
Chapter 19
Projection Test with Sparse Optimal
Direction for High-Dimensional One
Sample Mean Problem

Wanjun Liu and Runze Li

Abstract Testing whether the mean vector from some population is zero or not
is a fundamental problem in statistics. In the high-dimensional regime, where the
dimension of data p is greater than the sample size n, traditional methods such as
Hotelling’s T 2 test cannot be directly applied. One can project the high-dimensional
vector onto a space of low dimension and then traditional methods can be applied.
In this paper, we propose a projection test based on a new estimation of the optimal
projection direction Σ−1µ. Under the assumption that the optimal projection Σ−1µ

is sparse, we use a regularized quadratic programming with nonconvex penalty and
linear constraint to estimate it. Simulation studies and real data analysis are conducted
to examine the finite sample performance of different tests in terms of type I error
and power.

19.1 Introduction

One-sample mean vector test or two-sample test on the equality of two means is
a fundamental problem in high-dimensional data analysis. These tests are com-
monly encountered in genome-wide association studies. For instance, [6] performed
a hypothesis testing to identify sets of genes which are significant with respect to
certain treatments in a genetics research. Reference [21] applied various tests to the
bipolar disorder dataset from a genome-wide association study collected by [7] in
which one would like to test whether there is any association between a disease and a
large number of genetic variants. In these applications, the dimension of the data p is
often much larger than the sample size n. Traditional methods such as Hotelling’s T 2

test [13] either cannot be directly applied or have low power against the alternative.
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Suppose that a random sample x1, . . . , xn from a p-dimensional population x
with finite mean E(x) = µ and positive definite covariance matrix cov(x) = Σ . Of
interest is to test the following hypothesis

H0 : µ = µ0 versus H1 : µ ̸= µ0, (19.1)

for some known vector µ0. This problem is typically referred to as the one-sample
hypothesis testing problem in multivariate analysis and has been extensively studied
when p < n and p is fixed. Without loss of generality, we assume µ0 = 0 and the
one-sample problem (19.1) becomes

H0 : µ = 0 versus H1 : µ ̸= 0. (19.2)

In most cases, the test statistic constructed for one-sample problem can be easily
extended to two-sample problem and the theories hold as well. For this reason, we
only focus on the one-sample problem (19.2) and assume µ0 = 0. Let x̄ and S be the
sample mean vector and the sample covariance matrix respectively,

x̄ = 1
n

n∑

i=1

xi , S = 1
n − 1

n∑

i=1

(xi − x̄)(xi − x̄)⊤. (19.3)

The Hotelling’s T 2 statistic [13] for problem (19.2) is T 2 = nx̄⊤S−1 x̄ . If x1, . . . , xn
are normally distributed, under H0, then we have (n − p)/{(n − 1)p}T 2 follows
Fp,n−p, the F distribution with degrees of freedom p and n − p. The Hotelling’s
T 2 requires that the sample covariance matrix S is invertible and cannot be directly
used in high-dimensional setting where p > n. Despite the singularity of S, it has
been observed that the power of the Hotelling’s T 2 test can be adversely affected
even when p < n, if S is nearly singular; see [1, 17].

Several one-sample tests for high-dimensional data have been proposed recently.
These tests can be roughly classified into three types. The first type is the sum-of-
squares-type test which is based on the sum-of-squares of the sample mean and can
be regarded as modified versions of Hotelling’s T 2 test. These tests simply replace
S by some invertible matrix such as identity matrix I or diagonal matrix, leading to
a sum-of-squares test statistic. Bai and Saranadasa [1] proposed the following test
statistic for one-sample problem, in which S is substituted by identity matrix I ,

TBS = x̄⊤ x̄ − trS/n.

The test statistic TBS can be regarded as unscaled distance x̄⊤ x̄ with offset trS/n.
Bai and Saranadasa [1] established its asymptotic normal null distribution when
p/n → c for some c > 0. Chen and Qin [6] further studied an equivalent form of
TBS:

TCQ = 1
n(n − 1)

n∑

i ̸= j

x⊤
i x j .
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under a different set of assumptions on population. Neither TBS nor TCQ is invariant
under different scales. To get rid of the unit effect, [19] replaced S with diagonal
matrix D, where D = diag(S) is a diagonal matrix with diagonal elements from the
sample covariance matrix S. The test statistic in [19] is defined as

TSD = nx̄⊤D−1 x̄ − (n − 1)p/(n − 3),

which is also asymptotically normally distributed under null hypothesis.
The second type is the maximum-type test. Cai et al. [4] introduced a test that is

based on a linear transformation of the data by the precision matrix " = Σ−1 which
incorporates the correlations among the variables. Given that the precision matrix
" = (ωi j )p×p is known, the test statistic is defined as

TCLX = n max
1≤ j≤p

("x̄)2j/ω j j . (19.4)

If " is known to be sparse, then the CLIME estimator [3] can be used to estimate "

directly. Otherwise, " can be estimated by the inverse of the adaptive thresholding
estimator of Σ [2]. Under H0, the test statistic TCLX converges to the type I extreme
value distribution. Chen et al. [5] proposed a test that removes components that are
estimated to be zero via thresholding. The motivation is that zero components are
expected to contribute little to the squared sample mean and those smaller than a
given threshold can be ignored. The test statistic with index s is defined as

TCLZ (s) =
p∑

j=1

{
nx̄2j
σ j j

− 1

}

I

{
nx̄2j
σ j j

> λp(s)

}

,

where the threshold level is set to be λp(s) = 2s log p for some s ∈ (0, 1). Since the
optimal choice of the threshold is unknown, [5] further proposed using s that results
in the largest value of TCLZ (s) as the final test statistic,

TCLZ = max
s∈(0,1−η)

{TCLZ (s) − µ̂CLZ ,0(s)}/σ̂CLZ ,0(s),

for some η ∈ (0, 1), where µ̂CLZ ,0(s) and σ̂CLZ ,0(s) are estimates of the mean and
standard deviation of TCLZ (s) under H0. The asymptotic null distribution of TCLZ is
the Gumbel distribution.

The third type is the projection test. The idea is to project the high-dimensional
vector x onto a space of low dimension and then traditional methods such as
Hotelling’s T 2 can be applied. Lauter [14] proposed the following procedure for the
one-sample normal mean problem based on left-spherical distribution theory [11,
12]. Consider the linear score z = (z1, . . . , zn)⊤ = Xd, where d is a p × 1 weight
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vector depending on X only through X⊤X and d ̸= 0 with probability 1. Then one
can perform the one-sample t-test using z1, . . . , zn . Lauter [14] also proposed dif-
ferent ways to obtain the weight vector d. For example, d can take the form of
d = (diag(X⊤X))−1/2, or be the eigenvector corresponding to the largest eigenvalue
λmax for the following eigenvalue problem (X⊤X)d = diag(X⊤X)dλmax. Lopes et
al. [16] proposed a test based on random projection. Let Pk be a p × k random
matrix whose entries are randomly drawn from the N (0, 1) distribution. Define
yi = P⊤

k xi , i = 1, . . . , n. The random projection test TRP in [16] is defined as

TRP = n ȳ⊤S−1
y ȳ = nx̄⊤Pk(P⊤

k SPk)−1P⊤
k x̄,

where ȳ and Sy are the sample mean and sample covariance matrix of y1, . . . , yn .
As a result, this random projection test is the Hotelling’s T 2 test with y1, . . . , yn and
is an exact test if xi ’s are normally distributed. Lopes et al. [16] also proposed a test
that utilizes multiple projection to improve the power of random projection test. The
idea is generating the projection matrix Pk multiple times and using their average as
the final projection matrix.

These types of tests are powerful only against certain alternatives. For example,
if the true mean µ is dense in the sense that there is a large proportion of small to
moderate nonzero components, then sum-of-squares-type test is more powerful. In
contrast, if the true mean µ is sparse in the sense that there are only few nonzero
componentswith largemagnitude inµ, then themaximum-type test ismore powerful.
In practice, since the true alternative hypothesis is unknown, it is unclear how to
choose a powerful test. Furthermore, there are denser and intermediate situations in
which neither type of test is powerful [21].

Li et al. [15] studied the projection test and derived the optimal projection direction
which leads to the best power under alternative hypothesis. However, the estimation
of the optimal projection direction has not been systematically studied yet. This paper
aims to fill this gap by studying how to construct a sparse optimal projection test to
achieve better power. We propose an estimation procedure of the sparse optimal pro-
jection direction by regularized quadratic programming with nonconvex penalty and
linear constraint. We further examine the finite sample performance of the proposed
procedure and illustrate it by an empirical analysis of a real data set.

The rest of this paper is organized as follows. In Sect. 19.2, we propose a new pro-
jection test with the optimal projection being estimated by the regularized quadratic
programming. In Sect. 19.3, simulation studies are conducted to examine the finite
sample performance of different tests in terms of type I error and power. In Sect. 19.4,
we apply various tests to a real data example, which shows that the proposed projec-
tion test is more powerful than existing tests.
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19.2 Projection Test with Sparse Optimal Direction

Li et al. [15] proposed an exact projection test using the optimal projection direction.
They showed that the optimal choice of k in Pk is 1 and the optimal projection is
Σ−1µ in the sense that the power is maximized. Let θ = Σ−1µ and yi = θ⊤xi , i =
1, . . . , n. The projection Hotelling’s T 2 test is

T 2
θ = nx̄⊤θ(θ⊤Sθ)−1θ⊤ x̄,

which follows the F1,n−1 distribution under H0 and normality assumption. It is equiv-
alent to the one-sample t-test based on y1, . . . , yn . In order to control the type I error,
[15] also proposed a data-splitting strategy to estimate the optimal projection direc-
tion and obtained an exact t-test. The entire sample is randomly partitioned into two
separate sets S1 = {x1, . . . , xn1} and S2 = {xn1+1, . . . , xn}. Set S1 is used to esti-
mate the projection direction θ and setS2 is used to construct the test statistic T 2

θ . To
estimate θ , a ridge-type estimator is constructed θ̂ = (S1 + λD1)

−1 x̄1, where x̄1 and
S1 are the sample mean and the sample covariance matrix computed from S1 and
D1 = diag(S1), the diagonal matrix of S1. Therefore, the estimator θ̂ is independent
of set S2. Then the data points from S2 are projected onto a 1-dimensional space
by left-multiplying θ̂ . The one-sample t-test is performed based on the new data
points θ̂⊤xn1+1, . . . , θ̂

⊤xn . In order to have high power, [15] recommended to use
n1 = ⌊κn⌋ with κ ∈ [0.4, 0.6] and λ = n−1/2

1 in practice based on their empirical
study. If κ is small, only a small portion of sample is used to estimate the optimal
projection and the estimator is not accurate. If κ is large, only a small portion of
sample is used to perform the test. As a result, a too small or too large κ leads to
significant loss in the power of the test. The advantage of the data-splitting procedure
is that we can obtain an exact t-test, meanwhile we may lose power since the sample
inS1 is discarded when performing the test.

We propose a new estimation of the optimal projection under the assumption that
the optimal projection Σ−1µ is sparse. The assumption that the optimal projection
direction is sparse is relatively mild and can be satisfied in different scenarios. For
example, if Σ has the autocorrelation structure and µ is sparse and then the optimal
projectionΣ−1µ is sparse. Another example is that ifΣ has the compound symmetry
structure and µ is sparse and then Σ−1µ is approximately sparse in the sense that
the first few entries in Σ−1µ dominate the rest entries. Note that it is the direction
rather than the magnitude of the projectionΣ−1µ that matters. In other words,Σ−1µ

and aΣ−1µ have exactly the same performance for the one-sample problem (19.2),
where a is some positive number. We observe that β∗ = Σ−1µ/µ⊤Σ−1µ, which is
proportional to the optimal projection, is the solution to the following problem

min
β

1
2
β⊤Σβ subject to µ⊤β = 1.
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Based on the above observation, we propose the following estimation based on a
regularized quadratic programming with nonconvex penalty and linear constraint,

min
β

1
2
β⊤S1β +

p∑

j=1

pλ(|β j |)

subject to x̄⊤
1 β = 1,

(19.5)

where x̄1 and S1 are computed from set S1, β = (β1, . . . ,βp)
⊤ ∈ Rp and pλ(·) is

taken to be the smoothly clipped absolute deviation (SCAD) penalty [9]. Its first
derivative is defined to be

p′
λ(|t |) = λ

{
I (|t | ≤ λ)+ (aλ − |t |)+

(a − 1)λ
I (|t | > λ)

}
,

where a = 3.7, I (·) is the indicator function and b+ stands for the positive part of
b. To solve the high-dimensional nonconvex optimization problem (19.5), we apply
the local linear approximation (LLA) algorithm proposed in [22]. The idea is to
approximate the nonconvex penalty by its first order expansion. Given the current
solution β(k), (19.5) can be approximated by

min
β

1
2
β⊤S1β +

p∑

j=1

p′
λ(|β(k)

j |)|β j |,

subject to x̄⊤
1 β = 1.

Let

Q(β|β(k), λ) = 1
2
β⊤S1β +

p∑

j=1

p′
λ(|β(k)

j |)|β j |.

Wang et al. [20] and Fan et al. [10] studied how to implement the LLA under high-
dimensional regression settings to obtain a sparse solution with oracle property. Here
we apply their strategy for the above problem. Startingwith initial value 0,we propose
a two-step LLA estimator, which consists of the following two steps:

Step1 :β̂(1) = argmin
{β:x̄⊤

1 β=1}
Q(β|0, τλ) ;

Step2 :β̂ = argmin
{β:x̄⊤

1 β=1}
Q(β|β̂(1), λ).

The solution β̂ in step 2 is our final estimator. Typically, we choose τ to be some small
number such as τ = 1/ log n1 or τ = λ. Instead of using the ridge-type estimator
θ̂ = (S1 + λD1)

−1 x̄1,weuse our two-stepLLAestimator β̂ to carry out the projection
test with data splitting. It can be shown that the resulting LLA estimator is consistent
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under relatively mild conditions and thus the asymptotic power is valid for our new
test with the data-splitting procedure. We call this new test LLA projection test.

19.3 Simulation Studies

In this section, we conduct numerical studies to examine the finite sample perfor-
mance of different tests including the proposed LLA projection test for the one-
sample problem. The LLA projection test is the same as that in [15] except that we
use the LLA estimator as the projection direction. More specifically, we compare the
LLA projection test with the ones proposed by [1, 6, 8, 14, 15]. We denote them
by Li2015, D1958, BS1996, CQ2010 and L1996, respectively. We also compare the
new test with the tests proposed in [19]. The authors considered two versions of their
test, one with modification and one without modification, denoted by SD2008w and
SD2008wo, respectively. Lopes et al. [16] proposed a single random projection test,
labeled as LWJ2011.

We generate a random sample of size n from N (µ,Σ) with µ = c · (1⊤
s0 , 0

⊤
p−s0)

⊤

and s0 = 10. We set c = 0, 0.5 and 1 to examine the type I error rate and the power
of the tests. For ρ ∈ (0, 1), we consider the following three covariance structures:

(1) Compound symmetry with Σ1 = (1 − ρ)I + ρ11⊤;
(2) Autocorrelation with Σ2 = (ρ|i− j |)i, j ;
(3) Composite structure with Σ3 = 0.5Σ1 + 0.5Σ2.

We consider ρ = 0.25, 0.5, 0.75 and 0.95 to examine the influence of correlation on
the power of the test. We set sample size n = 40, 160 and dimension p = 400, 1600.
We split the data set by setting n1 = ⌊nκ⌋ with κ = 0.4, where ⌊·⌋ is the rounding
operator. To this end,we replace sample covariancematrix S1 by Sφ = S1 + φ I with a
small positive numberφ = √

log p/n1. Such a perturbation does not noticeably affect
the computational accuracy of the final solution and all the theoretical properties hold
aswellwhenφ ≤ √

log p/n1. All simulation results are based on 10,000 independent
replicates. These results are summarized in Tables19.1, 19.2 and 19.3.

Tables19.1, 19.2 and 19.3 clearly indicate that the LLA projection test and the
tests in [14–16] keep the type I error very well. This is not surprising since all these
tests are exact tests. All other tests do not keep the type I error rate well because their
critical values are determined from the asymptotic distributions. Next we compare
the power of the LLA projection test with other existing methods. It can be seen from
Tables19.1, 19.2 and 19.3, the power of the tests strongly relies on the covariance
structure as well as the values of ρ and c.

Table19.1 reports the results for the compound symmetry covariance structure
Σ1. We first compare the LLA projection test and the Li2015 test since these two
tests are of the same flavor but using different methods to estimate the projection
direction. When we have relatively large sample size n = 160, both of the tests have
high power and the LLA projection test slightly improves the performance of Li2015
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Table 19.1 Power comparison for N (µ,Σ1) (values in table are in percentage)
c = 0 c = 0.5 c = 1

ρ 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

n = 40, p = 400

LLA 4.98 4.50 4.94 5.19 71.53 89.92 99.00 99.96 99.97 99.88 99.99 100.0

Li2015 5.16 4.47 4.88 4.90 50.22 70.74 94.04 100.0 98.61 99.53 100.0 100.0

D1958 6.77 6.22 5.71 5.49 12.63 8.13 6.98 6.46 80.44 22.71 13.06 10.23

BS1996 7.73 7.80 7.79 7.80 14.64 10.55 9.39 9.11 88.21 30.28 18.51 15.33

CQ2010 7.72 7.82 7.79 7.77 14.64 10.50 9.41 9.11 88.18 30.22 18.50 15.32

SD2008w 4.20 1.71 0.52 0.15 7.97 2.29 0.63 0.22 54.21 6.41 1.29 0.36

SD2008wo 8.48 8.21 7.87 7.71 16.34 11.15 9.53 8.96 90.25 32.69 18.93 15.06

L1996 5.18 5.18 5.17 5.15 5.66 5.21 5.17 5.11 6.25 5.59 5.31 5.22

LJW2011 5.01 4.99 4.86 5.03 13.80 20.65 40.58 98.34 54.05 74.46 95.94 100.0

n = 40, p = 1600

LLA 5.22 4.99 5.21 5.08 50.43 79.97 98.51 99.98 99.92 99.94 99.99 100.0

Li2015 5.01 4.71 5.06 4.94 14.62 23.71 54.68 98.14 71.49 81.98 95.74 100.0

D1958 6.93 6.19 5.73 5.48 7.81 6.71 5.96 5.73 12.45 8.12 6.96 6.45

BS1996 7.74 7.79 7.78 7.79 8.85 8.30 8.12 8.06 14.47 10.42 9.35 8.92

CQ2010 7.76 7.80 7.77 7.77 8.88 8.32 8.14 8.05 14.49 10.41 9.34 8.92

SD2008w 2.76 0.69 0.14 0.00 3.22 0.73 0.17 0.00 5.26 0.97 0.20 0.01

SD2008wo 8.37 8.12 7.86 7.71 9.67 8.70 8.24 7.94 15.79 11.14 9.52 8.78

L1996 5.15 5.15 5.15 5.15 5.30 5.22 5.19 5.18 5.50 5.29 5.23 5.18

LJW2011 4.65 5.08 4.99 4.95 6.77 7.68 11.52 52.16 14.49 20.55 42.17 98.29

n = 160, p = 400

LLA 4.77 5.10 4.96 4.83 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Li2015 4.97 4.89 4.80 4.99 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

D1958 5.74 5.26 4.89 4.77 87.20 19.91 12.09 9.73 100.0 100.0 99.95 89.50

BS1996 6.66 6.71 6.69 6.71 94.00 26.42 16.69 13.78 100.0 100.0 100.0 99.41

CQ2010 6.66 6.71 6.69 6.71 94.02 26.45 16.69 13.76 100.0 100.0 100.0 99.39

SD2008w 3.11 0.99 0.34 0.07 50.59 3.63 0.72 0.17 100.0 92.93 7.69 1.27

SD2008wo 6.87 6.83 6.71 6.65 94.39 26.76 16.83 13.72 100.0 100.0 100.0 99.36

L1996 4.76 4.74 4.74 4.73 5.98 5.23 4.95 4.87 7.08 5.88 5.32 5.11

LJW2011 4.81 5.15 4.99 4.84 98.07 99.92 100.0 100.0 100.0 100.0 100.0 100.0

n = 160, p = 1600

LLA 4.63 4.99 4.79 4.96 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Li2015 4.91 5.43 5.40 4.74 98.84 99.92 100.0 100.0 100.0 100.0 100.0 100.0

D1958 5.76 5.22 4.87 4.77 11.15 7.32 6.11 5.68 93.07 19.49 11.60 9.41

BS1996 6.71 6.69 6.69 6.69 13.09 9.46 8.37 8.11 97.90 26.09 16.49 13.60

CQ2010 6.71 6.69 6.70 6.70 13.10 9.47 8.37 8.11 97.91 26.11 16.48 13.61

SD2008w 2.10 0.40 0.05 0.02 3.82 0.53 0.05 0.02 29.18 1.19 0.15 0.03

SD2008wo 6.90 6.82 6.71 6.66 13.48 9.46 8.43 8.09 98.05 26.51 16.39 13.53

L1996 4.72 4.73 4.73 4.74 4.76 4.71 4.69 4.71 4.93 4.73 4.73 4.71

LJW2011 5.23 4.83 4.80 4.70 34.28 55.48 91.85 100.0 98.27 99.95 100.0 100.0
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Table 19.2 Power comparison for N (µ,Σ2) (values in table are in percentage)
c = 0 c = 0.5 c = 1

ρ 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

n = 40, p = 400

LLA 5.18 5.19 5.26 4.78 61.15 50.17 36.46 27.19 100.0 99.99 99.67 97.72

Li2015 5.29 4.46 5.16 4.81 46.27 35.27 21.13 13.86 99.98 99.53 91.08 68.03

D1958 5.06 4.97 4.75 5.30 89.47 77.24 51.45 17.29 100.0 100.0 99.96 84.57

BS1996 5.57 5.57 5.46 6.86 90.19 78.40 53.88 20.81 100.0 100.0 99.99 88.16

CQ2010 5.59 5.57 5.44 6.85 90.16 78.39 53.83 20.81 100.0 100.0 99.99 88.15

SD2008w 3.75 3.68 3.30 2.72 84.86 70.93 44.71 9.94 100.0 100.0 99.85 68.93

SD2008wo 7.25 7.28 7.61 8.52 90.57 80.54 57.97 23.86 100.0 100.0 99.96 87.61

L1996 4.69 4.67 4.93 4.96 36.78 28.64 16.49 6.63 92.38 77.29 40.81 9.26

LJW2011 5.52 5.11 5.00 4.97 12.71 12.15 11.51 15.28 44.17 43.04 42.40 60.42

n = 40, p = 1600

LLA 5.25 5.19 5.09 5.12 38.03 30.96 22.88 16.49 100.0 99.94 98.81 91.04

Li2015 4.61 4.95 5.30 4.92 17.85 14.57 9.55 6.10 94.90 84.59 58.09 22.43

D1958 4.91 5.14 4.88 4.74 48.45 37.63 23.47 9.96 99.99 99.91 94.58 42.28

BS1996 5.05 5.46 5.36 5.49 49.13 38.40 24.63 11.40 99.99 99.91 94.96 45.81

CQ2010 5.08 5.48 5.29 5.50 49.26 38.35 24.60 11.44 99.99 99.91 94.94 45.74

SD2008w 1.77 1.91 2.04 1.81 30.97 22.82 12.73 3.66 99.92 99.03 86.28 23.53

SD2008wo 7.04 7.13 7.19 7.55 53.38 43.79 29.11 14.45 99.98 99.79 95.07 50.80

L1996 4.92 5.11 5.08 4.99 15.69 13.57 9.77 6.17 45.99 34.47 19.55 7.99

LJW2011 4.61 4.99 4.87 4.89 6.04 6.47 6.17 6.68 11.71 12.12 11.46 13.14

n = 160, p = 400

LLA 5.10 4.94 4.82 5.03 100.0 99.97 99.37 99.98 100.0 100.0 100.0 100.0

Li2015 5.33 4.68 5.03 5.16 99.99 99.43 89.97 96.04 100.0 100.0 100.0 100.0

D1958 4.61 4.97 5.12 5.34 100.0 100.0 100.0 85.83 100.0 100.0 100.0 100.0

BS1996 5.03 5.50 5.83 6.61 100.0 100.0 100.0 89.10 100.0 100.0 100.0 100.0

CQ2010 5.03 5.49 5.83 6.62 100.0 100.0 100.0 89.10 100.0 100.0 100.0 100.0

SD2008w 4.20 4.42 4.17 2.73 100.0 100.0 100.0 72.60 100.0 100.0 100.0 100.0

SD2008wo 5.41 5.78 6.19 6.93 100.0 100.0 100.0 88.85 100.0 100.0 100.0 100.0

L1996 4.87 4.71 4.70 5.00 89.99 71.70 34.04 7.34 100.0 100.0 71.60 10.28

LJW2011 4.65 4.95 4.75 5.27 89.44 85.36 80.43 98.54 100.0 100.0 100.0 100.0

n = 160, p = 1600

LLA 4.85 5.04 4.92 4.79 100.0 99.94 97.61 93.27 100.0 100.0 100.0 100.0

Li2015 5.24 4.83 4.97 5.01 97.18 88.69 61.66 35.37 100.0 100.0 100.0 99.60

D1958 4.73 4.72 4.99 5.11 99.99 99.89 95.03 42.55 100.0 100.0 100.0 100.0

BS1996 4.86 5.00 5.30 5.98 100.0 99.90 95.35 45.67 100.0 100.0 100.0 100.0

CQ2010 4.86 4.98 5.29 5.99 100.0 99.90 95.35 45.66 100.0 100.0 100.0 100.0

SD2008w 3.47 3.46 3.57 2.70 100.0 99.83 93.02 29.91 100.0 100.0 100.0 99.99

SD2008wo 5.40 5.48 5.65 6.33 100.0 99.87 95.47 46.65 100.0 100.0 100.0 100.0

L1996 5.27 5.08 4.84 4.78 42.34 31.61 16.88 6.42 97.49 83.24 39.61 9.04

LJW2011 4.86 4.67 4.56 5.45 25.35 24.48 23.41 37.24 92.06 90.94 90.47 98.77
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Table 19.3 Power comparison for N (µ,Σ3) (values in table are in percentage)
c = 0 c = 0.5 c = 1

ρ 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

n = 40, p = 400

LLA 5.13 4.61 5.68 4.93 60.97 60.90 57.77 55.26 99.99 99.86 99.81 99.73

Li2015 5.08 4.76 4.76 4.73 43.34 42.40 35.76 28.98 98.94 98.15 97.05 94.31

D1958 6.82 6.68 6.38 6.02 26.75 12.64 9.38 8.05 99.93 78.81 38.79 21.82

BS1996 7.37 7.73 7.75 7.86 29.27 14.57 11.73 10.39 99.95 86.13 48.62 29.47

CQ2010 7.40 7.71 7.71 7.89 29.30 14.54 11.68 10.35 99.96 86.09 48.67 29.42

SD2008w 5.39 4.27 2.71 1.32 20.68 8.06 4.18 1.88 99.61 52.80 15.70 5.47

SD2008wo 8.15 8.36 8.34 8.27 33.33 15.93 12.72 10.85 99.96 88.48 52.41 32.24

L1996 5.07 5.17 5.13 5.19 6.12 5.57 5.33 5.22 8.10 6.30 5.80 5.57

LJW2011 4.86 5.20 4.95 5.06 12.83 14.60 15.63 26.31 48.15 53.40 60.76 86.04

n = 40, p = 1600

LLA 4.96 5.13 5.06 4.62 40.72 42.46 42.69 36.21 99.95 99.82 99.79 99.21

Li2015 4.60 5.13 5.16 5.05 12.67 13.26 11.95 8.45 70.81 69.11 66.18 46.23

D1958 7.17 6.90 6.48 6.19 9.58 7.78 7.18 6.81 27.30 12.45 9.31 8.28

BS1996 7.74 7.80 7.80 7.78 10.34 9.01 8.46 8.30 30.00 14.44 11.59 10.42

CQ2010 7.76 7.81 7.78 7.72 10.28 8.95 8.46 8.29 30.05 14.45 11.54 10.40

SD2008w 4.19 2.70 1.44 0.73 5.79 3.18 1.61 0.77 15.53 5.26 2.19 1.04

SD2008wo 8.48 8.43 8.32 8.19 11.70 9.76 9.05 8.82 34.82 15.94 12.59 11.17

L1996 5.10 5.14 5.19 5.20 5.39 5.27 5.21 5.21 5.71 5.44 5.30 5.31

LJW2011 5.00 4.84 4.79 5.23 6.68 6.81 7.05 8.80 13.07 14.15 16.65 23.86

n = 160, p = 400

LLA 5.35 5.05 4.75 5.42 100.0 99.99 100.0 100.0 100.0 100.0 100.0 100.0

Li2015 5.01 5.03 4.86 5.36 100.0 100.0 99.91 99.99 100.0 100.0 100.0 100.0

D1958 5.98 5.73 5.44 5.04 100.0 83.26 33.73 18.91 100.0 100.0 100.0 100.0

BS1996 6.45 6.67 6.73 6.72 100.0 90.99 43.97 25.76 100.0 100.0 100.0 100.0

CQ2010 6.47 6.67 6.72 6.72 100.0 91.00 43.98 25.74 100.0 100.0 100.0 100.0

SD2008w 4.92 3.04 1.81 0.82 99.99 48.74 10.03 2.98 100.0 100.0 99.99 78.09

SD2008wo 6.70 6.80 6.89 6.85 100.0 91.47 45.28 26.38 100.0 100.0 100.0 100.0

L1996 4.70 4.75 4.75 4.74 7.09 6.01 5.56 5.20 10.27 7.09 6.21 5.83

LJW2011 5.36 5.28 4.97 4.91 94.31 96.07 97.07 100.0 100.0 100.0 100.0 100.0

n = 160, p = 1600

LLA 4.99 4.85 5.10 4.63 100.00 100.0 99.99 99.96 100.0 100.0 100.0 100.0

Li2015 5.22 5.02 5.16 4.38 97.38 97.63 93.89 80.36 100.0 100.0 100.0 100.0

D1958 6.12 5.77 5.45 5.25 23.85 11.17 8.51 7.42 100.0 91.94 33.55 20.31

BS1996 6.66 6.68 6.70 6.77 26.24 13.24 10.44 9.46 100.0 97.40 44.83 27.33

CQ2010 6.67 6.68 6.70 6.77 26.26 13.22 10.41 9.44 100.0 97.42 44.81 27.32

SD2008w 4.13 2.06 0.84 0.39 15.66 3.70 1.26 0.58 100.0 29.28 4.52 1.28

SD2008wo 6.83 6.80 6.85 6.86 27.30 13.49 10.70 9.61 100.0 97.42 46.28 28.33

L1996 4.69 4.71 4.75 4.74 4.93 4.78 4.71 4.70 5.44 4.91 4.79 4.74

LJW2011 4.97 5.30 5.41 5.20 28.38 33.95 40.01 68.67 94.88 97.86 99.36 99.99
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test. When we have a relatively small sample size n = 40, LLA projection test can
dramatically improve the performance of Li2015 test especiallywhen the signal is not
strong (c = 0.5). A weaker correlation ρ results in a more significant improvement.
This is because a small correlation makes the optimal direction Σ−1µ closer to a
sparse direction. When c = 0.5, the power of both tests increases significantly as
ρ increases. As the value of c increases from 0.5 to 1, the power of the two tests
increases dramatically. As the dimension p increases, there is a downward trend for
the two tests. Even in themost challenging case (n, p, c) = (40, 1600, 0.5), our LLA
projection test has high power as well and is much powerful than Li2015 test. These
two tests outperform all other tests. Some of the tests, such as D1958, BS1996,
CQ2010 and SD2008w, tend to become less powerful when ρ increases. This is
because these methods ignore the correlation among the variables and therefore their
overall performance is not satisfactory.

Table19.2 reports the results for the autocorrelation covariance structure Σ2.
Under this setting, the LLA projection test improves the performance of Li2015 test
in all the combinations of c and ρ. In particular, the LLA projection test improves
the performance of Li2015 dramatically when the sample size is relatively small
and the correlation is large. For example, when (n, p, c, ρ) = (40, 1600, 1, 0.95),
the LLA test improves the power from 22.42% to 91.04%. The D1958, BS1996,
CQ2010 and SD2008wo have more satisfactory performance than LLA test when
(n, c) = (40, 0.5) and ρ is not 0.95. Notice that the D1958, BS1996, CQ2010 and
SD2008wo tests ignore the correlation among variables and replaceΣ−1 by diagonal
matrix. When Σ has the autocorrelation structure, its inverse is a 3-banded matrix –
only its diagonal and first off-diagonal elements are nonzero. As a result, replacing
Σ−1 by identity matrix does not lose much information. This explains why tests of
D1958, BS1996, CQ2010 and SD2008wo have more satisfactory performance when
Σ has autocorrelation structure and ρ is low. It is also observed that the power of
these four tests decreases significantly as the correlation increases and become less
powerful than the LLA test when ρ = 0.95. This is not surprising since all the four
tests ignore the correlations among the variables. In general, the proposed test is
preferred if Σ−1 is far away from identity matrix.

Table19.3 reports the results for Σ3. The LLA test is more powerful than Li2015
test in all the combinations of n, p, c, ρ and improves the power dramatically when
ρ is large. The LLA test outperforms all other tests. The patterns for D1958, BS1996,
CQ2010, SD2008w and SD2008wo are similar to the first scenario where Σ = Σ1.

We also investigate the finite sample performance of the LLA projection test
without the normality assumption. To this end, we generate random samples from
themultivariate t distributionwith degrees of freedom6.To examine the robustness of
the LLA test, we use the same critical values as those used in settings with normality
assumption. Simulation results for Σ2 are summarized in Table19.4, from which it
can be seen that the LLA test and Li2015 test can still retain the type I error rate
very well. This implies that these two projection tests are not very sensitive to the
normality assumption. All other alternative tests except for CQ2010 test fail to retain
the type I error. In terms of power, LLA projection test is more powerful than Li2015
test in all combinations of n, p, c, ρ. For this autocorrelation covariance (i.e., Σ2)
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case, the LLA test and the CQ2010 test have similar performance and these two tests
outperform all other tests. The overall patterns for Σ1 and Σ3 are similar to those in
Tables19.1 and 19.3. Results are not presented in this paper to save space.

19.4 Real Data Example

In this section, we apply the LLA projection test to a real dataset of high reso-
lution micro-computed tomography. This dataset contains the bone density of 58
mice’s skull of three different genotypes (“T0A0”, “T0A1”, and “T1A1”) measured
at different bone density levels in a genetic mutation study. For each mouse, bone
density is measured for 16 different areas of its skull. For each area, bone volume
is measured at density levels from 130 to 249. This dataset was collected at Cen-
ter for Quantitative X-Ray Imaging at the Pennsylvania State University. See [18]
for a detailed description of protocols. In this empirical analysis, we are interested
in comparing the bone density patterns of two different areas in mice’s skull. We
compare the performance of the proposed LLA projection test with several existing
methods. To emphasize the high-dimensionality nature of this dataset, we only use
half sample of the dataset. We select the mice of the genotype “T0A1” and there are
29 samples available in the dataset, i.e., sample size n = 29. The two areas of the
skull “Mandible” and “Nasal” are selected. We use all density levels from 130 to 249
for our analysis, hence dimension p = 120. We first take the difference of the bone
density of the two selected areas at the corresponding density level for each subject
since the two areas come from the same mouse. Then we normalize the bone density
in the sense that 1

n

∑n
i=1 x

2
i j = 1 for all 1 ≤ j ≤ 120.

We apply LLA projection test and several other existing methods to this dataset.
Due to the relatively small sample size (n = 29), we opt to use slightly more data
points to estimate the projection direction such that the estimator is reasonably well.
As a result, we set κ = 0.6. The p-values are reported in the first row in Table19.5.
The p-values of all methods are 0, implying that the bone volume is significantly
different. To see which test is more powerful, we also compute the p-values of these
tests when we decrease the signals. Let x̄ be the sample mean and ri = xi − x̄ is
the residual for the i th subject. Then a new observation zi = δx̄ + ri is constructed
for the i th subject. By the construction, a smaller δ results in a weaker signal and
would make the test more challenging. Table19.5 reports the p-values of all these
tests for the new data zi with δ = 1, 0.8, . . . , 0.2. As expected, the p-values of all
tests increase as δ decreases. When δ = 0.8 or 0.6, all these tests perform well and
reject the null hypothesis at level 0.05. When δ = 0.4, the Lauter’s test fails to reject
the null hypothesis. When δ = 0.2, all the tests except for our method fail to reject
the null hypothesis, which suggests that our method would performwell even though
the signal is weak. Among those tests that fail to reject H0 when δ = 0.2, Li2015
projection test has the smallest p-value.
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Table 19.4 Power comparison for t6(µ,Σ2) (Values in table are in percentage)
c = 0 c = 0.5 c = 1

ρ 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

n = 40, p = 400

LLA 4.74 4.44 4.81 5.19 46.94 38.23 27.23 19.02 99.95 99.52 96.50 91.21

Li2015 4.77 5.00 4.53 5.52 36.00 26.34 16.44 11.40 99.27 95.97 79.71 55.13

D1958 0.05 0.17 0.80 3.27 10.04 11.00 11.39 8.56 92.77 91.15 83.76 48.47

BS1996 0.08 0.25 1.02 4.65 12.42 13.43 14.05 11.29 94.45 92.97 86.68 55.35

CQ2010 5.49 5.71 5.83 6.77 68.47 55.52 36.29 15.44 100.0 99.97 97.97 64.15

SD2008w 0.04 0.05 0.37 1.34 7.13 8.03 8.00 3.84 91.59 89.34 79.00 33.06

SD2008wo 0.16 0.48 1.57 5.99 20.35 20.70 19.99 14.67 97.78 96.67 91.34 61.40

L1996 0.46 0.76 1.66 4.00 1.53 2.31 3.49 4.98 5.90 6.81 7.87 6.73

LJW2011 3.85 4.40 4.34 4.12 10.16 10.22 10.12 13.08 37.12 36.14 35.35 51.57

n = 40, p = 1600

LLA 4.89 4.61 4.85 4.77 28.90 24.90 17.90 12.35 99.89 99.19 94.29 78.77

Li2015 5.24 4.58 5.08 5.37 13.82 11.03 8.69 5.40 83.00 69.65 44.60 17.05

D1958 0.00 0.00 0.02 1.13 0.00 0.00 0.22 2.09 7.62 7.79 9.38 9.44

BS1996 0.00 0.00 0.06 1.58 0.00 0.00 0.30 2.72 9.59 9.90 11.96 11.86

CQ2010 5.07 5.16 5.23 5.93 30.83 24.57 16.62 9.58 98.44 94.23 75.89 29.10

SD2008w 0.00 0.00 0.00 0.11 0.00 0.00 0.02 0.30 1.74 2.05 2.91 2.41

SD2008wo 0.00 0.00 0.13 2.51 0.00 0.05 0.57 4.55 18.33 18.81 19.84 17.45

L1996 0.05 0.12 0.40 2.08 0.10 0.18 0.52 2.30 0.21 0.40 0.80 2.87

LJW2011 4.26 4.24 4.22 4.18 5.60 5.31 5.49 6.01 10.32 9.83 9.97 11.53

n = 160, p = 400

LLA 4.68 4.94 4.29 4.69 100.00 99.58 94.11 99.66 100.0 100.0 99.98 100.0

Li2015 4.77 4.98 4.82 4.95 99.58 96.61 78.27 88.18 100.0 100.0 99.97 100.0

D1958 0.41 1.03 2.41 4.33 99.52 99.02 95.86 53.53 99.99 99.99 99.99 99.96

BS1996 0.52 1.30 2.97 5.57 99.61 99.27 96.64 59.70 99.99 100.0 99.99 99.98

CQ2010 5.32 5.68 5.75 6.38 99.99 99.92 98.91 62.70 100.0 100.0 100.0 100.0

SD2008w 0.31 0.81 1.70 2.14 99.59 99.00 94.47 37.44 99.99 100.0 99.99 99.93

SD2008wo 0.77 1.48 3.28 6.09 99.80 99.46 96.90 61.76 100.0 100.0 100.0 99.99

L1996 0.92 1.60 2.87 4.35 6.34 8.40 9.53 5.81 24.25 25.56 22.83 8.63

LJW2011 4.55 4.42 4.36 4.38 82.42 76.72 70.40 95.73 100.0 100.0 100.0 100.0

n = 160, p = 1600

LLA 5.19 5.08 5.35 4.85 99.95 98.95 89.73 79.71 100.0 100.0 100.0 100.0

Li2015 5.19 4.68 4.39 4.81 88.97 75.32 45.68 27.00 100.0 100.0 99.90 97.58

D1958 0.00 0.03 0.40 3.04 43.74 40.56 33.32 17.30 99.72 99.67 99.64 95.47

BS1996 0.00 0.07 0.47 3.80 47.26 43.91 36.50 19.82 99.78 99.74 99.75 96.40

CQ2010 4.98 4.93 5.16 6.08 98.83 95.34 75.76 27.93 100.0 100.0 100.0 98.82

SD2008w 0.00 0.00 0.16 1.22 33.20 30.69 24.45 9.06 99.59 99.57 99.37 88.00

SD2008wo 0.00 0.05 0.57 4.16 53.10 49.61 40.86 21.79 99.92 99.86 99.90 96.36

L1996 0.15 0.26 0.65 3.31 0.29 0.66 1.22 4.07 0.95 1.56 2.51 5.19

LJW2011 4.48 3.98 4.32 4.05 19.83 19.19 18.86 30.07 84.29 84.13 82.51 96.48
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Table 19.5 Bone density dataset: p-value of one-sample test
δ LLA Li2015 D1958 BS1996 CQ2010 SD2008w SD2008wo L1996 LJW2011

1 0 0 0 0 0 0 0 0 0

0.8 0 0 0 0 0 0 0 0 0

0.6 0 0 0 0 0 0 0 0.0005 0

0.4 0 4 × 10−5 0.0015 0 0 0.0088 0 0.6775 2 × 10−5

0.2 0.0390 0.0906 0.2145 0.2710 0.2714 0.4136 0.2999 0.8870 0.3073

Fig. 19.1 Histogram of
absolute values of paired
sample correlations among
bone densities at all different
bone density levels

We plot the histogram of absolute values of paired sample correlations among all
bone density levels in Fig. 19.1. It indicates that some bone density levels are highly
correlated. This may explain why our method is more powerful than Dempster test,
BS test and SD test since these methods do not take the dependence among variables
into account.
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