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Abstract—Deep neural networks (DNNs) have been increas-
ingly adopted in many mobile applications involving security
sensitive data and inference models. Therefore, there is an
increasing demand for secure DNN execution on mobile devices.
Catering to this demand, hardware-based trusted execution
environments (TEEs), such as ARM TrustZone, have recently
been considered for secure mobile DNN execution. However, it
is challenging to run DNN models in TrustZone, due to the
stringent resource and performance limitations posed by the
mobile TEE. We develop HybridTEE, a novel hardware-based
security framework to securely execute DNNs in the resource-
constrained local TEE (i.e., ARM TrustZone), by offloading a
part of the DNN model to a resource-rich remote TEE (i.e.,
Intel SGX). HybridTEE strategically divides the DNN model into
privacy-aware local and remote partitions by employing two
privacy-oriented metrics based on object recognition and Scale
Invariant Feature Transform (SIFT). Also, it builds a trustworthy
communication channel bridging TrustZone and SGX to enable
secure offloading of the DNN model between the two TEEs. Our
security and performance evaluations on real hardware systems
show that HybridTEE can ensure the security and privacy of
the DNN model with superior execution time compared to the
non-TEE baseline.

I. INTRODUCTION

Deep neural networks (DNNs) have been widely adopted

in various mobile applications to accomplish critical inference

tasks [1]. Many of these applications interact with sensi-

tive data that require security/privacy protection, such as the

biometrics used by an authentication app and the medical

information involved in a healthcare app. In addition, the

confidentiality and integrity of the mobile DNN model itself

are subject to a variety of security threats [2], [3].

Recently, hardware-based trusted execution environments

(TEEs), such as ARM TrustZone [4], have been developed

to address mobile security challenges. TrustZone can create a

hardware-isolated secure world to protect the sensitive data,

which remains secure even if the operating system (OS) has

been compromised by an attacker. Such exclusion of OS from

the trusted computing base (TCB) makes TrustZone a strong

hardware security primitive for securing mobile DNNs.

However, it is very challenging to execute DNNs in Trust-

Zone due to the huge gap between the limited computing

resources (e.g., memory space or hardware/software accelera-

tors) in the TrustZone secure world and the high demand of

the DNN models that are both data and computation intensive.

Although it is physically feasible to deploy more resources

into the secure world, doing so is directly against the security

principle of maintaining a small TCB and would result in

an increased level of exploitable security vulnerabilities. The

existing research efforts of executing DNN in TrustZone have

not fully addressed this challenge. For example, [5] partitions

the DNN model and runs all the partitions sequentially within

the limited memory space of TrustZone. Although the ap-

proach could meet the desired security requirement, it results

in nontrivial timing overhead in the DNN execution. Several

other approaches [6], [7], [8], [9] partition the DNN model

into a small secure component that runs in the protected TEE

and a large non-secure component that runs outside the TEE.

In this case, the non-secure component may leave traceable

information for the attacker to compromise the DNN model.

To address the security and performance challenges in

executing DNN in TrustZone, we propose to adhere to two

design principles. First, the entire DNN model must remain

in TEE to meet the security requirement. Second, for the per-

formance challenge, a second heterogeneous TEE (e.g., Intel

SGX [10]) that runs on high-performance server platforms

can be leveraged to compensate for the limited computation

resources in TrustZone. The two design principles combined

lead to our proposed solution HybridTEE, which offloads a

strategically partitioned part of the DNN to a remote Intel SGX

enclave [10]. In this way, HybridTEE ensures the security of

the DNN model as it is entirely executed in TEEs. Also, it has

the potential of significantly improving the performance given

the higher amount of computation resources and capacity in

the remote SGX enclave. HybridTEE creates a new category

of approach for secure mobile DNN execution, which bridges

TrustZone and SGX to meet the high security requirement

while achieving premium performance.

HybridTEE involves two key technical components with

novel research contributions to realize the aforementioned

design principles. First, we develop two privacy-aware parti-

tioning algorithms to eliminate the potential privacy concerns

while offloading the model from the local mobile device to the

remote server. Second, we develop a HybridTEE framework

by bridging the two singular TEEs, namely TrustZone and

SGX, via a secure handshake, which ensures that no sensitive

data stays in the clear during the secure offloading. Our

evaluations on real hardware systems justify the effectiveness

of HybridTEE in terms of security and performance.978-1-7281-8952-9/20/$31.00 c©2020 IEEE
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We use an open source cryptographic library for AES-GCM

encryption with tag validation [15] and a 128-bit symmetric

key. The key has been shared between the two TEEs using

SIGMA [16] key exchange protocol before the offloading ses-

sion begins. Once shared, the key is hard coded in the secure

world of TrustZone and the enclave of SGX, which cannot

be accessed by attackers. Also, we implement a lightweight

attestation procedure in our prototype considering the limited

computation resources in TrustZone. In the remote attestation,

an enclave ID is hardcoded in the application running in both

TrustZone and SGX. A pseudorandom token is generated by

TrustZone and sent to SGX. SGX appends its enclave ID to

the token, encrypts the combined string using the previously

shared key, and sends it back to TrustZone. TrustZone decrypts

the data and verifies the token and Enclave ID. The remote

attestation process is completed if the verification is successful.

VII. EXPERIMENTAL RESULTS

We use a Raspberry Pi 3 Model B board with Quad Core

1.2GHz Broadcom BCM2837 64bit CPU and 1 GB RAM as

the mobile device. It runs OP-TEE [12] with a Linux OS

as the local TEE. Also, the remote TEE is deployed on a

server with 4-core Intel Core i7-6700 3.4GHz CPU under the

SGX hardware mode. We conduct experiments using 4 pre-

trained DNN models (i.e., Darknet19, VGG-16, Resnet152,

and GoogLeNet) from [14] and 5 test images (i.e., Eagle, Dog,

Cat, Horse, and Giraffe) from [14] and [17].

A. Security and Privacy Evaluation

In HybridTEE, the model configuration and weight vectors

are stored in the local and remote TEEs and, therefore,

the hardware-based isolation provided by TEEs ensures that

the attacker does not have access to such information to

reconstruct the neural network. From the privacy perspective,

the partitioning algorithms in HybridTEE ensure that the input

image sent to the remote TEE has minimum information

exposure about the privacy-sensitive input data from the user.

We define the degree of information exposure based on (1)

the relative ability of the auxiliary DNN model to detect the

object in the data sent to the server; and (2) the degree of

similarity between the input image and the layer output image,

determined by the number of SIFT features matched between

these images.

TABLE I: Confidence scores in the auxiliary DNN-based parti-
tioning for the first 8 layers of the Darknet19 model.

Image L1 L2 L3 L4 L5 L6 L7 L8

Eagle 0.9989 0.9860 0.9716 0 0 0 0 0

Dog 0.9976 0.9976 0 0 0 0 0 0

Cat 0.9965 0.9963 0.9951 0 0 0 0 0

Horses 0.8172 0.8362 0.6105 0 0 0 0 0

Giraffe 0.9993 0 0 0 0 0 0 0

In the auxiliary DNN method, we assume that with a non-

zero confidence score the adversary can recover the original

input using this model. In other words, we set the confidence

score threshold at 0 for partitioning, to provide the strongest

privacy guarantee. Table I shows the confidence score for the

Darknet19 model with input image size 448×448×3, which

drops to 0 at the output of layer 4 for all the images. It

indicates that the object detection algorithm is not able to

detect any image from all channels of layer 4 for all the 5

images under evaluation. Therefore, we select layer 4 as the

partition point. Furthermore, we observe in the experiments

with smaller image sizes (e.g., 128×128×3) that the object

detection algorithm is not able to detect the output images

in most of the layers of the 4 models. Therefore, in order

to corroborate our observation in this auxiliary DNN method,

we further employ the SIFT-based method to find the partition

points for these models.

Figure 4 shows the percentage of matched SIFT fea-

tures between the input image (with size 448×448×3)

and the intermediate images of the 4 DNN models. Let

good featureslayer img be the features of the layer output

image with distance less than 0.75x of the feature distance in

the original image, and featuresinput img be the total number

of features in the input image. The percentage value is

percent match←
length(good featureslayer img)

length(featuresinput img)
× 100

Based on the different thresholds of feature matched values,

we could select different layers as the partition point. As

shown in Figure 4, we select layer 3, layer 2, layer 1, and

layer 2 as the partition points for the 4 models when the

threshold is 5%. In our further experiments with smaller-

size images (e.g., 128×128×3), the SIFT percentage values

in most layers are less than 1%, which is consistent with what

we have observed in the auxiliary DNN method. Therefore, we

suggest employing the larger-size images (e.g., 448×448×3)

to determine the partition points in both partitioning methods

for stronger privacy protection.

B. Performance Evaluation

Table II shows the execution time (in seconds) of Hy-

bridTEE by applying the partition points based on the SIFT

results in Figure 4. The execution time consists of the total

model execution time and the communication time between the

local TEE and the remote TEE. We observe that HybridTEE

achieves speedup (1.06x to 6.20x) compared to the non-TEE

baseline (i.e., model execution on the local mobile device

without the protection of TEE) for Darknet19 and GoogLeNet.

The image size we use in the timing evaluations is 128×128×3

due to the resource limitations of the mobile device. Note

that we are not able to run the baseline versions of VGG-16

and Resnet152 due to their high memory requirements, which

further justifies our idea of using the HybridTEE approach.

VIII. RELATED WORK

The recent developments of heterogeneous TEEs [18], [19],

[20], [21] have enabled the opportunity of secure offloading the

computation-intensive workload to accelerators (e.g., FPGA
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