the information to be I j(β ) = −∂U j(β )/∂β . The submodel of selected im-
portant feature is given by

M̂νn = {1≤ j ≤ p : I j(β̂ j)
1/2|β̂ j| ≥ νn}.

Zhao and Li (2012) also proposed a practical way to choose the threshold ν̂n such
that the proposed method has control on the false positive rate, which is the pro-
portion of unimportant features incorrectly selected, i.e., |M̂νn ∩M c

? |/|M c
? |. The

expected false positive rate can be written as

E

(
|M̂νn ∩M c

? |
|M c

? |

)
=

1
p− s ∑

j∈M c
?

Pr(I j(β̂ j)
1/2|β̂ j| ≥ νn).

Zhao and Li (2012) showed that I j(β̂ j)
1/2β̂ j has an asymptotically standard nor-

mal distribution. Therefore, the expected false positive rate is 2(1−Φ(νn)), where
Φ(·) is the cumulative distribution function of standard normal. The false positive
rate decreases to 0 as p increases with n. In practice, we can first fix the number
of false positives f that we are willing to tolerate, which corresponds to a false
positive rate of f/(p− s). Because s is unknown, we can be conservative by let-
ting νn = Φ−1(1− f/p), so that the expected false positive is less than f . The
choice of νn is also related to a false discovery rate (FDR). By definition, the FDR
is |M c

? ∩M̂νn |/|M̂νn |, which is the false positive rate multiplying by |M c
? |/|M̂ν |.

Since |M c
? |/|M̂ν | ≤ p/|M̂ν |, in order to control the false positive rate at level

q = f/p, we can control the FDR at level f/|M̂νn |. This proposed method is called
the principled Cox sure independence screening procedure (PSIS) and we summa-
rize the PSIS as follows.

Step 1. Fit a marginal Cox model for each feature and obtain the parameter esti-
mate β̂ j and variance estimate I j(β̂ j)

−1.
Step 2. Fix the false positive rate q = f/p and set νn = Φ(1−q/2).
Step 3. Select the feature X j if I j(β̂ j)

1/2|β̂ j| ≥ νn.

Zhao and Li (2012) showed that this PSIS enjoys the sure screening property and
is able to control the false positive rate. Under regularity conditions (see Appendix
in Zhao and Li (2012)), if we choose νn = Φ−1(1− q/2), and log p = O(n1/2−κ)
for some κ < 1/2, then there exists constants c1,c2 > 0 such that

Pr(M ⊂ M̂νn)≥ 1− sexp(−c1n1−2κ)
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and

E

(
|M̂νn ∩M c

? |
|M c

? |

)
≤ q+ c2n−1/2.

Distinguished from marginal screening procedure in Fan, Feng and Wu (2010)
and Zhao and Li (2012), Yang, Yu, Li and Buu (2016) proposed a joint screening
procedure based on the joint likelihood for the Cox’s model. They considered the
constrained partial likelihood

β̂ m = argmax
β

`(β ) subject to ‖β‖0 ≤ m, (28)

where `(β ) is defined in (25) and m is some pre-specified integer and is assumed
to be greater than the number of nonzero elements in the true parameter β

?. The
constraint ‖β ?‖0≤m guarantees that the solution β̂ m is sparse. However, it is almost
impossible to solve the constrained problem (28) in the high-dimensional setting
directly. Alternatively, one can approximate the likelihood function by its Taylor
expansion. Let γ be in the neighborhood of β , then

`(γ)≈ `(β )+(γ−β )>`′(β )+
1
2
(γ−β )>`′′(β )(γ−β ), (29)

where `′(β ) and `′′(β ) are the first and second gradient of `(β ), respectively. When
p > n, the Hessian matrix `′′(β ) is not invertible. To deal with the singularity of
`′′(β ) and save computational costs, Yang, Yu, Li and Buu (2016) further approxi-
mated `(γ) only including the diagonal elements in `′′(β ),

g(γ|β ) = `(β )+(γ−β )>`′(β )− u
2
(γ−β )>W(γ−β ), (30)

where u is a scaling constant to be specified and W is a diagonal matrix with W =
−diag{`′′(β )}. Then the original problem can be approximated by

max
γ

g(γ|β ) subject to ‖γ‖0 ≤ m. (31)

Since W is a diagonal matrix, there is a closed form solution to (31) and thus the
computational cost is low. In fact, the maximizer of g(γ|β ) without the constraint is

γ̃ = (γ̃1, . . . , γ̃p)
> = β +u−1W−1`′(β ).

Denote the order statistics of γ̃ j by |γ̃(1)| ≥ |γ̃(2)| ≥ · · · ≥ |γ̃(p)|. The solution to (31)
is given by γ̂ = (γ̂1, . . . , γ̂p)

> with γ̂ j = γ̃ j1{|γ̃ j| > |γ̃(m+1)|} := H(γ̃ j;m). We sum-
marize the joint feature screening as follows.

Step 1. Initialize β
(0) = 0.

Step 2. Set t = 0,1,2, . . . and iteratively conduct Step 2a and Step 2b until the
algorithm converges.
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Step 2a. Compute γ̃
(t) and β̃

(t)
where γ̃

(t) = β
(t)+u−1

t W−1(β (t))`′(β (t)), and

β̃
(t)

= (H(γ̃
(t)
1 ;m), . . . ,H(γ̃

(t)
p ;m))>. Set Mt = { j : β̃

(t)
j 6= 0}.

Step 2b. Update β by β
(t+1) = (β

(t+1)
1 , . . . ,β

(t+1)
p )> as follows. If j 6∈Mt ,

set β
(t+1)
j = 0; otherwise, set {β (t+1)

j : j ∈Mt} be the maximum partial likelihood
estimate of the submodel Mt .

This procedure is referred to as sure joint screening (SJS) procedure. Yang, Yu,
Li and Buu (2016) showed the sure screening property of the SJS under proper regu-
larity conditions. This SJS is expected to perform better than the marginal screening
procedure when there are features that are marginally independent of the survival
time, but not jointly independent of the survival time. In practical implementation,
Yang, Yu, Li and Buu (2016) suggested setting m = bn/ lognc in practice based on
their numerical studies.
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