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ABSTRACT

Volumetric video (VV) streaming has drawn an increasing amount

of interests recently with the rapid advancements in consumer

VR/AR devices and the relevant multimedia and graphics research.

While the resource and performance challenges in volumetric video

streaming have been actively investigated by the multimedia com-

munity, the potential security and privacy concerns with this new

type of multimedia have not been studied. We for the first time

identify an effective threat model that extracts 3D face models from

volumetric videos and compromises face ID-based authentications.

To defend against such attack, we develop a novel volumetric video

security mechanism, namely VVSec, which makes benign use of

adversarial perturbations to obfuscate the security and privacy-

sensitive 3D face models. Such obfuscation ensures that the 3D

models cannot be exploited to bypass deep learning-based face

authentications. Meanwhile, the injected perturbations are not per-

ceivable by the end-users, maintaining the original quality of ex-

perience in volumetric video streaming. We evaluate VVSec using

two datasets, including a set of frames extracted from an empirical

volumetric video and a public RGB-D face image dataset. Our eval-

uation results demonstrate the effectiveness of both the proposed

attack and defense mechanisms in volumetric video streaming.

CCS CONCEPTS

· Security and privacy → Systems security; · Information

systems → Multimedia streaming;
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1 INTRODUCTION

Volumetric video (VV) is an emerging type of rich multimedia that

records objects and space in three dimensions (3D) with six degrees

of freedom (6-DOF), providing the users with fully immersive vir-

tual reality (VR) or augmented reality (AR) experiences [12, 32]. It

used to be depicted only in science fiction in the past decades [12].

However, with the recent developments in computer graphics and

high-performance VR/AR devices, volumetric video has witnessed

a gradual commercial development and deployment in the con-

sumer market [14, 27]. It has been regarded as the next genera-

tion of video type after the traditional 2D video and the recently

deployed 360-degree video [66], and the global volumetric video

market is estimated to grow from $1.4 billion in 2020 to $5.8 billion

by 2025 [22]. Different from the pixel-based 2D and 360-degree

videos, volumetric video captures 3D objects, represented by 3D

meshes [57] or point clouds [58], with significantly higher amount

of data and computation involved for capturing, storage, transmis-

sion, and rendering. Consequently, it poses significant challenges

to the traditional video processing and streaming technologies.

To date, the state-of-the-art research efforts have all been focus-

ing on addressing various resource and performance challenges in

volumetric video capturing [14, 27, 29], encoding [55, 63, 70], and

streaming [36, 64, 76], to make it deployable under the existing net-

work and video processing/streaming infrastructures. Although the

existing efforts are still in the early stage, the challenges and solu-

tions under exploration resemble the community’s past experiences
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with 2D and 360-degree videos where there was a similarly large

gap between the capacity of the network/computation and the de-

mand. Given the past success in addressing these similar challenges,

it is foreseeable that the resource and performance challenges of

volumetric video streaming can be well addressed eventually, espe-

cially with the rapid advancements in 5G wireless networks [53]

and high-performance computing software/hardware stacks for

video processing [9, 18].

However, the community has not explored the potential security

and privacy vulnerabilities of volumetric video caused by its unique

characteristics, e.g., with 6-DOF 3D objects, which did not exist in

the traditional 2D or 360-degree videos. First, from the economic

and business point of view, the 3D objects precisely presented in

volumetric videos are significantly more valuable assets than 2D or

360-degree video content, often involving copyrights or intellectual

properties that must be protected. While digital rights management

(DRM) mechanisms have been well studied and widely deployed

for 2D videos [4, 5, 23], the solution for protecting the even more

valuable volumetric video is desirable before they can be widely

deployed for consumer-facing applications. Second, in addition to

its economic values, the 3D models in volumetric videos, if leaked,

may trigger significant security/privacy concerns as they may in-

volve rich information of human faces or other privacy-sensitive

objects [60] or lead to biometrics-based security exploits. The po-

tential security and privacy issues may become a critical roadblock

for the future deployment of volumetric video streaming, even after

all the current resource and performance challenges have been ef-

fectively addressed. In this paper, we aim to address this brand new

dimension of security and privacy challenges posed by volumetric

video streaming.

The most straightforward solution to the aforementioned secu-

rity and privacy issues is to conduct end-to-end encryption of the

volumetric video content coupledwith a secure licencemanagement

mechanism, similar to those adopted in the DRM for traditional 2D

videos [4, 5, 23]. However, under the context of volumetric video

streaming, the traditional encryption-based approach is subject to

the following two limitations. First, the performance and power

overhead of end-to-end encryption would increase considerably

in volumetric video given the significantly increased data volume.

Such overhead could become even worse considering that the pri-

mary use case of volumetric video streaming is towards mobile

VR/AR devices with limited computation and power resources. In

addition, the highly interactive nature of the 6-DOF immersive

experience makes volumetric video very sensitive to any increase

of end-to-end transmission or processing delay. Second, end-to-end

encryption can still be subject to potential security vulnerabilities

even if a secure key management scheme is adopted. This is because

the video content must be eventually decrypted before showing

and, therefore, it could leave a traceable moment for the adversary

to retrieve the decrypted volumetric video content via either re-

verse engineering based on memory access patterns [79] or screen

recording of the displayed content.

To address the aforementioned limitations of end-to-end encryp-

tion, we develop VVSec, the first multimedia security framework

aiming to protect volumetric videos with a focus on the 3D face

models presented in the video content. The key idea of VVSec is

to obfuscate the volumetric video via a benign use of adversarial

examples [34, 73], which are small human non-perceivable per-

turbations added to the original video frames to mislead the deep

learning-based face recognition/authentication systems [78, 86]. In

particular, we propose to inject adversarial perturbations in the

target volumetric video, so that the adversary would fail to imper-

sonate the victim in face authentication by leveraging the extracted

3D face models. Additionally, we control the amount of introduced

perturbation for effective defense without impacting the quality

of experience (QoE) perceived by human users. While developing

VVSec and demonstrating its effectiveness, we make the following

major research contributions primarily targeting 3D face models

presented in volumetric videos.

• We for the first time develop an effective security threat model

exploiting volumetric video, in which the adversary extracts 3D

face models from the video and uses them to impersonate the

victim in deep learning-based face authentications;

• We for the first time develop an effective countermeasure to de-

fend against the potential volumetric video attack, which makes

benign use of adversarial perturbations to evade from the face

authentication attack while still maintaining the original quality

of experience to the end user; and

• We evaluate VVSec using a set of frames extracted from an em-

pirical volumetric video, as well as a public RGB-D face dataset.

Our experimental results demonstrate the success of both the

proposed attack and defense mechanisms.

The remainder of the paper is organized as follows. Section 2 in-

troduces the background information of volumetric video streaming

and face authentication system that serve as the basis of the target

problem. Section 3 describes the proposed face authentication at-

tack using the facial information extracted from a volumetric video.

Section 4 presents the proposed defense mechanism via the benign

use of adversarial perturbation. Section 5 includes the experimental

results for both the attack and defense mechanisms. Section 6 sum-

marizes the closely related works to VVSec. Section 7 discusses the

limitations of VVSec that we plan to explore and address in future

work. Finally, Section 8 concludes the paper.

2 BACKGROUND

2.1 Volumetric Video Streaming

Several formats for storing and presenting volumetric video con-

tent have been developed recently, such as point cloud-based vol-

umetric video [6, 51] and depth image (i.e., RGB-D)-based volu-

metric video [15, 77]. Different vendors like Microsoft [7], 8i [6],

Depthkit [15], and several other companies [16, 31] have their

unique ways of capturing, rendering, and delivering the volumet-

ric videos. However, almost all of them take advantage of depth

cameras, such as Microsoft Kinect [2, 3] and Intel RealSense depth

cameras [20], to capture color and depth information at the same

time. Without loss of generality, we use the RGB-D based video

format from Depthkit [15] in our study of volumetric videos, as it

can be processed with the off-the-shelf video coding techniques and

is compatible with the widely adopted video streaming standard,

e.g., Dynamic Adaptive Streaming over HTTP (DASH) [71].

Also, several research efforts have been focusing on DASH-based

volumetric video streaming [39, 76]. Figure 1 shows a representa-

tive end-to-end volumetric video streaming system following the
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using either a virtual camera or a printed 3D mask [43]. The key

challenge in the attack procedure is for Malice to extract the RGB-D

face model from the volumetric video, which we discuss next.

Figure 3: The proposed volumetric video-enabled face au-

thentication attack.

3.2 Facial Information Extraction

Wedevelop a Facial Information Extractor to accomplish the key step

of extracting the 3D facial information from the target volumetric

video, as shown in Figure 3. Also, Figure 4 shows the procedure of

facial information extraction. The upper half of the frame is the RGB

portion of the 3D model, and the lower part is the depth portion.

The depth portion uses RGB color to present the depth information,

where the scale of the hue value of the corresponding pixel follows

the scale of the depth. Malice first cuts a frame from the volumetric

video and, then, the Facial Information Extractor generates the RGB

image together with the depth image by cropping, rotating, and

expanding both the RGB and depth portions of the frame. Moreover,

the extractor translates the depth image to quantitative depth data

as the input to the face authentication system. In particular, it

reads the value of pixels in the HSV (hue, saturation, and value)

color space and maps the value of hue to the corresponding depth

value. Equation (1) reveals the relationship between the hue and

the depth, where 𝐷𝑚𝑎𝑥 and 𝐷𝑚𝑖𝑛 are the maximum and minimum

distances between the camera and the user, respectively, and 𝑒 is

the rescaling factor that ensures a reasonable depth value for the

face authentication system.

𝑑𝑒𝑝𝑡ℎ =

(

(𝐷max − 𝐷min) × ℎ𝑢𝑒 + 𝐷min
)

×
𝑒

𝐷min
(1)

4 PROPOSED DEFENSE: VVSEC

4.1 Challenges of Protecting Volumetric Video

Generally speaking, protecting the confidentiality of data is a well

studied and addressed problem in the security community, espe-

cially with the state-of-the-art hardware isolation-based trusted

execution environments (TEEs) [25] and the cryptographic algo-

rithms [59]. However, both categories of defense mechanisms have

their limitations in the specific scenario of volumetric video stream-

ing. First, hardware-based TEEs (e,g., ARM TrustZone and Intel

SGX) [1, 25] suffer from several vulnerabilities related to side chan-

nel attacks and hardware physical attacks [74, 75], which would

Figure 4: Our proposed procedure for facial information ex-

traction from volumetric video.

lead to the leakage of sensitive data. Second, no matter what kind

of end-to-end encryption strategies are employed, eventually the

video must be decrypted and stored in certain location of the mem-

ory in plaintext, which can be exposed to the attackers [47, 54].

Furthermore, encryption may worsen the performance (e.g., end-

to-end latency) of volumetric video streaming and raise the already

high power consumption of the computation-intensive multimedia

application dealing with 3D models.

4.2 Solution: Benign Use of Adversarial Attack

From the defense perspective, our observation is that the volumetric

video streaming is a very unique use case where the sensitive data

(i.e., Alice’s 3D face model retrieved by Malice) must not pass the

deep learning-based authentication, while it must be perceivable by

human users as per the requirement of the video streaming appli-

cation. Such a requirement for defense is essentially a close match

with the state-of-the-art adversarial attacks where an adversary

adds deliberately-designed perturbations to the original benign

inputs of a deep neural network. Such adversarial perturbations

are imperceptible to humans but would cause significant degrada-

tions in the accuracy of the neural networks, leading to incorrect

inference results [34, 73].

Inspired by the nature of the adversarial attacks, we propose a

novel defense mechanisms, VVSec, to protect the confidentiality of

volumetric video. In a nutshell, VVSec adds adversarial perturba-

tions at the sender (i.e., Alice) side of the volumetric video streaming,

so that even if Malice could extract the RGB-D facial information

in plaintext, the face authentication would fail due to the effect

of the "adversarial" perturbation on the deep neural network. On

the other hand, the original functionality of volumetric streaming

especially the perceivable quality of experience to human users

is unchanged, as ensured by the design principle of adversarial

perturbations [34, 73].

In order to fully understand the mechanism of adversarial at-

tacks, to date, numerous attack methods have been extensively

investigated. Goodfellow et al. [34] introduced the fast gradient

sign method (FGSM), which is a simple but effective technique to

quickly produce adversarial examples. The key idea of FGSM is

to utilize the gradients of the loss function with respect to inputs

to craft the adversarial perturbations in a single step. Inspired by

FGSM, researchers have proposed to take multiple steps of FGSM

(I-FGSM) [50, 56] in an iterative manner to achieve stronger at-

tack performance while keeping smaller perturbations. Moreover,
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C&W [26] attack is an optimization-based method, which can gen-

erate high-robustness adversarial examples that break many state-

of-the-art defense methods [28, 83]. Different from the original

intent of the existing adversarial attacks, in VVSec, we make benign

use of adversarial attack to protect the 3D facial information in the

volumetric video, as described next.

4.3 Algorithm Design: Content-Aware

Adversarial Perturbation Generation

To clearly present the steps of our perturbation generation algo-

rithm, we define the notations for the rest of the paper. Recall that

the goal of the face authentication system is to determine whether

the input face image belongs to the enrolled user (i.e., the user repre-

sented by the reference RGB-D input). The input image 𝑥 is denoted

as ℎ ×𝑤 × 𝑐 where ℎ,𝑤, 𝑐 represent the height, width, and number

of channels, respectively. In particular, 𝑐 = 4 where the first three

channels represent RGB, and the last one is the depth (D) channel.

Next, we model the face authentication system as a function 𝐹 (𝑥,𝑦),

which takes a face image 𝑥 and the stored face image of the enrolled

legitimate user 𝑦 as inputs and outputs the similarity score 𝑆 . Typi-

cally, if 𝑆 is under a certain predefined threshold 𝜏 , the input image

𝑥 is considered passing the authentication. In this work, to prevent

the extracted frames of the volumetric video from passing the face

authentication, we aim to find an imperceptible perturbation 𝛿 that

could achieve 𝑥 ′ = 𝑥 + 𝛿 such that 𝑆 ′ = 𝐹 (𝑥 ′, 𝑦) > 𝜏 .

A volumetric video can contain one or more 3D objects, and the

extra space besides the objects is considered as background. If the

perturbation is added to the background portion of the volumetric

video, it can be obviously perceived by the user and significantly

impact the quality of experience. Therefore, in VVSec we develop a

content-aware perturbation generation algorithm to add the per-

turbation only to the 3D objects instead of the background. In a

nutshell, our algorithm takes advantage of the RGB-D data, where

the information of the object location could be approximately in-

ferred by the depth channel. Specifically, we first generate a boolean

mask 𝛼 (𝛼 ∈ {0, 1}) with the same size of the input image 𝑥 ,

𝛼 (𝑛, 𝑝, 𝑞) =

{

1; 𝑥 (𝑛, 𝑝, 4) ≥ 𝑡 and 𝑞 ≤ 3,

0; otherwise,
(2)

where 𝑡 is the predefined threshold. With the guidance of such

derived mask 𝛼 , our desired content-aware adversarial perturbation

is calculated as:

𝑥 ′ = 𝐶𝑙𝑖𝑝 (𝑥 + 𝛿 · 𝛼,−𝜖, +𝜖), (3)

where 𝐶𝑙𝑖𝑝 (·) denotes removing the values under certain noise

level 𝜖 to constrain the perturbations using the 𝐿1 distance metric.

Since we keep all values for the last channel of 𝛼 as 0, no pixels

would be changed on the depth channel of the original input 𝑥 .

Next, we utilize an optimization-based attack method inspired

by 𝐶&𝑊 [26] to craft our content-aware adversarial examples 𝑥 ′.

In particular, we formulate the adversarial perturbation generation

as the following optimization problem:

minimize 𝐿𝑜𝑠𝑠 = −𝐹 (𝑥 ′, 𝑦) + 𝛽 ∥ 𝛿 ∥2, (4)

where 𝛽 is a pre-chosen constant to control the magnitude of the

perturbation. Specifically, the first term is the model prediction

score 𝑆 ′, and the second term penalizes the perturbation magnitude.

Gradient descent is applied to find the optimal perturbation until

𝑆 ′ is larger than the threshold 𝜏 . Given that the face authentication

system mainly leverages the features extracted from the face model

to calculate the similarity score, our content-aware perturbation

generation targeting only the face portion of the frame would effec-

tively alter the authentication results with minimum perturbation.

The details of our adversarial perturbation generation algorithm

are presented in Algorithm 1.

Algorithm 1: Content-Aware Adversarial Perturbation

Generation

1 Input: Extracted facial images 𝑥 , face authentication system

𝐹 (·), enrolled face images 𝑦, identification threshold 𝜏 ,

attacking strength 𝜖 , penalty constant 𝛽 .

2 Result: Adversarial perturbation 𝛿 .

3 Initialize 𝛿 ← 0;

4 Compute boolean mask 𝛼 following Equation (2);

5 𝑥 ′ ← 𝐶𝑙𝑖𝑝 (𝑥 + 𝛿 · 𝛼,−𝜖, +𝜖);

6 𝑆 ′ ← 𝐹 (𝑥 ′, 𝑦);

7 while S’ < 𝜏 do

8 𝐿𝑜𝑠𝑠 ← −𝐹 (𝑥 ′, 𝑦) + 𝛽 ∥ 𝛿 ∥2;

9 Minimize 𝐿𝑜𝑠𝑠 to update 𝛿 ;

10 end

5 EXPERIMENTAL RESULTS

In this section, we first evaluate the volumetric video-enabled attack

on the face authentication system. Then, we validate the effective-

ness of VVSec in preventing the attack.

5.1 Experimental Setup

5.1.1 Volumetric video streaming system. In this work, we use a

pre-recorded volumetric video [15] from the Depthkit. On the server

side, we adopt the GPAC filter [35] as both the encoder and the

DASH packager to generate the DASH segments from the source

video. Moreover, we deploy a web server using Node.js [17] to serve

the video segments. On the client side, we employ the Vimeo Depth

Player [77], which is a browser-based volumetric video player, to

process and play the video.

5.1.2 Datasets. We employ two datasets to evaluate the effec-

tiveness and performance of VVSec, including a dataset containing

frames extracted from volumetric video [15] (i.e., Dataset #1) and

an RGB-D face dataset [38] (i.e., Dataset #2).

• Dataset #1 contains 11 RGB-D images of one user extracted from

the volumetric video demo in the Depthkit [15], in which we use

1 image as the reference input and 10 images as the user inputs

in our evaluation of face authentication.

• Dataset #2 [38] consists of 31 users with 17 different poses each,

including 13 face orientations and 4 facial expressions (i.e., smil-

ing, sad, yawn, and angry). For each pose of each user, 3 images

are captured, making the total of 1581 RGB-D images in the

dataset. All the images are collected by a Microsoft Kinect v1

device [2].
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For both datasets, the RGB images are stored as a 32-bit bitmap

with resolution 1280× 960𝑝𝑥 . The depth images are stored as plain-

text files, where a depth value represents the corresponding depth

pixel, with resolution 640× 480𝑝𝑥 . In our experiments, we crop and

re-scale all the face images to 200 × 200𝑝𝑥 to meet the requirement

of the face authentication system [61]. In our evaluation of the at-

tack, we use Dataset #2 to train and validate the face authentication

model. While evaluating the proposed defense, we add the content

aware adversarial perturbations to both datasets.

5.1.3 Parameter Settings. In the face authentication system, we

use the same default parameter settings as in [61] for the face

authentication system. Note that it is our intention to adopt the

default settings, as the goal of this work is to demonstrate the

identified new attack surface in typical and commonly used face

authentication systems, which is well represented by the default

settings in [61]. In particular, the Siamese network is trained with a

batch size of 16 on Dataset #2 for 50 epochs. Also, we use the Adam

optimizer [45] with the learning rate 𝜂 = 0.001 and the momentum

terms 𝛽1 = 0.9 and 𝛽2 = 0.999. Moreover, in the content-aware

adversarial perturbation described in Algorithm 1, we set the the

predefined threshold 𝑡 in Equation (2) as 0, the threshold of the

similarity score 𝜏 as 0.4, attacking strength 𝜖 as 32/255, and penalty

constant 𝛽 as 0. For the facial information extractor in Section 3.2,

we use Equation (1) to map the hue value to the depth value. In our

experiments, 𝐷𝑚𝑎𝑥 = 2370 and 𝐷𝑚𝑖𝑛 = 1270 in millimeters and

𝑒 = 850.

5.1.4 Evaluation Metrics. To evaluate the effectiveness of the

defense, i.e., whether VVSec can successfully prevent the face au-

thentication attack, we use the success rate of face authentication

defined as follows:

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 =
# 𝑜 𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙 𝑐𝑎𝑠𝑒𝑠 𝑜 𝑓 𝑑𝑒 𝑓 𝑒𝑛𝑠𝑒

# 𝑜 𝑓 𝑣𝑎𝑙𝑖𝑑 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠
(5)

In particular, if the original similarity score before adding the

perturbation is smaller than 0.4, we consider it as a valid test case,

i.e., the face authentication attack is successful. Then, for a valid

test case, if the similarity score after adding the perturbation is

greater than 0.4, we consider it as a successful case of defense.

Furthermore, we adopt the normalized L2 norm to quantify the

perturbations added by VVSec, which is a commonly used metric

in the adversarial attack research domain to evaluate the quality

impact of adversarial perturbations [26, 37, 73]:

𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 =

∥ 𝑥 − 𝑥 ′ ∥2

∥ 𝑥 ∥2
(6)

where 𝑥 is the user input face image, and 𝑥 ′ is the image with the

generated adversarial perturbation.

5.2 Effectiveness of the Attack

We evaluate the effectiveness of the proposed attack by feeding a

pair of input images to the face authentication system. One is the

pre-enrolled user face image, namely the reference input; and the

other is the new face image for authentication, namely the user

input. Each reference or user input consists of an RGB image and

the corresponding depth image to represent the full RGB-D face

data. The face authentication system would output the similarity

Table 1: Quantitative evaluation results of both the attack

and the defense using 10 test cases from Dataset #1.

Case
Similarity

(Original)

Similarity

(VVSec)

Perturbation

(L2 norm)

Time

(second)

1 0.157 0.402 0.042 4.674

2 0.149 0.404 0.042 4.656

3 0.225 0.401 0.092 7.182

4 0.209 0.404 0.038 4.274

5 0.095 0.402 0.113 8.475

6 0.053 0.401 0.136 9.443

7 0.046 0.400 0.141 10.591

8 0.064 0.402 0.076 6.096

9 0.154 0.404 0.056 5.203

10 0.136 0.404 0.057 5.134

score between the two input images, which we use as an indicator

for the success of the attack. In particular, the attack is successful if

the similarity score is less than 0.4, as discussed in Section 5.1.4.

Table 1 demonstrates 10 test cases of face authentication using

Dataset #1. The Similarity (Original) column indicates the resulting

similarity score under the attack scenario. We observe that all the

original similarity scores are below the threshold 0.4, indicating that,

without VVSec, the attacker is able to impersonate the legitimate

user and successfully pass the face authentication in all the test

cases.

5.3 Effectiveness of the Defense

We execute the adversarial perturbation generation algorithm (i.e.,

Algorithm 1) on both datasets to evaluate the effectiveness of the

defense. Table 1 shows the results of 10 test cases from Dataset #1.

First, we observe that with VVSec all the similarity scores, as shown

in the Similarity (VVSec) column, are larger than the threshold 0.4,

indicating that the RGB-D images containing the generated per-

turbations fail to pass the face authentication system and thus the

effectiveness of the defense. Second, we also present the quantitative

values of the perturbations in the Perturbation (L2 norm) column,

which vary among different cases, as the perturbation generation

algorithm is content-dependent. In addition, the time costs of the

perturbation generation are shown in the Time (second) column,

ranging from around 4 to 11 seconds, which are acceptable if VVSec

is used offline to generate the protected volumetric video for the

video-on-demand (VOD) streaming scenario.

We further evaluate the effectiveness and performance of VVSec

on all the RGB-D images from Dataset #2. Among the 51 images

(i.e., 17 poses and 3 images per pose) of each user, we use the

one with front-facing pose as the reference input and the other

50 images as the user inputs for testing, which creates 1550 test

cases in total. Among these test cases, there are 1529 cases that
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Figure 5: Average similarity scores output by the face au-

thentication system for 31 users from Dataset #2 before and

after VVSec adding the adversarial perturbation.

Figure 6: Average adversarial perturbations generated for 31

users from Dataset #2.

are valid ones based on the definition presented in Section 5.1.4

(i.e., the original similarity score before adding the perturbation

is smaller than 0.4). Therefore, we conduct our experiments on

Dataset #2 with these 1529 test cases and present the results in

Figures 5 to 7. Figure 5 shows the average similarity scores with

and without perturbation added by VVSec for different users. All

the average similarities with perturbation are between 0.4 and 0.42,

indicating the failure of face authentication and thus the success

of defense accomplished by VVSec. Figure 6 reveals the average

perturbations added to the images are in the range of 0.003 to 0.029,

which vary among different users. Lastly, Figure 7 presents the

average running time of perturbation generation, which ranges

from around 3 seconds to around 9 seconds per image. The results

confirm our observations in Table 1 with Dataset #1, indicating that

VVSec can be applied to VOD volumetric video streaming.

Overall, combining our experiments with both Dataset #1 and

Dataset #2, we have evaluated the defense mechanism provided by

VVSec using 1560 test cases in total, 1539 of which are valid test

cases based on the definition in Section 5.1.4. Our experimental

results indicate that all the 1539 test cases successfully return a

larger than 0.4 similarity score when VVSec is applied, achieving a

100% success rate of the defense.

Figure 7: Average running time of our content-aware adver-

sarial perturbation generation for 31 users from Dataset #2.

6 RELATEDWORK

Benign Use of Adversarial Attack. As discussed in Section 4.2,

many research works have been focusing on adversarial perturba-

tion generation [34, 73]. Also, some researchers have utilized adver-

sarial attacks for benign use cases as a means of obfuscation. For

example, Yu et al. [87] developed an adversarial example generation

algorithm to protect mobile voice data from being eavesdropped

using automatic speech recognition. Xu et al. [85] developed a

framework called HAMPER to protect leaked images and voices

from malicious speech and image recognition by using adversarial

perturbations. Our VVSec is inspired by these existing works on

making benign use of adversarial attacks for security protections,

but we target a brand new and significantly more challenging sce-

nario of volumetric video streaming.

Adversarial Attacks on 3D Models. Adversarial attacks on 3D

objects have recently been explored [40, 81, 82, 88]. For example,

Xiang et al. [81] proposed several algorithms to generate adversar-

ial examples targeting 3D point clouds. Xiao et al. [82] proposed to

generate 3D meshes by manipulating objects with rich shape fea-

tures but minimal textural variations. These 3D-based adversarial

attack methods are closely related to our goal of injecting adver-

sarial perturbations in volumetric videos. However, studies along

this line are still at an early stage and cannot be directly applied

to domain-specific applications such as volumetric video streaming.

Attacks on Face Authentication Systems. The most straightfor-

ward way to attack a face authentication system may be presenting

a facial biometric artifact of the victim user to the authentication

system. In such presentation attacks, a printed photo [11, 30, 80], a

3D facemask [8, 43], or an electronic display of a photo or video [84]

have been exploited to successfully bypass the face authentication.

Even modern commercial face recognition systems like Microsoft

Windows Hello [13, 80], Apple’s Face ID [8, 72], and payment au-

thentication systems of Alipay and Wechat have been bypassed by

such presentation attacks [43]. As countermeasures, face authen-

tication systems have also been evolving by adding features like
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depth matching and liveness detection [42, 48, 49]. These counter-

measures could effectively increase the difficulty level of presen-

tation attacks. However, even with the modern defense features,

the volumetric video still has the strong potential to constitute a

face authentication attack given the liveness and 3D features of

its video content. In other words, there exists minimum difference

between the 3D face model in volumetric video and the real human

face to be distinguished by a face authentication system.

End-to-End Encryption and Video DRM. End-to-end encryp-

tion can be an effective approach to protect the confidentially of

data in networked systems in general and video streaming in partic-

ular. In fact, state-of-the-art video DRM mechanisms [4, 5, 23] rely

on end-to-end encryption to protect the commercial video stream-

ing services (e.g., Netflix [44]) from piracy or illegal broadcasts.

However, under the context of volumetric video streaming, the

end-to-end encryption or video DRMmechanisms are not sufficient

to address the face authentication attack targeted by VVSec, for the

following reasons. First, the content of the video must be decrypted

before being displayed to the end user, and it has been shown to

be feasible for the adversaries to retrieve the decrypted content in

memory by reverse-engineering the memory access pattern [79]

or through potential vulnerabilities in modern processors such as

Spectre [47], Meltdown [54], and ZombieLoad [69]. Second, even if

the confidentially of the data in memory is not compromised, the

nature of the video viewing experience determines that the video

can still be re-captured by the attacker from the screen after it is

displayed. The re-captured video can be exploited to bypass the

face authentication even with lower resolution than the original

video, as the deep learning-based face authentication is in general

non-sensitive to the resolutions of the input images. Therefore, a

content-based video obfuscation like VVSec is desirable to protect

the volumetric video before it is ever exposed to the potential attack

surfaces.

7 LIMITATIONS AND DISCUSSIONS

Despite the effectiveness of both the proposed attack and defense

mechanisms, as supported by our experimental results, VVSec at

the current stage still has a number of limitations that we would

like to discuss and explore in our future work, including the consid-

eration of the depth channel in perturbation generation, the timing

overhead, and the QoE evaluation.

Adversarial Perturbation on the Depth Channel.Most of the

adversarial attack studies to date focus on adding perturbation to

the RGB domain, instead of the depth domain. The current version

of VVSec also leverages only the RGB domain in the adversarial

perturbation generation algorithm. The aforementioned recent re-

search efforts on 3D adversarial attacks [40, 81, 82, 88] could provide

us with a viable option to enhance VVSec, e.g., by leveraging the

depth channel and further reducing the human perceivable pertur-

bations in the RGB domain, which could potentially contribute to

reducing the timing overhead as well.

Timing Overhead of Adversarial Perturbation Generation.

An obvious limitation in the current VVSec system is that the timing

overhead of generating the adversarial perturbation is relatively

high, i.e., 3 to 9 seconds per image as shown in Figure 7. This restricts

the applicability of VVSec to offline processing and VOD stream-

ing only without the support of live streaming. The high timing

overhead is caused by the iterative, optimization-based adversarial

perturbation generation process, which we plan to improve with a

brand new learning-based algorithm in the future to achieve real-

time performance required by the live streaming use case. Given the

recent advancements in real-time adversarial attacks [33, 52, 62],

we believe that the objective of real-time VVSec is feasible with the

unique challenges in the 3D domain that we aim to focus on.

QoE Evaluation. In this work, we adopt the L2 norm as the metric

to quantify the impact of the perturbation posed to the quality of the

volumetric video. Although the L2 norm is the most commonly used

and the standard metric in the deep learning community to evaluate

the quality impact of adversarial attacks [26, 73], it is still not a

standard QoE metric for video streaming in general and volumetric

video streaming in particular. As an alternative, we have explored

the possibility of using other objective QoE metrics for volumetric

video; however, at the time of writing this paper, there have been

no effective QoE metrics developed in the field of volumetric video

given that it is still an emerging research area. Such observation

is also confirmed by other researchers in the area of volumetric

video streaming [64] and in the related field of 360-degree video

streaming [24]. In our future work, we plan to further explore the

effective QoE metrics and/or conduct subjective user studies to

improve the QoE evaluation of VVSec.

8 CONCLUSION

We for the first time investigated the security and privacy issues

in volumetric video streaming originated from the rich user infor-

mation involved in the 3D objects. Our exploration began with the

development of a threat model, which compromises deep learning-

based face authentication mechanisms through effectively extract-

ing the 3D face models from the volumetric video. Then, we devel-

oped a countermeasure, namely VVSec, to secure the volumetric

video via a benign use of adversarial perturbation generation. We

showed that volumetric videos with perturbations generated by

VVSec can effectively defend against the face authentication at-

tack. Also, it poses no impact to the normal use case of volumetric

video viewed by human end users thanks to the minimum and

non-perceivable perturbations. We evaluated the effectiveness and

performance of VVSec using an empirical volumetric video, as well

as a large number of 3D face images with various poses obtained

from a RGB-D face dataset. To motivate further volumetric video

security research, we have open-sourced VVSec via a GitHub repos-

itory [19].
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