

1 **Microbial production and consumption of**
2 **hydrocarbons in the global ocean**

3

4 Connor R. Love^{1*} (0000-0002-7801-3579), Eleanor C. Arrington^{1*} (0000-0002-8078-396X),
5 Kelsey M. Gosselin¹(0000-0001-5926-5415), Christopher M. Reddy²(0000-0002-7814-2071),
6 Benjamin A.S. Van Mooy² (0000-0002-2804-6508), Robert K. Nelson²(0000-0003-0534-5801),
7 David L. Valentine³(0000-0001-5914-9107)

8 *These authors contributed equally.

9 ¹Interdepartmental Graduate Program for Marine Science, University of California – Santa
10 Barbara, Lagoon Road, Santa Barbara, California 93106, United States

11 ²Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 86
12 Water Street, Woods Hole, Massachusetts 02543, United States

13 ³Department of Earth Science and Marine Science Institute, University of California – Santa
14 Barbara, Lagoon Road, Santa Barbara, California 93106, United States

15 Corresponding author: David L. Valentine, Department of Earth Science, University of
16 California, Webb Hall 2017, Santa Barbara, California 93106-9630, United States; +1-(805)-
17 893-2973, valentine@ucsb.edu

18 **ABSTRACT**

19 Seeps, spills and other oil pollution introduce hydrocarbons into the ocean. Marine
20 cyanobacteria also produce hydrocarbons from fatty acids, but little is known about the
21 size and turnover of this cyanobacterial hydrocarbon cycle. We report that cyanobacteria
22 in an oligotrophic gyre mainly produce *n*-pentadecane and that microbial hydrocarbon
23 production exhibits stratification and diel cycling in the sunlit surface ocean. Using
24 chemical and isotopic tracing we find that pentadecane production mainly occurs in the
25 lower euphotic zone. Using a multifaceted approach, we estimate that the global flux of
26 cyanobacteria produced pentadecane exceeds total oil input in the ocean by 100 to 500-fold.
27 We show that rapid pentadecane consumption sustains a population of pentadecane-
28 degrading bacteria, and possibly archaea. Our findings characterize a microbial
29 hydrocarbon cycle in the open ocean that dwarfs oil input. We hypothesize that
30 cyanobacterial hydrocarbon production selectively primes the ocean's microbiome with
31 long-chain alkanes whereas degradation of other petroleum hydrocarbons is controlled by
32 factors including proximity to petroleum seepage.

33

Introduction

34 Hydrocarbons are released into the ocean via natural oil seeps and industrial spills
35 associated with extraction, transportation and consumption of oil, totaling ~1.3 Tg per year¹.
36 Photosynthetic production also contributes hydrocarbons (C₁₅-C₁₉ alkanes and alkenes) to the
37 ocean²⁻⁵, with a hypothetical contribution that exceeds petroleum by two orders of magnitude,
38 based on scaling of a laboratory cultivation study⁶. Nonetheless, the biogeochemical cycle of
39 oceanic hydrocarbons has not been directly observed or closed and the ecological ramifications of
40 this input are scarcely considered beyond an untested hypothesis that biohydrocarbons prime the
41 oceans for consumption of petroleum⁶.

42 Our efforts focus on the North Atlantic subtropical oligotrophic gyre for which productivity
43 is dominated by hydrocarbon-producing cyanobacteria *Prochlorococcus* and *Synechococcus*⁷,
44 genera estimated to account for ~25% of the global ocean's net primary production^{8,9}. Subtropical
45 oligotrophic gyres comprise ~40% of the planet's surface^{10,11}, tend to host predominantly
46 cyanobacterial productivity⁹ (Extended Data Fig. 10), and are far from the continents and
47 associated petroleum sources that could mask the signal of cyanobacterial hydrocarbons. Here we
48 target the primary production of hydrocarbons by cyanobacteria in oligotrophic settings and the
49 associated consumption by hydrocarbon-oxidizing microbes to establish the spatial context, flux
50 and controls on the cycle. We also explore the ocean's capacity to consume petroleum-derived
51 hydrocarbons, incorporating biogeography to assess degradation capacity across a gradient from
52 open ocean to active oil seepage.

53 **Pentadecane is abundant and vertically structured in the oligotrophic ocean**

54 To investigate the abundance pattern of cyanobacterial alkanes we quantified their depth
55 distribution at seven locations in the western North Atlantic, five of which represent oligotrophic

56 conditions and two that were more nutrient replete (Fig. 1). In total, we quantified alkane
57 concentration in 441 particulate samples ($\geq 0.2 \mu\text{m}$), mainly in triplicate (Methods, Supplementary
58 Information Table 4, Extended Data Fig. 1). Pentadecane ($n\text{C}_{15}$) was the most abundant
59 hydrocarbon in each sample from the five stations located in oligotrophic waters (Fig. 1).
60 Concentrations of pentadecane ranged from 2-65 ng L^{-1} in the subtropical gyre, with maximum
61 values of $\sim 80 \text{ ng L}^{-1}$ for the Gulf Stream (station 3) and $\sim 130 \text{ ng L}^{-1}$ for a *Synechococcus* bloom
62 (station 9). Heptadecane ($n\text{C}_{17}$) was found at concentrations up to 12 ng L^{-1} but was often near our
63 detection limit of $\sim 2 \text{ ng L}^{-1}$; additionally, heptadecane was always lower in abundance than
64 pentadecane in waters off of the continental shelf. No other hydrocarbons of measurable
65 concentration were found in these samples.

66 Depth profiles of pentadecane concentration in oligotrophic waters reveal a distinctive
67 subsurface maximum that coincides with both fluorescence and cyanobacteria cell counts (Fig. 1),
68 aligning with the deep chlorophyll maximum (DCM). Concentrations above the DCM at the
69 surface are lower but detectable (10-15 ng L^{-1} in *Prochlorococcus* dominated waters), while they
70 become undetectable below the DCM (Fig. 1) near the base of the euphotic zone (150-200 m). The
71 observed coupling of pentadecane concentration with cell abundance is consistent with
72 pentadecane occurrence primarily within cyanobacterial cells¹² ($>98\%$), a finding further
73 supported by observations of diel cycling (Fig. 2c,d, Extended Data Fig. 4) and cultivation work
74 (see Methods). Heptadecane shows no coherent spatial patterns or relationships with other
75 variables likely due to the inability of our analytical procedure to measure concentrations $< 2 \text{ ng}$
76 L^{-1} with suitable precision.

77 The geographic and vertical distribution of pentadecane is consistent with the ecology of
78 *Prochlorococcus* and *Synechococcus*. The subsurface pentadecane maximum exhibits a decrease

79 in magnitude and a deepening from ~50 m in the Gulf Stream, to ~100 m at the most southerly
80 station in the North Atlantic subtropical gyre, which is reflective of *Prochlorococcus* and
81 *Synechococcus* cell abundance distributions¹³ (Fig. 1). Pentadecane was slightly decoupled from
82 cyanobacteria cell abundance at stations 6 and 7 (Fig. 1), possibly due to differential cell specific
83 hydrocarbon content for *Prochlorococcus* ecotypes at different parts of the photic zone^{6,14}.

84 **Rapid pentadecane production in the lower euphotic zone**

85 To quantify production patterns of cyanobacterial alkanes, we amended shipboard
86 incubations with ¹³C-enriched dissolved inorganic carbon (DIC) to 480‰ and quantified changes
87 in hydrocarbon concentration (Extended Data Fig. 2-3) and ¹³C enrichment of pentadecane.
88 Incubations were conducted shipboard at ambient temperature and light level (see Methods). In
89 total, we quantified alkane production in 31 samples, from five of the seven stations, mainly in
90 triplicate (see Supplementary Information Table 4). Pentadecane production varies between ~3-30
91 ng nC₁₅ L⁻¹ d⁻¹ within oligotrophic gyre waters (Fig. 2a), and has a higher maximum (~50 ng nC₁₅
92 L⁻¹ d⁻¹) in the Gulf Stream at the DCM (see Supplementary Note). For each of the (four)
93 oligotrophic stations tested (stations 4, 5, 7 and 8), volumetric pentadecane production is greatest
94 near the DCM, where approximately 1% of photosynthetically active radiation penetrates (1%
95 PAR) (Fig. 2a). Three of these stations (stations 4, 5 and 8) exhibit pentadecane production of 5-8
96 ng nC₁₅ L⁻¹ d⁻¹ at 30% PAR depths, increasing with depth to ~30 ng nC₁₅ L⁻¹ d⁻¹ at 1% PAR. (Fig.
97 2a). Diel variability in pentadecane concentration is also greatest at the DCM and 1% PAR, further
98 consistent with hotspot production there (Fig. 2c, Extended Data Fig. 4).

99 By normalizing volumetric pentadecane production to cyanobacteria abundance (*Pro.* +
100 *Syn.*), we find that 1% PAR has a higher average cellular production rate of pentadecane (0.37 ±
101 0.13 fg cell⁻¹ d⁻¹) compared to 30% and 10% PAR (0.26 ± 0.05 and 0.13 ± 0.05 fg cell⁻¹ d⁻¹,

102 respectively) (Fig. 2b), indicating that cyanobacteria at or near the DCM produce more
103 pentadecane per cell per unit time. Furthermore, steady-state pentadecane replenishment time
104 (production rate divided by concentration) calculated from ^{13}C incorporation and pentadecane
105 concentration, is approximately twice as rapid at 1% PAR compared to 10% and 30% PAR (Fig.
106 2f). It is notable that we consistently observed greater production of pentadecane in the lower
107 photic zone (1% PAR, near the DCM) than the upper photic zone (30% PAR) because depth
108 profiles of primary production in oligotrophic gyres typically have greater production closer to the
109 surface^{15,16}. The reason underlying this productivity inversion is unclear, but is potentially related
110 to a role for pentadecane in low-light and cold adaption of cyanobacteria^{12,17}.

111 Our findings of increased cell-specific pentadecane production and variability in the lower
112 euphotic zone for the North Atlantic subtropical gyre are informed by differences in per-cell
113 pentadecane content ($n\text{C}_{15}/[\text{Pro.} + \text{Syn.}]$) and dissolved nitrite concentrations. Relative importance
114 analysis for physicochemical parameters (Source Data Fig. 2) ammonium, nitrite, depth, light and
115 cyanobacterial pentadecane content (stations 4, 5, 7 and 8) in determining cell-specific production
116 rate of pentadecane revealed that per-cell pentadecane content and nitrite are the most powerful
117 and only significant predictors at 33% and 34% respectively ($n\text{C}_{15}/[\text{Pro.} + \text{Syn.}]$: $p < 0.001$, nitrite:
118 $p < 0.001$). In addition, ammonium, depth and light have 6%, 5% and 4% predictive power
119 respectively for a total predictive power of 80% ($R^2 = 0.80$). A similar predictive capacity is found
120 when the number of predictor variables was reduced to only per-cell pentadecane content and
121 nitrite concentrations (Fig. 2e). Given a constant cell growth rate, the cell-specific production rate
122 of pentadecane would be dependent on cell-specific pentadecane content, logically explaining its
123 predictive power. The reason underlying nitrite's predictive power is less clear, but it is possible

124 that low-light *Prochlorococcus* ecotypes can utilize nitrite more effectively than high-light
125 ecotypes¹⁸ driving production of pentadecane at the DCM via shoaling of the nitricline.

126 **Global geochemical budget of pentadecane**

127 Based on our measures of productivity and concentration, we sought to quantify key terms
128 in the geochemical budget of cyanobacterial pentadecane – namely global standing-stock (i.e.,
129 reservoir magnitude) and global production of pentadecane produced by *Prochlorococcus* and
130 *Synechococcus* (i.e., turnover rate or input). Importantly, we assume consumption balances
131 production (i.e., steady-state, with consumption discussed more in the following section) at the
132 regional and global scale. We focus on pentadecane production by *Prochlorococcus* and
133 *Synechococcus* because we found them to be the main drivers of the biological hydrocarbon cycle
134 in the oligotrophic ocean (see Extended Data Fig. 10). Two distinct approaches are applied for
135 each budget term, low-end values based on pentadecane stock and production rates encountered
136 in the study area (Fig. 1 and Fig. 2a) scaled by oligotrophic ocean area (method 1, representative
137 of global oligotrophic ocean contribution), and higher values based on scaling of observed cellular
138 properties (pentadecane content per cell) using a previous model⁹ (method 2, representative of
139 global cyanobacterial contribution, both outlined in Methods). The water column integrated
140 approach (method 1) is representative of the pentadecane stock in the oligotrophic gyres insomuch
141 as the locations (North Atlantic subtropical gyre) are scalable; considering population estimates⁹
142 and time series data (see Extended Data Fig. 10) we note that the Atlantic tends to have relatively-
143 low cyanobacterial abundance causing a potential low bias to method 1. We estimate the global
144 standing stock of pentadecane to be 0.70 ± 0.17 Tg by method 1 and 1.78 ± 1.24 Tg by method 2,
145 the latter of which is similar to an estimate based on laboratory cultivation⁶. We further estimate
146 the global production rate of pentadecane to be 131 ± 13 Tg pentadecane yr⁻¹ by method 1 and

147 274-649 Tg pentadecane yr^{-1} by method 2 (Supplementary Information Table 1). By comparison,
148 the total quantity of petroleum estimated to reach the ocean annually from all sources is 1.3 Tg 1 ,
149 indicating that biohydrocarbon input to the ocean exceeds petroleum input by a factor of \sim 100-
150 500. Interestingly, the global production rate of pentadecane by cyanobacteria is similar in
151 magnitude to the atmospheric release for two other important hydrocarbons: methane 19 and
152 isoprene 20,21 .

153 In order to assess the reasonableness of our measurements and global scaling we further
154 check the replenishment time of pentadecane relative to known population turnover for wild
155 *Prochlorococcus* and *Synechococcus*. Replenishment time of pentadecane was calculated from
156 independent measures of water-column integrated stock and production at 3 oligotrophic stations
157 (see Methods), yielding a value of 1.9 ± 0.5 d. This value is taken to represent the turnover time
158 of cellular pentadecane and is within the range of cellular turnover time observed for
159 environmental *Prochlorococcus* (1-2 days) – weighted slightly towards the slower environmental
160 turnover of *Synechococcus* (1-6 days) $^{8,22-25}$. Furthermore, since water column integrated turnover
161 aligns with 1% PAR replenishment time (Fig. 2f), this further bolsters our finding that the low-
162 light euphotic zone is driving most pentadecane flux, where elevated pentadecane concentrations
163 and rapid turnover coincide.

164 **Biohydrocarbon consumption decoupled from petroleum**

165 Our findings indicate a biological pentadecane cycle at steady state based on rapid
166 production, consistent concentrations, and the tight coupling to cyanobacterial physiology –
167 spanning \geq 40% of the Earth. Pentadecane and other long chain *n*-alkanes can also be major
168 components of spilled oil $^{26-28}$, and thus a priming effect has been proposed by which populations
169 of petroleum degraders are sustained in a latent hydrocarbon cycle enabling a rapid response to oil

170 spills⁶. However, petroleum contains thousands of compounds in addition to *n*-alkanes^{29–31},
171 leading us to question the extent to which steady state biohydrocarbon consumption primes the
172 ocean with a microbial community capable of rapidly consuming this myriad of other compounds.
173 Biodegradation was thus investigated to differentiate factors driving consumption of biological
174 versus petroleum hydrocarbons.

175 Ocean-going experimentation revealed that waters in the mesopelagic underlying the North
176 Atlantic subtropical gyre photic zone hosted *n*-alkane degrading bacteria that bloomed rapidly
177 when fed pentadecane, exhibiting exponential oxygen decline within ~1 week (Fig. 3). Parallel
178 experiments performed with sinking particles collected *in situ* from beneath the DCM –
179 representing an export flux of particulate phase pentadecane and its bacterial consumers from the
180 euphotic zone – exhibited similarly rapid bloom timing with pentadecane, but with greater oxygen
181 decline. Despite similar timing of respiratory blooms on pentadecane with and without particles,
182 each station and treatment displayed a distinctive bacterial response by a limited number of taxa
183 (Fig. 3f-h, Extended Data Fig. 6). Blooms on pentadecane were dominated by *Alcanivorax* at
184 station 6 and *Methylophaga* at station 3, whereas the addition of particles favored *Thalassolituus*
185 and an uncharacterized genus belonging to the family *Marinomonadaceae*, at these respective
186 stations (Fig. 3f-h).

187 Using metagenomics, we compiled genomes for the dominant organisms that bloomed on
188 pentadecane, finding sequences for *alkB* (alkane-1-monooxygenase) and *almA* (flavin-binding
189 monooxygenase) (Fig. 3h) – genes known to encode proteins that act on medium (C₅ to C₁₁) and
190 long chain *n*-alkanes (C₁₂–C₃₀) – to be common among these taxa, with up to 10 copies (*almA* +
191 *alkB*) per genome (Extended Data Fig. 9, Supplementary Information Table 2)^{32–34}. Each recovered
192 genome also encodes beta-oxidation functionality, essential for shunting alkane-derived

193 carboxylic acids into central carbon metabolism. The genomes containing the greatest number of
194 *almA + alkB* copies belong to the genera *Alcanivorax* and *Thalassolituus*, neither of which contain
195 key genes for catabolism of aromatic (*rhdA* - ring hydroxylating dioxygenases) or short chain
196 (*pHMO* - particulate hydrocarbon monooxygenase subunit A, B, C) alkanes, and both of which
197 bloomed at the North Atlantic subtropical gyre stations. We interpret these genomes to indicate a
198 specialization in long-chain *n*-alkanes (i.e., biohydrocarbons) with an undefined upper limit on the
199 carbon chain length. Testing for potential crossover catabolism to aromatic hydrocarbons using
200 the approach of González-Gaya³⁵, we also analyzed the genomes for *rhdA*, finding copies in
201 *Pseudophaoabacter*, *Flavobacteria*, *Maricaulis* and *Pseudohongiellaceae* genomes. However,
202 further analysis of protein hits for *rhdA* reveals that hits within our pentadecane-enriched taxa
203 could originate from amino acid metabolism rather than aromatic hydrocarbon catabolism and
204 point to a need to analyze *rhdA* hits in close detail before assuming hydrocarbon oxidation
205 functionality (see Supplementary Information Table 3). Despite ambiguity with the function of
206 *rhdA*, observed blooms of *n*-alkane specialists underlying the oligotrophic ocean point to a
207 decoupling between biohydrocarbons and dissimilar petroleum hydrocarbons such as aromatics.

208 To further probe alkane specialization among oligotrophic microbial populations we
209 analyzed gene abundance from the Tara Oceans dataset. The relative abundance of *alkB*-like genes
210 in the upper oligotrophic ocean (relative to the single copy gene, *recA*) was substantially greater
211 than for genes involved in the activation of other hydrocarbons including C1-C5 alkanes,
212 phenanthrene, benzene, toluene, naphthalene, xylene, cymene, and biphenyl (Supplementary Data
213 1) supporting a greater capacity for long-chain *n*-alkane degradation relative to other
214 hydrocarbons. A detailed analysis of the Tara Oceans dataset in the North Atlantic reveals *alkB*
215 related genes are abundant in the surface ocean and DCM, and are phylogenetically distinct from

216 the related delta-9 fatty acid desaturase (Extended Data Fig. 7-8). Notably, a dominant clade of
217 *alkB*-like monooxygenases belongs to the globally abundant Marine Group II (MGII) archaea
218 (with possible occurrence also in Marine Group III archaea) and is consistently present in all
219 surface and DCM stations (Extended Data Fig. 8, Supplementary Data 2). This highly successful
220 group of surface-ocean dwelling archaea is known for a chemoorganoheterotrophic lifestyle
221 targeting lipids, proteins, and amino acids^{36,37} and can utilize photoheterotrophy, but a key role in
222 biohydrocarbon cycling would be unexpected as MGII are not among the ~300 genera of bacteria
223 and archaea^{38,39} previously identified as hydrocarbon degraders.

224 We ask whether efficient turnover of pentadecane in the surface oligotrophic ocean is
225 consistent with steady-state cycling by chemoorganoheterotrophic MGII that occupy this
226 environment. To do so, we quantify the contribution of pentadecane to export flux ($1.5 \pm 0.8 \times 10^{-4}$
227 % of POC flux) from the euphotic zone at stations 2, 7 and 8, and compare the results to integrated
228 production ($1.76 \text{ mg } n\text{C}_{15} \text{ m}^{-2} \text{ d}^{-1}$) from the same three stations, finding that only $\sim 1 \times 10^{-4}$ % of
229 pentadecane production was exported below 150m. The coincidence of efficient pentadecane
230 recycling, euphotic zone niche specialization for MGII archaea, and the high prevalence of MGII
231 archaeal *alkB*-like monooxygenases in oligotrophic surface waters collectively point to a
232 potentially important role for MGII archaea in biohydrocarbon cycling. A capacity for MGII to
233 consume *n*-alkanes, coupled with an inability to outcompete bacteria in a spill scenario, is
234 consistent with existing theories of archaea's ecological specialization⁴¹ and if correct, provides a
235 further example of decoupling from petroleum, given the lack of reported MGII in oil spill bloom
236 response.

237

238

239 **Natural seeps prime petroleum hydrocarbon consumption**

240 Results from our investigation indicate that the biohydrocarbon cycle primes the ocean for
241 consumption of long-chain *n*-alkanes, but that this effect is at-least partially decoupled from the
242 consumption of petroleum hydrocarbons by bacterial *n*-alkane specialization and a possible role
243 for cosmopolitan MGII archaea. We therefore explore an alternative hypothesis, that priming for
244 petroleum hydrocarbon degradation occurs by proximity to petroleum sources. The test of this
245 biogeographic hypothesis is a bloom response experiment conducted at a single depth across seven
246 stations representing a gradient of natural oil seep intensity, spanning from the seep-ridden
247 northern Gulf of Mexico to the North Atlantic subtropical gyre⁴⁰(Fig. 3a). Pentane was used for
248 these experiments as it is a model non-biogenic compound that is unique to and abundant in
249 petroleum, a structural analog to pentadecane (linear chain with an odd number of carbons), readily
250 bioavailable based on its higher vapor pressure and aqueous solubility, relatively-low in toxicity,
251 and is known to partition to the ocean's interior following release from the seafloor^{42,43}. We find
252 the microbial response to *n*-pentane to be structured by proximity to seepage, with ~9X more rapid
253 bloom onset in the Gulf of Mexico versus the North Atlantic subtropical gyre (Fig. 3c). Notably,
254 the bloom onset for pentane underlying the North Atlantic subtropical gyre is ~10X slower than
255 for pentadecane in the same region, albeit with experiments conducted at different depths and
256 stations. Results demonstrate a clear biogeographic dependence on natural seepage for
257 biodegradation of a petroleum hydrocarbon, providing another example of decoupling between
258 petroleum versus biological hydrocarbon consumption, and pointing to source-specific priming by
259 which the capacity for rapid consumption of a petroleum-derived hydrocarbon is defined by
260 proximity to petroleum inputs.

261 Through our studies in the subtropical North Atlantic Ocean we have confirmed the
262 existence and magnitude of a cryptic hydrocarbon cycle as proposed by Lea-Smith et al.,
263 (2015). We further demonstrate a decoupling between biological alkanes and petroleum-derived
264 hydrocarbons that points to a complex interplay of chemical composition and biogeography that
265 structure the Ocean's response to oil spills. Importantly, our findings are most applicable to the
266 oligotrophic regions of the Ocean, encompassing ~40% of Earth's surface. Other oceanic regions
267 may harbor abundant Eukaryotic phytoplankton, many of which are capable of producing
268 hydrocarbons⁴⁴⁻⁴⁶. Based on our qualitative observations from productive waters on the
269 continental shelf of the Northwest Atlantic Ocean (see Supplementary Note), we expect such
270 environments to harbor a dynamic and complex hydrocarbon cycle including biological alkanes
271 and alkenes, structured in-part by proximity to continental sources and interaction with the sea
272 floor. Cryptic hydrocarbon cycling and its relationship to biogeographic structuring of microbial
273 populations represents an important factor in understanding the metabolic response capacity of the
274 oceanic microbiome to oil inputs and should be incorporated as a predictive tool in oil spill
275 response planning.

276 **Data Availability**

277 All oceanographic, chemical and cell count data is available at the Biological and Chemical
278 Oceanography Data Management Office website under project code NSF OCE-1635562
279 (doi:10.26008/1912/bco-dmo.826878.1). Metagenomes are available through NCBI in BioProject
280 PRJNA657625 (<https://www.ncbi.nlm.nih.gov/bioproject/PRJNA657625>). Databases accessed
281 were the Genome Taxonomy Database
282 (<https://data.ace.uq.edu.au/public/gtdb/data/releases/release89/89.0/>, Version r89), the Pfam

283 database (<ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam31.0>, Version 31.0) and the Ocean
284 Microbial Reference Gene Catalogue (<http://ocean-microbiome.embl.de/companion.html>).

285

286 **Code Availability Statement**

287 There is no custom code used.

288

289 **Main Text References**

290 1. National Research Council. *Oil in the Sea III*. (2003). doi:10.17226/10388

291 2. Han, J., McCarthy, E. D., Hoeven, W. V., Calvin, M. & Bradley, W. H. Organic
292 Geochemical Studies II. A Preliminary Report On The Distribution of Aliphatic
293 Hydrocarbons in Algae, in Bacteria, and in Recent Lake Sediment. *Proc. Natl. Acad. Sci.*
294 **59**, 29–33 (1968).

295 3. Li, X., del Cardayre, S. B., Popova, E., Schirmer, A. & Rude, M. A. Microbial Biosynthesis
296 of Alkanes. *Science* (80-). **329**, 559–562 (2010).

297 4. Coates, R. C., Podell, S., Korobeynikov, A., Lapidus, A. & Pevzner, P. Characterization of
298 Cyanobacterial Hydrocarbon Composition and Distribution of Biosynthetic Pathways.
299 *PLoS One* **9**, 85140 (2014).

300 5. White, H. K. *et al.* Examining inputs of biogenic and oil-derived hydrocarbons in surface
301 waters following the deepwater horizon oil spill. *ACS Earth Sp. Chem.* **3**, 1329–1337
302 (2019).

303 6. Lea-Smith, D. J. *et al.* Contribution of cyanobacterial alkane production to the ocean
304 hydrocarbon cycle. *Proc. Natl. Acad. Sci. U. S. A.* **112**, 13591–13596 (2015).

305 7. Chisholm, S. W. *et al.* A novel free-living prochlorophyte abundant in the oceanic euphotic

306 zone. *Nature* **52**, 169–173 (1988).

307 8. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the
308 biosphere: Integrating terrestrial and oceanic components. *Science (80-.)* **281**, 237–240
309 (1998).

310 9. Flombaum, P. *et al.* Present and future global distributions of the marine Cyanobacteria
311 Prochlorococcus and Synechococcus. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 9824–9829
312 (2013).

313 10. Karl, D. M. & Church, M. J. Microbial oceanography and the Hawaii Ocean Time-series
314 programme. *Nature Reviews Microbiology* **12**, 699–713 (2014).

315 11. Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean's least productive waters are
316 expanding. *Geophys. Res. Lett.* **35**, 2–6 (2008).

317 12. Lea-Smith, D. J. *et al.* Hydrocarbons are essential for optimal cell size, division, and growth
318 of Cyanobacteria. *Plant Physiol.* **172**, 1928–1940 (2016).

319 13. Cavender-Bares, K. K., Karl, D. M. & Chisholm, S. W. Nutrient gradients in the western
320 North Atlantic Ocean: Relationship to microbial community structure and comparison to
321 patterns in the Pacific Ocean. *Deep. Res. Part I-Oceanographic Res. Pap.* **48**, 2373–2395
322 (2001).

323 14. Johnson, Z. I. *et al.* Niche partitioning among Prochlorococcus ecotypes along ocean-scale
324 environmental gradients. *Science (80-.)* **311**, 1737–1740 (2006).

325 15. Grande, K. D. *et al.* Primary production in the North Pacific gyre: a comparison of rates
326 determined by the ^{14}C , O_2 concentration and ^{18}O methods. *Deep Sea Res. Part A,*
327 *Oceanogr. Res. Pap.* **36**, 1621–1634 (1989).

328 16. Karl, D. M. & Church, M. J. Ecosystem Structure and Dynamics in the North Pacific

329 Subtropical Gyre: New Views of an Old Ocean. *Ecosystems* **20**, 433–457 (2017).

330 17. Knoot, C. J. & Pakrasi, H. B. Diverse hydrocarbon biosynthetic enzymes can substitute for
331 olefin synthase in the cyanobacterium *Synechococcus* sp. PCC 7002. *Sci. Rep.* **9**, (2019).

332 18. Martiny, A. C., Kathuria, S. & Berube, P. M. Widespread metabolic potential for nitrite and
333 nitrate assimilation among *Prochlorococcus* ecotypes. *Proc. Natl. Acad. Sci. U. S. A.* **106**,
334 10787–92 (2009).

335 19. Saunois, M. *et al.* The global methane budget 2000-2017. *Earth Syst. Sci. Data* **12**, 1561–
336 1623 (2020).

337 20. Guenther, A. B. *et al.* The model of emissions of gases and aerosols from nature version 2.1
338 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions.
339 *Geosci. Model Dev.* **5**, 1471–1492 (2012).

340 21. McGinity, T. J., Crombie, A. T. & Murrell, J. C. Microbial cycling of isoprene, the most
341 abundantly produced biological volatile organic compound on Earth. *ISME J.* **12**, 931–941
342 (2018).

343 22. Vaulot, D., Marie, D., Olson, R. J. & Chisholm, S. W. Growth of *Prochlorococcus*, a
344 photosynthetic prokaryote, in the equatorial Pacific Ocean. *Science (80-.)* **268**, 1480–1482
345 (1995).

346 23. Mann, E. L. & Chisholm, S. W. Iron limits the cell division rate of *Prochlorococcus* in the
347 eastern equatorial Pacific. *Limnol. Oceanogr.* **45**, 1067–1076 (2000).

348 24. Zubkov, M. V. Faster growth of the major prokaryotic versus eukaryotic CO₂ fixers in the
349 oligotrophic ocean. *Nat. Commun.* **5**, (2014).

350 25. Liu, H. B., Campbell, L. & Landry, M. R. Growth and mortality rates of *Prochlorococcus*
351 and *Synechococcus* measured with a selective inhibitor technique. *Mar. Ecol. Prog. Ser.*

352 116, 277–288 (1995).

353 26. Head, I. M., Jones, D. M. & Larter, S. R. Biological activity in the deep subsurface and the
354 origin of heavy oil. *Nature* **426**, 344–352 (2003).

355 27. Reddy, C. M. *et al.* Composition and fate of gas and oil released to the water column during
356 the Deepwater Horizon oil spill. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 20229–20234 (2012).

357 28. Head, I. M., Jones, D. M. & Röling, W. F. M. Marine microorganisms make a meal of oil.
358 *Nature reviews. Microbiology* **4**, 173–182 (2006).

359 29. Frysinger, G. S., Gaines, R. B., Xu, L. & Reddy, C. M. Resolving the unresolved complex
360 mixture in petroleum-contaminated sediments. *Environ. Sci. Technol.* **37**, 1653–1662
361 (2003).

362 30. McKenna, A. M. *et al.* Unprecedented ultrahigh resolution FT-ICR mass spectrometry and
363 parts-per-billion mass accuracy enable direct characterization of nickel and vanadyl
364 porphyrins in petroleum from natural seeps. *Energy and Fuels* **28**, 2454–2464 (2014).

365 31. Wardlaw, G. D. *et al.* Disentangling oil weathering at a marine seep using GCxGC: Broad
366 metabolic specificity accompanies subsurface petroleum biodegradation. *Environ. Sci.
367 Technol.* **42**, 7166–7173 (2008).

368 32. Wang, W. & Shao, Z. Diversity of flavin-binding monooxygenase genes (almA) in marine
369 bacteria capable of degradation long-chain alkanes. *FEMS Microbiol. Ecol.* **80**, 523–533
370 (2012).

371 33. van Beilen, J. B., Li, Z., Duetz, W. A., Smits, T. H. M. & Witholt, B. Diversity of alkane
372 hydroxylase systems in the environment. *Oil Gas Sci. Technol.* **58**, 427–440 (2003).

373 34. Smits, T. H. M., Balada, S. B., Witholt, B. & Van Beilen, J. B. Functional analysis of alkane
374 hydroxylases from gram-negative and gram-positive bacteria. *J. Bacteriol.* **184**, 1733–1742

375 (2002).

376 35. González-Gaya, B. *et al.* Biodegradation as an important sink of aromatic hydrocarbons in
377 the oceans. *Nat. Geosci.* **12**, 119–125 (2019).

378 36. Rinke, C. *et al.* A phylogenomic and ecological analysis of the globally abundant Marine
379 Group II archaea (Ca. *Poseidoniales* ord. nov.). *ISME J.* **13**, 663–675 (2019).

380 37. Tully, B. J. Metabolic diversity within the globally abundant Marine Group II Euryarchaea
381 offers insight into ecological patterns. *Nat. Commun.* **10**, (2019).

382 38. Hazen, T. C., Prince, R. C. & Mahmoudi, N. Marine Oil Biodegradation. *Environ. Sci.*
383 *Technol.* **50**, 2121–2129 (2016).

384 39. Prince, R. C., Amande, T. J. & McGenity, T. J. Prokaryotic Hydrocarbon Degraders. in
385 *Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes* (ed.
386 McGenity, T. J.) 1–39 (Springer International Publishing, 2019). doi:10.1007/978-3-030-
387 14796-9_15

388 40. MacDonald, I. R. *et al.* Natural and unnatural oil slicks in the Gulf of Mexico. *J. Geophys.*
389 *Res. Ocean.* **120**, 8364–8380 (2015).

390 41. Valentine, D. L. Adaptations to energy stress dictate the ecology and evolution of the
391 Archaea. *Nat. Rev. Microbiol.* **5**, 316–323 (2007).

392 42. Ryerson, T. B. *et al.* Atmospheric emissions from the deepwater Horizon spill constrain air-
393 water partitioning, hydrocarbon fate, and leak rate. *Geophys. Res. Lett.* **38**, (2011).

394 43. Ryerson, T. B. *et al.* Chemical data quantify Deepwater Horizon hydrocarbon flow rate and
395 environmental distribution. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 20246–20253 (2012).

396 44. Sorigué, D. *et al.* Microalgae synthesize hydrocarbons from long-chain fatty acids via a
397 light-dependent pathway. *Plant Physiol.* **171**, 2393–2405 (2016).

398 45. Sorigué, D. *et al.* An algal photoenzyme converts fatty acids to hydrocarbons. *Science* (80-
399 .). **357**, 903–907 (2017).

400 46. Alekseenko, V. A. *et al.* Phylogeny and structure of fatty acid photodecarboxylases and
401 glucose-methanol-choline oxidoreductases. *Catalysts* **10**, 1–21 (2020).

402

403 **Corresponding author:** David L. Valentine, Department of Earth Science, University of
404 California, Webb Hall 2017, Santa Barbara, California 93106-9630, United States; +1-(805)-893-
405 2973, valentine@ucsb.edu

406

407 Acknowledgements

408 We thank Georges Paradis for analytical support; the *R/V Neil Armstrong* captain and crew for
409 support at sea; the Hawai’ian Oceanographic Time Series program and the crew of the *R/V Kilo*
410 *Moana* for enabling a preliminary study; John Hayes and Penny Chisholm for their advice on the
411 study, Justin Ossolinski, Helen Fredricks, Bethany Jenkins and Robert Swarthout for assistance on
412 the *R/V Armstrong* cruise; Tara McKinnon for assistance in dissolved inorganic carbon isotope
413 measurements; Alina Ebling for total particulate phosphate measurements; Nicole Poulton for flow
414 cytometry analysis; and Katherine Krogslund for nutrient analysis. For bioinformatic analysis, this
415 work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is
416 supported by National Science Foundation (NSF) grant number ACI-1548562. Specifically, it used
417 the Bridges system, which is supported by NSF award number ACI-1445606, at the Pittsburgh
418 Supercomputing Center (PSC). This project was supported by NSF grants OCE-1635562, OCE-
419 1536346, OCE-1756254, and OCE-1634478.

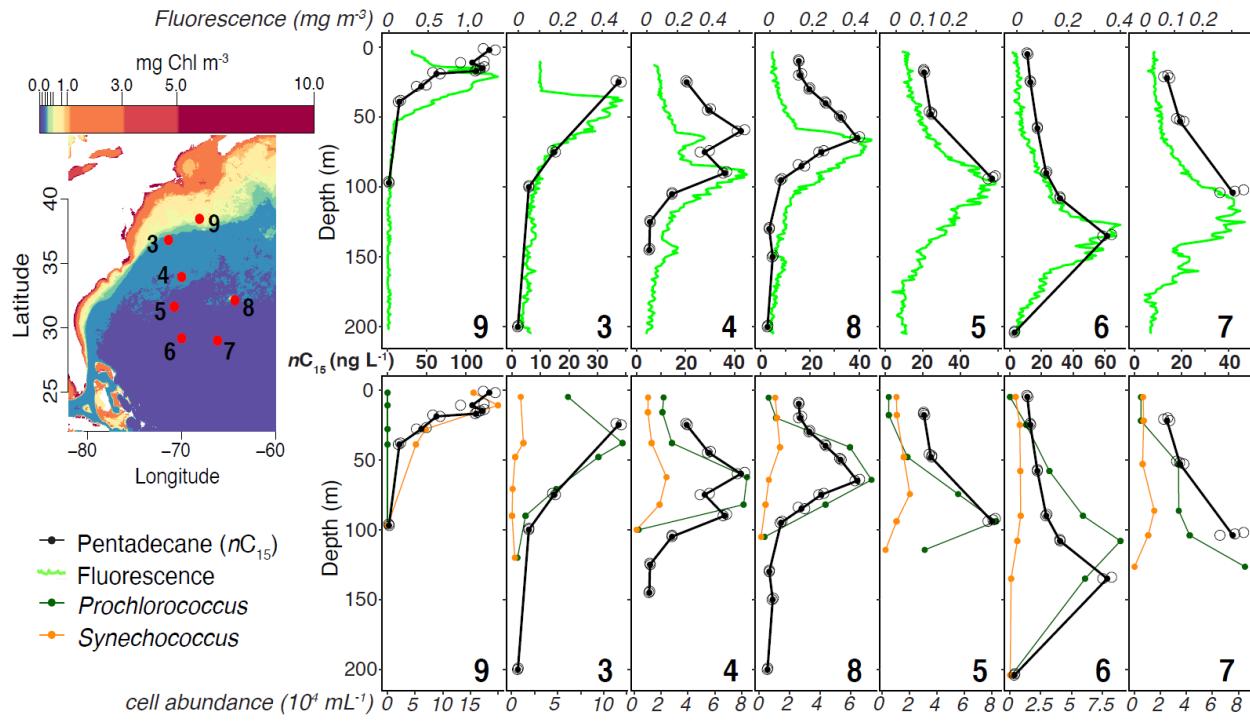
420

Author Contributions

421 C.L. and E.A. contributed equally, with C.L. contributing the organization of field experiments
422 and measurements of pentadecane production and concentration and corresponding data analysis,
423 E.A. contributed biodegradation experiments and bioinformatic work. B.V.M contributed nutrient
424 data, cell count data and sediment trap particles for experimentation. K.G. contributed towards
425 pentadecane concentration measurements. C.R. and R.N. contributed towards building
426 methodology for pentadecane quantification and two-dimensional gas chromatography quality
427 checks, respectively. D.V. contributed towards experimental design and data interpretation.

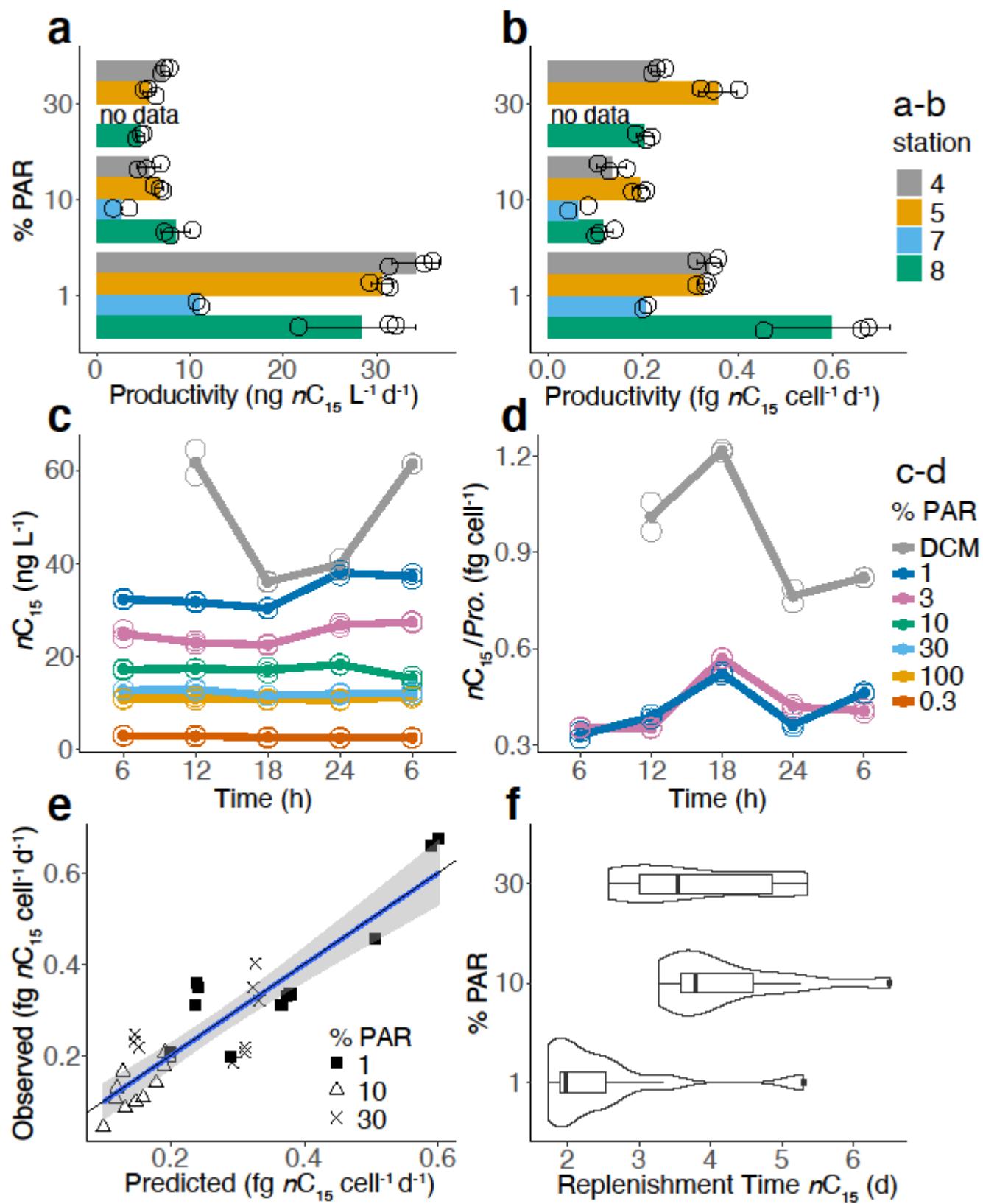
428

Competing Interest Declaration


429

There are no competing interests.

430


Additional Information

431 Supplementary Information is available for this paper. Correspondence and request for materials
432 should be addressed to David Valentine.

433

434 **Figure 1.**

435

436

Figure 2.

437

438

439

440

Figure 3.

441

442 **Figure Legends**

443 **Fig. 1. Pentadecane maps onto trends in ocean fluorescence and cyanobacteria abundance.**
 444 Study area (at left) shows station coordinates mapped onto 4-km resolution MODIS-Aqua
 445 chlorophyll concentration for 2017. Station 3 was located in the Gulf Stream and station 9 targeted
 446 a *Synechococcus* bloom, all other stations captured more “typical” *Prochlorococcus* dominated
 447 oligotrophic water. Pentadecane depth distributions for each station are displayed with
 448 fluorescence (top row) and cyanobacterial abundance (bottom row). Depth distributions are
 449 organized by descending latitude with pentadecane distribution and station number duplicated for
 450 ease of comparison. Open black circles show biologically independent pentadecane measurements,
 451 each data represents the contents of one distinct sample bottle (see Methods). Replicates are
 452 sequentially moved 1-meter below the other for visualization (water was taken from same depth,
 453 depth of top replicate), solid black circles indicate mean of $n = 2$ at stations 9, 4, 8 and 6 and
 454 represent mean of $n = 3$ for stations 3, 5 and 7 (see Supplementary Information Table 4).

455 **Fig. 2. Most pentadecane production in lower euphotic zone.** Pentadecane production and diel
 456 dynamics from ^{13}C -DIC enrichments and diel sampling grouped by light penetration depth. **a-b**
 457 Volumetric and cellular (cell = *Pro.* + *Syn.*) pentadecane production were calculated using
 458 pentadecane concentration and ^{13}C enrichment from incubation experiments (see Methods). Data
 459 displayed as open black circles with bar representing mean production rate, error bars show
 460 standard deviation for $n = 3$. **c-d** Diel change in pentadecane concentration and pentadecane per
 461 *Prochlorococcus* cell show the lower euphotic zone and particularly the Deep Chlorophyll
 462 Maximum (DCM) is most dynamic (see Extended Data Fig. 4-5), data are plotted as open circles,
 463 mean of replicates are plotted as solid circles ($n = 2$). **e** Results of a multiple linear regression ($n =$
 464 31) using nitrite and per-cell pentadecane content ($n\text{C}_{15}/[\text{Pro.} + \text{Syn.}]$) to predict cell-specific
 465 production (blue line), gray shadings indicate 95% confidence intervals; black line is 1:1. **f** A
 466 density plot overlaid on a box and whisker plot of pentadecane replenishment time, grouped by
 467 light depth (center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile
 468 range; points, outliers); replication by light depth is as follows: 30 PAR ($n = 9$), 10 PAR ($n = 11$),
 469 1 PAR ($n = 11$). For all panels, “n” describes the number of biologically independent pentadecane
 470 measurements.

471 **Fig. 3. Pentadecane rapidly consumed by specialists in waters underlying**
 472 **the oligotrophic ocean.** Microbial respiratory blooms on pentane and pentadecane quantified via
 473 contactless optical oxygen sensors, followed by metagenomic analysis. **a** Oceanographic sampling
 474 stations relative to natural petroleum seepage⁴⁰ with increasing distance from intense seepage as
 475 follows 13, 12, 11, 10, 6, 4, 3, and 2. **b-c** Occurrence and timing of respiratory blooms on pentane
 476 (petroleum proxy compound) at 1000 m with increasing distance from seepage ($n = 6$ at station
 477 13-10, $n = 8$ at station 2 and 4). Experiment duration 30 days at stations 10-13 and 115 days for
 478 stations 2 and 4. Numbers listed in white are median bloom times over the entire duration of the
 479 experiment which varied from 30 days to 115 days, assuming all bottles bloom given enough
 480 time. **d-e** Pentadecane respiration at 500 m +/- particles (solid line indicates mean, shading
 481 indicates \pm SD, $n = 6$ at station 3 and $n = 4$ at station 6). **f-g** Relative abundance of metagenomes
 482 (MAGs) at final time point of pentadecane incubations (~28 days). **h** Genome quality and
 483 metabolic potential for MAGs. Abbreviations include completion (Com); redundancy
 484 (Red); *alkB* (alkane-1-monooxygenase); *almA* (flavin-binding monooxygenase); *rhdA* (ring-

486 hydroxylating dioxygenase subunit a); and *pHMO* (particulate hydrocarbon monooxygenase
487 subunit A, B, and C). *MAG 12 is unclassified at the family and genus level therefore we have
488 listed the class and order. For panels **b-e**, “n” describes the number of biologically independent
489 incubations.

490

Online Methods

491 ***in situ* Sampling and Quantification of Hydrocarbon Production**

492 Water was collected with a rosette equipped with 12 L Niskin bottles just after sunrise (~
493 8 AM) for all sampling except for the diel experiment. Salinity, density, temperature, fluorescence
494 and percent photosynthetically active radiation (% PAR) were measured semi-continuously for
495 each hydrocast. For diel sampling, a Lagrangian framework was used by following deployed
496 particle traps set just below the DCM (150 m) and sampled at six-hour intervals through a full 24-
497 hour cycle. Sampling targeted six light-penetration levels with depths held constant following
498 initial collection, plus the DCM, which is a depth-variable feature. Water was collected from the
499 Niskin into 2 L polycarbonate bottles via a polyvinyl chloride tube equipped with a 200 μm mesh
500 to filter out large zooplankton. Precautions were taken to avoid contamination from the vessel and
501 validated with controls. For example, the entire CTD rosette was cleaned with a brush and MilliQ
502 water before the cast and was moved into a secure bay for sampling. To avoid exhaust and fumes,
503 the vessel was oriented into the wind during sampling and certain activities were disallowed during
504 sampling (i.e. smoking and painting). Control samples were collected by pouring clean MilliQ
505 water into the Niskin bottles and letting it sit for 30 minutes and then filtering the water using the
506 same procedure for all samples. No pentadecane of considerable quantity ($> 2 \text{ ng L}^{-1}$) was found
507 in control samples and thus validated efforts to minimize contamination. As a secondary check,
508 we also collected diesel from the vessel and extracted and ran the extract on the Gas
509 Chromatograph. This diesel had a distinct multi-hydrocarbon fingerprint that we did not observe
510 in any of our chromatograms. For *in situ* hydrocarbon concentration measurements, water in the 2
511 L polycarbonate bottles was immediately filtered through a 0.22 μm Teflon filter under gentle
512 vacuum with an oil-less vacuum pump. Captured particles (sediment trap deployed for 24 hr at

513 150 m) were also filtered onto 0.22 μm Teflon filters. For the hydrocarbon production experiment
514 ^{13}C -bicarbonate tracer solution (with 45 g L⁻¹ NaCl to sink the tracer to the bottom of the bottle)
515 made from ^{13}C -sodium bicarbonate (Cambridge Isotope Laboratories Inc., ^{13}C 99%) was added to
516 the 2L polycarbonate bottles to achieve a 480 ‰ enrichment in seawater DIC. Dark control bottles
517 were covered completely beforehand with aluminum foil before tracer addition and kill control
518 bottles were treated with Zinc Chloride to 2% ZnCl₂ (m/v) before tracer addition. 2 L bottles were
519 then immediately placed into black mesh bags to attenuate light to the value from which it was
520 collected (either 30%, 10% or 1% PAR) and placed into on-board seawater incubators with a
521 continuous flow of surface water; this was marked as the start of incubation. No artificial light was
522 used. Black mesh bags were made by stitching together rolls of commercial-grade neutral-density
523 window screen material⁴⁷ and photosynthetically active radiation attenuation by the bags was
524 quantified using a spherical quantum sensor (Licor). Bottles were harvested at 0-hour (initial), 5,
525 10, 20 and 30-hour (final) time points for the 30% PAR light bags and at t = 0 hour and t = 30 hour
526 final for the 10% and 1% light levels, care was taken to reduce light exposure in the ship-board
527 laboratory when preparing for incubation by placing bottles into covered tubs. A 2 mL aliquot was
528 taken for ^{13}C -DIC prior to filtration. Filters were placed into pre-combusted aluminum foil packets
529 and immediately frozen at -20° C for later analysis.

530 A preliminary culture experiment was conducted to assess the percent of all cyanobacterial
531 hydrocarbons within membranes, i.e. what percent of total cyanobacterial hydrocarbons our
532 extraction protocol was capturing. We compared two types of extractions, the modified Bligh and
533 Dyer used in this study (described below) to extract membrane lipids from cells filtered on a 0.22
534 μm Teflon filter and an extraction of frozen cell culture that includes cells and the culture medium.
535 A comparison of these results provides the proportion of hydrocarbons found within cell

536 membranes versus total hydrocarbons inclusive of those interior and exterior to cells. We
537 conducted a triplicate measurement of this ratio from a culture of *Synechocystis*. Of the two
538 hydrocarbons that *Synechocystis* makes in abundance (*n*-heptadecane and 8-heptadecene), we
539 found that $98 \pm 17\%$ of total *n*-heptadecane and $82 \pm 9\%$ of 8-heptadecene were cell associated.
540 We interpret this to mean that the majority of hydrocarbons, particularly saturated *n*-alkanes, reside
541 within the biological membranes of cyanobacteria or adsorb to particulate matter including cellular
542 necromass. This is further supported by work done by Lea-Smith et al., 2016 and the low solubility
543 of straight chain hydrocarbons 15-17 carbons in length.

544 **Hydrocarbon Extraction and Analysis**

545 A modified Bligh-Dyer⁴⁸ was used to extract hydrocarbons from membranes of frozen cells
546 collected on Teflon filters. Dodecahydrotriphenylene (internal standard) and C23 ethyl ester
547 (secondary internal standard and transesterification standard if needed) were added to the dry filter
548 before extraction. Two-thirds of the amounts of each solvent was used according to Van Mooy et
549 al. 2008 and a 10-minute sonication step was added after addition of the first solvents. An
550 additional extraction into 1.0 mL of DCM was conducted after the first lower organic phase was
551 removed to extract any remaining hydrocarbons from the filter, this was added to the first DCM
552 extract for a final extract volume of 3.0 mL of DCM. Once extracted into dichloromethane, sodium
553 sulfate was added for drying, ~40 μ L of toluene was added to prevent complete dryness of the
554 extracts and then the solution was rotary evaporated to ~30 μ L and placed into a 2 mL GC-vial
555 with a combusted glass insert. Before analysis, a small volume of C23 methyl ester (external
556 standard) was added. All glassware and solid chemicals were pre-combusted before use.
557 Concentration analysis was done on a gas chromatograph flame ionization detector (GC-FID) HP-

558 Agilent 6890 GC FID. Chromatography was performed with a 30 m x 0.25 mm ID, 0.25 μm pore
559 size, fused silica Restek 13323 Rxi-1 MS Capillary Column with a splitless 2 μL injection. Initial
560 oven temperature was at 70 $^{\circ}\text{C}$ held for 2 minutes, a 3 $^{\circ}\text{C min}^{-1}$ ramp to 120 $^{\circ}\text{C}$, then a 6 $^{\circ}\text{C min}^{-1}$
561 ramp to the final temperature of 320 $^{\circ}\text{C}$. A standard mix of pentadecane, heptadecane, internal
562 standard, external standard and transesterification standard was run to calibrate response factors
563 for every batch of samples (~20 per batch). Blanks were run every ~ six samples and peaks were
564 manually integrated, there were no co-eluting peaks for pentadecane or heptadecane in
565 oligotrophic samples (all stations but station 1 on continental shelf). Comprehensive two-
566 dimensional chromatography, GCxGC-FID and GCxGC-TOF (Time of Flight), was used on select
567 samples to check for other hydrocarbons, contaminants, and quality of blank filters run through
568 the extractive process.

569 GC \times GC-FID and –TOF chromatographic analyses were performed on Leco systems
570 consisting of an Agilent 7890A GC configured with a split/splitless auto-injector (7683B series)
571 and a dual stage cryogenic modulator (Leco, Saint Joseph, Michigan). Samples were injected in
572 splitless mode. The cold jet gas was dry N₂ chilled with liquid N₂. The hot jet temperature offset
573 was 15 $^{\circ}\text{C}$ above the temperature of the main GC oven and the inlet temperature was isothermal
574 at 310 $^{\circ}\text{C}$. Two capillary GC columns were utilized in this GC \times GC experiment. The first-
575 dimension column was a Restek Rxi-1ms, (60-m length, 0.25 mm I.D., 0.25 μm df) and second-
576 dimension separations were performed on a 50% phenyl polysilphenylene-siloxane column (SGE
577 BPX50, 1.2-m length, 0.10 mm I.D., 0.1 μm df). The temperature program of the main oven was
578 held isothermal at 50 $^{\circ}\text{C}$ (15 min) and was then ramped from 50 to 335 $^{\circ}\text{C}$ at a rate of 1.5 $^{\circ}\text{C min}^{-1}$
579¹. The second-dimension oven was isothermal at 60 $^{\circ}\text{C}$ (15 min) and then ramped from 60 to 345
580 $^{\circ}\text{C}$ at a rate of 1.5 $^{\circ}\text{C min}^{-1}$. The hot jet pulse width was 0.75 seconds, while the modulation period

581 between stages was 7.50 seconds and a 3.00 seconds cooling period, for the FID method, and 10.00
582 seconds and a 4.25 second cooling period for the TOF method. FID data was sampled at an
583 acquisition rate of 100 data points per second, while the TOF data was sampled at an acquisition
584 rate of 50 spectra per second in the mass range of 40 to 500 atomic mass units (amu). Different
585 modulation periods were used due to differences in the GC \times GC instrument, for example, the
586 GC \times GC-FID combusts the column effluent at atmospheric pressure while in the GC \times GC-TOF
587 instrument, column effluent has to move through a heated transfer line into the ion source. Since
588 the total distance between detector and secondary oven is different between these two instruments,
589 optimization of the chromatographic plane requires slight modifications to the GC \times GC methods.

590 **Compound-specific and Dissolved Inorganic Carbon Isotope Measurements**

591 Compound-specific isotope analysis was performed after concentration analysis on a gas
592 chromatograph combustion isotope ratio mass spectrometer (GC/C-IRMS) with a Trace GC
593 (Thermo Finnigan) set up to a GC-C/TC III (FinniganTM) interface and a Delta^{plus} XP isotope ratio
594 mass spectrometer (Thermo Finnigan). A J & W Scientific DB-5 Capillary column (30 m, 0.25
595 mm, 0.25 μ m) was used with 2 μ L manual injections. Temperature ramp was conducted starting
596 at 70 °C and held for 2 minutes, then a 3 °C min $^{-1}$ ramp to 120 °C, hold for 0 minutes, then a 6 °C
597 min $^{-1}$ ramp to 185 °C, hold for 0 minutes then a 120 °C min $^{-1}$ ramp to 290 °C, hold for 3 minutes.
598 Inlet temperature was 260 °C, flow rate was held at 2.2 mL He min $^{-1}$ with a splitless injection held
599 for 0.5 minutes after injection. Isotope ratio accuracy was calibrated with a C₁₄ fatty acid methyl
600 ester Schimmelmann reference material to Vienna PeeDee Belemnite. Precision was accounted for
601 with a standard mix of *n*C₁₅, *n*C₁₆ and *n*C₁₇ at \sim 1.2 ng μ L $^{-1}$ and was run between every batch of
602 \sim 20 samples. Peaks were manually integrated after establishing the baseline, analytical precision
603 was \sim 0.9 ‰ δ ¹³C for pentadecane.

604 Dissolved inorganic carbon ^{13}C isotope ratio measurements were made on a Gas Bench II
605 (Thermo Finnigan) interfaced to the same Delta^{plus} XP isotope ratio mass spectrometer (Thermo
606 Finnigan) used for the compound-specific analysis. Sample preparation and analysis were
607 followed closely to the protocol outlines by the University of California, Davis, Stable Isotope
608 Facility (<https://stableisotopefacility.ucdavis.edu/dictracegas.html>).

609 **Respiration Experiment and Analysis**

610 Pentadecane respiration incubations were conducted at station 3 ($36^{\circ}50.93'\text{N}$,
611 $71^{\circ}23.94'\text{W}$) and station 6 ($29^{\circ}4.79'\text{N}$, $69^{\circ}44.38'\text{W}$) with water collected from 500 m. Pentane
612 respiration incubations were conducted at stations 2 ($40^{\circ}9.14'\text{N}$, $68^{\circ}19.889'\text{W}$), 4 ($33^{\circ}58.21'\text{N}$,
613 $69^{\circ}43.38'\text{W}$), 10 ($27^{\circ}30.41'\text{N}$, $87^{\circ}12.41'\text{W}$), 11 ($27^{\circ}15.00'\text{N}$, $89^{\circ}05.05'\text{W}$), 12 ($27^{\circ}11.60'\text{N}$,
614 $90^{\circ}41.75'\text{W}$), and 13 ($27^{\circ}38.40'\text{N}$, $90^{\circ}54.98'\text{W}$) with water collected from 1000 m. Water from
615 the CTD Niskin bottles were transferred to 250 mL glass serum vials using a small length of Tygon
616 tubing. Vials were filled for at least three volumes of water to overflow. Care was taken to ensure
617 no bubbles were present before sealing with a Teflon coated rubber stopper and crimp cap. Abiotic
618 controls were amended with 14 g of zinc chloride prior to sealing. All bottles except for unamended
619 blank controls immediately received 10 μL of pentadecane or pentane using a gas-tight syringe
620 and were maintained in the dark at in situ temperature (15 $^{\circ}\text{C}$ for pentadecane, 4 $^{\circ}\text{C}$ for pentane).
621 Sediment traps at station 3 and 6 were deployed for 24 hours at 150 m. For each particle addition,
622 10 mL of particle laden seawater was vortexed lightly for 1 minute, then 2 mL of the vortexed
623 seawater was added to the bottom of each serum bottle with a pipet via displacement. Each serum
624 bottle was fixed with a contactless optical oxygen sensor (OXSP5, Pyroscience) on the inner side
625 with silicone glue and oxygen content was monitored approximately every 12 hours with a fiber
626 optic oxygen meter (FireStingO2, Pyroscience). Observed changes in oxygen content were

627 normalized to abiotic controls and to unamended seawater to correct for variability due to
628 temperature and background respiration not caused by alkane addition. In the case of the
629 pentadecane particle incubations, oxygen loss from particles and seawater were subtracted from
630 particle plus pentadecane treatments to isolate pentadecane respiration. Bloom onset is
631 operationally defined as three consecutive time points with oxygen loss $> 0.21 \mu\text{M h}^{-1}$. At the end
632 of each respiration experiment incubations were sacrificially harvested and filtered on a $0.22 \mu\text{m}$
633 polyethersulfone filter. DNA extraction was performed from $\frac{1}{4}$ of each filter using the PowerSoil
634 DNA Extraction kit (Qiagen) with modifications to standard protocol (see Methods). For
635 information on 16S rRNA amplification, metagenomic reconstruction, and bioinformatic analysis
636 of Tara Oceans dataset see Methods.

637 **Cell Counts and Dissolved Nutrient Analysis**

638 Sampling for nutrients and cell counts was conducted on the CTD cast immediately before
639 the casts for hydrocarbon sampling (~ 1 -hour difference), these casts were all at \sim sunrise. Parallel
640 sampling was conducted with the same cast water for the diel sampling. Flow cytometry analysis
641 was performed by the Bigelow Laboratory for Ocean Sciences using a slightly modified protocol
642 from Lomas et al., 2010⁴⁹. Samples were fixed with paraformaldehyde (0.5% final concentration)
643 and stored at $\sim 4^\circ\text{C}$ for 1-2 hours before long term storage in liquid nitrogen. An Influx cytometer
644 was used with a 488 nm blue excitation laser, appropriate Chl-a ($692 \pm 20 \text{ nm}$) and phycoerythrin
645 ($585 \pm 15 \text{ nm}$) bandpass filters, and was calibrated daily with $3.46 \mu\text{m}$ Rainbow Beads (Spherotech
646 Inc. Lake Forest, Illinois, USA). Each sample was run for 4–6 min ($\sim 0.2\text{--}0.3 \text{ ml total volume}$
647 analyzed), with log-amplified Chl-a and phycoerythrin fluorescence, and forward and right-angle
648 scatter signals recorded. Data files were analyzed from two-dimensional scatter plots based on red
649 or orange fluorescence and characteristic light scattering properties ⁵⁰ using FlowJo 9.8 Software

650 (Becton Dickinson, San Jose, CA). Pico-autotrophs were identified as either *Synechococcus* or
651 *Prochlorococcus*, pico-eukaryotes or nano-eukaryotes based upon cell size and the presence or
652 absence of phycoerythrin. Nutrients were analyzed by the University of Washington Marine
653 Chemistry Laboratory.

654 **Calculations and Analyses, Statistics and Reproducibility**

655 All statistics and points within figures were conducted with distinct samples (not replicated
656 measurements of the same sample). Pentadecane production from compound-specific isotope
657 enrichment measurements were calculated using a published equation⁵¹. The time duration used in
658 the equation was from complete set up of the incubation to completion of filtering the water
659 through the filter. The value used for ¹³C-DIC was the average of the whole dataset ($\delta^{13}\text{C} = 480\text{\textperthousand}$)
660 and the value used for unlabeled pentadecane was from a non-enriched sample ($\delta^{13}\text{C} = -20\text{\textperthousand}$)
661 because of variations in the time zero values from a slight but inevitable enrichment when bottles
662 were filtered in the laboratory (roughly one hour to filter the whole bottle in a well-illuminated
663 laboratory space).

664 Statistical analyses were conducted using R within RStudio version 1.2.1335. Statistical
665 analyses of single linear models were done using the R base stats package. Relative importance of
666 regressors in multiple linear models were found using the R package ‘relaimpo’ and the function
667 ‘calc.relimp()’. Source data is provided. Reproduction of experiments at the same station was not
668 possible due to time constraints, space on-board and resources.

669

670 **Quantification of global stock and production for cyanobacterial alkanes: Method 1**

671 Method 1 draws from direct observations of water column pentadecane stock and
672 production rates encountered in the North Atlantic subtropical gyre. We integrated the depth

673 profiles of pentadecane concentration for stations 4, 6 and 8 to calculate a mean water column
674 integrated stock of pentadecane with standard deviation and further integrated primary production
675 rates of pentadecane for stations 4, 5 and 8 from our isotope enrichment incubation experiments,
676 to obtain a mean water column production rate with standard deviation. Calculation of pentadecane
677 stock results in an average water column integrated stock of pentadecane of $3.42 \pm 0.83 \text{ mg m}^{-2}$,
678 and when scaled by the mean areal extent of the oligotrophic ocean (estimated at $204 \times 10^6 \text{ km}^2$)
679 results in a standing stock of $0.70 \pm 0.17 \text{ Tg}$ (Supplementary Information Table 1). Calculation of
680 pentadecane production rate results in $1.76 \pm 0.17 \text{ mg pentadecane m}^{-2} \text{ d}^{-1}$, which multiplied by the
681 areal extent of the oligotrophic ocean yields $131 \pm 13 \text{ Tg}$ pentadecane per year (Supplementary
682 Information Table 1).

683 To integrate pentadecane stock in the water column we integrated station 4, 6 and 8 depth
684 profiles because of suitable data coverage. Integration was performed by taking a data point to be
685 the center of a rectangle, with the ends of rectangles meeting halfway between data points on the
686 depth axis. For the data closest to the surface we assume that the stock stays at that value from the
687 depth of collection to the surface. If the deepest data is shallower than 200 m (station 4) we assume
688 that the pentadecane concentration attenuates to 0 ng L⁻¹ at 200 m depth and thus integrated the
689 area from the deepest rectangle to 200 m as a triangle. If the deepest data goes to 200 m or deeper
690 (station 6 and 8), we integrated the height of the deepest rectangle as the value of the data found
691 beyond 200 m, and chose this data to be the deepest endmember of our integration.

692 To integrate pentadecane production rate throughout the water column we used “typical”
693 oligotrophic stations that had production measurements at 30%, 10% and 1% PAR (stations 4, 5
694 and 8). All three stations had a very similar trend in productivity (Fig. 2A). We integrated by taking
695 the data to be the height (pentadecane productivity) of the rectangle and the width of the rectangle

696 (depth) to be the depth halfway between data points. Integration to the surface was done by
697 assuming that productivity remained the same from the shallowest data point to the surface. For
698 the deep endmember we chose to retain the distance between the middle (10%) and deepest (1%)
699 data points and carry the rectangle this same distance below the 1% PAR data point depth.

700 **Quantification of global stock and production for cyanobacterial alkanes: Method 2**

701 Method 2 draws from all samples with co-occurring measured pentadecane concentrations
702 as well as *Prochlorococcus* and *Synechococcus* abundance (n = 67) to establish average per cell
703 quantities of pentadecane across all our stations. We then used previously modeled global
704 populations of *Prochlorococcus* ($2.9 \pm 0.1 \times 10^{27}$) and *Synechococcus* ($7.0 \pm 0.3 \times 10^{26}$)⁹ to scale
705 our estimates for a global stock and utilized known doubling rates (1-2 days for *Prochlorococcus*,
706 1-6 days for *Synechococcus*)^{8,22-25} to scale the average per cell pentadecane content from our data
707 to estimate a global production rate.

708 To differentiate the pentadecane contributions from each genus in our data, we created a
709 multiple linear model using *Prochlorococcus* and *Synechococcus* cell counts as separate
710 independent variables, yielding values of $0.47 \pm 0.42 \text{ fg cell}^{-1}$ for *Prochlorococcus* and 0.60 ± 0.35
711 fg cell^{-1} for *Synechococcus* ($R^2 = 0.768$). These values are similar to those from pure cultures of
712 three ecotypes of *Prochlorococcus* ($0.49 \pm 0.23 \text{ fg}/\text{cell}$) and are slightly higher than reported of
713 four strains of *Synechococcus* ($0.25 \pm 0.04 \text{ fg}/\text{cell}$), also from culture⁶. From this approach we
714 estimate the global standing stock of pentadecane from *Prochlorococcus* to be $1.4 \pm 1.2 \text{ Tg}$ and
715 *Synechococcus* to be $0.42 \pm 0.25 \text{ Tg}$, for a total of $1.78 \pm 1.24 \text{ Tg}$. See Supplementary Information
716 Table 1 for estimates and comparisons to Lea-Smith et al. 2015.

717 **DNA extraction**

718 The PowerSoil DNA Extraction (Qiagen) was used according to manufactures
719 recommendations with the following modifications: 200 μ L bead beating solution was removed in
720 the initial step and replaced with phenol chloroform isoamyl alcohol, the C4 bead binding solution
721 was supplemented with 600 μ L of 100% ethanol, and we added an additional column washing step
722 with 650 μ L of 100% ethanol. Extracts were purified and concentrated with ethanol precipitation.

723 **16S rRNA gene amplification and analysis**

724 We amplified and barcoded the V4 region of the 16S rRNA gene using the method
725 described previously⁵² with small modifications to the 16Sf and 16Sr primers⁵³. Amplicon PCR
726 reactions contained 1 μ L of template DNA, 2 μ L of forward primer, 2 μ L of reverse primer, and
727 17 μ L of AccuPrime Pfx SuperMix. Thermocycling conditions consisted of 95° 2 min, 30 cycles
728 of 95°C for 20 secs, 55°C for 15 secs, 72°C for 5 min, and a final elongation at 72°C for 10 min.
729 Sample DNA concentrations were normalized using the SequelPrep Normalization Kit, cleaned
730 using the DNA Clean and Concentrator kit, visualized on an Agilent Tapestation, and quantified
731 using a Qubit fluorometer. Samples were sequenced and demultiplexed at the UC Davis Genome
732 Center on the Illumina MiSeq platform with 250nt, paired end reads. A PCR-grade water sample
733 was included in extraction, amplification, and sequencing as negative control to assess for DNA
734 contamination.

735 Trimmed fastq files were quality filtered using the fastqPairedFilter command within the
736 dada2 R package, version 1.9.3⁵⁴ with following parameters: truncLen=c(190,190), maxN=0,
737 maxEE=c(2,2), truncQ=2, rm.phix=TRUE, compress=TRUE, multithread=TRUE. Quality
738 filtered reads were dereplicated using derepFastq command. Paired dereplicated fastq files were
739 joined using the mergePairs function with the default parameters. Single Nucleotide Variant (SNV)

740 table was constructed with the makeSequenceTable command and potential chimeras were
741 removed denovo using removeBimeraDenovo. Taxonomic assignment of the sequences was done
742 with the assignTaxonomy command using the Silva taxonomic training dataset formatted for
743 DADA2 v132. If sequences were not assigned, they were left as NA.

744 **Metagenome assembly, binning, and relative abundance calculation**

745 Metagenomic library preparation and shotgun sequencing were conducted at the
746 UC Davis DNA Technologies Core. DNA was sequenced on the Illumina HiSeq4000 platform,
747 producing 150bp paired-end reads with a targeted insert size of 400bp. Quality control and adapter
748 removal was performed with Trimmomatic⁵⁵ (Version 0.36; parameters: leading 10, trailing 10,
749 sliding window of 4, quality score of 25, minimum length 151bp) and Sickle⁵⁶ (Version 1.33 with
750 paired end and sanger parameters). Concatenation of high-quality reads for replicate samples (for
751 coassembly) was conducted prior to assembly (see Supplementary Information Table 2 below for
752 more details on coassembly). The trimmed high-quality reads were assembled using
753 metaSPAdes⁵⁷ (Version 3.8.1; parameters k= 21,33, 55, 77, 88, 127). The quality of assemblies
754 was determined using QUAST⁵⁸ (Version 5.0.2 with default parameters). Sequencing coverage
755 (and differential coverage for coassemblies) was determined for each assembled scaffold by
756 mapping high-quality reads to the assembly using Bowtie2⁵⁹ (Version 2.3.4.1; default parameters)
757 with Samtools⁶⁰ (Version 1.7). Contigs greater than 2,500 bp were manually binned using Anvi'o
758 with Centrifuge^{61,62} (Version 1.0.1) based on coverage uniformity (Version 5). Quality metrics for
759 metagenome assembled genomes (MAGs) were determined using CheckM⁶³ (Version 1.0.7;
760 default parameters). The taxonomic identity of each MAG was determined using GTDB-Tk⁶⁴
761 (Version 1.0.2) against The Genome Taxonomy Database⁶⁵

762 (<https://data.ace.uq.edu.au/public/gtdb/data/releases/release89/89.0/>, Version r89). The length
763 normalized relative abundance of MAGs were determined for each sample as in Tully et. al 2018⁶⁶.

764 **Metagenomic annotation of hydrocarbon degradation genes**

765 Open reading frames were predicted for MAGs using Prodigal⁶⁷ (Version 2.6.3; default
766 parameters). Functional annotation was determined using HMMER3⁶⁸ (Version 3.1b2) against the
767 Pfam database⁶⁹ (Version 31.0) with an e-value cutoff of 1×10^{-7} and KofamScan (version 1.1.0)⁷⁰
768 against the HMM profiles for KEGG/KO with a score cutoff of 1×10^{-7} . For Figure 3H, to find
769 number of hits for *almA* we used Pfam (PF00743), for *rhdA* we used Pfam (PF00848), for *pHMO*
770 we summed Pfam hits (subunit a: PF02461, subunit b: PF04744, subunit c: PF04896).

771 For alkane-1-monooxygenase (*alkB*) we used both HMMER3 against the Pfam database
772 (PF00487) and KofamScan against the KEGG/KO hmm profiles (K00496). Each hit was
773 manually curated using Geneious Prime 2019.2.3 (<https://www.geneious.com>) to search for the
774 eight-histidine residues considered catalytically essential for function⁷¹. The base seed alignments
775 for both PF00487 and K00496 include the ancestrally related protein, fatty acid desaturase,
776 therefore we found it necessary to phylogenetically analyze each hit to determine relation to *alkB*
777 or fatty acid desaturase. Through this method we learned that the HMMER3 method with PfamID
778 PF00487 identifies more hits within each MAG for *alkB* than KofamScan with K00496; however,
779 those additional hits were generally more closely related to fatty acid desaturases than *alkB*.
780 Furthermore, the phylogenies produced are necessary to determine similarity to the related xylene
781 monooxygenase protein which acts on the methyl groups of xylene. We excluded any hits that
782 formed a well-supported monophyletic clade with xylene monooxygenase from our final number
783 of copies of *alkB*. In total, we used KofamScan with K00496 to search for *alkB*, manually curated
784 the results to ensure presence of eight-histidine residues essential for function, and

785 phylogenetically analyzed each hit for relation to *alkB* compared to fatty acid desaturase and
786 xylene monooxygenase.

787 **Phylogenetic analyses**

788 Each putative *alkB* hit was aligned using MUSCLE⁷² (Version 3.8.425). For Extended Data
789 Figure 7 all manually curated hits for *alkB* in the Tara Oceans dataset were sequentially clustered
790 by 90%, 80%, and 60% identity using H-CD-HIT⁷³. All columns with >95% gaps were removed
791 using TrimAL⁷⁴ (Version 1.2). Phylogenetic analysis of concatenated *alkB* was inferred by
792 RAxML⁷⁵ (Version 8.2.9; parameters: raxmlHPC -T 4 -s input -N autoMRE -n result -f a -p 12345
793 -x 12345 -m PROTCATLG). Resulting trees were visualized using FigTree⁷⁶ (Version 1.4.3).

794 **Extracting data from *Tara Oceans* dataset**

795 To quantify the abundance of genes involved with hydrocarbon degradation we queried the
796 Ocean Microbial Reference Gene Catalogue (OM-RGC) dataset (see [http://ocean-
797 microbiome.embl.de/companion.html](http://ocean-microbiome.embl.de/companion.html)) from the Tara Oceans expedition⁷⁷ for KEGG identifiers of
798 interest. These included genes for the activation of alkanes such as alkane-1-monooxygenase
799 (K00496), flavin-binding monooxygenase (K10215) and particulate hydrocarbon monooxygenase
800 (K10944, K10945, K10946), as well as aromatic hydrocarbons such as toluene dioxygenase
801 (K03268), naphthalene 1,2-dioxygenase (K14579, K14580, K14578, K14581), toluene methyl-
802 monooxygenase (K15757 and K15758), p-cymene methyl-monooxygenase (K10616),
803 benzene/toluene/chlorobenzene dioxygenase (K18089), and biphenyl 2,3-dioxygenase (K08689,
804 K15750). We extracted the abundance of each gene from the Tara Oceans OM-RGC profiles
805 dataset which was calculated from read counts mapped to each reference gene normalized by the
806 gene length⁷⁷. The abundance of select genes involved in hydrocarbon oxidation were analyzed

807 from the Tara Ocean dataset. The total abundance of OM-RGC sequences matching the reference
808 gene identifier was normalized to the total abundance of the single copy gene *recA* (KEGG
809 identifier: K03553), as performed in previous studies, in order to calculate abundance on a per-
810 genome level^{78,79}. The resulting data is included in Supplementary Data 1.

811 For select Tara Oceans stations we conducted further analysis of alkane-1-monooxygenase
812 to assess the diversity and abundance of the gene for oceanographic settings underlying the North
813 Atlantic subtropical gyre (Extended Data Figure 7-8). First, we took the assembled Tara Oceans⁷⁷
814 data (see <http://ocean-microbiome.embl.de/companion.html>) and used Prodigal⁶⁷ (Version 2.6.3;
815 default parameters) to identify open reading frames. The resulting protein sequences were scanned
816 for *alkB* using the above method (KofamScan for K00496, manual curation for eight-histidine
817 residues and phylogenetically analyzed). Each curated hit was assigned a taxonomic classification
818 through homology search using BLAST⁸⁰ (Version 2.7.1) against the nr (version 38 accessed
819 December 2019) (see resulting data in Supplementary Data 2). Read mapping of high quality reads
820 from each respective station using Bowtie2⁵⁹ (Version 2.3.4.1) was used to determine the
821 abundance of each unique *alkB*-like protein at each station.

822 **Methods references**

823 47. Reshkin, S. J. & Knauer, G. A. Light stimulation of phosphate uptake in natural assemblages
824 of phytoplankton. *Limnol. Oceanogr.* **24**, 1121–1124 (1979).

825 48. Van Mooy, B. A. S., Moutin, T., Duhamel, S., Rimmelin, P. & Van Wambeke, F.
826 Phospholipid synthesis rates in the eastern subtropical South Pacific Ocean. *Biogeosciences*
827 **5**, 133–139 (2008).

828 49. Lomas, M. W. *et al.* Increased ocean carbon export in the Sargasso Sea linked to climate

829 variability is countered by its enhanced mesopelagic attenuation. *Biogeosciences* **7**, 57–70
830 (2010).

831 50. Durand, M. D. & Olson, R. J. Contributions of phytoplankton light scattering and cell
832 concentration changes to diel variations in beam attenuation in the equatorial pacific from
833 flow cytometric measurements of pico-, ultra and nanoplankton. *Deep. Res. Part II Top.*
834 *Stud. Oceanogr.* **43**, 891–906 (1996).

835 51. López-Sandoval, D. C., Delgado-Huertas, A. & Agustí, S. The ^{13}C method as a robust
836 alternative to ^{14}C -based measurements of primary productivity in the Mediterranean Sea.
837 *J. Plankton Res.* **40**, 544–554 (2018).

838 52. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development
839 of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence
840 data on the miseq illumina sequencing platform. *Appl. Environ. Microbiol.* **79**, 5112–5120
841 (2013).

842 53. Caporaso, J. G. *et al.* Ultra-high-throughput microbial community analysis on the Illumina
843 HiSeq and MiSeq platforms. *ISME J.* **6**, 1621–1624 (2012).

844 54. Callahan, B. J. *et al.* DADA2: High-resolution sample inference from Illumina amplicon
845 data. *Nat. Methods* **13**, 581–583 (2016).

846 55. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina
847 sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

848 56. Joshi, N. & Fass, J. Sickle: A sliding-window, adaptive, quality-based trimming tool for
849 FastQ files (Version 1.33) [Software]. Available at <https://github.com/najoshi/sickle>. 2011
850 (2011).

851 57. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. MetaSPAdes: A new versatile

852 metagenomic assembler. *Genome Res.* **27**, 824–834 (2017).

853 58. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for
854 genome assemblies. *Bioinformatics* **29**, 1072–1075 (2013).

855 59. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods*
856 **9**, 357–359 (2012).

857 60. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–
858 2079 (2009).

859 61. Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: Rapid and sensitive
860 classification of metagenomic sequences. *Genome Res.* **26**, 1721–1729 (2016).

861 62. Eren, A. M. *et al.* Anvi'o: An advanced analysis and visualization platform for 'omics data.
862 *PeerJ* **2015**, e1319 (2015).

863 63. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM:
864 Assessing the quality of microbial genomes recovered from isolates, single cells, and
865 metagenomes. *Genome Res.* **25**, 1043–1055 (2015).

866 64. Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to
867 classify genomes with the Genome Taxonomy Database. *Bioinformatics* **36**, 1925–1927
868 (2019).

869 65. Parks, D. H. *et al.* A complete domain-to-species taxonomy for Bacteria and Archaea. *Nat.*
870 *Biotechnol.* 1–8 (2020). doi:10.1038/s41587-020-0501-8

871 66. Tully, B. J., Wheat, C. G., Glazer, B. T. & Huber, J. A. A dynamic microbial community
872 with high functional redundancy inhabits the cold, oxic subseafloor aquifer. *ISME J.* **12**, 1–
873 16 (2018).

874 67. Hyatt, D. *et al.* Prodigal: Prokaryotic gene recognition and translation initiation site

875 identification. *BMC Bioinformatics* **11**, (2010).

876 68. Eddy, S. R. Accelerated profile HMM searches. *PLoS Comput. Biol.* **7**, 1002195 (2011).

877 69. El-Gebali, S. *et al.* The Pfam protein families database in 2019. *Nucleic Acids Res.* **47**,
878 D427–D432 (2019).

879 70. Aramaki, T. *et al.* KofamKOALA: KEGG Ortholog assignment based on profile HMM and
880 adaptive score threshold. *Bioinformatics* **36**, 2251–2252 (2020).

881 71. Shanklin, J., Whittle, E. & Fox, B. G. Eight Histidine Residues Are Catalytically Essential
882 in a Membrane-Associated Iron Enzyme, Stearoyl-CoA Desaturase, and Are Conserved in
883 Alkane Hydroxylase and Xylene Monooxygenase. *Biochemistry* **33**, 12787–12794 (1994).

884 72. Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high
885 throughput. *Nucleic Acids Res.* **32**, 1792–1797 (2004).

886 73. Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT Suite: A web server for clustering
887 and comparing biological sequences. *Bioinformatics* **26**, 680–682 (2010).

888 74. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated
889 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**, 1972–1973
890 (2009).

891 75. Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of
892 large phylogenies. *Bioinformatics* **30**, 1312–1313 (2014).

893 76. Rambaut, A. FigTree v1. 4. (2012).

894 77. Sunagawa, S. *et al.* Structure and function of the global ocean microbiome. *Science* (80-.).
895 **348**, (2015).

896 78. Sosa, O. A., Repeta, D. J., DeLong, E. F., Ashkezari, M. D. & Karl, D. M. Phosphate-limited
897 ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase

898 pathway for phosphonate degradation. *Environ. Microbiol.* **21**, 2402–2414 (2019).

899 79. Martinez, A., Tyson, G. W. & DeLong, E. F. Widespread known and novel phosphonate
900 utilization pathways in marine bacteria revealed by functional screening and metagenomic
901 analyses. *Environ. Microbiol.* **12**, 222–238 (2010).

902 80. Camacho, C. *et al.* BLAST+: Architecture and applications. *BMC Bioinformatics* **10**,
903 (2009).

1 **Supplementary Information for**

2 **Microbial production and consumption of**
3 **hydrocarbons in the global ocean**

4 Connor R. Love^{1*} (0000-0002-7801-3579), Eleanor C. Arrington^{1*} (0000-0002-8078-396X),
5 Kelsey M. Gosselin¹(0000-0001-5926-5415), Christopher M. Reddy²(0000-0002-7814-2071),
6 Benjamin A.S. Van Mooy²(0000-0002-2804-6508), Robert K. Nelson²(0000-0003-0534-5801),
7 David L. Valentine³(0000-0001-5914-9107)

8 *These authors contributed equally.

9 ¹Interdepartmental Graduate Program for Marine Science, University of California – Santa
10 Barbara, Lagoon Road, Santa Barbara, California 93106, United States

11 ²Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 86
12 Water Street, Woods Hole, Massachusetts 02543, United States

13 ³Department of Earth Science and Marine Science Institute, University of California – Santa
14 Barbara, Lagoon Road, Santa Barbara, California 93106, United States

15 Corresponding author: David L. Valentine, Department of Earth Science, University of
16 California, Webb Hall 2017, Santa Barbara, California 93106-9630, United States; +1-(805)-
17 893-2973, valentine@ucsb.edu

18 **Supplementary Tables**

	Method 1	Method 2	Lea-smith et al., 2015
Stock (Tg <i>n</i>C15)	0.70 ± 0.17	1.78 ± 1.24	1.59
Production (Tg <i>n</i>C15 yr⁻¹)	131 ± 13	274-649	270-583
<i>n</i>C15 Consuming Cells (30% PAR)	20-200 cells mL ⁻¹		
<i>n</i>C15 Consuming Cells (1% PAR)	100-1000 cells mL ⁻¹		

19 **Supplementary Information Table 1:** Global reservoirs and fluxes of pentadecane and estimates
 20 of a supported bacterial or archaeal community relying solely on pentadecane. We assume a
 21 conversion efficiency range (pentadecane to biomass) of 5-50%, a dry carbon mass of hydrocarbon
 22 degrading cells of 120 fg C/cell¹, and a cellular turnover rate of 0.1 d⁻¹ (see Supplementary Note
 23 for additional details).

MAG name	Assembly Method (sample ID)	Comp. (%)	Red. (%)	# Contigs	N50 (bp)	GC Content	Length (bp)	Taxonomy
1_P54_P55_methylophagaceae	Coassembly (54 + 55)	82.1	0.9	211	25666	45.2	2556684	d Bacteria;p Proteobacteria;c Gammaproteobacteria;o Nitrosoccales;f Methylophagaceae;g Methylophaga;s Methylophaga sp002696735
2_P54_P55_saccharospirillaceae	Coassembly (54 + 55)	98.5	1.6	45	126959	46.7	3730513	d Bacteria;p Proteobacteria;c Gammaproteobacteria;o Pseudomonadales;f Saccharospirillaceae;g Thalassolituus;s Thalassolituus oleivorans
3_P61_P62_methylophagaceae	Coassembly (61 + 62)	95.4	1.2	94	44824	45.8	2556822	d Bacteria;p Proteobacteria;c Gammaproteobacteria;o Nitrosoccales;f Methylophagaceae;g Methylophaga;s Methylophaga thiooxydans
4_P61_P62_pseudohongiellaceae	Coassembly (61 + 62)	95.4	1.3	74	79032	53.3	2910293	d Bacteria;p Proteobacteria;c Gammaproteobacteria;o Pseudomonadales;f Pseudohongiellaceae;g OM182;s OM182 sp001438145
5_P61_P62_marinomonadaceae	Coassembly (61 + 62)	100	1.5	17	479598	42.5	4846406	d Bacteria;p Proteobacteria;c Gammaproteobacteria;o Pseudomonadales;f Marinomonadaceae;g ;s unknown
6_P61_P62_rhodobacteraceae	Coassembly (61 + 62)	99.7	0.7	40	243772	59.1	4474503	d Bacteria;p Proteobacteria;c Alphaproteobacteria;o Rhodobacterales;f Rhodobacteraceae;g Pseudophaeobacter;s unknown
7_P61_P62_flavobacteriaceae	Coassembly (61 + 62)	99.7	0.0	23	267233	33.0	2816890	d Bacteria;p Bacteroidota;c Bacteroidia;o Flavobacteriales;f Flavobacteriaceae;g Winogradskylle;s Winogradskylle sp002163855
8_P98_alcanivoracaceae	Single assembly (98)	95.5	0.0	25	422209	58.3	3726153	d Bacteria;p Proteobacteria;c Gammaproteobacteria;o Pseudomonadales;f Alcanivoracaceae;g Alcanivorax;s Alcanivorax sp00155615
9_P100_alcanivoracaceae	Single assembly (100)	99.6	0.7	27	1001868	58.0	4606115	d Bacteria;p Proteobacteria;c Gammaproteobacteria;o Pseudomonadales;f Alcanivoracaceae;g Alcanivorax;s Alcanivorax sp00155615
10_P100_P98_flavobacteriaceae	Coassembly (98 + 100)	90.0	0.4	64	56874	40.5	2497634	d Bacteria;p Bacteroidota;c Bacteroidia;o Flavobacteriales;f Flavobacteriaceae;g LPB0005;s unknown
11_P100_P98_maricaulaceae	Coassembly (98 + 100)	97.7	0.7	44	108979	64.1	3165928	d Bacteria;p Proteobacteria;c Alphaproteobacteria;o Caulobacterales;f Maricaulaceae;g Maricaulis;s unknown
12_P102_P105_flavobacteriales	Coassembly (102 + 105)	98.2	0.3	219	35785	44.3	3641863	d Bacteria;p Bacteroidota;c Bacteroidia;o Flavobacteriales;f UA16;g ;s unknown
13_P102_P105_crocinitomicaceae	Coassembly (102 + 105)	97.8	2.8	115	59205	41.1	3641863	d Bacteria;p Bacteroidota;c Bacteroidia;o Flavobacteriales;f Crocinitomicaceae;g UBA4466;s unknown
14_P102_P105_flavobacteriaceae	Coassembly (102 + 105)	97.9	1.7	132	29412	31.1	2365969	d Bacteria;p Bacteroidota;c Bacteroidia;o Flavobacteriales;f Flavobacteriaceae;g SCGC-AAA160-P02;s unknown
15_P102_P105_maricaulaceae	Coassembly (102 + 105)	99.5	0.0	8	627500	62.7	3372584	d Bacteria;p Proteobacteria;c Alphaproteobacteria;o Caulobacterales;f Maricaulaceae;g Maricaulis;s Maricaulis maris
16_P105_saccharospirillaceae	Single assembly (105)	99.0	1.8	45	122390	46.6	3878442	d Bacteria;p Proteobacteria;c Gammaproteobacteria;o Pseudomonadales;f Saccharospirillaceae;g Thalassolituus;s Thalassolituus oleivorans

24 **Supplementary Information Table 2:** Metagenome assembled genome (MAG) information and
 25 statistics. Quality metrics for MAGs were determined using CheckM² (Version 1.0.7; default
 26 parameters). The taxonomic identity of each MAG was determined using GTDB-Tk³ (Version
 27 1.0.2) against The Genome Taxonomy Database⁴ (Version r89).

Metagenome	Contig#_ORF#	Assigned KO ID	KO Threshold	Hmmsearch Score	E-value	KO definition
14_P102_P105_flavobacteriaceae	c_000000000444_9	K00499	313.87	319.3	2.00E-99	choline monooxygenase
15_P102_P105_maricaulaceae	c_000000000002_229	K00499	313.87	367	6.30E-114	choline monooxygenase
4_P61_P62_pseudohongiellaceae	c_000000000337_16	K00499	313.87	173.9	2.60E-55	choline monooxygenase
6_P61_P62_rhodobacteraceae	c_000000000007_301	K00479	305.97	552.6	2.30E-170	glycine betaine catabolism
6_P61_P62_rhodobacteraceae	c_000000000010_117	K00479	305.97	269.4	2.40E-84	glycine betaine catabolism
6_P61_P62_rhodobacteraceae	c_000000000010_118	K00479	305.97	269.8	1.80E-84	glycine betaine catabolism

28 **Supplementary Information Table 3:** Further analysis of hits for *rhdA* (ring-hydroxylating
 29 dioxygenase subunit A) within metagenomes. KofamScan against the Kegg database hmms was
 30 performed for each hit to PF00848 (ring-hydroxylating dioxygenase subunit A). Resulting Kegg
 31 Orthology (KO) IDs and definitions indicate *rhdA* hits are for genes related to amino acid
 32 metabolism and catabolism. This is explained by the seed alignment for PF00848 (*rhdA*) including
 33 dioxygenases for aromatic hydrocarbon catabolism as well as genes for cytochrome P450
 34 oxidoreductase, glutathione S-transferase, choline monooxygenase, proline dehydrogenase, as
 35 well as fairly ambiguous genes containing Rieske-type iron-sulfur clusters.

Analysis/experiment	Pentadecane Concentration	Pentadecane Production	Particle Pentadecane Content	Nutrients, cell counts	Pentane Respiration	Pentadecane Respiration and Metagenomics
Station 1 (40°25.273' N, 68°11.855' W)	--	--	--	100%, 30%, 10%, 3%, 1%, 0.3% PAR	--	--
Station 2 (40°9.14' N, 68°19.889' W)	--	--	150 m	100%, 30%, 10%, 3%, 1%, 0.3% PAR	1000 m	--
Station 3 (36°52.17' N, 71°23.94' W)	30%, 10%, 1% PAR	30%, 10% PAR	--	100%, 30%, 10%, 3%, 1%, 0.3% PAR	--	500 m
Station 4 (33°59.929' N, 69°58.014' W)	30%, 10%, 1% PAR and 25 m, 45 m, 60 m, 75 m, 90 m, 105 m, 125 m, 145 m	30%, 10%, 1% PAR	--	100%, 30%, 10%, 3%, 1%, 0.3% PAR	1000 m	--
Station 5 (31°41.34' N, 70°46.106' W)	30%, 10%, 1% PAR	30%, 10%, 1% PAR	--	100%, 30%, 10%, 3%, 1%, 0.3% PAR	--	--
Station 6 (29°14.038' N, 69°58.497' W)	100%, 30%, 10%, 3%, 1%, 0.3% PAR and DCM	--	--	100%, 30%, 10%, 3%, 1%, 0.3% PAR and DCM	--	500 m
Station 7 (29°2.682' N, 66°3.110' W)	30%, 10%, 1% PAR	10%, 1% PAR	150 m	100%, 30%, 10%, 3%, 1%, 0.3% PAR	--	--
Station 8 <i>BATS location</i> (32°10.815' N, 64°09.807' W)	30%, 10%, 1% PAR and 10 m, 20 m, 30 m, 40 m, 50 m, 65 m, 75 m, 85 m, 95 m, 130 m, 150 m, 200 m, 700 m	30%, 10%, 1% PAR	150 m	100%, 30%, 10%, 3%, 1%, 0.3% PAR	--	--
Station 9 (38°30.74' N, 68°0.890' W)	100%, 30%, 10%, 3%, 1%, 0.3% PAR and DCM	--	--	100%, 30%, 10%, 3%, 1%, 0.3% PAR	--	--
Station 10 <i>Gulf of Mexico</i> (27°30.41' N, 87°12.41' W)	--	--	--	1000 m	1000 m	--
Station 11 <i>Gulf of Mexico</i> (27°15.00' N, 89°05.05' W)	--	--	--	1000 m	1000 m	--
Station 12 <i>Gulf of Mexico</i> (27°11.60' N, 90°41.75' W)	--	--	--	1000 m	1000 m	--
Station 13 <i>Gulf of Mexico</i> (27°38.40' N, 90°54.98' W)	--	--	--	1000 m	1000 m	--

36

37

38

39

40

41

42

43

44

45

46

47

Supplementary Information Table 4: Overview of oceanographic experiments. This table indicates each type of analysis conducted in this study at each of the 13 stations and the depths/light levels at each station where seawater was collected. Pentadecane concentration analysis was conducted at $n = 2$ replication for all depths described as “meters” for depth profiles and station 9 and 6, the remainder were conducted in $n = 3$ biologically independent replication. Pentadecane production measurements were generally conducted in $n = 3$ replication except for station 3 ($n = 2$ for 30% PAR, $n = 1$ for 10% PAR). Pentadecane content of particles were quantified at $n = 1$ replication. Cell counts and nutrients were conducted at $n = 1$ replication. All respiration experiments were conducted in $n=6$ and metagenomics was used at $n=2$ replication. See Extended Data Figure 8b for information regarding Tara Oceans alkane-1-monooxygenase analysis. Key to abbreviations and symbols: -- indicates no measurements were taken; m stands for meters and

48 indicates a sampling depth; % PAR indicates the light penetration depth at which samples were
49 collected and the light attenuation level used for the corresponding incubation experiments; DCM
50 refers to the sampling targeted to the deep chlorophyll maximum.

51 **Supplementary Note**

52 **Chemical extraction and data quality check**

53 We performed 441 chemical extractions of hydrocarbons from 441 individual filters.
54 Extraction efficiency, defined as the percent recovery of the internal standard
55 dodecahydrotriphenylene (DDTP), averaged 83.9% with a standard deviation of 16.7% (Extended
56 Data Fig. 1a). Overall, replicates (as triplicates for production experiments or duplicates for depth
57 profiles) showed high precision (average standard deviation = 3 ng L⁻¹ pentadecane), with only 6
58 replicates having a standard deviation > 11 ng L⁻¹ pentadecane (Extended Data Fig. 1b). Larger
59 standard deviations within replicates were associated with larger cyanobacteria cell abundances
60 (Extended Data Fig. 1d) and thus pentadecane concentrations. Analysis of these replicates revealed
61 that two of them contained an outlier well explained by human error when compared to five other
62 environmentally identical samples and were thus excluded from further use. The other two data
63 were associated with very large pentadecane concentration (~100 ng/L) and thus had lower
64 standard error; they showed no obvious human error and we chose to keep these data. All other
65 data showed no clear issues with extraction or sampling procedures.

66 **Pentadecane concentration**

67 In this work pentadecane concentration is expressed as mass per volume of filtered
68 seawater. However, it is important to note that pentadecane (and heptadecane) is interpreted to

69 reside primarily in the membranes of cells in the particulate phase⁵. Thus, these units do not
70 represent a truly dissolved chemical compound.

71 **Pentadecane production in the Gulf Stream**

72 The sampling station located in the Gulf Stream exhibited high production at 10% PAR
73 ($50 \text{ ng } n\text{C}_{15} \text{ L}^{-1} \text{ d}^{-1}$), which aligned with the DCM at ~ 50 m (Fig. 1). In contrast, the “true”
74 oligotrophic stations exhibited a 1% PAR depth usually aligning close to the DCM (within ~ 15
75 m). Furthermore, a large *Prochlorococcus* population was seen with higher nitrite concentrations
76 at 10% PAR in the Gulf Stream compared to the “true” oligotrophic stations. Station 7 exhibited
77 lower production at 1% PAR ($10 \text{ ng } n\text{C}_{15} \text{ L}^{-1} \text{ d}^{-1}$) compared to other oligotrophic stations (Fig. 3a)
78 likely due to a comparatively smaller *Prochlorococcus* population at this depth and extremely low
79 nutrients. These anomalies are well reconciled in the multiple linear model predicting cell-specific
80 production rates from dissolved nitrite and cellular pentadecane content (Fig. 2e).

81 **Continental shelf waters**

82 Station 1 was the sole station located in eutrophic waters on the continental shelf. These
83 waters are dominated by eukaryotic phytoplankton and thus were not the focus of our study.
84 Furthermore, we did not utilize a $200 \mu\text{m}$ mesh to catch large zooplankton at this station and as a
85 result observed variable amounts of zooplankton in our 2L samples. Additionally, we observed a
86 chromatographic coelution in these samples with both heptadecane and our internal standard,
87 DDTP. We found that heptadecane was present at higher concentrations than in nutrient poor
88 waters and was always higher in concentration than pentadecane at this station (although with a
89 similar $\sim 3:1$ ratio), consistent with eukaryotic-derived octadecanoic acid (stearic acid) as the
90 precursor. Additionally, heptadecane exhibited more variable concentrations between replicates

91 which might be related to the presence of large zooplankton or other forms of heterogeneity in
92 these waters. For these reasons we excluded this data from this study, and refer to the results in
93 qualitative terms.

94 **The use and rationale for steady state calculation of pentadecane production using ^{13}C**

95 Considering that 30% and 10% PAR waters were at a steady state with respect to
96 pentadecane concentration, we used a modified primary production calculation using ^{13}C
97 enrichment from López-Sandoval et al.⁶, to calculate the production of pentadecane. The
98 concentration of pentadecane for the 1% PAR incubation increased over the 30-hour incubation
99 for most oligotrophic stations (Extended Data Fig. 2), violating an assumption outlined by López-
100 Sandoval et al (2018). We thus chose to compare two approaches: calculation of production via
101 concentration data only and calculation using ^{13}C from López-Sandoval et al., 2018. Ultimately,
102 we chose to use the isotope-predicted production rates of pentadecane because loss processes were
103 clearly evident from the comparison of the two approaches.

104 **Diel patterns for pentadecane, cells and fluorescence**

105 Pentadecane concentrations were consistent over the diel cycle for shallower depths but
106 not for the deep photic zone (DCM, 1% PAR and 3% PAR), which varied between 8-30%, with
107 the DCM displaying the greatest change (Extended Data Fig. 4). Density variations were minor
108 for waters sampled at the DCM, 1% PAR and 3% PAR depths (Extended Data Fig. 5) supporting
109 the interpretation that observed variations reflect biological process rather than sampling bias or
110 physical processes.

111 Like pentadecane, the abundance of *Prochlorococcus* remained consistent in the upper
112 portion of the photic zone throughout the diel cycle whereas it varied substantially (~50%) in the

113 lower photic zone (DCM, 1% and 3% PAR depths) (Extended Data Fig. 4b). *Prochlorococcus*
114 abundance in the lower photic zone was observed to decrease in the daylight hours by ~half, with
115 replenishment beginning at dusk and continuing through the night, to meet the original
116 concentration at dawn (Extended Data Fig. 4b). This behavior is reflective of previously reported
117 doubling patterns of *Prochlorococcus* in both the laboratory and in the ocean^{7,8}, with cell growth
118 during the day and the peak of cell division occurring near dusk. *Synechococcus* abundance did
119 not follow any discernable pattern over the diel cycle (Extended Data Fig. 4c) and was
120 approximately an order of magnitude lower in abundance than *Prochlorococcus*, thus we interpret
121 pentadecane dynamics to stem primarily from *Prochlorococcus*.

122 Combining pentadecane concentrations with *Prochlorococcus* abundance patterns enables
123 an assessment of cell-specific pentadecane variability over a diel cycle at three depths (DCM, 1%
124 PAR, 3% PAR). Accumulation of pentadecane preceded cell division, consistent with diurnal
125 growth preceding nocturnal division. This pattern is also in alignment with previous reports from
126 laboratory knockout experiments of *Synechocystis* (a freshwater cyanobacterium) indicating that
127 hydrocarbons promote membrane flexibility and optimal cell growth and division⁵. Thus, it
128 appears that the diel changes in the pentadecane per *Prochlorococcus* cell measured here are
129 reflective of *Prochlorococcus*' cell physiology relative to day-night cycles of growth and division.
130 Since *Prochlorococcus* abundance is a balance between cell death and cell division, cell-specific
131 pentadecane production rates and average cell division rates may serve as reasonable scaling
132 factors to calculate hydrocarbon production in the ocean. The cell-specific content of pentadecane
133 was notably higher in waters at the DCM at all times in the diel cycle, compared to other depths
134 (Extended Data Fig. 4e). This observation further highlights our finding that pentadecane
135 abundance is proportional to fluorescence, and may shed light on utilization of hydrocarbons for

136 photo-acclimation by cyanobacteria in low-light environments. Specifically, these results are
137 consistent with a model in which increased membrane stacking serves as a low-light adaptation,
138 housing more chlorophyll and requiring more alkane to minimize curvature stress.

139 We also find that 1% and 3% PAR waters exhibit an increase in pentadecane/fluorescence
140 during the day (Extended Data Fig. 4f), with a decrease at night. This observation could be
141 interpreted as an increase in internal membranes (scaffolding) and the need for tight membrane
142 curvature preceding production of chlorophyll and division, however, an opposing trend was
143 observed for the DCM and the topic warrants further investigation. Regardless, it is clear that
144 pentadecane concentrations are stable in the upper photic zone and with lower concentrations as
145 compared to the lower photic zone in which there is more rapid production and utilization of
146 pentadecane by cyanobacteria, particularly *Prochlorococcus*. These results further bolster our
147 finding that the DCM is a highly dynamic focal point for biogeochemical cycling of pentadecane.

148 **Reconciling discrepancies between Biogeochemical Estimate Methods 1 and 2**

149 The water column integrated approach is representative of pentadecane stock in the open-
150 ocean oligotrophic gyres insomuch as the locations (in the North Atlantic subtropical gyre), season
151 and local conditions are scalable, yielding values smaller than the cellular specific calculated stock
152 (by a factor of 0.4, Supplementary Information Table 1). The reason for this discrepancy is
153 uncertain though partially attributable to the occurrence of *Prochlorococcus* and *Synechococcus*
154 in regions outside the open-ocean oligotrophic gyres, particularly for *Synechococcus* which is
155 found in both coastal oligotrophic waters and more eutrophic waters. Population differences
156 between ocean basins (Extended Data Fig. 10) may also be an important contributor. We propose
157 that our method using water column integration is a reasonable representation for the North

158 Atlantic subtropical gyre but our average estimate using modeled cell-specific concentrations may
159 be more accurate for the global stock for oligotrophic ocean regions.

160 **Microbial productivity from pentadecane**

161 Based on the assumption of steady state, we estimated the magnitude for the production
162 rate of obligate alkane-degrading bacteria or archaea using cyanobacterial pentadecane as sole
163 substrate in the oligotrophic ocean. Assuming a carbon conversion efficiency range (pentadecane
164 to biomass) of 5-50% and a carbon mass of hydrocarbon degrading microbes of $120 \text{ fg C cell}^{-1}$
165 pentadecane in the lower photic zone (1% PAR) would support microbial production of the order
166 of $\sim 10\text{-}100 \text{ cells ml}^{-1} \text{ d}^{-1}$ with the upper photic zone (30% PAR) supporting $\sim 2\text{-}20 \text{ cells ml}^{-1} \text{ d}^{-1}$.
167 The size of the supported community further depends on cellular turnover time, and an assumed
168 turnover rate of 0.1 day^{-1} equates to a steady state population of $\sim 10^2\text{-}10^3 \text{ cells ml}^{-1}$ in the lower
169 photic zone (1% PAR) and $\sim 20\text{-}200 \text{ cells ml}^{-1}$ in the upper photic zone (30 % PAR) of the
170 oligotrophic ocean (Supplementary Information Table 1). These results underscore the depth
171 dependency of cyanobacterial pentadecane production, and the potential for similar structuring for
172 the microbial community of alkane degraders. Furthermore, we expect a secondary structuring of
173 alkane degradation based on phase-state of the alkanes, with particles showing more consumption
174 than surrounding waters, as we interpret in our incubation experiments and sediment trap data.

175 **Microbial community within pentadecane incubations**

176 The pentadecane + particle treatments at both sites elicited response by a greater number
177 of taxa compared to pentadecane only treatments. This response was quantified using Shannon
178 diversity indices whereby particle + pentadecane enrichments had a higher Shannon diversity
179 index compared to the pentadecane only treatments (two tailed t-test: Station 3, $p < 0.023$; Station

180 6, $p < 0.017$) (Extended Data Figure 6). Presumably, the particles provided a diverse range of
181 substrates beyond the added pentadecane and/or more taxa that could consume pentadecane.
182 Nonetheless, several taxa that contain opportunistic hydrocarbon degraders were observed to
183 bloom in these treatments including *Litoribacillus* (*Saccharospirillaceae*), *Pseudophaeobacter*
184 (*Rhodobacteraceae*), and *Aurantivirga* (*Flavobacteriaceae*) at station 3 and *Thalassolituus*
185 (*Saccharospirillaceae*) and *Olleya* (*Flavobacteriaceae*) at station 6. From this data, we postulate
186 a possible association of alkane specialists with the hydrophobic phase and alkane generalists with
187 particulate matter.

188 **Supplementary References**

189 1. Valentine, D. L. *et al.* Dynamic autoinoculation and the microbial ecology of a deep water
190 hydrocarbon irruption. *Proceedings of the National Academy of Sciences of the United
191 States of America* **109**, 20286–20291 (2012).

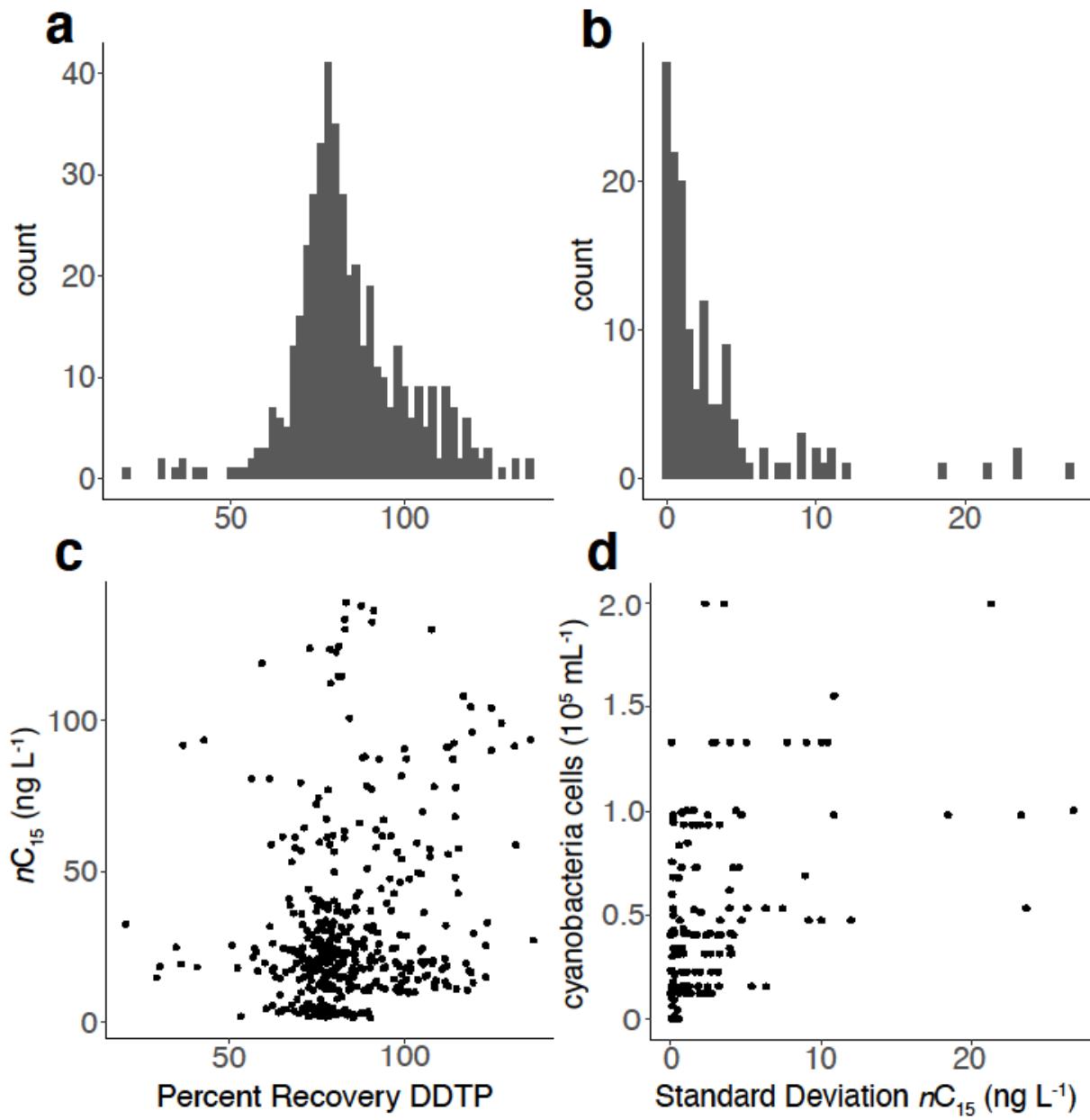
192 2. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM:
193 Assessing the quality of microbial genomes recovered from isolates, single cells, and
194 metagenomes. *Genome Res.* **25**, 1043–1055 (2015).

195 3. Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to
196 classify genomes with the Genome Taxonomy Database. *Bioinformatics* **36**, 1925–1927
197 (2019).

198 4. Parks, D. H. *et al.* A complete domain-to-species taxonomy for Bacteria and Archaea. *Nat.
199 Biotechnol.* 1–8 (2020). doi:10.1038/s41587-020-0501-8

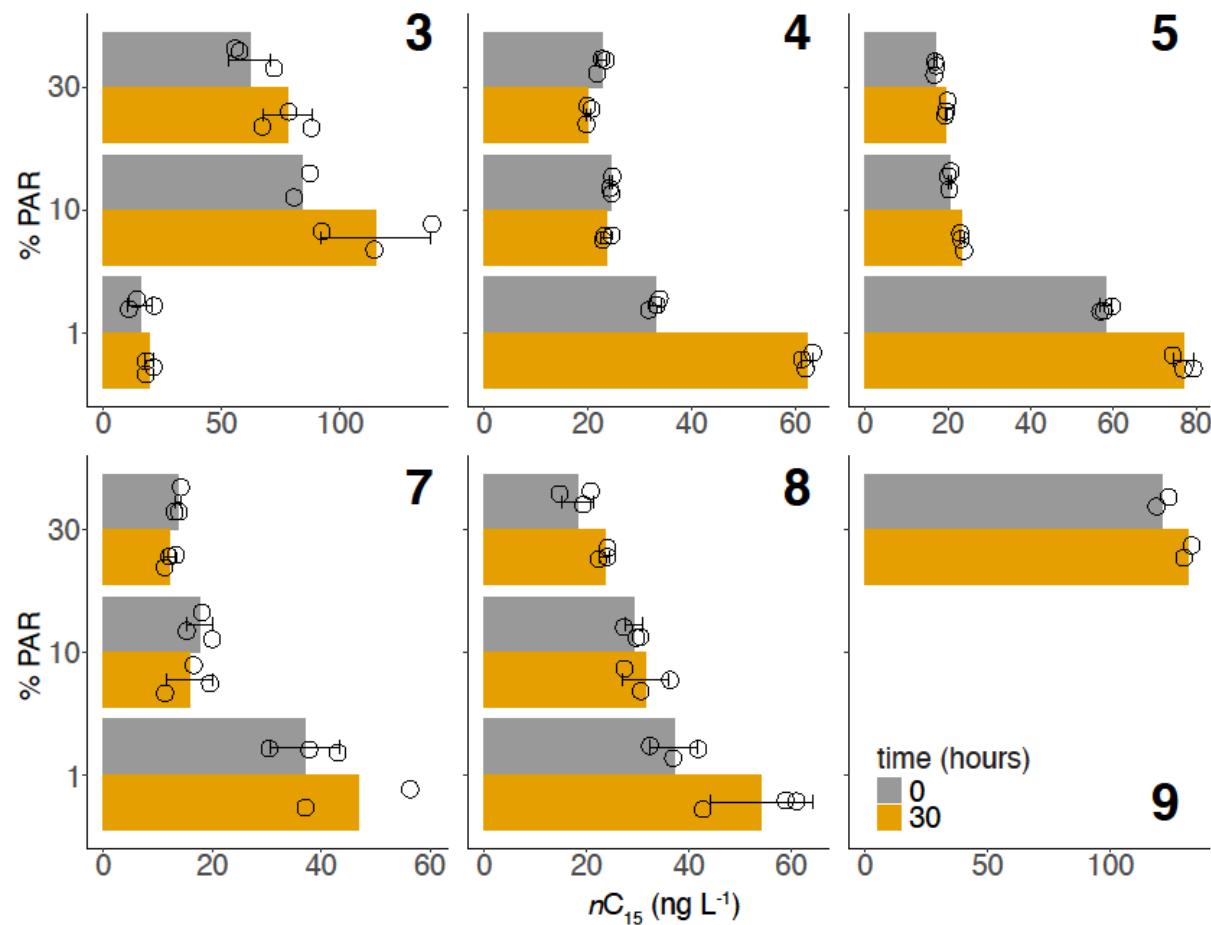
200 5. Lea-Smith, D. J. *et al.* Hydrocarbons are essential for optimal cell size, division, and growth
201 of Cyanobacteria. *Plant Physiol.* **172**, 1928–1940 (2016).

202 6. López-Sandoval, D. C., Delgado-Huertas, A. & Agustí, S. The ¹³C method as a robust
203 alternative to ¹⁴C-based measurements of primary productivity in the Mediterranean Sea.
204 *J. Plankton Res.* **40**, 544–554 (2018).


205 7. Zinser, E. R. *et al.* Choreography of the transcriptome, photophysiology, and cell cycle of
206 a minimal photoautotroph, Prochlorococcus. *PLoS One* **4**, 5135 (2009).

207 8. Ribalet, F. *et al.* Light-driven synchrony of Prochlorococcus growth and mortality in the
208 subtropical Pacific gyre. *Proc. Natl. Acad. Sci. U. S. A.* **112**, 8008–8012 (2015).

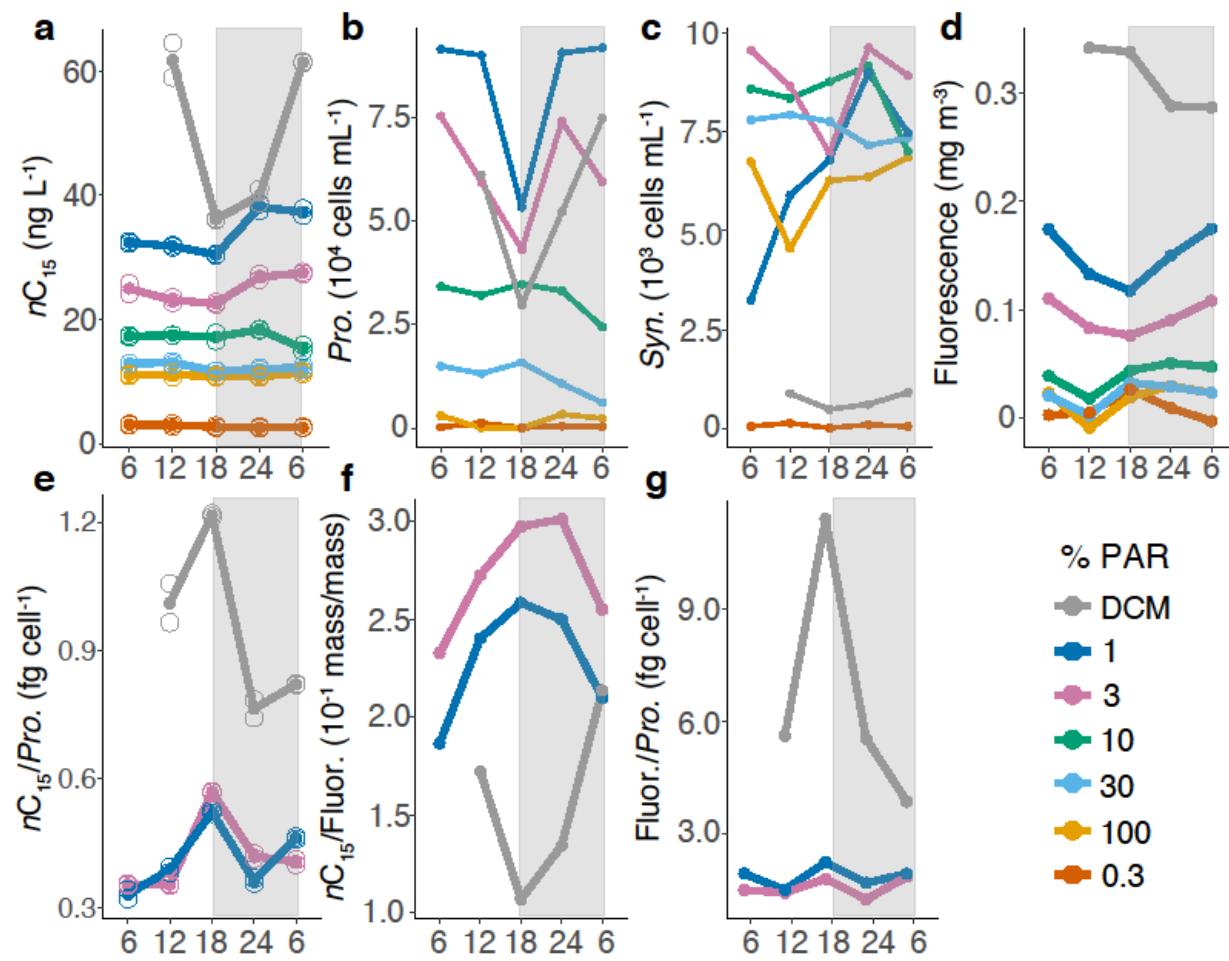
209


210

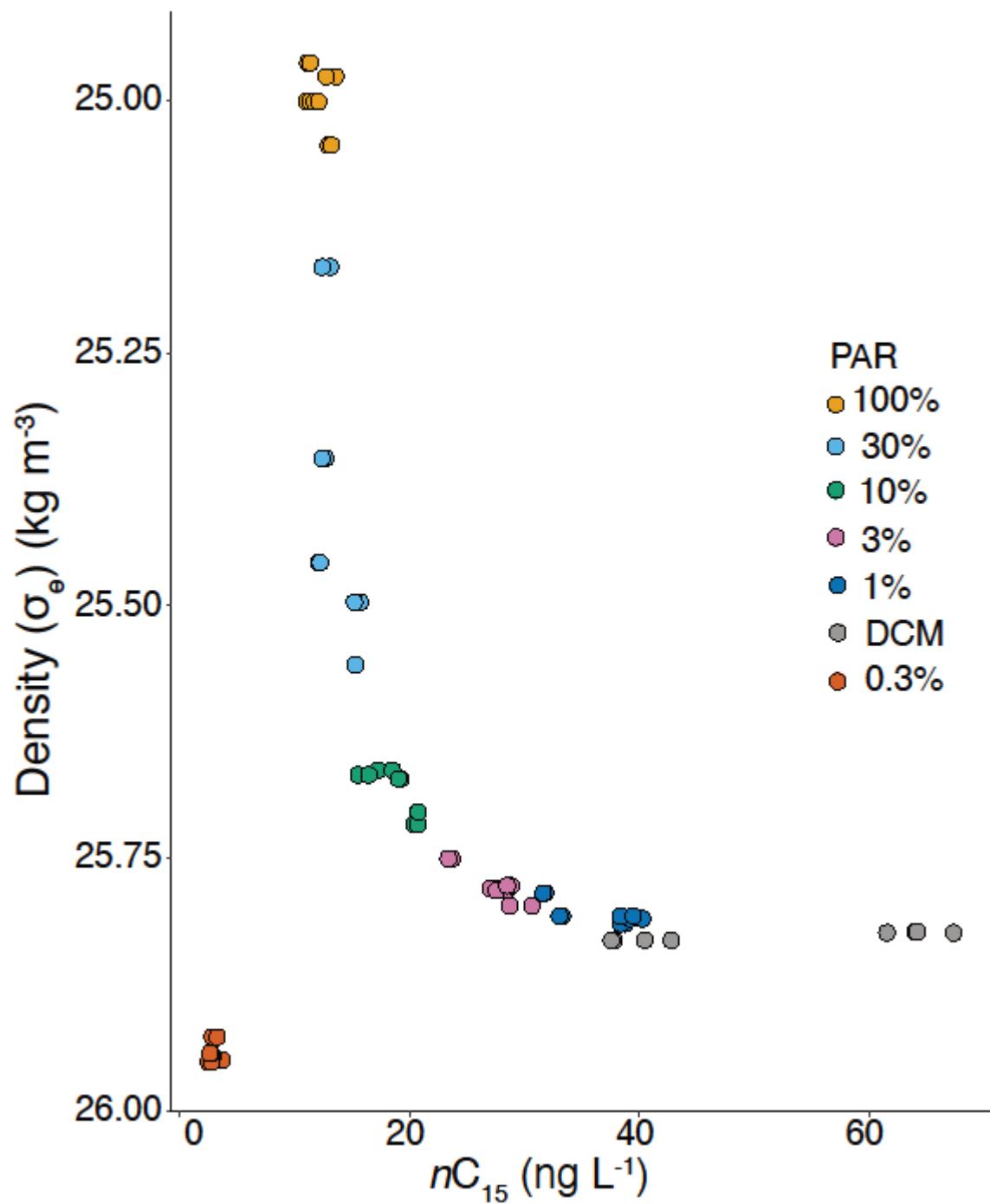
211 Extended Data Figure 1

212

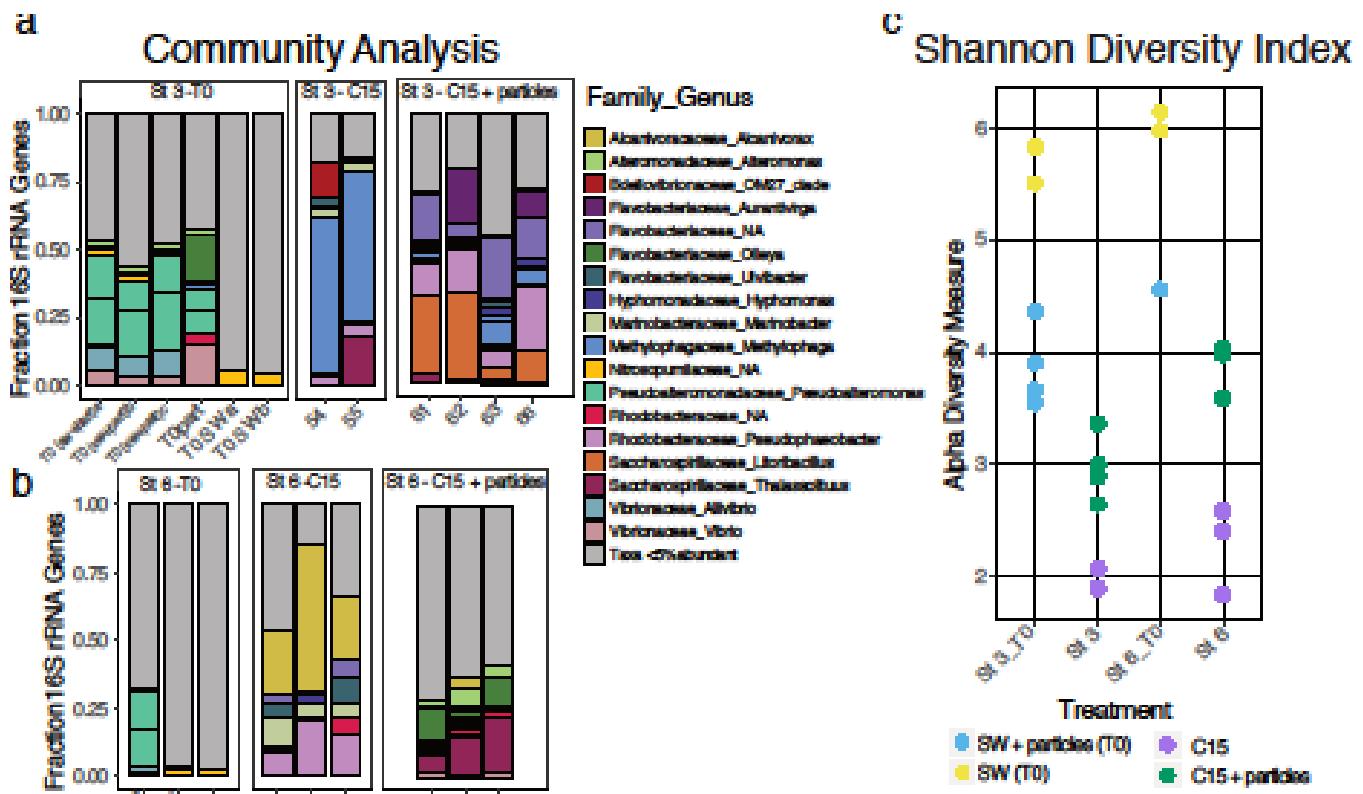
213 Extended Data Figure 2


214

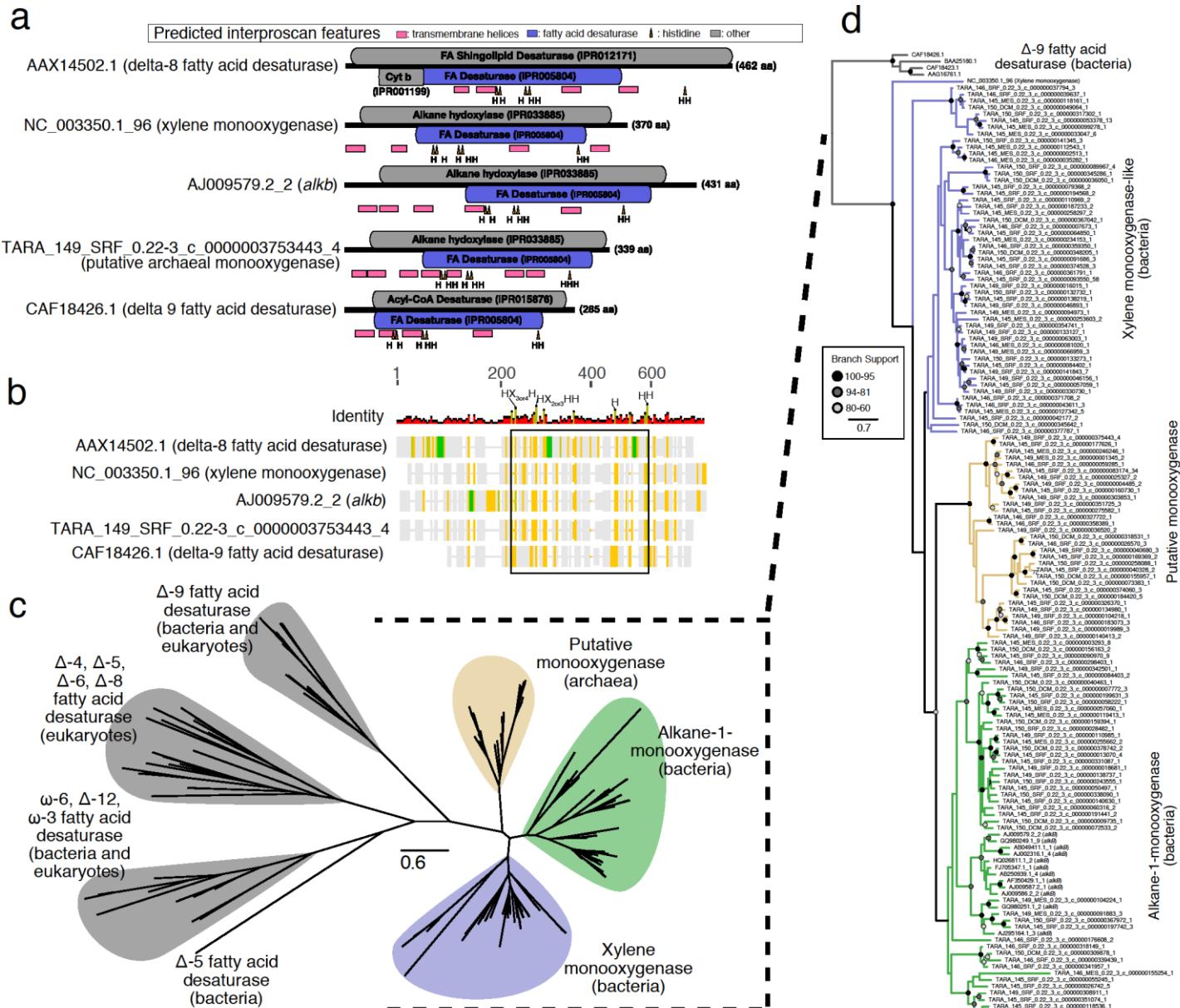
215 Extended Data Figure 3


216

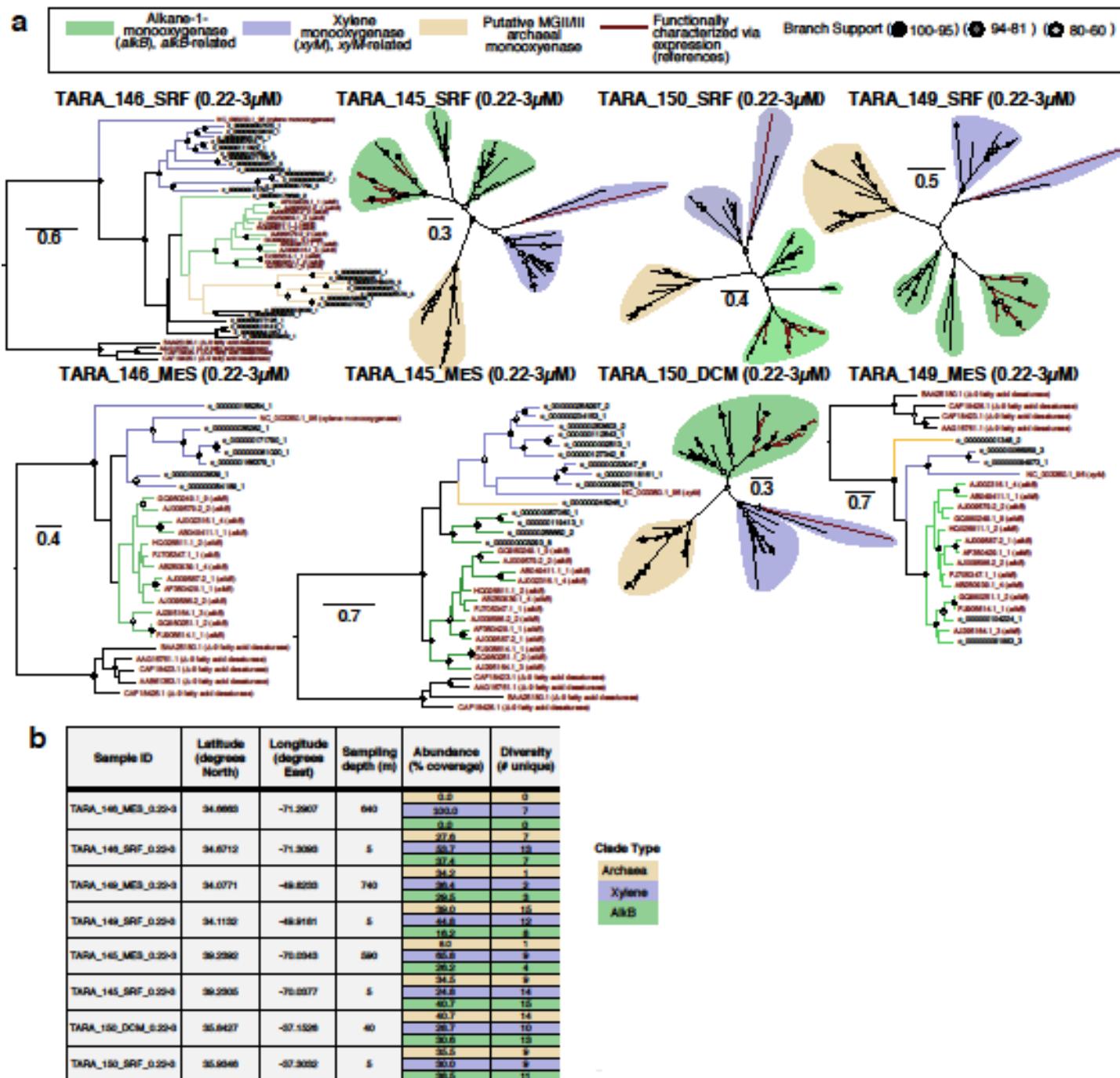
217 Extended Data Figure 4


218

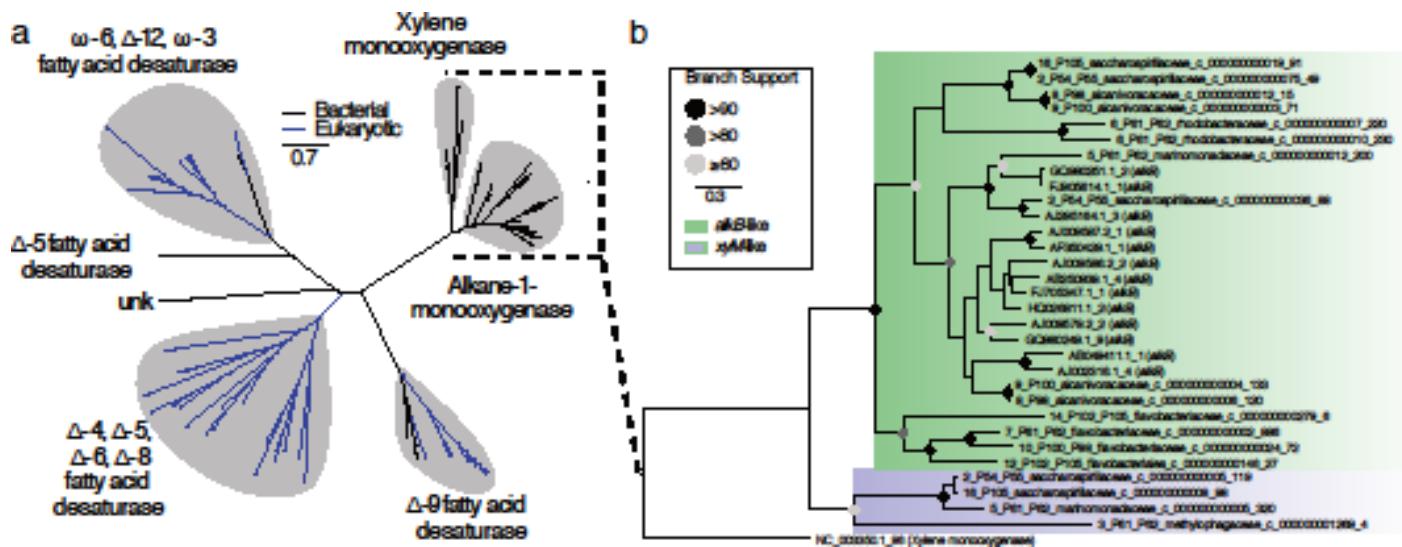
219 Extended Data Figure 5


220

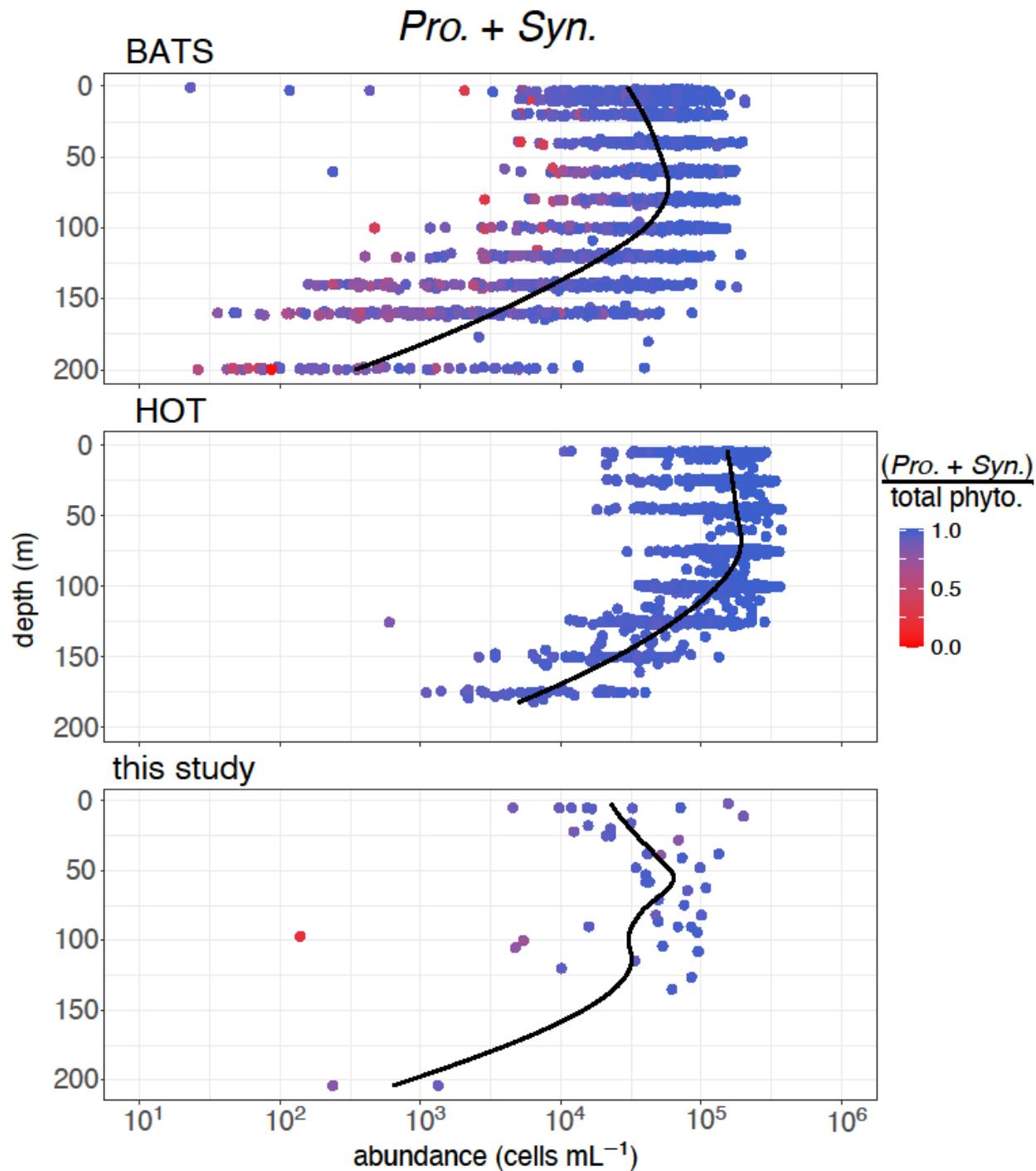
221 Extended Data Figure 6



222


223 Extended Data Figure 7

225 Extended Data Figure 8



227 Extended Data Figure 9

228

229 Extended Data Figure 10

230

231 Extended Data Figure Captions

232 **Extended Data Figure 1.** **a** Histogram of percent recovery of the internal standard (DDTP). **b**
 233 Histogram of standard deviation of replicates of pentadecane concentration measurements; only a
 234 few replicates have a standard deviation $> 15 \text{ ng L}^{-1}$. **c** Pentadecane concentration data vs. percent
 235 recovery of DDTP; there is no coherent trend of greater recovery with higher concentration. **d**
 236 Cyanobacterial cell abundance (*Pro.* + *Syn.*) vs. standard deviation of pentadecane concentration
 237 between replicates; points with high standard deviation and low cyanobacterial cell abundance
 238 were further investigated (see Supplementary Note).

239 **Extended Data Figure 2.** Concentration of pentadecane at beginning and end of 30-hour light
 240 incubations (time = 0 and 30 hours) at three light penetration depths for stations 3, 4, 5, 7, 8, 9
 241 (indicated by number at right of each panel). Water was incubated at the light level from which it
 242 was collected (see Methods). Data are plotted as black open circles and represent biologically
 243 independent measurements; bar indicates mean of replicates at that light depth, error bars indicate
 244 standard deviation of $n = 3$ replication.

245 **Extended Data Figure 3.** Concentration of pentadecane at beginning and end of 30-hour dark
 246 control incubations (time = 0 and 30 hours) at three light penetration depths for stations 3, 4, 5, 7,
 247 8 (indicated by number at right of each panel). Data are plotted as black open circles and represent
 248 biologically independent measurements; bar indicates mean of replicates at that light depth, error
 249 bars indicate standard deviation of $n = 3$ replication.

250 **Extended Data Figure 4.** Light depths kept constant through Lagrangian sampling framework
 251 whereas the DCM is a depth variable feature throughout the diel cycle (see Methods). The x-axis
 252 represents time of day in hours, with gray shading representing night. Diel patterns of **a**
 253 pentadecane, **b** *Prochlorococcus*, **c** *Synechococcus*, **d** fluorescence (averaged with 1-meter
 254 resolution data with 2 data points above and 2 data points below to smooth signal, $n = 5$) and **e-g**
 255 selected ratios (see Supplementary Note). **a, e** Data are plotted as open circles with $n = 2$
 256 biologically independent pentadecane measurements, solid circles indicate mean.

257 **Extended Data Figure 5.** Seawater density plotted against pentadecane concentration colored by
 258 light penetration depth and feature (DCM). In this plot, seawater density acts as a proxy for water
 259 mass identity in diel sampling. The closer the vertical spread of points of the same color means
 260 that samples are more likely to have originated from the same water mass, whereas the further
 261 spread means that samples may have originated from different water masses. The horizontal spread
 262 of points of the same color represents different concentrations of pentadecane found in the diel
 263 cycle. 3% PAR, 1% PAR and particularly the DCM, have pronounced changes in pentadecane
 264 over the diel cycle with minimal shifts in seawater density. We conclude this to mean that
 265 pentadecane patterns at these depths can be attributed to biological origin, rather than sampling of
 266 different water masses. Further information on sampling and data in Methods and Supplementary
 267 Note.

268 **Extended Data Figure 6.** **a-b** Microbial community composition within pentadecane incubations
 269 informed via the V4 region of the 16S rRNA gene for initial samples and those harvested at 27
 270 days (station 3) and 29 days (station 6). Labels on x axis are sample IDs of biologically
 271 independent DNA samples with the following abbreviations (T0: time point 0, T0part: initial

272 sediment trap particle community, T0SW (a and b): initial seawater community, T0sw + part (a,
 273 b, and c): initial seawater community immediately after particles added, #: pentadecane
 274 enrichment). Nucleotide variants are grouped by genus and are listed under associated family and
 275 genus; if genus is unclassified than it is listed as NA. All taxa less than 5% are aggregated and
 276 shaded gray. **c** Shannon diversity index (see Supplementary Note) for each biologically
 277 independent DNA sample. Shannon indices for pentadecane (n=2 at station 3, n =3 at station 6)
 278 and pentadecane + particles (n=4 at station 3, n=3 at station 6).

279 **Extended Data Figure 7.** Phylogenetic analysis of genes closely related to *alkB* from Tara Ocean
 280 dataset reveal bacterial and archaeal clades distinct from xylene monooxygenase and fatty acid
 281 desaturases. **a** Protein domain architecture across select representatives of xylene monooxygenase,
 282 alkane-1 monooxygenase, fatty acid desaturase, and related proteins from the Tara Oceans dataset
 283 which share a core fatty acid desaturase-like region (blue) expanded on in panel b. **b** Abbreviated
 284 protein alignment for phylogenetic analyses (for details see Online Methods). Each column of
 285 alignment figure represents a sliding window of 5bp with the following identity to consensus
 286 sequence coloration: green (100%), mustard (80-99% similar), yellow (60-79% similar), gray
 287 (<60% similar). The black box represents the region containing the eight histidine residues
 288 considered catalytically essential which were used for phylogenetic analyses in panels **c-d**. **c**
 289 Maximum-likelihood phylogenetic tree with scale bar of substitutions per site. For clarity,
 290 bootstrap values are not shown for the full tree. Δ -X indicates activity X carbons from the
 291 carboxylic end of the fatty acid and ω -X indicates activity X carbons from the methyl end of the
 292 fatty acid. **d** Expanded subtree of membrane monooxygenases and delta-9 fatty acid desaturases
 293 (outgroup). Clade coloration in panel **d** is according to position in panel **c**. NCBI accession codes
 294 are given for functional representatives in the subtree (accession_ORF#).

295 **Extended Data Figure 8.** **a** Maximum-likelihood phylogenetic analysis for each station with scale
 296 bar of substitutions per site. Clade designations as follows: green (alkane-1-monoxygenase
 297 representatives and related Tara hits), blue (xylene monooxygenase representative and related Tara
 298 hits), yellow (putative Marine Group II/III archaeal monooxygenase). See Supplementary Data 2
 299 for homology search results for putative MG II/III monooxygenase hits. Trees <27 unknown Tara
 300 sequences are out-grouped with delta-9 fatty acid desaturases, whereas trees with >27 unknown
 301 Tara sequences are left unrooted. **b** Meta-data for each Tara station and abundance of unique hits
 302 derived from read-mapping. % Coverage indicates the fraction of reads that map to genes within
 303 each clade (xylene monooxygenase, *alkB*, or archaeal monooxygenase) over the total reads
 304 mapped to all *alkB*-like, xylene-like, and archaeal monooxygenases found at each station.

305 **Extended Data Figure 9.** **a** Maximum likelihood tree of *alkB* hits within metagenomes compared
 306 to fatty acid desaturase, xylene monooxygenase, and *alkB* functionally expressed/characterized
 307 representatives (See Supplementary Note for identification details). Δ -X indicates activity X
 308 carbons from the carboxylic end of the fatty acid and ω -X indicates activity X carbons from the
 309 methyl end of the fatty acid. **b** Expanded view of the alkane-1-monooxygenase, xylene
 310 monooxygenase, and related hits from metagenomes. Coloration in panel **b** is according to
 311 position in panel **a**. Gene copies for *alkB* in MAGS (in green) used in Figure 3h.

312 **Extended Data Figure 10.** Depth profiles of ~20 years of data from the Bermuda Atlantic Time-
 313 series (BATS, at top, data obtained from Bermuda Atlantic Time-series Study
 314 <http://bats.bios.edu/bats-data/>), the Hawaii Ocean Time-series (HOT, in middle, data obtained

315 from Hawaii Ocean Time-series HOT-DOGS application; University of Hawai'i at Mānoa,
316 National Science Foundation Award #1756517), and this study (at bottom). Data points are colored
317 on a gradient by the proportional contribution to the phytoplankton community by
318 *Prochlorococcus* and *Synechococcus* (total phytoplankton community is calculated as *Pro.* + *Syn.*
319 + pico- + nano-Eukaryotes for BATS and this study, and *Pro.* + *Syn.* + pico-Eukaryotes for HOT).
320 BATS and HOT data are each from a single station measured nearly monthly for ~20 years whereas
321 measurements from this study incorporate spatial variability (see Fig. 1) with minimal temporal
322 variability (all measurements taken in May 2017). The proportional contribution of
323 *Prochlorococcus* and *Synechococcus* is >90 % of the phytoplankton community at BATS 84% of
324 the time. At HOT, *Pro.* + *Syn.* is > 90 % of phytoplankton community ~100% of the time. For this
325 study, *Pro.* + *Syn.* is >90% of the phytoplankton community (*Pro.* + *Syn.* + pico + nano-
326 Eukaryotes) for 80% of the measurements, with most cases of lower proportional prokaryote
327 abundance due to an anomalous nutrient pulse observed at station 9 (a *Synechococcus* bloom) or
328 at low absolute abundance of *Pro.* + *Syn.*