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ABSTRACT
We propose truncated concentrated differential privacy (tCDP), a

refinement of differential privacy and of concentrated differential

privacy. This new definition provides robust and efficient composi-

tion guarantees, supports powerful algorithmic techniques such as

privacy amplification via sub-sampling, and enables more accurate

statistical analyses. In particular, we show a central task for which

the new definition enables exponential accuracy improvement.
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1 INTRODUCTION
Differential privacy (DP) is a mathematically rigorous definition

of privacy, which is tailored to analysis of large datasets and is

equipped with a formal measure of privacy loss [9, 12]. Differ-

entially private algorithms cap the permitted privacy loss in any

execution of the algorithm at a pre-specified parameter ε , providing
a concrete privacy/utility tradeoff. A signal strength of differential

privacy is the ability to reason about cumulative privacy loss under

composition of multiple analyses.

Roughly speaking, differential privacy ensures that the outcome

of any analysis on a dataset x is distributed very similarly to the

outcome on any neighboring dataset x ′ that differs from x in just

one element (corresponding to one individual). That is, differen-

tially private algorithms are randomized, and the max divergence
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between these two distributions (the maximum log-likelihood ratio

for any event) is bounded by the privacy parameter ε . This absolute
guarantee on the maximum privacy loss is now sometimes referred

to as “pure” differential privacy.

A popular relaxation, “approximate” or (ε , δ )-differential pri-
vacy [10], roughly guarantees that with probability at least 1 − δ
the privacy loss does not exceed ε . This relaxation allows a δ prob-

ability of catastrophic privacy failure, and thus δ is typically taken

to be “cryptographically” small. Although small values of δ come

at a price in privacy, the relaxation nevertheless frequently permits

asymptotically better accuracy than pure differential privacy (for

the same value of ε). Indeed, the central advantage of relaxing the

guarantee is that it permits an improved and asymptotically tight

analysis of the cumulative privacy loss incurred by composition of

multiple (pure or approximate) differentially private mechanisms

[15].

Composition is the key to differential privacy’s success, as it per-

mits the construction of complex – and useful – differentially pri-

vate analyses from simple differentially private primitives. That is,

it allows us to “program” in a privacy-preserving fashion. Optimiz-

ing for composition, and being willing to live with high probability

bounds on privacy loss rather than insisting on worst-case bounds,

led to the introduction of concentrated differential privacy (CDP), a

guarantee incomparable to the others, permitting better accuracy

than both without compromising on cumulative privacy loss under

composition [6, 14]. Intuitively, CDP requires that the privacy loss

have small expectation, and tight concentration around its expecta-

tion. There is no hard threshold for maximal privacy loss. Instead,

the probability of large losses vanishes at a rate that roughly paral-

lels the concentration of the Gaussian distribution. This framework

exactly captures the type of privacy loss that occurs under composi-

tion of (pure and approximate) DP mechanisms. CDP improves on

approximate DP by “cutting corners” in a way that has no privacy

cost under high levels of composition. For certain approximate DP

algorithms, such as the Gaussian mechanism, when a δ -probability
failure occurs, there is no privacy catastrophe. Rather, the most

likely situation is that the privacy loss is still bounded by 2ε . More

generally, for any k ≥ 1, the risk that the privacy loss exceeds kε

is δΩ(k
2)
. In such situations, the

√
log(1/δ ) multiplicative loss in

accuracy one obtains in the analysis of this algorithm is a high

price to pay to avoid a small increase in privacy loss. Under high

levels of composition of approximate DP mechanisms, the privacy

losses of each individual mechanism are forced to be “artificially”
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low in order to control the cumulative loss. This means that small

lapses in these artificially low losses are not so consequential, and

literally do not add up to much in the risk of exceeding the desired

cumulative loss.

Finally, in addition to providing better accuracy than pure and

approximate DP, CDP has a simple optimal composition theorem,

computable in linear time. This stands in sharp contrast to the

situation with approximate DP, for which computing optimal com-

position bounds is computationally intractable (#P-hard) [20].
With these important advantages, concentrated DP also has

limitations:

(1) “Packing”-based lower bounds [6, 16] imply inherent limita-

tions on the accuracy that can be obtained under CDP for

certain tasks. These lower bounds do not apply to approxi-

mate DP (because of the δ -probability “escape hatch”), and

there are tasks where the accuracy of CDP data analyses is

worse than what can be obtained under approximate DP.

(2) Unlike both pure and approximate DP, CDP does not support

“privacy amplification” via subsampling [17, 22]. This type of

privacy amplification is a powerful tool, as demonstrated by

the recent work of Abadi et al. in differentially private deep

learning [1]. While their privacy analysis utilizes a CDP-like

view of privacy loss, their use of subsampling for privacy

amplification means that their algorithm cannot be analyzed

within the framework of CDP.

With the above progress and challenges in mind, we propose the

notion of truncated concentrated differential privacy (tCDP) to give

us the best of all words.

A new framework. Loosely speaking, CDP restricts the privacy

loss to be at least as concentrated as a Gaussian. tCDP relaxes this re-

quirement. Informally, it only requires Gaussian-like concentration

up to a set boundary, specified by a number of standard deviations.

Beyond this boundary, the privacy loss can be less concentrated

than a Gaussian (but we still require subexponential concentration).
The formal definition uses two parameters: ρ, which (roughly) con-

trols the expectation and standard deviation of the privacy loss,

and ω, which (roughly) controls the number of standard deviations

for which we require Gaussian-like concentration. The privacy

guarantee is stronger the smaller ρ is and the larger ω is.

The formal definition uses Rényi divergences to restrict the pri-

vacy loss random variable:

Definition 1. Let ρ > 0 and ω > 1. A randomized algorithm
M : Xn → Y satisfies ω-truncated ρ-concentrated differential

privacy (or (ρ,ω)-tCDP) if, for all neighboring x , x ′ ∈ Xn ,1

∀α ∈ (1,ω) Dα
(
M(x)



M(x ′)) ≤ ρα ,

where Dα (·∥·) denotes the Rényi divergence [21, 24] of order α (in
nats, rather than bits).2

The definition of tCDP is a direct relaxation of zero-concentrated

differential privacy (zCDP) [6] and is closely related to Rényi dif-

ferential privacy [19]. In particular, setting ω = ∞ exactly recovers

1x and x ′ are neighboring (denoted x ∼ x ′) if they differ on a single entry – i.e. only

one person’s data is changed.

2
The Rényi divergence of order α between two distributions P and Q over a sample

space Ω (with P ≪ Q ) is defined to be Dα (P ∥Q ) = 1

α−1 log
∫
Ω
P (y)αQ (y)1−α dy .

Here log denotes the natural logarithm.

the definition of ρ-zCDP. Clearly, decreasing ω relaxes the defini-

tion of (ρ,ω)-tCDP. See Section 1.3 for further discussion of the

relationship between tCDP and prior definitions.

CDP: a recap. The addition of Gaussian noise drawn from

N

(
0,

(
∆f
ε

)
2

)
is a universal mechanism for Concentrated Differ-

ential Privacy, yielding a privacy loss random variable Z that is

subgaussian with standard λ = ε , and with expected privacy loss

µ = ε2/2. Formally, we have the following bound on the moment

generating function:

∀λ ∈ R E[eλ(Z−µ)] ≤ eε
2λ2/2. (1)

This implies that Pr[Z − µ ≥ kε] ≤ e−k
2/2

, where the connection

between bounds on high moments and tail bounds goes via an

application of Markov’s inequality:

Pr[(Z − µ) ≥ kε] = Pr[e(λ/ε )(Z−µ) ≥ eλk ] ≤
E[e(λ/ε )(Z−µ)]

eλk
. (2)

This is minimized when λ = k/ε , yielding a probability bounded by

e−k
2/2

.

Subsampling under CDP and tCDP.. Given a dataset of size n,
let us choose a random subset of size sn, for s ∈ (0, 1), as a pre-

processing step before applying a differentially private algorithm.

In analogy to the situation for pure and approximate differential

privacy, we would expect subsampling to decrease the privacy loss

roughly by a factor of s . More precisely we would hope that the

new standard should be O(sε), with the mean reduced by a factor

of roughly s2. Let us see what actually happens.

Let x be a dataset of n zeroes, and let y be a neighboring dataset

of n − 1 zeroes and a single one. Consider the sensitivity 1 query

q, “How many 1’s are in the dataset?” Let Z be a random variable

with distribution N(0,
(
1

ε

)
2

). Let A be the event that the response

received is at least 1 + z, where Pr[Z ≥ z] ≤ e−k
2/2

for a fixed

k > 0. Letting σ 2 =
(
∆q
ε

)
2

= 1/ε2, when the dataset is y the output

event A corresponds to the sampling event Z ≥ kσ , and when the

dataset is x the output event A corresponds to the sampling event

Z ≥ (k + ε)σ . A rough calculation immediately yields:

Pr[A|y]

Pr[A|x]
≈

e−k
2/2

e−(k+ε )
2/2
= eεk+ε

2/2. (3)

This corresponds to a privacy loss of εk above the mean (ε2/2). Let
qx denote the probability of output event A after subsampling and

noise addition, when the dataset is x and the probability is taken

both over the subsampling and the draw from the Gaussian, and

let qy be defined analogously. Then qx = px because the subsam-

pled dataset (of course) still contains only zeroes and so again the

probability of the output event is the same as the probability that

the noise exceeds (k + ε)σ . However, qy is more complicated: with

probability s the single 1 is in the subsample, in which case the

output event corresponds to the noise event Z ≥ kσ , and with

probability (1 − s) the subsample does not capture the 1, in which

case the output event corresponds to the noise event Z ≥ (k + ε)σ .
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Letting η = e−k
2/2

we get:

qy

qx
≈

sη + (1 − s)ηe−εke−ε
2/2

ηe−εke−ε
2/2

≈ seεk + (1 − s).

When εk < 1 this is (roughly) esεk , corresponding to a privacy loss

of sεk above the (new) mean, as desired. But when k ≥ 1/ε the
constraint is violated; thus Concentrated Differential Privacy does

not fully benefit from subsampling and the subgaussian standard

does not decrease from ε to sε . With this in mind tCDP does the

next best thing: it ensures that we get the desired reduction for all

k less than a fixed bound of approximately ωε . In the case of the

(subsampled) Gaussian, this bound is roughly 1/ε . For this reason
we parameterize tCDP with the expected privacy loss, usually de-

noted ρ, and an upper bound, usually denoted ω, that controls the
moments for which the subgaussian property must apply. Specifi-

cally, tCDP guarantees that we can indeed bound the probability on

the left hand side of Equation 2 by e−k
2/2

for all k ≤ ε(ω − 1). (The
“−1” comes from a technicality that arises in the translation from

bounding the Rényi divergence to bounding the moment generating

function.)

The most closely related work in the literature is the moments

accountant technique of [1], which analyzes the integer positive

moments of the Gaussian mechanism under subsampling. They

obtain similar bounds to those obtained here, although they collapse

higher moments into an error term, δ , and present their results in

terms of (ε , δ )-differential privacy. Our bounds apply to all moments

and all mechanisms ensuring Concentrated Differential Privacy.

Moreover, by adhering to the framework of CDP we are able to

circumvent the #P-hardness of computing optimal composition

bounds.

Group privacy. Concentrated Differential Privacy automatically

yields group privacy, replacing the standard ε with the new standard

gε for a group of size g, and so bounding the privacy loss for a

group of size g corresponds to bounding the gth moment of the

original privacy loss random variable. (ρ,ω)-tCDP enjoys the same

property, but only for groups of size at most εω, since that is the
largest moment for which the bound in Equation 2 is required to

hold. Naturally, the bounds on the moments of the group privacy
loss random variable only hold for λ ≤ ε(ω − 1)/g (otherwise we

could “unroll” this bundling into groups and bound higher order

moments beyond ω).

Summary of Results. We introduce and perform a detailed study

of tCDP. Beyond our introduction of this new framework for privacy-

preserving data analysis, our contributions include:

• Robust guarantees. We show optimal and efficiently com-

putable composition bounds for tCDP. Examining group

privacy, we show strong bounds for groups of size at most

O(
√
ρ ·ω). For larger groups, we show weaker but nontrivial

bounds. These bounds for large groups also enable us to

prove “packing-based” error lower bounds that show our

results are tight.

• Privacy amplification via subsampling. We show that

the privacy guarantees of tCDP can be amplified by subsam-

pling. In a nutshell, sampling an s-fraction of the individu-

als in the dataset before running a (ρ,ω)-tCDP mechanism

gives (O(ρs2),ω ′)-tCDP, where ω ′ is close to the original ω.
Privacy amplification is a powerful technique in data-rich

regimes (see e.g. [1]). We note that for CDP, subsampling

does not improve the privacy parameters. The proof that

tCDP is amplified by subsampling proceeds via a delicate

analysis of the privacy loss random variable, and is one of

our primary technical contributions.

• A tCDP toolkit.We construct tCDP mechanisms for basic

data analysis tasks. These mechanisms, together with tight

composition bounds and privacy amplification via subsam-

pling, provide a rich toolkit for tCDP data analysis. First,

we introduce a canonical noise-adding mechanism for an-

swering low-sensitivity queries. To guarantee tCDP, we use

noise drawn from a novel “sinh-normal” distribution. The

tails of this noise distribution are exponentially tighter than

a Gaussian (so the probability of large errors is exponen-

tially smaller). Other basic tCDP tools we introduce include

adding Gaussian noise with data-dependent variance, and

a mechanism for answering point queries with improved

accuracy.

• The power of tCDP. Building on the new tools described

above, we turn to more advanced data analysis tasks. As

our main additional contribution, we consider the following

“Gap-Max” task capturing optimization over a discrete set.

Given a collection of k low-sensitivity queries and a real

parameter GAP > 0, we want to identify the query whose

answer is maximal, under the promise that its answer is at

least GAP larger than the second-largest answer. We want

as weak a promise as possible, i.e. to minimize GAP (as a

function of k). We show a tCDP algorithm when GAP is as

small as (roughly) O(log logk). This is an exponential im-

provement over what is possible using CDP (or pure DP), and

can be a significant improvement over the bounds obtainable

for approximate DP when δ is cryptographically small.

The Gap-Max optimization task has many applications in the

design of privacy-preserving algorithms. We show it implies

tCDP algorithms for releasing histograms over k bins and

for answering threshold queries, with improved accuracy

bounds in both cases (see below).

Organization. The remainder of the Introduction is organized as

follows. Properties of tCDP flowing from the definition are spelled

out in Section 1.1. In Section 1.2 we describe our results on tCDP

mechanisms: building blocks and more advanced algorithms. Sec-
tion 1.3 provides a detailed discussion of the qualitative and quanti-
tative relationships between tCDP and earlier variants of differential

privacy. For the remainder of the paper, Section 2 contains addi-

tional definitions and an analysis of group privacy for groups of

size greater than ω. Section 3 contains the details on amplification

via subsampling. Section 4 discusses the sinh-normal noise distri-

bution and shows that the addition of noise from an appropriately

scaled version of this distribution is a canonical mechanism for

achieving tCDP. Section 5 provides several applications of tCDP

using more sophisticated algorithms than simple noise addition.

This section contains our above-mentioned results on the Gap-Max

problem. Finally, Section 6 shows the optimality of our algorithmic

results by proving matching lower bounds.
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1.1 Properties of tCDP
Several important guarantees follow from the definition of tCDP.

Composition and postprocessing. tCDP provides tight and tractable
composition bounds, and is also robust to postprocessing:

Lemma 2 (Composition & Postprocessing). LetM : Xn → Y

satisfy (ρ,ω)-tCDP. Let M ′ : Xn × Y → Z be such that M ′(·,y) :
Xn → Z satisfies (ρ ′,ω ′)-tCDP for all y ∈ Y. Define M ′′ : Xn →
Z byM ′′(x) = M ′(x ,M(x)). ThenM ′′ satisfies (ρ + ρ ′,min{ω,ω ′})-
tCDP.

Group privacy. tCDP protects the privacy of groups of size at

most εω. In particular, (ρ,ω)-tCDP for individuals implies (ρ ·
g2,ω/g)-tCDP for groups of size g, and this is tight.

For larger groups, tCDP still provides gracefully degrading pri-

vacy protection, but the rate of degradation is more rapid (exponen-

tial, rather than quadratic; Section 2.2, Proposition 9). In compari-

son, for (ε , δ )-differential privacy, privacy is guaranteed for groups

of size at most O(log(1/δ )/ε), with no protection at all for larger

groups. As it turns out, the weaker protections afforded to large

groups can be a blessing in disguise, as the packing lower bounds

that bedevil CDP are consequently substantially weaker for tCDP

(see Section 6).

Privacy amplification. We show that the privacy guarantees of

tCDP are amplified when sampling a s-fraction of the dataset en-

tries:

Proposition 3 (Privacy Amplification by Subsampling). Let
M : Xn → Y satisfy (ρ,ω)-tCDP. Define M ′ : XN → Y to be
M ′(x) = M(xS ) where S ⊂ [N ] with |S | = n is uniformly random
and, xS ∈ Xn is the restriction of x ∈ XN to the entries specified
by S . Let s = n/N be the subsampling fraction. Then M ′ satisfies
(O(ρs2),Ω(min{ω, log(1/s)/ρ}))-tCDP.

Intuitively, for an initial ω that wasn’t too large (say ω ≤ 1/ρ),
subsampling maintains ω ′ = Ω(ω). Up to constant factors, this

result is optimal. In contrast, subsampling cannot improve the

guarantees of a CDP mechanism: s-fraction subsampling of a ρ-
CDP algorithm is still at best ρ-CDP. Meanwhile, approximate

(ε , δ )-differential privacy with s-fraction subsampling yields (ε̂ , sδ )-
differential privacy with ε̂ = log(1 + s(eε − 1)) ≈ sε (e.g., [5]).

1.2 tCDP Mechanisms
What useful algorithmic techniques are compatible with tCDP?

Of course, all techniques that are compatible with CDP and pure

differential privacy immediately carry over to tCDP. We show that

additional tools, which capture much of the power of approximate

differential privacy, are amenable to analysis within the framework

of tCDP.

Additive noise. Perhaps themost basic challenge to consider is an-

swering a single low-sensitivity query q : Xn → R subject to tCDP.

Let ∆ be the global sensitivity of q, i.e. maxx∼x ′ |q(x) − q(x
′)| ≤ ∆.

For DP and its previously-studied relaxations, the canonical mech-

anisms for this basic task use additive noise, drawn from the ap-

propriate distribution (e.g. Laplace for pure DP or Gaussian for

CDP), scaled to the query’s sensitivity and to the privacy parame-

ter. Similarly, we propose the “sinh-normal” as a canonical noise

distribution for tCDP:

Proposition 4 (Sinh-Normal Mechanism). Let q : Xn → R
have sensitivity ∆. Define the sinh-normal mechanism, with param-
eters ρ > 0 and ω > 1/

√
ρ, to be the additive noise mechanism that

on input x ∈ Xn releases q(x) + Z , where

Z ← ω · ∆ · arsinh

(
1

ω · ∆
· N(0,∆2/2ρ)

)
. (4)

This mechanism satisfies (O(ρ),O(ω))-tCDP.

Here, the inverse hyperbolic sine function — arsinh(y) = log(y +√
y2 + 1) — is an even sigmoidal function, with arsinh(y) ≈ y for

|y | ≈ 0 and arsinh(y) ≈ sign(y) · log |y | for |y | ≫ 0. Hence, the sinh-

normal distribution closely resembles a Gaussian with comparable

variance up to noise values of magnitude roughly (ω · ∆). Beyond
this boundary, the tails decay exponentially faster than a Gaussian,

roughly as e−e
t
√
ρ/∆

, where t is the noise magnitude and ω is taken

to be as small as possible.

The sinh-normal that guarantees (ρ,ω)-tCDP and the Gaussian

that guarantees ρ-CDP are similar for noise values of magnitude

smaller than (ω · ∆) For larger noise values the tails of the sinh-
normal are exponentially tighter, which results in better accuracy

than the Gaussian. While this difference may not be crucial when

answering a single query (since these are low-probability events),

it becomes important when one needs to bound the maximum of

many independent samples from the sinh-normal distribution.

Stable selection. Optimizing over a discrete set is a basic task for

privacy-preserving algorithms. We consider the following formu-

lation of this problem: we are given a collection of sensitivity-1

functions q1, . . . ,qk : Xn → R, a sensitive dataset x ∈ Xn , and
a real parameter GAP > 0. Let i∗ = argmaxi ∈[k] qi (x). The stable
selection problem is to identify i∗ with high probability under the

promise that

qi∗ (x) ≥ max

i ∈[k ]\{i∗ }
qi (x) + GAP .

That is, we are promised that the largest qi (x) is at least GAP larger

than the second largest. Weaker notions of privacy permit smaller

values of GAP, which in turn is a less stringent condition on how

stable the maximizer needs to be to perform selection. Focusing on

the dependence of GAP on the number of choices k , we know that

(ε , 0)-differential privacy requires GAP = Θ(log(k)/ε), whereas ρ-

zCDP requires GAP = Θ(
√
log(k)/ρ) and (ε , δ )-differential privacy

allows for GAP = Θ(log(1/δ )/ε) — independent of k .
We show a (tight) bound of GAP = Θ(ω · log logk) for stable

selection under tCDP:

Proposition 5. Let ρ ∈ (0, 1) and ω ≥ 1/
√
ρ. Then there is a

(ρ,ω)-tCDP algorithm for stable selection as long as

GAP ≥ O

(
ω · log

(
1 +

√
logk

ω
√
ρ

))
.3

3
Note that if ω ≳

√
log(k )/ρ , then this expression becomes

√
log(k )/ρ , matching

the bound for ρ-zCDP.
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This result demonstrates an exponential savings over CDP and

pure differential privacy. This bound is incomparable to the

Θ(log(1/δ )/ε) achieved by (ε , δ )-differential privacy. While the

log logk term introduces a (mild) dependence on the number of

functions, it may often be dominated by log(1/δ ) for reasonable
choices of k and δ . Stable selection is an extremely versatile prim-

itive that already captures the stability arguments used in many

prior works in approximate differential privacy. As an example ap-

plication, we can use stable selection to design a tCDP algorithm for

releasing a histogram over k bins with ℓ∞ error O(log logk). Simi-

larly, we can answer threshold queries with error O(log logk). A
packing argument using weak group privacy (Corollary 27) shows

that Proposition 5 is optimal.

We prove Proposition 5 as a consequence of a generic construc-

tion that allows us to convert any additive noise mechanism into

a solution to the stable selection problem, while preserving what-

ever notion of privacy the original noise mechanism satisfies. The

required gap corresponds to the tail behavior of the additive noise.

In particular, we recover all of the aforementioned results by ap-

plying this transformation with Laplace noise, Gaussian noise, and

truncated Laplace noise, respectively.

1.3 Relationship to Prior Definitions
The differences between the various flavors of differential privacy —

pure differential privacy, approximate differential privacy, concen-

trated differential privacy, and tCDP— come down to how they treat

very low probability events. That is, for neighboring inputs x and

x ′ and a set of outcomes S , how are P [M(x) ∈ S] and P [M(x ′) ∈ S]
related when both are small?

Pure (ε , 0)-differential privacy applies the same strict multiplica-

tive guarantee to all events, regardless of how small their probability.

Meanwhile, approximate (ε , δ )-differential privacy simply “ignores”

events with probability less than δ . CDP, tCDP, and Rényi differ-

ential privacy (RDP) fall somewhere in between; no events are

completely ignored, but the requirements placed on low probability

events significantly relax those of pure differential privacy.

A helpful way to characterize these definitions is in terms of

tail bounds on the privacy loss. Recall that the privacy loss of

a randomized algorithm M for neighboring inputs x and x ′ is
defined to be the random variable Z = f (M(x)) where f (y) =
log(P [M(x) = y]/P [M(x ′) = y]).

• Pure (ε , 0)-differential privacy requires that the privacy loss

is bounded: Z ≤ ε .

• ρ-zCDP requires that Z is subgaussian — that is, the tail

behaviour of Z should be like that of N(ρ, 2ρ), with

P [Z > t + ρ] ≤ e−t
2/(4ρ)

for all t ≥ 0.

• (ρ,ω)-tCDP also requiresZ to be subgaussian near the origin,

but only subexponential in its tails. That is, as with ρ-zCDP,

we have P [Z > t + ρ] ≤ e−t
2/(4ρ)

for 0 ≤ t ≤ 2ρ(ω − 1). But
for t > 2ρ(ω −1), we get a weaker subexponential tail bound

of the form P [Z > t + ρ] ≤ e(ω−1)
2ρ · e−(ω−1)t .

• (ω, τ )-RDP [19] requiresDα (M(x)∥M(x
′)) ≤ τ for all α ≤ ω.

Recall that (ρ,ω)−tCDP ensures that Dα (M(x)∥M(x
′)) ≤

ρα for all α ≤ ω. It is helpful to compare the definitions

when τ = ρω. In this case both RDP and tCDP ensure

Dα (M(x)∥M(x
′)) ≤ ρω for all α ≤ ω. However, tCDP in

addition requires Dα (M(x)∥M(x
′)) ≤ ρα for all α in the

interval (1,ω).

In terms of tail bounds, RDP requires the privacy loss Z to be

subexponential. That is, P [Z > t + τ ] ≤ e−(ω−1)t . The defi-
nition of tCDP requires a similar subexponential tail bound,

but in addition requires subgaussian behavior for values of t
that are not too large.

• Up to constant factors, (ε , δ )-differential privacy is equiva-

lent to requiring P [Z > ε] ≤ δ .

• The notion δ -approximate ρ-zCDP [6] was proposed as a uni-
fication of CDP and approximate DP. This definition requires

there to be an event E occuring with probability at least 1−δ
such that the privacy loss conditioned on E is subgaussian.

While this definition permits simple composition and stable

selection algorithms, its behavior under subsampling is less

clear.

Since (ρ,∞)-tCDP is equivalent to ρ-zCDP, (ε , 0)-differential
privacy implies ( 1

2
ε2,∞)-tCDP [6, 14]. Conversely, tCDP implies a

family of (ε , δ )-differential privacy guarantees:

Lemma 6. Suppose M satisfies (ρ,ω)-tCDP. Then, for all δ > 0

and all 1 < α ≤ ω,M satisfies (ε , δ )-differential privacy with

ε =

{
ρ + 2

√
ρ log(1/δ ) if log(1/δ ) ≤ (ω − 1)2ρ

ρω +
log(1/δ )
ω−1 if log(1/δ ) ≥ (ω − 1)2ρ

.

Parameter settings. With the above comparisons in mind, one

can think of the ρ parameter as analogous to the value
1

2
ε2 for a

pure (ε , 0)-DP (or approximate (ε , δ )-DP for sufficiently small δ )
algorithm, and similar to the ρ parameter in CDP. As discussed

above, the truncation point ω controls the maximal moment for

which the bound in Equation 2 is required to hold, which in turn

specifies the maximal size of groups that receive meaningful group

privacy protection.

Adopting the convention that “meaningful” privacy corresponds

to ε = 1, pure ε-DP gives meaningful privacy protections for groups

of size 1/ε . For CDP and tCDP this corresponds to groups of size√
1/2ρ = (1/ε). Recalling that tCDP protects groups of size roughly

√
ρ ·ω, an apt choice for ω would thus be anything greater or equal

to roughly 1/
√
2ρ.

This choice ofω provides a comparable level of protection to that

of CDP for events that don’t have tiny probabilities. We note that

the probabilities of larger privacy losses still vanish exponentially

quickly (as compared with the subgaussian guarantee of CDP).

We note that privacy amplification via subsampling reduces ρ
to a smaller value ρ ′, but results in a new ω ′ ≈ ω that is roughly

unchanged (see Proposition 3). After subsampling it can be the case

that ω ′ ≪ 1/ρ ′. This is reasonable in the context of composition,

where many mechanisms with very small privacy losses are com-

posed, and the primary concern is the global privacy loss under

this composition. Recall that while the ρ parameter degrades under

composition, ω does not (see Lemma 2). Thus, the value of ω for
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Figure 1: Caricatures of privacy loss tail bounds permissible under each formulation of differential privacy.

each individual mechanism can be set with an eye towards the total

privacy loss under composition. Subsampling will not improve ω,
but neither will composition degrade it.

2 DEFINITION AND BASIC PROPERTIES
We will work with the following definition.

Definition 7. A mechanismM : Xn → Y satisfies ω-truncated
ρ-concentrated differential privacy (abbreviated (ρ,ω)-tCDP) if, for
all x , x ′ ∈ Xn differing in a single entry,

∀α ∈ (1,ω) Dα
(
M(x)



M(x ′)) ≤ ρα .

Here Dα (·∥·) denotes the Rényi divergence of order α . For dis-
tributions P and Q on Ω it is defined by

Dα (P ∥Q) =
log

(∫
Ω
P(y)αQ(y)1−α dy

)
α − 1

where P(·) and Q(·) represent the probability density/mass func-

tions of P and Q respectively. (More generally, P(y)/Q(y) is the
Radon-Nikodym derivate of P with respect to Q evaluated at y.)
Note that we use log to denote the natural logarithm.

Composition and postprocessing are clean and simple for this

definition (Lemma 2). Below, we examine other properties of this

definition.

2.1 Conversion to DP
Lemma 6 shows that tCDP implies a (ε , δ )-DP guarantee for every

δ > 0. This provides one way of interpreting the guarantee of tCDP.

Lemma 8. Let P and Q be probability distributions on Ω. Suppose
Dα (P ∥Q) ≤ ρα . Then, for every event E and all δ > 0, we have
P(E) ≤ eεQ(E) + δ for ε = ρα + log(1/δ )/(α − 1).

Note that the optimal choice of α (assuming the choice is uncon-

strained) is α −1 =
√
log(1/δ )/ρ, which yields ε = ρ+2

√
ρ log(1/δ ).

To attain Lemma 6, we set α = min{ω, 1 +
√
log(1/δ )/ρ}.

2.2 Group Privacy
The proof of group privacy for zCDP [6] immediately extends to

show that (ρ,ω)-tCDP yields (ρk2,ω/k)-tCDP for groups of size k .
However, that proof does not yield any results for k > ω. Here, we
develop a different bound which applies to larger groups.

Proposition 9 (Group Privacy for Large Groups). Let M :

Xn → Y satisfy (ρ,ω)-tCDP. Let x , x ′ ∈ Xn differ in k entries. Then

Dα
(
M(x)



M(x ′)) ≤ ((
1 +

1

ω − 1

)k
− 1

)
(ω − 1)ωρ ≤ e

k
ω−1 ·ω2 · ρ

for

α = 1 +
1(

1 + 1

ω−1

)k
− 1

≥ 1 + e
−k
ω−1 > 1.

The group privacy properties of tCDP for groups of size k > ω
are substantially weaker than those of CDP: First, the bound grows

exponentially in the group size. Second, we only obtain bounds on

D
1+o(1) (M(x)∥M(x

′)), which approaches the KL divergence.

To help provide further intuition about this group privacy guar-

antee, we describe the tail bound (i.e. (ε , δ )-differential privacy)
guarantee that it entails. Roughly speaking, we obtain an (ε , δ )-
differential privacy guarantee for every δ > 0 where ε depends
exponentially on the group size k , and logarithmically on 1/δ .

Proposition 10 (Interpreting Group Privacy). LetM : Xn →

Y satisfy (ρ,ω)-tCDP. Let x , x ′ ∈ Xn differ in k entries. Then for
every δ > 0 and every measurable S ⊆ Y we have Pr[M(x) ∈ S] ≤
eε Pr[M(x ′) ∈ S] + δ where

ε = e
k

ω−1

(
ω2ρ + log(1/δ )

)
.

2.3 Basic Algorithms
Most of the basic tools of differential privacy are compatible with

CDP and, hence, with tCDP. In particular, the Laplace [12] and

Exponential [18] mechanisms satisfy (ε , 0)-DP, which means they

satisfy
1

2
ε2-zCDP [6, Prop. 1.4] and hence ( 1

2
ε2,∞)-tCDP. Adding

Gaussian noise sampled from N(0,σ 2) to a sensitivity-∆ query
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guarantees

(
∆2

2σ 2

)
-zCDP [6, Prop. 1.6] and

(
∆2

2σ 2
,∞

)
-tCDP. Later

we will show that tCDP supports additional algorithmic techniques.

3 PRIVACY AMPLIFICATION BY
SUBSAMPLING

A more complex property of tCDP is privacy amplification by sub-

sampling. This is a property that CDP does not provide. Informally,

this property states that, if a private algorithm is run on a random

subset of a larger dataset (and the identity of that subset remains

hidden), then this new algorithm provides better privacy protec-

tion (reflected through improved privacy parameters) to the entire

dataset as a whole than the original algorithm did.

Theorem 11 (Privacy Amplification by Subsampling). Let
ρ, s ∈ (0, 0.1] and n,N ∈ N with s = n/N and log(1/s) ≥ 3ρ(2 +
log

2
(1/ρ)). Let M : Xn → Y satisfy (ρ,ω ′)-tCDP for ω ′ ≥ 1

2ρ ·

log(1/s) ≥ 3. Define the mechanism Ms : XN → Y by Ms (x) =
M(xS ), where xS ∈ Xn is the restriction of x ∈ XN to the entries
specified by a uniformly random subset S ⊆ [N ] with |S | = n.

The algorithmMs : X
N → Y satisfies (13s2ρ,ω)-tCDP for

ω =
log(1/s)

4ρ
.

Before delving into the proof we compare this result to the anal-

ogous property of DP: LetM : Xn → Y and letMs : XN → Y be

defined as in Theorem 11 with s = n/N . IfM satisfies (ε , δ )-DP, then
Ms satisfies (log(1+s ·(e

ε−1)), s ·δ )-DP. Note that log(1+s ·(eε−1)) ≈

s · ε . (In somewhat more detail, s · ε ≤ log(1+ s · (eε − 1)) ≤ s · ε + ε2
8

by Hoeffding’s lemma.)

To conduct the proof, we first set up some notation. Let M :

XN → Y satisfy ρ-zCDP. Fix x , x ′ ∈ XN
differing in a single

index i ∈ [n]. Let S ⊂ [N ] with |S | = n be uniformly random and

let xS , x
′
S ∈ X

n
denote the restrictions of x and x ′, respectively, to

the indices in S . We define the following probability densities:

P = the density ofM(xS ) conditioned on i ∈ S ,

Q = the density ofM(x ′S ) conditioned on i ∈ S ,

R = the density ofM(xS ) conditioned on i < S ,

= the density ofM(x ′S ) conditioned on i < S .

Since index i appears in the sample S with probability s , we may

write the density ofMs (x) = M(xS ) as sP + (1 − s)R. Similarly, the

density ofMs (x
′) = M(x ′S ) is sQ + (1 − s)R.

SinceM : Xn → Y is (ρ,ω ′)-zCDP (for someω ′), from the quasi-

convexity of Rényi divergence, it holds that Dα ′ (P1∥P2) ≤ ρα ′ for
every pair P1, P2 ∈ {P ,Q ,R} and every α ∈ (1,ω ′). Therefore, in
order to prove Theorem 11, it suffices to prove the following result

about Rényi divergences. The remainder of this section is devoted

to proving Theorem 12.

Theorem 12. Let ρ ∈ (0, 0.1], s ∈ (0, 1], and ω ′ > 2 satisfy

2 + log
2

(
1

ρ

)
+ log

2

(
1

(ω ′ − 2)s

)
≤ ω ′ ≤

1

ρ
· log

(
1

(ω ′ − 2)s

)
. (5)

Let P ,Q ,R be probability density functions over Y such that

Dα (P1∥P2) ≤ ρα

for every pair P1, P2 ∈ {P ,Q ,R} and all α ∈ (1,ω ′). Then

Dα (sP + (1 − s)R ∥ sQ + (1 − s)R) ≤ 13s2ρα

for every α ∈ (1,ω), where ω = ω ′/2.

Under the mild constraint that

log(1/s) ≥ 3ρ(2 + log
2
(1/ρ)),

Condition 5 holds as long as

ω ′ =
1

2ρ
· log(1/s) ≥ 3.

These values are used in the statement of Theorem 11.

We begin by stating some auxiliary lemmata, which follow from

elementary calculus.

Lemma 13. Let α > 1 and −1 ≤ x ≤ 1/(α − 1). Then (1 + x)α ≤
1 + αx + α(α − 1)x2.

Lemma 14. For x ≥ −1, α ∈ [1,∞), and β ≥ 0,

(1 + x)α ≤ 1 + αx + α(α − 1)x2 + (αx0)
α ((α − 1)x0)

β ,

where x0 = max{x , 0}.

Proof Sketch of Theorem 12. For notational convenience, let

U = sQ + (1 − s)R. By quasi-convexity and continuity of Rényi

divergence, note that Dα (P ∥U ) ≤ ρα and Dα (Q ∥U ) ≤ ρα for all

α ∈ [1,ω ′]. Fix α ∈ (1,ω). We begin by writing

e(α−1)Dα (sP+(1−s)R ∥ sQ+(1−s)R) = e(α−1)Dα (sP+(1−s)R ∥ U )

= E
y←U

[(
sP(y) + (1 − s)R(y)

U (y)

)α ]
= E

y←U

[(
1 + s ·

(
P(y) −Q(y)

U (y)

))α ]
= E

[
(1 + sZ )α

]
where Z = (P(y) −Q(y))/U (y) for y ← U .

Observe that E [Z ] = 0. We now estimate E
[
Z 2

]
. To do this, we

make use of the polarization identity

(P −Q)2 = 2(P2 +Q2) − 4

(
P

2

+
Q

2

)
2

.

This lets us write

E
[
Z 2

]
= 2eD2(P ∥U ) + 2eD2(Q ∥U ) − 4 exp

(
D2

(
1

2

P +
1

2

Q





U ))
≤ 2e2ρ + 2e2ρ − 4 = 4(e2ρ − 1).

Here, the inequality holds because D2 (P ∥U ) ,D2 (Q ∥U ) ≤ 2ρ and

Rényi divergence is nonnegative.

Define Z0 = max{Z , 0} and Ẑ = P(y)/U (y) fory ← U . Note that

Z0 ≤ Ẑ . Since 1+ sZ is obtained as a ratio of probabilities, sZ ≥ −1.
Therefore, we may apply Lemma 14 to estimate

E
[
(1+sZ )α

]
≤E

[
1 + αsZ + α(α − 1)s2Z 2 + (αsZ0)

α ((α − 1)sZ0)
β
]

=1 + αs ·E [Z ] + α(α − 1)s2 · E
[
Z 2

]
+ (αs)α ((α − 1)s)β · E

[
Z
α+β
0

]
≤ 1 + 4s2α(α − 1) · (e2ρ − 1) + (αs)α ((α − 1)s)βE

[
Ẑα+β

]
≤ 1 + 4s2α(α − 1) · (e2ρ − 1) + (αs)α ((α − 1)s)β · e(α+β )(α+β−1)ρ .
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The penultimate inequality holds because of our estimates of E [Z ]
and E

[
Z 2

]
, and the fact that 0 ≤ Z0 ≤ Ẑ . The final inequality

follows because Dα+β (P ∥U ) ≤ ρ(α + β) as long as α + β ≤ ω ′.
We now estimate the term on the right, taking β = ω ′ − α ≥ 0.

Here, we have

(αs)α ·((α − 1)s)ω
′−α · exp(ω ′(ω ′ − 1)ρ)

≤ eα(α − 1)s2 · ((α − 1)s)ω
′−2 · exp(ω ′(ω ′ − 1)ρ)

Condition 5 reveals that for 1 < α ≤ ω ′/2, we have

((α − 1)s)ω
′−2 · exp(ω ′(ω ′ − 1)ρ) ≤ ρ.

We may now complete the calculation with

E
[
(1 + sZ )α

]
≤ 1 + 4α(α − 1)s2(e2ρ − 1) + eα(α − 1)s2 · ρ

≤ 1 + 13α(α − 1)s2ρ ≤ eα (α−1)·13s
2ρ ,

as required.

□

3.1 Optimality of our Subsampling Bound
We next show that our subsampling bound (Theorem 11) is optimal

up to constants. To do this we use the following result which uses

the binomial theorem to give an exact bound for privacy amplifi-

cation by subsampling (but only for the special case where α is an

integer, and the distributions Q and R are identical).

Lemma 15 (Exact Subsampling). Let P and Q be probability
distributions and s ∈ [0, 1]. Suppose α ∈ (1,∞) is an integer. Then

Dα (sP + (1 − s)Q ∥Q) =
1

α − 1
log

(
(1 − s)α + α(1 − s)α−1s

+

α∑
k=2

(
α

k

)
(1 − s)α−kske(k−1)Dk (P ∥Q )

)
.

Fix ρ, s ∈ (0, 0.1]. To show the optimality of Theorem 12, con-

sider P = N(1, 1/2ρ) and Q = R = N(0, 1/2ρ). This corresponds
to the Gaussian Mechanism, which satisfies (ρ,∞)-tCDP. In fact,

Dα (P ∥Q) = ρα for all α ∈ (1,∞).
Theorem 12 implies Dα (sP + (1 − s)Q ∥Q) ≤ 13s2ρα for all α ∈

(1,ω), where ω = min{log(1/s)/3ρ + 1/2, 1 + 1/s1/3}.
By Lemma 15 with α = 2,

Dα (sP + (1 − s)Q ∥Q) = log

(
(1 − s)2 + 2(1 − s)s + s2eD2(P ∥Q )

)
= log

(
1 + s2(e2ρ − 1)

)
≥ s2ρα .

This shows that, while we may be able to reduce the constant 13 in

our bound to 1, we cannot reduce it further.

Next we show the optimality of ω. Theorem 12 asserts that

Dα (sP + (1 − s)Q ∥Q) ≤ 10s2ρα for all α ∈ (1,ω). We will consider

the largest value of ω for which this holds. Let α = ⌈ω − 1⌉ ≥ 2. By

Lemma 15,

Dα (sP + (1 − s)Q ∥Q) ≥
1

α − 1
log

(
sα e(α−1)Dα (P ∥Q )

)
= ρα −

α

α − 1
log(1/s).

Now we have

10s2ρα ≥ Dα (sP + (1 − s)Q ∥Q) ≥ ρα −
α

α − 1
log(1/s),

which entails

ω − 1 ≤ α ≤
1

1 − 10s2
·
log(1/s)

ρ
.

For sufficiently small s , this shows that ω = O(log(1/s)/ρ) is neces-
sary. This matches our bound up to constant factors.

4 SINH-NORMAL NOISE
One of the most basic techniques in differential privacy is the use

of noise addition to answer a single low-sensitivity query. We recall

the definition of (global) sensitivity.

Definition 16. Let q : Xn → R. The global sensitivity of q is
the minimum ∆ > 0 such that |q(x) − q(x ′)| ≤ ∆ for all x , x ′ ∈ Xn

differing on a single entry.

A low-sensitivity query q may be answered with differential

privacy by adding noise with standard deviation proportional to

∆. Each variant of differential privacy (pure, approximate, concen-

trated, truncated concentrated) provides constraints on the distri-

butions from which this noise may be drawn. For example, pure

differential privacy requires a noise distribution whose tails decay

at most inverse exponentially. The canonical distribution with this

property is the Laplace distribution.

We can similarly identify “canonical” distributions for approxi-

mate and concentrated differential privacy. For (ε , δ )-differential
privacy, we believe this to be the Laplace distribution with stan-

dard deviation ∆/ε , but with its support truncated to the interval

[±O(∆ log(1/δ )/ε)]. For CDP, the canonical noise distribution is the

Gaussian.

For tCDP, we propose adding noise sampled from the following

distribution, for parameters σ ,A > 0.

X ← A · arsinh
(σ
A
· N(0, 1)

)
.

Here arsinh(x) = log

(
x +
√
x2 + 1

)
is the inverse of the hyperbolic

sine function sinh(y) = 1

2
(ey − e−y ). Intuitively, X is simply the

Gaussian N(0,σ 2) with exponentially faster tail decay. To see this,

note that around the origin arsinh(x) ≈ x , so the distribution looks

like a Gaussian here. However, when x is large, arsinh(x) ≈ logx .
(Since arsinh is a symmetric function, the lower tails are identi-

cal.) Thus the tails decay doubly exponentially, rather than just

in a subgaussian manner. The value of A determines where the

transition from linear to logarithmic occurs; as A→ ∞, we have
X → N(0,σ 2). The quantity A also controls the truncation point

in the resulting tCDP guarantee.

Theorem 17. Let q : Xn → R have sensitivity-∆. Let ρ,A satisfy
1 < 1/

√
ρ ≤ A/∆. Define a randomized algorithmM : Xn → R by

M(x) ← q(x) +A arsinh

(
1

A
N(0,∆2/2ρ)

)
.

ThenM satisfies (16ρ,A/8∆)-tCDP.
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Figure 2: Left: The probability density function fZ of Z ← N(0, 2) and its logarithm. Right: The probability density function
fX of the sinh-normal distribution X = arsinh(Z ) and its logarithm.

We remark that the bound of Theorem 17 is optimal up to con-

stant factors. (Namely, strengthening Theorem 17 would corre-

spondingly strengthen our result for point queries in Corollary 18,

which would violate the lower bound given in Corollary 27.)

The proof of Theorem 17 requires some calculus, and appears in

the full version of this work.

4.1 Example Application: Histograms
To demonstrate the advantage of the sinh-normal noise over Gauss-

ian noise, we consider the example of privately releasing histograms.

That is, for each u ∈ X there is a point query qu : Xn → R given

by qu (x) = |{i ∈ [n] : xi = u}|. That is, qu (x) counts the number of

times u appears in x .
Under (ε , 0)-differential privacy, we can, with high probability,

answer all queries with error Θ
(
log |X |

ε

)
. Under (ε , δ )-differential

privacy this can potentially be improved to Θ
(
log(1/δ )

ε

)
. For ρ-

zCDP the error scales as Θ

(√
log |X |

ρ

)
. In all cases, these error

bounds are attained by adding independent noise from the Laplace,

truncated Laplace, and Gaussian distributions respectively. We now

show that adding noise from the sinh-normal distribution attains

error O(ω log log |X|):

Corollary 18. For every ρ ∈ (0, 1) and ω ≥ 1/8
√
ρ, there exists

a (ρ,ω)-tCDP randomized algorithm M : Xn → RX such that for
every β > 0 and x ∈ Xn ,

P
M

[
max

u ∈X
|M(x)u − qu (x)| ≥ 8ω · arsinh

(√
log(|X|/β)

2ω2ρ

)]
≤ β .

If
log( |X |/β )

2ω2ρ ≈ 0, then 8ω·arsinh

(√
log( |X |/β )

2ω2ρ

)
≈ 4

√
2 log( |X |/β )

ρ ,

as for x ≈ 0 we have arsinh(x) ≈ x . This matches the bound attain-

able under ρ-zCDP up to constant factors.

If
log( |X |/β )

2ω2ρ ≫ 0, then

8ω · arsinh

(√
log(|X|/β)

2ω2ρ

)
≈ 4ω ·

(
log log(|X|/β) + log(2/ω2ρ)

)
,

as for x ≫ 0 we have arsinh(x) ≈ log(2x). This log log |X| depen-
dence is exponentially better than what is attainable under CDP.

Later (Corollary 27), we show that this bound is tight up to constant

factors.

Proof. We can answer these queries by adding independent

sinh-normal noise to each query. Clearly, each qu has sensitivity

∆ = 1. Furthermore, if x , x ′ ∈ Xn differ in a single coordinate, then

for all but two of the qu queries we have qu (x) = qu (x
′). Hence,

the ℓ1 sensitivity of the entire vector of queries is 2, so as we will

see, it suffices to add independent sinh-normal noise at scale ∆ = 2

to every individual query.

More precisely, we define an algorithmM as follows. Indepen-

dently for each u ∈ X, we sample

M(x)u ← qu (x) + 8ω · arsinh

(
1

8ω
· N(0, 16/ρ)

)
.

By Theorem 17, every individual answerM(x)u satisfies (ρ/2,ω)-
tCDP. Fix x , x ′ ∈ X differing in a single entry. For all but two points

u ∈ X, we have qu (x) = qu (x
′), so the privacy loss corresponding

to every such coordinate is zero. Applying composition over the

two remaining coordinates yields the desired privacy guarantee.

The accuracy guarantee follows from a union bound and the fact

that

∀σ , x > 0 P
X←N(0,σ 2)

[|X | ≥ x] ≤ e−x
2/2σ 2

.

□

5 SOPHISTICATED ALGORITHMS
We have covered the key algorithmic primitives of tCDP – all those

compatible with CDP plus sinh-normal noise addition and Gaussian
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smooth sensitivity. Now we demonstrate how these primitives can

be used to build more sophisticated algorithms.

We define the Gap-Max problem, which is a useful primitive for

differentially private data analysis:

Problem 19 (Gap-Max). Our problem is specified by a loss func-
tion ℓ : Xn × [k] → R and a gap α ≥ 0. We assume ℓ has sensitivity
1 in its first argument – that is, for all neighbouring x , x ′ ∈ Xn , we
have

∀j ∈ [k] |ℓ(x , j) − ℓ(x ′, j)| ≤ 1.

We seek a differentially private algorithm M : Xn → [k] with the
following accuracy guarantee.

Fix an input x ∈ Xn . Let

j∗ = argmaxj ∈[k] ℓ(x , j).

Suppose

∀j ∈ [k] j , j∗ =⇒ ℓ(x , j) < ℓ(x , j∗) − αn.

Under this “gap assumption,” we want M(x) = j∗ with high probabil-
ity.

Gap-Max is a useful primitive that has been studied extensively

in the literature (both explicitly and implicitly). As we show below,

it is also an informative test-case for studying different variants of

differential privacy. The first algorithm for solving this problem is

the exponential mechanism [18], defined by

P [M(x) = j] ∝ exp

( ε
2

· ℓ(x , j)
)
.

This algorithm is (ε , 0)-DP (and ( 1
2
ε2,∞)-tCDP) and solves the gap-

max problem as long as αn ≥ O(log(k)/ε). (This bound is optimal,

up to constants, for pure DP. More generally, the exponential mech-

anism is optimal for the “approx-max” problem where there is no

gap assumption.)

However, we can do better than the exponential mechanism if

we relax to approximate DP. The propose-test-release framework

[11] can be used to solve the gap-max problem subject to (ε , δ )-DP
as long as αn ≥ O(log(1/δ )/ε). (Note that this bound is independent
of k .) What can be done with tCDP?

We give two generic reductions from privacy-preserving mecha-

nisms that answer low-sensitivity queries by adding (appropriately

sampled) noise to the gap-max problem. The two reductions obtain

similar parameters (up to constant factors). Both reductions give

rise to resulting mechanisms that attain whatever differential pri-

vacy guarantee the original noise-adding mechanism attained. The

required gap depends on the tail behaviour of the noise distribution.

A somewhat-informal statement follows:

Theorem 20 (Additive Noise to Gap-Max Reduction). LetD
be a distribution on R such that the following hold.

• Adding noise sampled fromD to a sensitivity-1 query satisfies
(a certain variant of) differential privacy.
• P

X←D
[|X | ≥ αn/2] ≪ 1/k .

Then there exists a differentially private algorithm solving the gap-
max problem with gap α and k options. The attained differential
privacy guarantee is the same as that afforded by the noise-addition
mechanism (up to postprocessing and two-fold composition).

Applying our reduction to the Laplace distribution attains a (ε , 0)-
DP algorithm for gap-max as long as αn ≥ O(log(k)/ε). Applying
our reduction to the Laplace distribution with support restricted

to a symmetric interval around the origin of length O(log(1/δ )/ε)
attains a (ε , δ )-DP algorithm for gap-max as long as

αn ≥ O(log(min{k , 1/δ }/ε). Applying our reduction to the Gauss-

ian distribution attains a ρ-zCDP algorithm for gap-max as long

as αn ≥ O(
√
log(k)/ρ). Finally, applying our reduction to the sinh-

normal distribution attains a (ρ,ω)-tCDP algorithm for gap-max

as long as αn ≥ O
(
(ω + 1/

√
ρ) · log logk

)
. See Section 1.2 for a

discussion comparing the parameters obtained under the various

variants of differential privacy.

5.1 First Reduction
Our first reduction replaces the loss function ℓ : Xn × [k] → R
with a surrogate function f that is “sparse” over [k] (much like a

histogram). Specifically, we construct a function f : Xn × [k] → R
such that for every x ∈ Xn , the functions f and ℓ have the same

argmax (over [k]) and the same gap. Moreover, f (x , j) has small

sensitivity (in x , for fixed j), and f is sparse: for each database

x ∈ Xn , the value of f (x , ·) is 0 on all but a single coordinate j∗ ∈ [k].
The combination of these properties allows us find the argmax of f
(while satisfying the appropriate variant of differential privacy) by

simply adding noise to each of the k values and returning the noisy

argmax. The privacy argument is similar to the approach used for

releasing histograms (or, equivalently, answering point queries).

The argmax of f equals the argmax of ℓ, and thus whenever this

procedure succeeds (w.r.t f ) it correctly identifies ℓ’s argmax.

Algorithm 21. Generalized Histogram Algorithm

• Parameters: n,k ∈ N and a continuous distribution
D on R.
• Public input: ℓ : Xn × [k] → R such that ℓ(·, j) has
sensitivity 1 for all j ∈ [k].
• Private input: x ∈ Xn

• Define a permutation σx : [k] → [k] such that
ℓ(x ,σx (j)) ≥ ℓ(x ,σx (j + 1)) for all j ∈ [k − 1]. I.e.
the permutation σx orders the elements of [k] in
descending order according to their loss.
• (Goal: Output σx (1) = argmaxj ∈[k ] ℓ(x , j) ∈ [k], subject
to differential privacy.)
• Define f (x , j) = max{ℓ(x , j) − ℓ(x ,σx (2)), 0}.
• Independently for each j ∈ [k] sample Z j ← D.

• Output ĵ = argmaxj ∈[k ] f (x , j) + Z j.

The key observation is that, for any x , f (x , j) = 0 for all j ,
σx (1). In other words, f is very sparse. Furthermore, for fixed

j ∈ [k], f has sensitivity 2. Thus, for neighbouring inputs x , x ′, if
we look at the sensitivity vector v = (f (x , 1) − f (x ′, 1), f (x , 2) −
f (x ′, 2), · · · , f (x ,k) − f (x ′,k)), we have that all but (at most) two

entries in v equal 0 (∥v∥0 ≤ 2) and ∥v∥∞ ≤ 2. This means that the

privacy cost of our mechanism is the same as answering up to 2

queries of sensitivity at most 2 with the noise distribution D.

On the utility front, the gap assumption implies that f (x ,σx (1)) ≥
αn and f (x , j) = 0 for all j , σx (1). We just need to union bound

over all the noise to ensure that the noisy max is the true max
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with high probability. That is, if |Z j | ≤ αn/2 for all j ∈ [k], then

ĵ = σx (1).
This algorithm readily generalizes to the gap version of the “top-

m problem” (more commonly called top-k) which has been studied

extensively [2, 4, 7, 23]: We simply set f (x , j) = max{ℓ(x , j) −
ℓ(x ,σx (m + 1)), 0} instead. Now the sparsity ism (rather than 1).

So we pay a

√
m factor from composition and are able to identify

up tom indices as long as their values are sufficiently larger than

the (m + 1)th value.

5.2 Second Reduction
Our second reduction is a bit sharper: we reduce gap-max to a

single instance of the noise-addition mechanism (rather than two

instances as in Section 5.1). The reduction is a bit more complex

(and assumes that the noise added is symmetric). This reduction

operates by adding noise to the actual gap in the given database. If

the noisy gap is larger than a threshold, then the (true) argmax is

returned. Otherwise, the reduction returns one of the other (incor-

rect) elements chosen uniformly and at random. We note that this

closely mimics the propose-test-release framework [11].

The threshold is chosen carefully so that both privacy and accu-

racy are satisfied. For accuracy, we want the threshold to be large

enough. For privacy, since the gap is a low-sensitivity quantity, the

noisy gap itself is differentially private (and by post-processing,

privacy is maintained when we compare the noisy gap to a fixed

threshold). The twist comes in that when the noisy gap is large

enough, we release the true argmax (which depends directly on the

data, and is thus not a differentially private quantity). To guarantee

privacy, we carefully choose the threshold so for any two neighbor-

ing databases x and x ′, either their argmax is the same (in which

case privacy follows immediately), or otherwise both their gaps

are quite small, and in this case the output distribution on both

databases is uniformly random. The details follow:

Algorithm 22. Obvious Answer Mechanism
• Parameters: n,k ∈ N and a continuous distribution
D on R.
• Public input: ℓ : Xn × [k] → R such that
ℓ(·, j) is sensitivity-1 for all j ∈ [k].
• Private input: x ∈ Xn

• Define a permutation σx : [k] → [k] such that
ℓ(x ,σx (j)) ≥ ℓ(x ,σx (j + 1)) for all j ∈ [k − 1].
• (Goal: Output σx (1) = argmaxj ∈[k ] ℓ(x , j) ∈ [k],
subject to differential privacy.)
• Let γ (x) = ℓ(x ,σx (1)) − ℓ(x ,σx (2)) ∈ R.
• Let γ̂ (x) = max

{
1

2
· γ (x) − 1, 0

}
.

• Compute a threshold tk (D) ∈ R such that
P

Z←D
[Z > tk (D)] = 1/k.

(Exact equality is important.)
• Sample Z ← D.
• If γ̂ (x)+Z > tk (D), output σx (1); else output σx (j)
for a uniformly random j ∈ {2, 3, · · · ,k}.

Clearly, if D is a symmetric distribution and γ̂ (x) ≥ 2tk (D) or,
equivalently, γ (x) ≥ 4tk (D) + 2, then P [M(x) = σx (1)] ≥ 1 − 1/k .
This is our accuracy guarantee – if the gap is sufficiently large, the

correct answer is returned with high probability. The threshold

tk (D) is determined by the tails of the distributionD. In particular,

by the guarantees of Theorem 20, we know that tk (D) ≪ αn/2,
and thus the algorithm succeeds w.h.p. when the gap is at least αn.

Lemma 23. Suppose D is a differentially private noise-adding
distribution for sensitivity-1 queries. Then the obvious answer mecha-
nism is differentially private with exactly the same privacy guarantee.
(This only assumes that the particular variant of differential privacy
is closed under postprocessing and that an algorithm that ignores its
input is differentially private.)

Proof. Fix neighbouring inputs x , x ′ ∈ Xn .
Claim: Either σx (1) = σx ′(1) or γ (x) + γ (x

′) ≤ 2.

Before proving the claim, we shall complete the rest of the proof

using a case analysis based on the claim.

Case 1: σx (1) = σx ′(1).
In this case we can treat the value of σx (1) = σx ′(1) as a constant
when comparing the output distributions. Now the only private

computation is deciding whether or not to output this constant.

Since γ̂ (·) is a sensitivity-1 function and we assume that D is a

differentially private noise-adding distribution, the value of γ̂ (·)+Z
is a differentially private output. By postprocessing, the decision

γ̂ (·) + Z > t(D) is differentially private and so is the output of the

mechanism.

Case 2: γ (x) + γ (x ′) ≤ 2.

In this case γ (x) ≤ 2 and γ̂ (x) = max{ 1
2
· γ (x) − 1, 0} = 0. Thus

P [γ̂ (x) + Z > tk (D)] = 1/k . Hence P [M(x) = σx (1)] = 1/k . For
j > 1, we also have

P [M(x) = σx (j)] = P [γ̂ (x) + Z ≤ tk (D)] ·
1

k − 1
= (1 − 1/k)/(k − 1) = 1/k .

ThusM(x) outputs a uniformly random element from [k]. Likewise,
M(x ′) outputs a uniformly random answer. Since both distributions

ofM(x) andM(x ′) are identical, we trivially satisfy the differential

privacy constraint.

Proof of Claim: Let j = σx (1) and j ′ = σx ′(1). Suppose j , j ′.
We must show that γ (x) + γ (x ′) ≤ 2. By the definition of j = σx (1)
and γ (x), we have ℓ(x , j) − γ (x) ≥ ℓ(x , j ′). Likewise, ℓ(x ′, j ′) −
γ (x ′) ≥ ℓ(x ′, j). Since ℓ is low-sensitivity in its first argument,

ℓ(x , j ′) ≥ ℓ(x ′, j ′) − 1 and ℓ(x ′, j) ≥ ℓ(x , j) − 1. We now add up

these four inequalities to obtain

©­­­«
ℓ(x , j) − γ (x)
+ℓ(x ′, j ′) − γ (x ′)
+ℓ(x , j ′)
+ℓ(x ′, j)

ª®®®¬ ≥
©­­­«

ℓ(x , j ′)
+ℓ(x ′, j)
+ℓ(x ′, j ′) − 1
+ℓ(x , j) − 1

ª®®®¬ ,
which simplifies to γ (x) + γ (x ′) ≤ 2. □

5.3 Threshold Queries
We next use our gap-max algorithm as a subroutine for answering

threshold queries over a totally ordered domain. While thresholds

are extremely simple functions, the problem of releasing answers to

threshold queries has received significant attention and has led to

the development of a number of new algorithmic techniques (e.g.,

[3, 5, 13]). For a domain size k , the threshold queries q1, · · · ,qk :

[k]n → R are defined by qj (x) = |{i ∈ [n] : xi ≤ j}|.
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As with point queries, the problem of releasing k threshold

queries has sample complexity n = Θ(log(k)/ε) for pure (ε , 0)-

DP and n = Θ(
√
log(k)/ρ) for ρ-zCDP. However, for approximate

(ε , δ )-DP, the sample complexity’s dependence on the number of

thresholds k is much more intriguing. While it lies between log
∗ k

and 2
log
∗ k

[3, 5], the true dependence on k remains an open prob-

lem.

In this section, we show that the sample complexity of releasing

thresholds with (ρ,ω)-tCDP is n = Õ((ω + 1/
√
ρ) · log logk), where

the Õ notation hides factors sublogarithmic in log logk . To do so,

we leverage a reduction from [5] which proved a tight relationship

between the sample complexity of answering thresholds and that of

a simpler problem called the interior point problem. Given a dataset

x ∈ [k]n , a solution to the interior point problem is a number j
such thatmini ∈[n] xi ≤ j ≤ maxi ∈[n] xi . That is, j lies (non-strictly)
between the least element and the greatest element of the dataset

x . The reduction of [5] showed that if the interior point problem

has sample complexity n, then threshold queries can be answered

to accuracy α using sample complexity n · Õ(1/α).
We actually describe our solution to the interior point problem

under tCDP as the solution to a more general problem. The gen-

eralized formulation lends itself more naturally to our recursive

construction.

Problem 24 (Generalized Interior Point). Let f : Xn×[k] →
[0, 1] be a function such that
• The function f has sensitivity ∆ in its first argument. That
is, for all x , x ′ ∈ Xn which differ in a single entry, we have
| f (x , j) − f (x ′, j)| ≤ ∆.
• The function f is nondecreasing in its second argument. That
is, f (x , j) ≤ f (x , j + 1) for all 1 ≤ j ≤ k − 1. For notational
convenience, define f (x , 0) = 0 and f (x ,k + 1) = 1 for all x .

We seek a differentially private algorithm M : Xn → [k + 1] such
that the following accuracy guarantee holds with high probability: If
j = M(x), then 0 < f (x , j) and f (x , j − 1) < 1.

To see that Problem 24 generalizes the interior point problem,

observe that we recover the formulation of the interior point prob-

lem by simply taking f (x , j) = qj (x) = |{i ∈ [n] : xi ≤ j}|, which
has sensitivity ∆ = 1.

Theorem 25. The generalized interior point problem with sen-
sitivity ∆ can be solved with (ρ,ω)-tCDP with sample complexity
n = 2

O (log∗ k ) · (ω + 1/
√
ρ) · ∆ · log logk .

In this extended abstract, we provide a high-level description of

our recursive algorithm for the generalized interior point problem.

Each level of recursion reduces an instance of the problem with

dataset size n, domain size k , and sensitivity ∆ to a problem with

dataset size n, domain size O(logk), and sensitivity O(∆). After
O(log∗ k) levels of recursion, we get a problem with constant do-

main size and sensitivity 2
O (log∗ k )∆ which can be solved directly,

e.g., with the exponential mechanism.

We now describe one level of recursion of the algorithm. For

simplicity, assume that k + 1 is a power of two. Given an input

dataset x ∈ Xn , the algorithm first constructs a complete binary

tree with k + 1 leaves and depth log
2
(k + 1) + 1. Each node of the

tree corresponds to a dyadic subinterval of [k + 1]. That is, every

leaf node corresponds to a single domain item, and every internal

node corresponds to the interval between its leftmost descendant

and its rightmost descendant. The value of a node corresponding
to an interval [j1, j2] is the amount by which the function f (x , ·)
increases over that interval, i.e., f (x , j2) − f (x , j1).

This tree gives rise to a smaller instance of the generalized inte-

rior point problem by inducing a function
ˆf : Xn ×[log

2
(k +1)+1],

where
ˆf (x , ĵ) is the maximum value of any node at level ĵ of the tree

(numbering levels in increasing order from leaves to root). Given a

solution to the generalized interior point problem for
ˆf , we now

argue how to combine it with the gap-max algorithm to solve the

original problem for f .
Supposing our recursive call succeeds, we obtain an answer ĵ

such that there exists a node at level ĵ with value greater than 0,

but every node at level ĵ − 1 has value less than 1. A small technical

modification lets us make the stronger guarantee that some node

at level ĵ actually has value greater than 1/5, while every node at

level ĵ − 1 has value less than 2/5. Using the gap-max algorithm,

we can identify a node at level ĵ, corresponding to some interval

[j1, j2], such that f (x , j2) − f (x , j1) > 0.

On the other hand, since every node at level ĵ − 1 has value

less than 2/5, we have f (x , j2) − f (x , j1) < 4/5. Hence, either

1/10 < f (x , j1) < 1 or 0 < f (x , j2) < 9/10. A simple differentially

private test then allows us to identify at least one of the endpoints

j1, j2 which serves as a generalized interior point.

6 LOWER BOUNDS
CDP, like pure DP and unlike approximate DP, is subject to infor-

mation theoretic “packing” lower bounds [6, 8, 16]. (Although for

CDP these are quadratically weaker than for pure DP.) We now

prove packing lower bounds for tCDP. These lower bounds are

exponentially weaker than the corresponding ones for CDP and

pure DP. Having weaker lower bounds is a good thing – provided

we don’t open the door for privacy violations.

The basis for our lower bounds is the following mutual informa-

tion bound.

Theorem 26. Let M : Xn → Y be a randomized algorithm
satisfying (ρ,ω)-tCDP. Let X be a random variable on Xn . Then

I (X ;M(X )) ≤ e
n

ω−1ω2ρ,

where I (·; ·) denotes the mutual information (in nats).

Note that if ω = n + 1, then, up to a constant factor, this recovers

the bound I (X ;M(X )) ≤ n2ρ which holds for ρ-zCDP [6, Thm. 1.10]

and is the basis for CDP packing lower bounds.

Proof. By the group privacy property of tCDP (Proposition 9),

we have that for any x , x ′ ∈ Xn (i.e. we allow these to differ on n
entries, corresponding to group size k = n),

Dα
(
M(x)



M(x ′)) ≤ ((
1 +

1

ω − 1

)k
− 1

)
(ω − 1)ωρ ≤ e

k
ω−1 ·ω2 · ρ

for

α = 1 +
1(

1 + 1

ω−1

)k
− 1

≥ 1 + e
−k
ω−1 > 1.
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Since Rényi divergence is an increasing function of the order α ,
this implies

∀x , x ′ ∈ Xn D1

(
M(x)



M(x ′)) ≤ e
k

ω−1 · ω2 · ρ.

Now, by the definition of mutual information and the convexity of

KL divergence,

I (X ;M(X )) = E
x←X

[D1 (M(x)∥M(X ))]

≤ E
x ,x ′←X

[
D1

(
M(x)



M(x ′)) ] ≤ e
n

ω−1ω2ρ.

□

As an example, we prove a lower bound for point queries (cf. Corol-

lary 18)

Corollary 27. LetM : Xn → RX be (ρ,ω)-tCDP. Suppose

∀x ∈ Xn P
M

[
max

u ∈X
|M(x)u − qu (x)| ≥

n

2

]
≤

1

2

,

where qu (x) = |{i ∈ [n] : xi = u}|. Then

n ≥ (ω − 1) log

(
log(|X|/4)

2ω2ρ

)
.

In contrast, our corresponding upper bound (Corollary 18) shows

that such a M exists provided n ≥ 16ω arsinh(
√
log(2|X|)/2ω2ρ).

(Note arsinh(x) ≈ log(x).) That is, our lower bound is tight to within
constant factors.

Proof. Let U ∈ X be uniformly random and let X ∈ Xn be

n copies of U . By Theorem 26, I (X ;M(X )) ≤ e
n

ω−1ω2ρ. Let V =

argmaxv ∈X M(X )v . Since qU (X ) = n and qÛ (X ) = 0 for any Û ,
U , by our accuracy assumption, P [U = V ] ≥ 1/2. Thus, by Fano’s

inequality,

e
n

ω−1ω2ρ ≥ I (X ;M(X )) ≥ I (U ;V )

= H (U ) − H (U |V ) ≥
1

2

log

(
|X|

4

)
.

Solving for n yields the result. □
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