2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST) | 978-1-7281-8952-9/20/$31.00 ©2020 IEEE | DOI: 10.1109/ASIANHOST51057.2020.9358260

HybridTEE: Secure Mobile DNN Execution Using
Hybrid Trusted Execution Environment

Akshay Gangal, Mengmei Ye, and Sheng Wei
Department of Electrical and Computer Engineering
Rutgers University, Piscataway, NJ, USA
Email: {akshay .gangal, mengmei.ye, sheng. wei}@rutgers .edu

Abstract—Deep neural networks (DNNs) have been increas-
ingly adopted in many mobile applications involving security
sensitive data and inference models. Therefore, there is an
increasing demand for secure DNN execution on mobile devices.
Catering to this demand, hardware-based trusted execution
environments (TEEs), such as ARM TrustZone, have recently
been considered for secure mobile DNN execution. However, it
is challenging to run DNN models in TrustZone, due to the
stringent resource and performance limitations posed by the
mobile TEE. We develop HybridTEE, a novel hardware-based
security framework to securely execute DNNs in the resource-
constrained local TEE (i.e., ARM TrustZone), by offloading a
part of the DNN model to a resource-rich remote TEE (i.e.,
Intel SGX). HybridTEE strategically divides the DNN model into
privacy-aware local and remote partitions by employing two
privacy-oriented metrics based on object recognition and Scale
Invariant Feature Transform (SIFT). Also, it builds a trustworthy
communication channel bridging TrustZone and SGX to enable
secure offloading of the DNN model between the two TEEs. Our
security and performance evaluations on real hardware systems
show that HybridTEE can ensure the security and privacy of
the DNN model with superior execution time compared to the
non-TEE baseline.

I. INTRODUCTION

Deep neural networks (DNNs) have been widely adopted
in various mobile applications to accomplish critical inference
tasks [1]. Many of these applications interact with sensi-
tive data that require security/privacy protection, such as the
biometrics used by an authentication app and the medical
information involved in a healthcare app. In addition, the
confidentiality and integrity of the mobile DNN model itself
are subject to a variety of security threats [2], [3].

Recently, hardware-based trusted execution environments
(TEEs), such as ARM TrustZone [4], have been developed
to address mobile security challenges. TrustZone can create a
hardware-isolated secure world to protect the sensitive data,
which remains secure even if the operating system (OS) has
been compromised by an attacker. Such exclusion of OS from
the trusted computing base (TCB) makes TrustZone a strong
hardware security primitive for securing mobile DNNs.

However, it is very challenging to execute DNNs in Trust-
Zone due to the huge gap between the limited computing
resources (e.g., memory space or hardware/software accelera-
tors) in the TrustZone secure world and the high demand of
the DNN models that are both data and computation intensive.

978-1-7281-8952-9/20/$31.00 (©2020 IEEE

Although it is physically feasible to deploy more resources
into the secure world, doing so is directly against the security
principle of maintaining a small TCB and would result in
an increased level of exploitable security vulnerabilities. The
existing research efforts of executing DNN in TrustZone have
not fully addressed this challenge. For example, [5] partitions
the DNN model and runs all the partitions sequentially within
the limited memory space of TrustZone. Although the ap-
proach could meet the desired security requirement, it results
in nontrivial timing overhead in the DNN execution. Several
other approaches [6], [7], [8], [9] partition the DNN model
into a small secure component that runs in the protected TEE
and a large non-secure component that runs outside the TEE.
In this case, the non-secure component may leave traceable
information for the attacker to compromise the DNN model.

To address the security and performance challenges in
executing DNN in TrustZone, we propose to adhere to two
design principles. First, the entire DNN model must remain
in TEE to meet the security requirement. Second, for the per-
formance challenge, a second heterogeneous TEE (e.g., Intel
SGX [10]) that runs on high-performance server platforms
can be leveraged to compensate for the limited computation
resources in TrustZone. The two design principles combined
lead to our proposed solution HybridTEE, which offloads a
strategically partitioned part of the DNN to a remote Intel SGX
enclave [10]. In this way, HybridTEE ensures the security of
the DNN model as it is entirely executed in TEEs. Also, it has
the potential of significantly improving the performance given
the higher amount of computation resources and capacity in
the remote SGX enclave. HybridTEE creates a new category
of approach for secure mobile DNN execution, which bridges
TrustZone and SGX to meet the high security requirement
while achieving premium performance.

HybridTEE involves two key technical components with
novel research contributions to realize the aforementioned
design principles. First, we develop two privacy-aware parti-
tioning algorithms to eliminate the potential privacy concerns
while offloading the model from the local mobile device to the
remote server. Second, we develop a HybridTEE framework
by bridging the two singular TEEs, namely TrustZone and
SGX, via a secure handshake, which ensures that no sensitive
data stays in the clear during the secure offloading. Our
evaluations on real hardware systems justify the effectiveness
of HybridTEE in terms of security and performance.

Authorized licensed use limited to: Rutgers University. Downloaded on March 14,2021 at 18:39:28 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND: TRUSTED EXECUTION ENVIRONMENT

The security community has developed and deployed
hardware-based trusted execution environments (TEEs) to
protect sensitive computations and data [4], [10]. A TEE
provides isolated execution of the application to ensure its
confidentiality and integrity, which cannot be exploited even
if the OS has been compromised. This excludes the OS from
the trusted computing base of the system and significantly
reduces the possible attack surface. In our proposed Hybrid-
TEE framework, we primarily focus on the combination of
two TEEs: ARM TrustZone [4] for mobile devices and Intel
SGX [10] for server/PC platforms. TrustZone secures sensitive
data on ARM-based mobile devices through bus-level isolation
between the trusted secure world and the untrusted normal
world. SGX is a security extension to the Intel architecture,
which enables secure enclaves to protect sensitive data.

III. THREAT MODELS

Security Threat Model. We assume that the adversary
attempts to compromise the confidentiality and integrity of
the target DNN model, including (1) reconstructing the model
by using confidential information obtained during the model
execution; (2) uncovering the final inference results of the
model; and (3) modifying the input or model proprietary
information to alter the inference results. Note that in this
work we do not aim to enhance the security of the TEEs
themselves. Therefore, we do not consider side channel or
hardware physical attacks that were not the original design
objectives of TrustZone and SGX and thus could compromise
the security of them.

Privacy Threat Model. We also consider a privacy threat
model, where the users are concerned about their private
information (e.g., the input images) being offloaded to a
remote server and accessed by the (even non-malicious)
service provider. This requires that the images that contain
recognizable private information should not be offloaded to
the remote SGX enclave, even if the security of the enclave is
not compromised. This creates a significant challenge to the
design of the offloading mechanism in HybridTEE, which we
aim to address with the privacy-aware partitioning algorithm.

IV. PROBLEM DEFINITION: MOBILE DNN EXECUTION

A pre-trained DNN model contains proprietary information
such as runtime configuration parameters and weights. Expo-
sure of such information to an adversary could compromise
the intellectual property of the model. Also, the input data
and the final inference results are often security and privacy
sensitive as well. In order to protect the model, input data, and
inference results, it is desirable to execute the DNN model in
a hardware-based TEE [5], [7].

However, the design principle of TEE is to protect the
sensitive code/data with small TCB size [4], [10]. Such design
principle minimizes the potential security vulnerabilities of
the TEE, thus making it more challenging for attackers to
compromise. This indicates that the amount of data or code
that can be securely stored or executed in the TEE is limited.

On the other hand, the size of a DNN model is typically huge
containing 3 major components: neural network layers, weight
vectors, and input data. In particular, the weight vectors of
popular DNNs can be up to a few hundred megabytes [11].
As a comparison, the memory capacity of a typical TrustZone
implementation, such as OP-TEE [12] on Raspberry Pi 3, is
in the range of a few megabytes. The huge gap between the
demand and supply creates the research problem we aim to
address with the design of HybridTEE.

V. PRIVACY-AWARE DNN PARTITIONING

In HybridTEE, we deploy a three-way sequential parti-
tioning technique to address the aforementioned security and
performance challenges. The DNN model is divided into
3 partitions, namely LocalNet, RemoteNet, and PredNet, as
shown in Figure 1. First, LocalNet or the local partition
contains the most sensitive layers of the neural network that
are vulnerable to privacy exposure about the input data. The
code and data of LocalNet and its feed forward function
should reside in the local TEE (i.e., TrustZone) for privacy
protection. Second, RemoteNet or the remote partition contains
the next set of sequential layers in the neural network. It
is stored and executed in the remote TEE (i.e., SGX). In
order to maximize the overall performance of the application,
RemoteNet should contain the most number of layers in the
neural network, since the SGX server is a faster and more
resource-rich platform. However, due to privacy consideration,
there is critical information in the DNN model that must stay
in LocalNet, and the partition point for the transition from
LocalNet to RemoteNet is determined by our privacy-aware
partitioning algorithm that will be discussed next. Finally,
PredNet or the prediction partition contains the final layer of
the DNN that performs the final inference. This layer runs
in the local TEE (i.e., TrustZone), considering the privacy-
sensitive nature of the inference results.

LocalNet RemoteNet PredNet
Input Hidden Output
layer layers ... layer
O O~ O,
O Ve
ORI
O ™) ™\ Y Q O
AUIOGEIOK
O G N Y O
) o/
Trustzone SGX Trustzone

Fig. 1: DNN partitioning with LocalNet and PredNet running in ARM
TrustZone and RemoteNet running in Intel SGX.

Consider an N-layer DNN model with feed forward func-
tion fy : X — Y. The network partitions for LocalNet, Re-
moteNet and PredNet can be formulated as fy = fy, ©fy, ©/p,»
where fy . fy, and fy are the respective feed forward functions
of LocalNet, RemoteNet and PredNet. LocalNet obtains the
high dimensional input vector R™*"*¢ and generates the
partial outputs in the form of fj (p_point), where p_point

Authorized licensed use limited to: Rutgers University. Downloaded on March 14,2021 at 18:39:28 UTC from IEEE Xplore. Restrictions apply.

represents the partition point. These outputs are then encrypted
using symmetric encryption before being sent to RemoteNet.

fe, :f(wahxa) (1)
o, = Enc(fy, (p_point)) (2)

The encrypted outputs of LocalNet act as inputs to RemoteNet,
which decrypts the inputs, followed by computing and encrypt-
ing the results up to the (N —1)*" layer of the neural network.

fo, = Dec(fy,) 3)
fo, = Enc(fy, (N — 1)) 4)

The encrypted outputs from RemoteNet act as inputs to Pred-
Net, which decrypts the partial outputs and performs the final
prediction) based on the class labels.

Jo, = Dec(fy,) o)
y :fe = Predlabels(fep) (6)

While designing the partitioning algorithm, our key idea is
to automatically detect the privacy exposure in each layer of
the DNN model and identify the first layer that no longer
exposes privacy-sensitive information as the partition point.
While there is no common standard of privacy defined for
this domain-specific application, we consider the privacy of
the user by regarding all the original input images as privacy-
sensitive, and the intermediate inputs/outputs that could reveal
the original input images should remain in LocalNet without
being offloaded. Following this privacy model, we develop
two systematic methods to find the optimal partition point.
First, we employ an auxiliary DNN to conduct object detection
at the intermediate layers and identify potential exposure
of meaningful, identifiable information of the original input
images (discussed in Section V.A). Second, we employ the
Scale Invariant Feature Transform (SIFT) method to detect
localized keypoints in the intermediate inputs/outputs and
quantify the potential privacy exposure (discussed in Section
V.B). In both methods, the optimal partition point can be
determined as the DNN layer that results in significantly low
exposure of the input images.

A. Object Detection Using an Auxiliary DNN

The objective of the partitioning algorithm is to find the last
layer in the DNN model that is still susceptible to information
exposure about the original input images. This is based on the
assumption that the adversary is able to identify the objects
that are distinctly visible in the input/output images at an in-
termediate layer of the DNN model. We develop an algorithm
to determine such partition point by employing an auxiliary
DNN to detect the objects in the intermediate input/output
images. The auxiliary DNN acts as an adversary attempting
to classify the key objects in the intermediate images. If the
auxiliary DNN is not able to classify an images with a certain
degree of confidence, the image is then considered as free of
privacy exposure for offloading.

SIFT keypoint matches - Eagle

8 S 5
=] S =]

Descriptors Image 2

B
o
=]

0 100 200 300 400 500 600 700 800
Descriptors Image 1

Fig. 2: SIFT keypoint matching between two images.

In particular, we use YOLO [11] as the auxiliary DNN
model, which is a state-of-the-art, real-time object detection
mechanism. The YOLO model predicts the bounding boxes
using dimension clusters, with 4 coordinates for each box.
Then, each box predicts the classes that are related to the
objects present in the box with a confidence score. We run the
target DNN model offline and save the images of each channel
in every layer. Then, we feed each image into the YOLO model
to calculate its confidence score of object detection. We select
the maximum confidence score among all the channels as the
confidence score in an individual layer, and we repeat this
process over all the layers. Finally, we select the partition
point based on one of the two criteria: (1) the layer achieves
sufficiently low confidence score, or (2) the layer reaches the
cumulative memory requirement for the local TEE. The first
layer that fulfills either standard is then treated as the partition
point for the DNN model.

Let f, be the DNN model function under consideration.
Let {l;}}¥, be the layers of the DNN and {c;}{; be the
number of channels in each layer. Therefore, {{X~}< |},
are the images of respective layers and channels. Let {¢}7
be the maximum confidence scores generated at each layer
and [7cop be the cutoff layer with memory usage below TCB
threshold. With g, (c) =fy(1)(c) forall 1 < ¢ < C, we obtain
the maximum confidence score of object detection among all
channels in every layer i.e. ¢;.

N
{di}itg = max g, (Xe)

)

Then, we find the layer with the minimum confidence score
among all the layers, and compare this value to the TCB cutoff
layer l7cp. We then select the minimum value between the
two as the partition point p_point.

®)

ot — mi i el
p_poin mm(lggljv bi,lreB)

B. Scale Invariant Feature Transform

In addition to object detection, we also employ SIFT [13]
as another means of identifying the privacy exposure at in-
termediate DNN layers. SIFT is a feature detection algorithm
to detect local features or keypoints in images, which goes
through four key steps: feature detection, feature matching
and indexing, cluster identification, and model verification.
In feature detection, an image is transformed into a large

Authorized licensed use limited to: Rutgers University. Downloaded on March 14,2021 at 18:39:28 UTC from IEEE Xplore. Restrictions apply.

User = =

—_—
@ Input Image

PredNet

Top-k
entries

S

Aux DNN

LocalNet

Layer outputs

1_,

RemoteNet

Partition

point l

Darknet

Secure

Normal

Create TA ¢uem
2/ Run Darknet qum

8! Run LocalNet

4. Encrypt results e

i Run PredNet ¢

— Run TA

mumm \/erify RA status

) Send Data

mmm Receive data

1. Remote attestation (RA)

TCP/IP

Encrypted results layer X

Encrypted results layer N-1

App

Enclave

ECREATE mmss=ss) Create Enclave

~|Receive datamssssmp 5! Run RemoteNet

Darknet

ARM Trustzone

| Send data ¢msssssm 6. Encrypt results

Intel SGX

Fig. 3: System architecture and workflow of HybridTEE.

collection of feature vectors that are agnostic to image scaling
or rotation. The features are detected using a staged filtering
process to identify stable points. Each point is used to generate
a feature vector that describes the local image region [13].
In feature matching and indexing, the SIFT keys for similar
images are stored in a database to index a new object in
the image. In cluster identification, an object is recognized
in the new image by comparing to the features in the original
database. Finally, model verification uses least-squares method
to determine the closest parameters from the projected model
locations to the corresponding image locations [13].

In order to determine the similarity between two images, the
keypoints of both images are computed using a keypoint de-
scriptor. We remove the unnecessary or approximate matches
using the ratio test given by [13] and only select the matches
with distance less than 0.75x of the feature distance in the
original image. The number of matches obtained indicates the
degree of similarity between the images. Figure 2 demonstrates
the keypoints matched between the input image in the left
half of the figure and the output generated at layer 1 channel
8 in the right half. The red dots indicate the features in the
respective images, and the green lines indicate the matches
detected.

Let R1 and R2 be the two input images represented by
high dimensional vectors. Let dy be the function to compute
and detect the keypoints in the image, and Z be the keypoint
descriptor. Let g, be the function to detect the number of
matches between the images using k-nearest neighbours, and
len represents the length of the vector. We compute the
keypoint descriptors of the input image Z1 and the layer
output image Z2 using the SIFT keypoint detection function.

Z1 = dp(R1) ©9)

22 = dp(R2) (10)

Then, we determine the similarity between features by com-
paring the k-nearest neighbours of Z1 and Z2.

Z* =g, (21, 22,k) (11)

Finally, we use the ratio test to remove approximate matches
and determine the number of features matched, which repre-
sents the degree of similarity e.

e=len(Z") (12)

In order to determine the partition point, we set a threshold
on the degree of similarity 7. The layer at which ¢, < 7 is
selected as the partition point p_point.

V1. HybridTEE SYSTEM DESIGN AND IMPLEMENTATION

The key goal in the design of HybridTEE is to bridge the two
TEEs and jointly accomplish the offloading of DNN execution
in a secure manner. Figure 3 shows the architecture and
system workflow of HybridTEE, which consists of the Local
TEE (TrustZone) and the Remote TEE (SGX) with a secure
communication channel. We adopt two solutions, namely re-
mote attestation and symmetric encryption to conduct a secure
handshake between the local and remote TEEs and establish
the secure communication channel for DNN offloading. First,
we employ remote attestation [10] to authenticate the SGX en-
clave to eliminate the possibility of local TEE communicating
with a fake enclave staged by an adversary. The offloading
of the DNN execution can be initiated if and only if the
remote attestation procedure has been completed successfully.
Also, all the communications shared between the two TEEs
are encrypted to ensure confidentiality.

In our HybridTEE prototype, we adopt OP-TEE [12] as the
Local TEE. OP-TEE is an ARM TrustZone-based open source
TEE that is designed as companion to a non-secure Linux
kernel [12]. It implements the TEE Internal Core API that
acts as the secure world for trusted applications, and the TEE
client API that acts as the secure monitor. We use Darknet
[14] as the DNN implementation. We create a new trusted
application (TA) with a universally unique identifier (UUID)
for the Darknet code/data. The normal world OS can only
access the application using the UUID of the TA, which is
equivalent to the NS (non-secure) bit in TrustZone [4]. The
entire layer creation and computation code resides in the TA,
and it is encrypted before being shared with the rich OS.

Authorized licensed use limited to: Rutgers University. Downloaded on March 14,2021 at 18:39:28 UTC from IEEE Xplore. Restrictions apply.

We use an open source cryptographic library for AES-GCM
encryption with tag validation [15] and a 128-bit symmetric
key. The key has been shared between the two TEEs using
SIGMA [16] key exchange protocol before the offloading ses-
sion begins. Once shared, the key is hard coded in the secure
world of TrustZone and the enclave of SGX, which cannot
be accessed by attackers. Also, we implement a lightweight
attestation procedure in our prototype considering the limited
computation resources in TrustZone. In the remote attestation,
an enclave ID is hardcoded in the application running in both
TrustZone and SGX. A pseudorandom token is generated by
TrustZone and sent to SGX. SGX appends its enclave ID to
the token, encrypts the combined string using the previously
shared key, and sends it back to TrustZone. TrustZone decrypts
the data and verifies the token and Enclave ID. The remote
attestation process is completed if the verification is successful.

VII. EXPERIMENTAL RESULTS

We use a Raspberry Pi 3 Model B board with Quad Core
1.2GHz Broadcom BCM2837 64bit CPU and 1 GB RAM as
the mobile device. It runs OP-TEE [12] with a Linux OS
as the local TEE. Also, the remote TEE is deployed on a
server with 4-core Intel Core i7-6700 3.4GHz CPU under the
SGX hardware mode. We conduct experiments using 4 pre-
trained DNN models (i.e., Darknet19, VGG-16, Resnet152,
and GoogLeNet) from [14] and 5 test images (i.e., Eagle, Dog,
Cat, Horse, and Giraffe) from [14] and [17].

A. Security and Privacy Evaluation

In HybridTEE, the model configuration and weight vectors
are stored in the local and remote TEEs and, therefore,
the hardware-based isolation provided by TEEs ensures that
the attacker does not have access to such information to
reconstruct the neural network. From the privacy perspective,
the partitioning algorithms in HybridTEE ensure that the input
image sent to the remote TEE has minimum information
exposure about the privacy-sensitive input data from the user.
We define the degree of information exposure based on (1)
the relative ability of the auxiliary DNN model to detect the
object in the data sent to the server; and (2) the degree of
similarity between the input image and the layer output image,
determined by the number of SIFT features matched between
these images.

TABLE I: Confidence scores in the auxiliary DNN-based parti-
tioning for the first 8 layers of the Darknet19 model.

Image L1 L2 L3 L4 LS Le L7 LS8
Eagle 0.9989 09860 09716 0 0 0 0 0
Dog 09976 0.9976 0 0 0 0 0 0
Cat 0.9965 0.9963 0.9951 O 0 0 0 0
Horses 0.8172 0.8362 0.6105 O 0 0 0 0
Giraffe 0.9993 0 0 0 0 0 0 0

In the auxiliary DNN method, we assume that with a non-
zero confidence score the adversary can recover the original

input using this model. In other words, we set the confidence
score threshold at O for partitioning, to provide the strongest
privacy guarantee. Table I shows the confidence score for the
Darknet]9 model with input image size 448x448x3, which
drops to O at the output of layer 4 for all the images. It
indicates that the object detection algorithm is not able to
detect any image from all channels of layer 4 for all the 5
images under evaluation. Therefore, we select layer 4 as the
partition point. Furthermore, we observe in the experiments
with smaller image sizes (e.g., 128x128x3) that the object
detection algorithm is not able to detect the output images
in most of the layers of the 4 models. Therefore, in order
to corroborate our observation in this auxiliary DNN method,
we further employ the SIFT-based method to find the partition
points for these models.

Figure 4 shows the percentage of matched SIFT fea-
tures between the input image (with size 448x448x3)
and the intermediate images of the 4 DNN models. Let
good_featuresiqyer_img be the features of the layer output
image with distance less than 0.75x of the feature distance in
the original image, and featuresinpu_img be the total number
of features in the input image. The percentage value is

length(good_featuresiayer img) « 100

percent_match < length(featuresSinput_img

Based on the different thresholds of feature matched values,
we could select different layers as the partition point. As
shown in Figure 4, we select layer 3, layer 2, layer 1, and
layer 2 as the partition points for the 4 models when the
threshold is 5%. In our further experiments with smaller-
size images (e.g., 128x128x3), the SIFT percentage values
in most layers are less than 1%, which is consistent with what
we have observed in the auxiliary DNN method. Therefore, we
suggest employing the larger-size images (e.g., 448x448x3)
to determine the partition points in both partitioning methods
for stronger privacy protection.

B. Performance Evaluation

Table II shows the execution time (in seconds) of Hy-
bridTEE by applying the partition points based on the SIFT
results in Figure 4. The execution time consists of the total
model execution time and the communication time between the
local TEE and the remote TEE. We observe that HybridTEE
achieves speedup (1.06x to 6.20x) compared to the non-TEE
baseline (i.e., model execution on the local mobile device
without the protection of TEE) for Darknet19 and GoogLeNet.
The image size we use in the timing evaluations is 128 x 1283
due to the resource limitations of the mobile device. Note
that we are not able to run the baseline versions of VGG-16
and Resnet152 due to their high memory requirements, which
further justifies our idea of using the HybridTEE approach.

VIII. RELATED WORK

The recent developments of heterogeneous TEEs [18], [19],
[20], [21] have enabled the opportunity of secure offloading the
computation-intensive workload to accelerators (e.g., FPGA

Authorized licensed use limited to: Rutgers University. Downloaded on March 14,2021 at 18:39:28 UTC from IEEE Xplore. Restrictions apply.

(a) Darknet 19 (b) VGG-16 (c) Resnet152 (d) GoogLeNet
50 7 6
° ° © e
240 86 B j:
g 85 oo S 9
e} 5 ® 4 &
> 30 Sy s s
n o« 03 "}
g g3 g 4
520 S S 5
£ =5 22 £
T g g, 2
* ®! ® _—_.A ¥
0 - 5 2 0 — - — e 0 x .
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
DNN Layers DNN Layers DNN Layers DNN Layers
— Partition Point --- Threshold —~-Eagle =Dog ~Cat —Horses ~Giraffe

Fig. 4: Percentage of matched SIFT features between the input image and the images generated at layers 1 to 8 of the 4 DNN models.

TABLE 1I: Performance evaluation for HybridTEE.

DNN model Baseline (sec) HybridTEE (sec) Speedup

19.64
4.99

Darknet19
GoogLeNet

20.85
30.94

1.06x
6.20x

and GPU) that are still under the protection of TEE. However,
the size of TCB in the heterogeneous TEEs must be reduced
to avoid potential security vulnerabilities. To minimize the
workload of TEEs, researchers have developed several TEE-
oriented partitioning techniques [6], [7], [8], [9] to partition
and deploy the security-sensitive and non-sensitive portions of
the workload inside and outside the TEE, respectively. How-
ever, they pose a high security requirement on the partitioning
algorithm, which may result in enlarged attack surface in the
partial workload deployed outside the TEE. Different from the
prior works, HybridTEE for the first time bridges two TEEs to
reduce the workload of the local mobile TEE for secure DNN
execution, together with the privacy consideration.

IX. CONCLUSION

We have developed HybridTEE, a novel hardware-based
security framework with a combination of TrustZone and
SGX TEE platforms to securely execute DNNs. We studied
the layer-wise privacy exposure of the DNNs regarding the
input data and devised an offline partitioning strategy based
on object and feature detections. Our experiments on real
hardware systems demonstrated that HybridTEE ensured the
security and privacy of the DNN models, while speeding
up the execution time compared to the unprotected mobile
DNN execution. We have released the source code of Hybrid-
TEE [22] to motivate further research in the community.

ACKNOWLEDGMENT

We appreciate the constructive reviews provided by the
anonymous reviewers. This work was supported in part by
the National Science Foundation under Award CNS-1912593.

REFERENCES

[1] K. Ota, M. S. Dao, V. Mezaris, and F. G. B. De Natale, “Deep learning
for mobile multimedia: A survey,” ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), vol. 13, no. 3s,
pp. 34:1-34:22, 2017.

[2] F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction APIs,” in USENIX Security
Symposium (Security), 2016, pp. 601-618.

Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” in Network and Distributed
System Security Symposium (NDSS), 2018, pp. 1-15.

“ARM security technology: Building a secure system using TrustZone
technology,” 2009.

P. M. VanNostrand, I. Kyriazis, M. Cheng, T. Guo, and R. J. Walls,
“Confidential deep learning: Executing proprietary models on untrusted
devices,” in arXiv:1908.10730, 2019.

Z. Gu, H. Huang, J. Zhang, D. Su, H. Jamjoom, A. Lamba, D. Pen-
darakis, and 1. Molloy, “Confidential inference via ternary model parti-
tioning,” in arXiv:1807.00969, 2020.

F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis,
A. Cavallaro, and H. Haddadi, “DarkneTZ: Towards model privacy at the
edge using trusted execution environments,” in International Conference
on Mobile Systems, Applications, and Services (MobiSys), 2020, p.
161-174.

F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private execution
of neural networks in trusted hardware,” in International Conference on
Learning Representations (ICLR), 2019, pp. 1-19.

M. Ye, J. Sherman, W. Srisa-An, and S. Wei, “TZSlicer: Security-
aware dynamic program slicing for hardware isolation,” in International
Symposium on Hardware Oriented Security and Trust (HOST), 2018,
pp. 17-24.

“Intel software guard extensions (SGX),” 2020, https://software.intel.
com/content/www/us/en/develop/topics/software- guard-extensions.html.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 779-788.
“OP-TEE,” https://www.op-tee.org.

D. Lowe, “Object recognition from local scale-invariant features,” in
IEEE International Conference on Computer Vision (ICCV), 1999.

J. Redmon, “Darknet: Open source neural networks in C,” http://pjreddie.
com/darknet/, 2013-2016.

M. Clark, “AES-GCM,” https://github.com/michaeljclark/aes-gem, 2016.
H. Krawczyk, “SIGMA: the ‘SIGn-and-MAc’ approach to authenticated
Diffie-Hellman and its use in the IKE protocols,” in International
Cryptology Conference (CRYPTO), 2003, pp. 400-425.

J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2009, pp. 248-255.

J. Zhu, R. Hou, X. Wang, W. Wang, J. Cao, L. Zhao, F. Yuan,
P. Li, Z. Wang, B. Zhao, L. Zhang, and D. Meng, “Enabling privacy-
preserving, compute- and data-intensive computing using heterogeneous
trusted execution environment,” in arXiv:1904.04782, 2019.

M. Ye, X. Feng, and S. Wei, “HISA: hardware isolation-based secure
architecture for CPU-FPGA embedded systems,” in International Con-
ference on Computer-Aided Design (ICCAD), 2018, pp. 1-8.

S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution
environments on GPUs,” in USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2018, pp. 681-696.

R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R.
Sadeghi, and E. Stapf, “CURE: A security architecture with customiz-
able and resilient enclaves,” arXiv preprint arXiv:2010.15866, 2020.
[22] “HybridTEE,” https://github.com/hwsel/HybridTEE.

(3]

(4]
[5]

(6]

(7]

[10]
[11]
[12]
[13]
[14]
[15]
[16]

(171

[18]

[19]

[20]

[21]

Authorized licensed use limited to: Rutgers University. Downloaded on March 14,2021 at 18:39:28 UTC from IEEE Xplore. Restrictions apply.

