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Abstract 
Circular economy (CE) offers a pathway towards sustainable, closed-loop resource systems, but widespread adoption across 
industrial sectors is limited by fragmented knowledge and varied implementation approaches. This article reviews sector-
specific challenges and opportunities associated with implementing and measuring the benefits of CE strategies. Literature 
mapping highlights progress towards CE implementation in food, chemicals, metals, consumer electronics, and building and 
infrastructure sectors, and towards measuring CE outcomes via systems analysis methods like life cycle assessment (LCA) 
and material flow analysis (MFA). However, key challenges were also identified that point to future research and demonstra-
tion needs. First, research on CE adoption typically exists as case studies that are closely linked to a sector. But literature has 
not effectively synthesized knowledge gained across domains, particularly understanding underlying barriers to CE and where 
they occur in product life cycles. Second, research on CE outcomes often applies well-established methods without adapting 
for unique attributes of CE systems. A key opportunity is in integrative methodological advances, such as expanded use of 
consequential LCA, development of physical Input–Output tables, and integrating MFA with dynamical models. Finally, 
regardless of sector, new CE business models are seen as a critical enabler to realize success, but theoretical frameworks in 
literature are not well-tested in practice. The review also highlights opportunities to harness other emerging trends, such as 
big data, to provide better information for system modelers and decision-oriented insight to guide CE stakeholders.
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Introduction and approach

Circular economy (CE) has gained widespread momentum 
as a means to achieve sustainable economic growth that is 
decoupled from resource extraction and waste generation. 
Recent years have seen a significant increase in research 
to develop and evaluate CE strategies (Kalmykova et al. 
2018), in parallel to concurrent growth of new business 
models that seek to apply these strategies in practice. This 
confluence of interest in the CE paradigm has created 
unique opportunities for initiatives that engage diverse 
actors, including businesses, policy makers, and the aca-
demic community (Ghisellini et al. 2016). A recent article 
highlighted the importance of using lessons learned from 
CE application to establish priorities for future research 
(Babbitt et al. 2018). Given this motivation, the 2018 Inter-
national Symposium on Sustainable Systems and Technol-
ogy (ISSST), the longest-run interdisciplinary conference 
focused on sustainability science and engineering, held a 
special session on CE that brought together researchers 
and practitioners from industry, state and federal govern-
ment, academia, community organizations, and national 
labs to explore how various groups were approaching this 
challenge. In 2019, the CE session coordinators organized 
a special issue on “Advances in the Circular Economy,” 
which sought to understand the progress with which CE 
concepts were being translated into policy, business mod-
els, and industrial innovations (Singh et al. 2019).

This contribution aims to provide a perspective on 
what was learned from these collective efforts within the 
context of broader CE literature by focusing on sector-
specific challenges as well as cross-cutting themes. Recent 
reviews of CE adoption have established challenges faced 
in specific sectors, such as manufacturing (Acerbi and 
Taisch 2020); business (Centobelli et al. 2020); construc-
tion (Osobajo et al. 2020) and waste electric and elec-
tronic equipment (Bressanelli et al. 2020), and proposed 
unification of circular economy research (Principato et al. 
2019; Borrello et al. 2020). However, existing literature 
has not fully compared, contrasted, or integrated the les-
sons learned and challenges faced across sectors. Further, 
existing literature has not critically explored the gaps in 
existing methods for analyzing CE outcomes as it relates 
to these sectors. Therefore, the goal of this perspective 
article is to evaluate critical challenges and opportuni-
ties within key sectors and then assess the intersection 
of those opportunities as a means to prioritize future 
research and technology advancement. To this end, we 
first map available literature and identify points of con-
vergence and distinction ("Literature review and mapping" 

section). Detailed sector-specific themes are explored in 
"Sector-specific themes" section followed by discussion 
of cross-cutting themes and enablers in "Cross-cutting 
themes" section . The key contribution of this work is in 
synthesizing the significant barriers and opportunities in 
implementing CE across sectors through a critical review 
of existing knowledge.

Literature review and mapping

Approach

Synthesis of literature to explore key CE themes was carried 
out in two parts. One part focused on a scoping analysis of 
the broad literature to understand core themes and trends, 
while the second part applied deeper analysis into key trends 
to investigate current challenges and opportunities. The 
broad literature review focused on CE implementation and 
application using search term circular economy appearing 
with related terms such as implementation, sector, applica-
tion, case study, deployment, operation, or business. These 
terms were individually searched with circular economy 
using the Boolean Operator AND, and each of the above-
mentioned terms were truncated to the root using the * oper-
ator to ensure all variants were included. Literature search 
was carried out in the Web of Science Core Collection for all 
years, resulting in approximately 3000 results. Title, author, 
keyword, abstracts, and references were downloaded and 
analyzed via keyword association using VOSviewer ver-
sion 1.6.14. A thesaurus file was used to synchronize similar 
terms for consistency. For example, LCA, life-cycle assess-
ment, and life cycle analysis were all recoded as life cycle 
assessment.

Identified themes were then critically reviewed by experts 
in each respective field (listed co-authors). Expert input 
was solicited from the ISSST special session participants 
and editors of and contributors to CE special issues. These 
topical literature reviews were structured and carried out 
to synthesize key challenges and opportunities relative to 
implementing CE strategies in identified industrial and busi-
ness sectors and to evaluating CE outcomes using systems 
models. Finally, integration by way of thematic analysis was 
used to discuss common challenges and opportunities that 
were identified.

Identification of themes

The keyword association map generated for literature review 
on studies of CE implementation demonstrates four major 
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literature clusters (Fig. 1). Studies applied to specific sec-
toral case studies are primarily shown as separate nodes on 
the outer regions of the blue and green clusters on the right 
of Fig. 1. There was a notable demarcation of studies that 
focused on topics such as metals, electronics, construction, 
and other infrastructure system (green) and that were com-
monly studied from the perspectives of cradle-to-cradle, 
material flow analysis (MFA), reuse, and recycling. Stud-
ies aimed at food, biomass, energy, and underlying chemi-
cal systems were clustered in the blue region and typically 
linked more closely with technologies aimed at recovering 
the energy contained in bio-based systems (through, e.g., 
anaerobic digestion) and carrying out holistic environmental 
analyses such as life cycle assessment (LCA). One obser-
vation from this high-level snapshot is that sector-specific 
studies were fairly fragmented, suggesting that research in 

this field has not fully undertaken cross-case comparisons or 
synthesis to identify commonalities and contrasts between 
challenges and opportunities for CE implementation for 
different sectors. Other approaches from the field of indus-
trial ecology, such as input–output methodologies, are not 
very prominent in either sectoral space, suggesting a need 
for developing more connections between existing systems 
models and CE research.

The left regions of Fig. 1 (red and orange colors) are pri-
marily focused on business and structural aspects of CE solu-
tions. Industrial ecology as a whole was closely linked to cir-
cular economy, which is logical given the similarity in their 
conceptual bases and the overlap of assessment methods 
applied in each domain. Many industrial ecology-focused 
CE studies revolved around eco-industrial parks (EIPs) and 
industrial symbiosis from the business perspective. Given 

Fig. 1  Keyword association map for 3000 literature studies focused 
on circular economy implementation. A lack of cross-sectoral analy-
sis in existing literature is shown by the lack of strong connections 
across themes. Major thematic groupings: Red: business models for 

circular economy; Yellow: Industrial ecology and symbiosis; Blue: 
food, bio-based, energy, and LCA; and Green: mineral, metal, and 
material flow analysis
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the close connection of industrial ecology to both the busi-
ness node and to assessment methods like LCA, subsequent 
discussions will enfold that theme into respective analyses of 
these topics. Note that the strongest connections among busi-
ness-focused research studies were amongst themselves (red 
region), with emphasis on new business models, innovation, 
supply chains, and reverse logistics. The keyword framework 
was central in this node, and many of the studies in this 
domain focused on establishing theoretical frameworks, but 
did not often carry through these approaches to the level 
of implementation in various sectors (note the absence of 
strong connections between the business domain and the 
sectoral studies on the far right). This analysis motivates our 
analysis of five key sectors (food and food waste, chemicals, 
metals and minerals, electronics and e-waste, and buildings 
and infrastructure) and four primary cross-cutting themes 
(data, models, stakeholder engagement, and business and 
innovation). Sector-specific thematic analyses are presented 
first, followed by cross-cutting thematic analysis. Since the 
approach is based on network analysis of existing literature 
for critical review, we anticipate that the network of existing 
literature and citations will change in coming years. This 
is especially applicable for CE as there is an exponential 

increase in publications related to CE. However, this analy-
sis is envisioned to serve as a reference point against which 
progress in CE implementation can be assessed in the future.

Sector‑specific themes

Key challenges and opportunities for implementing CE strat-
egies in the five sectors discussed here are shown in Fig. 2. 
Each sectoral analysis includes a review of literature on CE 
strategies for the sector, followed by a discussion on key 
challenges and opportunities.

Food systems and food waste

Food systems have been a central part of CE studies for 
two reasons. First, they are critical to the well-being and 
economic vitality of a growing global population, and sec-
ond, they face formidable challenges due to systems-level 
resource inefficiencies. Food supply chains consume signifi-
cant energy and freshwater resources ((Pimentel et al. 2008; 
Canning et al. 2010; Maupin et al. 2010); release excess 
nutrient loads to vulnerable ecosystems; and contribute close 

Food
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Fig. 2  Challenges and Opportunities for implementing CE Strategies in five sectors
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to 15% of anthropogenic greenhouse gas releases (Pelletier 
et al. 2011; FAO 2013). However, 30–50% of food produced 
using these vast resources is never consumed, amounting 
to over 1.3 billion tons of food waste annually(Gustavsson 
et al. 2011). Food waste is typically disposed in landfills in 
many parts of the world, leading to further economic and 
environmental consequences, particularly climate impacts 
due to methane released as food waste degrades in landfills 
(Gunders 2012).

Food supply chains are ripe for transformation through 
CE strategies that maximize use of energy, water, and nutri-
ents and transform waste streams into biological and tech-
nical resources. A significant body of CE research on food 
focuses on closing the loop on food loss and waste, as guided 
by the food waste hierarchy (Principato et al. 2019) (Fig. 3), 
which presents strategies for minimizing losses, returning 
food losses and wastes to productive use, or converting 
wastes into value-added or lower-impact byproducts (EPA 
2018). With the exception of donating excess but still usable 
food, circular food recovery is primarily characterized by 
open resource loops where organic waste is repurposed or 
valorized into a new resource outside the food supply chain.

Common examples of waste valorization in CE literature 
are anaerobic digestion, fermentation, or transesterification, 
which convert food waste into bio-natural gas, bio-alcohols, 
or bio-diesel respectively (see e.g., Ebner et al. 2016; Hegde 
et al. 2018; Holm-Nielsen et al. 2009; Kayode and Hart 
2019; Maroušek et al. 2020). The primary environmental 
benefit of transforming food wastes into value-added prod-
ucts is the expected displacement of fossil fuel energy carri-
ers, electricity generation, and synthetic fertilizers. This fos-
sil fuel displacement, coupled with avoided landfilling and 
attendant methane releases, results in life cycle greenhouse 
gas benefits (Bernstad and Cour Jansen 2012; Ebner et al. 
2018). However, recent studies on food recovery in the circu-
lar economy context demonstrate that these benefits may not 

be realized under alternative methodological choices, such 
as system boundary, functional unit, or allocation method 
(Oldfield et al. 2018; Olofsson and Börjesson 2018), sug-
gesting a need to reexamine LCA methods applied to bio-
based circular systems.

Realizing the environmental benefits of circular food 
systems also relies on significant commitment, coordina-
tion, and communication among disparate stakeholders. For 
example, in some regions, the business community has been 
hesitant to adopt circular strategies beyond traditional waste 
management (Leipold and Petit-Boix 2018) and may require 
a clearer understanding of the value proposition, such as 
reframing organic wastes as bio-based resources (Perey et al. 
2018). Lack of decision-oriented data and inconsistencies in 
data collection methods (Xu et al. 2016) are also barriers for 
stakeholders such as governmental agencies and waste man-
agers. Overcoming these barriers will require new business 
models, incentive structures (Borrello et al. 2017), innova-
tive policy mechanisms, and multi-stakeholder collaboration 
(Halloran et al. 2014).

Such collaborations among stakeholders must be mir-
rored by physical linkages within food waste management 
infrastructure, comprised of material separation, collection, 
hauling, pre- and final treatment, and distribution of value-
added by-products. This infrastructure must be resilient to 
variability in waste composition (Fisgativa et al. 2016) and 
temporal and spatial shifts in generation volume (Leber-
sorger and Schneider 2014; Armington et al. 2018). Given 
that organic waste generation far surpasses the capacity of 
existing treatment systems, CE research on economic and 
environmentally friendly technology siting and deploy-
ment is also critical. Siting organic waste recovery facilities 
requires optimization of often competing objectives, such 
as compliance to local regulations, minimizing transport of 
waste and byproducts, economic input from tipping fees, 
access to road and utility networks, public perceptions, and 

Fig. 3  Management of food 
losses and wastes by the U.S. 
EPA Food Recovery Hierar-
chy offers multiple pathway 
for closed-loop and open-loop 
circular economy strategies
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avenues for managing residual solid or liquid wastes (Arm-
ington et al. 2018; Ma et al. 2005; Thompson et al. 2013).

Key barriers to implementing technology and infra-
structure for circular food systems also include processing 
inefficiencies and lack of markets for utilizing the gener-
ated energy and byproducts (Nghiem et al. 2017; De Clercq 
et al. 2016). These barriers reflect the fragmented nature 
of food recovery processes, wherein technological solu-
tions are aligned to specific waste streams, as opposed to 
a more fully integrated circular economy. These challenges 
also give rise to opportunity for innovation. A promising 
avenue is integration of organic waste-to-resource technolo-
gies, whereby food waste streams can be converted into a 
wide array of value-added byproducts by way of a “food 
waste biorefinery” (Armington et al. 2018). Like a con-
ventional oil refinery, the incoming feedstocks (food waste 
instead of petroleum) are converted to multiple co-products, 
such as electrical or thermal energy, liquid fuels, fertiliz-
ers, soil amendments, specialty chemicals or solvent-grade 
alcohols (Hegde et al. 2018), which can make the operator 
more competitive, particularly during fluctuating demand for 
and prices of bio-products (Cherubini 2010; Lohrasbi et al. 
2010; Maroušek et al. 2017).

Chemicals

CE implementation in the chemicals sector must be consid-
ered in two separate domains: pre-consumer, where chemi-
cals firms have long been leaders in internal recovery and 
reuse of valuable feedstock materials; and post-consumer, 
where CE practices face significant challenges and recycling 
loops are essentially limited to certain plastics and textiles 
and minerals from non-hazardous industrial wastes (Gar-
cia and Robertson 2017; Eckelman and Chertow 2009a, b; 
Haas et al. 2015). A recent material flow map for chemicals 
constructed (Levi and Cullen 2018) gives a holistic mass-
based view of the chemicals value chain, totaling 820 mil-
lion metric tons of chemical products entering use in 2013. 
In a report for the European Chemical Industry, it was esti-
mated that up to 60% of these molecules could potentially be 
‘re-circulated’, through a combination of substitution, direct 
reuse of products or molecules, and recycling of molecules 
with re-synthesis into useful chemical products.

On the pre-consumer side, CE practices have been in 
place as long as the modern chemical factory has existed. 
One of the early titans of industrial chemicals production 
August Wilhelm von Hoffman (1848) said, “in an ideal 
chemical factory there is, strictly speaking, no waste but 
only products. The better a real factory makes use of its 
waste, the closer it gets to its ideal, the bigger is the profit’’ 
(Cucciniello and Cespi 2018). In practice, chemical con-
version processes are not ideal and give rise to co-products 
or by-products through primary or side reactions, as well 

as unreacted reagents, spent catalysts, and solvents. Large-
scale integrated biochemical and petrochemical plants cap-
ture these streams through separation processes such as 
air stripping or distillation, conduct further purification or 
regeneration as necessary, and reuse them on-site or sell to 
partners (de Jong and Jungmeier 2015; Jenck et al. 2004). 
In very large chemical installations, chemical companies 
can run synthesis processes with linked value chains, so 
that byproducts from one process are used directly in 
another, what the German chemical giant BASF calls the 
Verbund concept.

One of the most active areas of research on pre-consumer 
CE practices is chemical process development for upgrad-
ing or valorization of byproducts from outside the chemi-
cals industry (Cucciniello et al. 2016; Ricciardi et al. 2018), 
including through participation in eco-industrial parks or 
industrial symbioses where byproducts are exchanged 
among firms for mutual economic and environmental ben-
efit Guo et al. (2016). As emphasized by Kalmykova et al. 
(2018), the chemicals industry is uniquely positioned to ena-
ble circular economy practices by using chemical engineer-
ing innovations to enable reuse of resources from a range 
of large-volume waste streams. Examples include chemical 
processes for recovery of valuable metals from e-waste and 
metallurgical wastes and recovery of nutrients from waste-
water treatment (BASF 2018; DOW 2019). This key role 
for the chemicals industry has been emphasized in research 
(Clark et al. 2016; Keijer et al. 2019), market studies (Elser 
and Ulbrich 2017), and industry documents c.f. from BASF 
(2018), Dow (2019) and the European Chemical Industry 
Council (CEFIC 2018). Chemical process innovation may 
enable greater circularity for resource streams that are cur-
rently underutilized, including lignin from pulp and paper 
operations that could in theory be used as a feedstock for 
a wide variety of aromatic molecules (Clark et al. 2016). 
Carbon dioxide has been cited by many as the ‘holy grail’ 
of potential byproduct feedstocks, sourced both from within 
the chemicals industry, which produces net 137 million met-
ric tons annually (Clark et al. 2016), as well as from other 
industrial sources.

On the post-consumer side, the most important barrier 
to CE practices is chemical contamination and associated 
end-of-life safety concerns. In many cases chemical con-
taminants are added by design, such as flame retardants in 
plastics, Leslie et al. (2016) that enhance product perfor-
mance but inhibit downstream recycling. Chemists, there-
fore, have a crucial role in promoting circular economy by 
redesigning polymers and other chemical products to achieve 
the same desired function without using inherently hazard-
ous or inhibitory substances (Clark et al. 2016). CEFIC and 
the International Chemical Secretariat (ChemSec; ChemSec 
Report, Accessed 2020) also emphasize the importance of 
safety for the circular economy and the need for eliminating 
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hazardous chemicals from the value chains, especially if the 
products are to be recycled and reused.

Chemical firms have also been active developers and 
adopters of metrics in both pre- and post-consumer domains, 
bolstered by popularization of design frameworks such as 
the Principles of Green Chemistry (Zimmerman et  al. 
2020). Measures such as E-factor or reaction mass efficiency 
(RME) focus on avoiding process wastes are aligned with 
circular economy goals. However, green chemistry princi-
ples also recognize that designing products to be long-lived 
or recyclable may not always be environmentally preferable, 
and include guidance for ‘targeted durability, not immortal-
ity’ and ‘design for degradation’, especially for bio-based 
materials (Mcdonough et al. 2003).

CE goals in the chemicals sector must not be naïve to 
other environmental considerations like energy use or tox-
icity and other chemical hazards. Contamination with toxic 
compounds has been a common reason why byproducts from 
the chemicals sector must be disposed of in controlled land-
fills, precluding their recycling or reuse (Geueke et al. 2018). 
Appropriate regulations have been applied to hazardous 
long-lived products when our understanding of toxicity has 
improved. For example, building products containing lead 
paint or asbestos should clearly not be targeted for circula-
tion into new products. The same logic holds true for legacy 
chemicals that are highly persistent, bioaccumulative, or oth-
erwise harmful to the environment, such as chlorofluorocar-
bon ozone depleting substances. Therefore, the pursuit of 
CE should balance the benefits of recovering chemicals and 
materials against the potential environmental or health dam-
ages of doing so, as is standard practice in LCA in order to 
avoid “burden-shifting”, as noted in Sect. 4. CE practition-
ers should recognize that the most prudent course of action 
for byproducts or end-of-life products from the chemicals 
sector will sometimes be to pursue safe and secure disposal 
or thermal destruction, and focus their efforts instead on 
green chemistry approaches to design the next generation 
of products for recyclability.

Metals and minerals

The potential for the materials, minerals, and metals indus-
tries to move toward a circular economy is highlighted by 
the strong decline in resource intensity over the last 50 years 
(more production output with less inputs of material and 
energy resources; Worrell et al. 1997; Cleveland and Ruth 
1998). Although economics are the main driver for this 
trend in these industries, literature points to opportunities to 
decouple resource extraction and economic growth (Behrens 
et al. 2007), a key foundation of a circular economy. How-
ever, as total consumption continues to rise and ore grades 
continue to decline, pressure increases for this sector. Lit-
erature focuses on opportunities for circular economy in the 

materials sector, including recycling (Singh and Ordoñez 
2016), remanufacturing (Lieder and Rashid 2016a, b), ena-
bling reuse via lifespan extension (Bakker et al. 2014), criti-
cal material mitigation (Gaustad et al. 2017), additive manu-
facturing (Giurco et al. 2014; Despeisse et al. 2017), and 
innovative product design and material selection (Bocken 
et al. 2016; Jawahir and Bradley 2016; Bradley et al. 2016).

One of the key challenges, however, is the translation of 
these practices from theoretical contexts to real production 
and manufacturing applications (Babbitt et al. 2018).

While recycling is one of the largest potential areas, 
and the materials sector can serve as a sink for end-of-life 
resources (Allwood 2014); recovery rates remain low for 
most materials. Even materials with robust collection and 
recycling infrastructure like copper, steel, and aluminum 
have recycling rates that hover around 50% while other key 
materials like glasses, plastics, rare earth metals, lithium 
etc. have rates under 10% and some with little to no recy-
cling occurring. Key barriers here are material availability 
and compositional quality and uncertainty (Arowosola and 
Gaustad 2019). Collection of post-consumer materials and 
economic prevention of co-mingling remains problematic 
(Ferguson and Browne, 2001; Ferguson 2010). As products 
continue to integrate a wider diversity of smaller amounts of 
materials, dissipative losses of these materials will continue 
to increase without intervention (Zimmermann and Gößling-
Reisemann 2013). On the compositional quality side, mate-
rial mixing also causes tramp element accumulation in many 
material streams; this forces dilution and downcycling to 
meet compositional specifications of new products. The key 
needs here point toward a research roadmap that aims to 
better collect, identify, and sort materials in preparation for 
reuse, remanufacturing, and recycling.

Match-making across industries will also be critical to 
increasing utilization rates; industrial symbiosis has already 
occurred where co-location enables little to no transporta-
tion of these materials (Mathews and Tan 2011). Advances 
in data system are a key enabler here, as databases that can 
provide such match-making have been shown to be success-
ful at promoting partnerships (Sun et al. 2017a, b; Herczeg 
et al. 2018). Other industrial ecology approaches are finding 
new applications in the material based circular economy, 
for example, electronic disassembly and shredding deci-
sions (Ryen et al. 2018), waste management (Tisserant et al. 
2017), mining and metals recovery (Corder et al. 2015), and 
resource efficiency goals (Ma et al. 2015). Literature also 
points to the importance of innovation in systems to recover 
industrial and manufacturing byproducts as resources in 
closed-loop systems. Slags, dross, coal combustion byprod-
ucts, mine tailings, red mud, and other materials formerly 
considered as “wastes” are being reexamined for resource 
recovery potential in addition to their use as additives in 
many applications (Liu and Li 2015; Qin et al. 2015; Hower 
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et al. 2016; Lèbre et al. 2017). Like many other sectors, 
however, implementing these solutions will require concur-
rent investigation into mechanisms for engaging policy and 
industry stakeholders to enhance circularity (Hagelüken 
et al. 2016) .

Electronics and e‑waste

The electronics sector has emerged as a common topic 
for materials-focused CE case studies, both in terms of 
enhancing loop-closing activities such as recycling and as 
a backdrop for analyzing specific materials, such as printed 
circuit boards, rare earth elements (REE) and other met-
als (Fig. 1). Initially comprised of a few single use, large 
devices, electronics have emerged as a vast ecosystem of 
mobile, smart, and connected devices (Internet of Things). 
This system continues to evolve as electronics are embedded 
in non-traditional products like jewelry, clothing, household 
appliances, toys, and health monitoring wearables for people 
and pets (Saner 2017; Bonato 2010; Association 2018; Ryen 
et al. 2014, 2018; CTA 2016). While CE has achieved suc-
cess with recycling, products continue to be designed and 
produced for a linear system, material recovery is limited, 
and current systems/attitudes discourage reuse (Singh and 
Ordoñez 2016) .

Collectively, innovations in technology and design strate-
gies play an influential role in CE strategies for the electron-
ics sector. For example, enhancing strategies to eliminate 
toxic or emerging containments and integrate new, biode-
gradable, nontoxic materials (carbon and pyrene) have been 
identified as key opportunities to push the industry towards 
a zero-waste pathway (Bakhiyi et al. 2018; Fu et al. 2016; Li 
et al. 2015). Design strategies in literature focus on extend-
ing product lifespan and enabling reuse options through 
durability, elimination of high failure rate parts, preventing 
perceived or planned hardware obsolescence induced by the 
software, strengthening emotional connections with devices 
and enhancing modularity (Bocken et al. 2014; Wever 2012; 
Coughlan et al. 2018; Egenhoefer 2017; Komeijani et al. 
2016; GEC 2018, p.8;). Standardized connectors (snaps 
rather than glue) and accessories (power cords) are seen 
as critical for enabling reuse/repairing and access to high 
value components (Parajuly et al. 2016). Material choices 
like single plastics would allow for purer material streams 
and improve recycling rates (Laurenti et al. 2015) .

However, success of these CE strategies in the electron-
ics sector depends heavily on the behavior and decisions of 
end users as a key stakeholder group. For example, modest 
energy efficiency and material reduction gains from tech-
nological advancements dematerialization, material and 
product substitution, or reducing standby energy continue 
to be offset by increasing product functionality, increasing 
ownership, and use behaviors (Babbitt et al. 2018; Kasulaitis 

et al. 2015, 2018; Ryen et al. 2015). Because consumers lack 
awareness or control of factors causing impacts (e.g., mate-
rial and energy intensity), holistic, human-centered design 
strategies are critical to nudging users towards behaviors that 
will facilitate a more circular economy (Lilley 2009; Komei-
jani et al. 2016). Sparking consumer interest in used prod-
ucts may require innovations to communicate distinctiveness 
or provide unique consumption experiences (Weelden et al. 
2016; Wieser 2016; GEC 2018).

Similar to challenges identified for food waste, CE in the 
electronics sector is also heavily dependent on concurrent 
changes in waste collection and management infrastructure 
needed to promote reuse and enable greater material recov-
ery, thus enhancing environmental and economic benefits 
(Williams et al. 2008; Kumar et al. 2017; Zeng et al. 2016; 
Benton and Hazell 2015). This requires clearly defined 
stakeholder responsibilities and meaningful collaborations 
among parties involved (Zhang et al. 2015; Parajuly and 
Wenzel 2017). Japan’s CE success has been attributed to 
manufacturers financially invested in repair/recycling indus-
tries, consumer friendly and convenient collection systems, 
and upfront consumer fees (Salhofer et al. 2016; Borthakur 
and Govind 2017; Benton and Hazell 2015). Proper handling 
and storage for reuse items is needed to minimize damage 
(Coughlan et al. 2018) and tools are needed to test and pre-
pare items for reuse (Bovea et al. 2016), enabling third par-
ties to repair, remanufacture or recycle devices (Laurenti 
et al. 2015; Vanegas et al. 2018) and limit use of heuristics 
(e.g., model or color; Ryen et al. 2018; GEC 2009). Informa-
tion and decision tools ease uncertainty from material stream 
volatility stemming from introduction of new plastics, lower 
quantities of high valued precious metals, larger quantities of 
low value plastics, and supply chain disruptions (Chancerel 
et al. 2013; Sprecher et al. 2014; Cucchiella et al. 2015). 
Data plays a key role in this challenge, particularly as new 
technologies like data analytics, sensing technologies, and 
artificial intelligence (Nobre and Tavares 2017) may contrib-
ute to greater stakeholder information and communication. 
These technologies can encourage more efficient, flexible 
material management systems that can adapt to the quickly 
changing product and material stream (Ryen et al. 2018) 
and provide much-needed data for assessing environmental 
benefits via LCA and MFA methodologies.

Literature has also emphasized the connection between 
CE strategies for electronics and existing e-waste manage-
ment take back and extended producer policies. Some of 
the key challenges include mass-based policy standards 
that only focus on recycling and recovery of heavier, legacy 
devices (Gui et al. 2013), outsourcing responsibility to third 
party collection systems (Singh and Ordoñez 2016), con-
fusing responsibility among stakeholders (Li et al. 2015). 
Consideration how consumers value used devices can influ-
ence policies; point of sale fees may be more effective in 
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the U.S. as devices have little to no value, in comparison to 
consumers in China or India who can sell obsolete devices 
(Borthakur and Govind 2017). Recent National Sword poli-
cies restricting export of e-waste to China and other Asian 
countries (Peterson 2018; Ramodetta 2018) may be the 
tipping point to formalize recovery and reuse structures 
(Eng 2018). Inspiration from a true circular economy, our 
natural system, can stimulate innovative resource manage-
ment Laurenti tools based on the concepts of foraging or 
searching for food (Ryen et al. 2018) or role of ‘scavengers’ 
to process resources (Ghisellini et al. 2016). Sharing is an 
untapped opportunity to reduce consumption with subscrip-
tion, sharing, or product service systems (PSS) models like 
smartphone PSS (Bridgens et al. 2017), software enabling 
computer sharing among users, but require policy support, 
integration of design and business strategies (Moreno, et al. 
2016), a mindset of collaboration (Vanegas et al. 2018). 
Successful transition towards a CE centers on consumers 
and approaches that integrate changes in technology, design 
strategies, infrastructure, policy, and business models.

Buildings and infrastructure

Construction of the built environment (including buildings 
and infrastructure) consumes significant resources and dem-
olition in the sector generates a lot of waste. Global extrac-
tion of construction minerals exceeds 10 billion metric tons 
annually and has had the fastest growth rate of any sector 
over the past century (Fischer-Kowalski, et al. 2011). The 
United States generates over 550 million tons of construction 
and demolition (C&D) waste per year, which is more than 
twice the amount of generated municipal solid waste (US 
Environmental Protection Angency 2018). Thus, the built 
environment is a critical sector to consider in discussions of 
sustainable materials management. However, CE principles 
are challenging to apply in the built environment because of 
buildings’ and infrastructure’s long life, size, location (i.e., 
adjacent to other buildings or infrastructure), and complexity 
(i.e., commingling of materials and assemblies).

There have been numerous proposals for CE frameworks 
and strategies in the built environment as a means of improv-
ing resource efficiency in the sector (Foster 2020; Pomponi 
and Moncaster 2017). The strategies are generally proposed 
within the ReSOLVE framework proposed by the Ellen 
MacArthur Foundation that includes six ways to apply cir-
cularity: regenerate, share, optimize, loop, virtualize, and 
exchange (Foresight 2016; Carra and Magdani 2017; Ellen 
Mac Arthur Foundation 2016). Specific strategies for the 
built environment include reducing C&D waste, maximizing 
value from C&D waste, designing for material and compo-
nent reuse, designing for long life and adaptability, enabling 
CE design and construction practices through increased 
use of digital technology and advanced automation, and 

transforming finance mechanisms and regulations to incen-
tivize CE strategies. Case studies for buildings have been 
presented to demonstrate the feasibility of implement-
ing some of the strategies (Leising et al. 2018; Ellen Mac 
Arthur Foundation 2016). There is a dearth of case studies 
for infrastructure, although case studies involving paving 
materials are emerging in the context of CE (Mantalovas and 
Di Mino 2019; Mantalovas et al. 2020; Calabi-Floody et al. 
2020). Research on CE strategies for the built environment 
is typically focused on a single strategy, such as the use of 
recycled content in new materials, reuse of components, or 
modularization (Mantalovas and Di Mino 2019; Minunno 
et al. 2018; Calabi-Floody et al. 2020; Mignacca et al. 2020). 
Such analyses are an important for guiding implementation 
of CE strategies because they provide insight on technical 
and design issues. However, it is now essential that the scope 
of CE research on the built environment expand to quantita-
tively evaluate trade-offs among various strategies and other 
performance objectives in a holistic fashion. For example, 
there may be trade-offs between the use recycled content and 
the durability of infrastructure, or between design for adapt-
ability and the energy efficiency or resiliency of a building. 
There also may be trade-offs among environmental impacts 
(e.g., a reduced greenhouse gas footprint but an increased 
water footprint).

Evaluating the environmental impacts of CE strategies 
requires the comparison of innovative design solutions for 
buildings and infrastructure using life cycle assessment and 
industrial ecology methods (Hossain and Ng 2018). Given 
the hypothetical nature of evaluating strategies not currently 
used and the systems implications of changing secondary 
material streams, consequential LCA will be an important 
tool for quantifying impacts. In addition, MFA and systems 
dynamics will be required to understand the implications of 
shifts in materials markets due to increases or decreases in 
secondary material flows. However, it is important not to 
overlook the vital role that new and innovative building and 
infrastructure design, materials, and construction solutions 
will have in improving resource efficiency. New business 
models will also be required to implement CE strategies in 
the marketplace (Munaro et al. 2020). Using the ReSOLVE 
framework for buildings and infrastructure in new and effec-
tive ways will be challenging, but quantitative assessments 
of the life cycle environmental impacts of CE strategies will 
be a key component of their implementation.

Cross‑cutting themes

The keyword mapping analysis (Fig. 1) and the sectoral-
specific analysis illuminated several cross-cutting themes 
that are critical to addressing the sectoral CE challenges and 
implementing CE strategies. These four themes and their 
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challenges and opportunities related to increasing CE adop-
tion are shown in Fig. 4. There is more extensive literature 
on the use of models and business/innovation in support of 
CE analyses and hence, they are treated more in-depth.

Decision‑oriented data

The challenge of obtaining high quality, transparent data 
spans all sectors and methods reviewed. In some cases, CE 
analyses require highly resolved data, such as compositional 
profile of materials feeding into CE pathways, variability 
of resource flows over time, or presence of contaminants 
that may limit recycling or reuse, particularly in the case of 
chemicals and metals. In several sectors, data on alternatives 
are scarce, limiting the ability to identify functionally-equiv-
alent chemical and metal substitutes or make “matches” with 
secondary markets to either obtain recovered resources 
or find an end-of-life pathway. Particularly in the case of 
buildings and electronics, data to characterize realistic user 
behavior are required to analyze the full outcomes of CE 
strategies, where consumers may ultimately use products in 
ways that limit environmental benefits. Regionally-resolved 
data are also critical for advancing dynamic and spatially-
explicit models, which are not yet widely used in CE studies.

On the other hand, the current boom in data science 
initiatives and improved computing infrastructures may 
provide new opportunities to overcome these data chal-
lenges. An open source or collaborative approach not only 

improves the availability of data but also democratizes the 
process of data scrutiny and validation. Harmonization of 
data within and across sectors using such platforms may 
also lead to greater comparability and consistency across 
studies. However, incentives may be required to encourage 
researchers to participate. The Virtual Industrial Ecology 
laboratory (https ://ielab .info/) provides a successful exam-
ple of a collaborative platform used to overcome data chal-
lenges in implementing a theoretical framework.

Modeling to assess circular economy outcomes

Implementing CE solutions across the diverse sectors 
described above introduces new challenges of modeling 
multiple systems interacting at different spatial and tem-
poral scales and evaluating implementation to ensure it 
leads to net environmental benefits. Systems modeling 
methods such as LCA and material flow analysis MFA 
are natural choices to analyze the costs and benefits of 
reconfiguring sectors to achieve CE goals. LCA and MFA 
are widely used in the field of industrial ecology, which 
shares the aspirations of closing resource loops and con-
verting wastes to resources. These methods have a clear 
role in informing holistic decisions for CE transitions but 
also face key modeling challenges that have yet to be fully 
addressed. This section reviews the current applications 

Data

- Lack of data for temporal and 
spatial mapping in material 
flow analysis 
- Detailed material 
composition, secondary 
materials market data 
unavailable
- lack of standardization in data 
needed for CE

- Standardized database for 
sectors 
- A global material database 
such as UN FAO dataset

Models

- Uncertainty modeling in 
LCA
- Tedious to develop IO 
based models and physical 
mapping of material flows 
such as using MFAs/PIOTs
- Sub-regional models for 
local CE development

- Use of ICT enabled data 
collection for MFA and LCA
- Collaborative cloud 
platforms for automation of 
IO and PIOTs development

Stakeholders

- Confidentiality challenges 
to collaborate for CE
- Ownership of scope for 
impact and transition 
- Finding right partners, 
enabling leadership 
cohesion

- Regional leadership 
consortium for industries

Innovation

- Participation barrier
- Reliability of feedstock 
availaibility to build a CE 
business
- Stigma among consumers 
for recycled product

-Achieve economies of 
scope 
-Clear measures to measure 
outcomes towards CE
- Enhance collaborative 
innovation
- Invest in social 
engagement.

Legend: Challenges Opportuni�es

Fig. 4  Key Challenges and Opportunities for cross-cutting themes that are critical to implementing CE strategies in the sectors

https://ielab.info/
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of LCA, MFA and IO based models in CE and also raises 
opportunities for methodological innovation.

Life Cycle Assessment

LCA is a holistic system modeling approach for assessing 
environmental impacts of a product system throughout its 
entire life. This method can be applied to evaluate circular-
ity interventions designed to minimize or recover waste in 
product systems (Edwards and Crossin 2017; Maga et al. 
2019, Morris 2005), such as anaerobic co-digestion of 
organic waste (Edwards and Crossin 2017), mechanical and 
chemical recycling for waste polylactic acid (PLA; Maga 
et al. 2019), curbside recycling programs (Morris 2005), 
and e-waste management systems (De Meester et al. 2019). 
LCA research has also been applied to product systems that 
incorporate CE principles to production operations or sup-
ply chains. For example, LCA has been applied to confirm 
the environmental benefits of industrial symbiosis (Daddi 
et al. 2017, Deschamps et al. 2018, Eckelman and Chertow 
2013, Mathur et al. 2020) and guide process development 
of byproduct and waste valorization systems (Robertz et al. 
2015; Seto et al. 2017; Khoshnevisan et al.,2020; Lam and 
Hsu 2018). LCA has been applied to a wide array of waste 
repurposing cases, such as agricultural products (Hong et al. 
2015), aquaculture systems (Strazza et al. 2015), aerospace 
alloys (Eckelman 2014), grey water systems (Yoonus and 
Al-Ghamdi 2020), algae biodiesel (Gnansounou and Raman 
2016), aluminum cans (Niero and Olsen 2016), municipal 
food and solid waste management (Edwards and Crossin 
2017; Saraiva et al. 2017), product service systems (Brezet 
et al. 2016), the construction industry (Rios et al. 2019), and 
regional development (Eckelman and Chertow 2009a, b). 
CE-oriented waste-to-energy systems, discussed more in the 
context of food waste in Sect. 4.1, have also been analyzed 
extensively using LCA (Lazarevic et al. 2010, Aziz et al. 
2019, Esteves et al. 2019, Ingrao et al. 2019, Rajendran and 
Murthy 2019) primarily to evaluate effectiveness of these 
systems for relieving energy-related environmental burdens 
(IEA 2020).

The application of LCA to loop-closing approaches 
demonstrates the versatility of the method for evaluating 
CE strategies at all stages of implementation (Moraga et al. 
2019a, b). A review on CE implementation tools highlights 
the role of LCA in sourcing materials to reduce supply chain 
impacts (Yuliya Kalmykova et al. 2018) and guiding design 
for closing loops through reuse, recycling or remanufactur-
ing. LCA helps to highlight interactions between complex 
systems, such as the food-energy-water nexus (Del Borghi 
et al. 2020), and determine if a CE intervention creates net 
environmental benefits (Mohammed et al. 2018; Moraga 
et al. 2019a, b; (Chen et al. 2019). Metrics like the Material 
Circularity Indicator (MCI; Ellen MacArthur Foundation 

2019) can be combined with LCA to provide parallel analy-
sis of a product’s circularity and environmental performance. 
Additionally, expanding LCA to incorporate 6R elements 
(reduce, reuse, recycle, recover, redesign, remanufacture), 
can facilitate evaluation of product lifespan extension strate-
gies (I S Jawahir and Bradley 2016). LCA-based CE indica-
tors can contribute to standardization efforts in evaluating 
CE performance (Pauliuk 2018), particularly when coupled 
with multi-criteria decision analysis to assess solutions 
under conflicting scenarios (Niero and Kalbar 2019a, b).

While research has demonstrated that LCA is of value 
in building a CE framework (Bakker et al. 2010), chal-
lenges exist in its implementation. Data availability and 
quality continue to be major challenges, potentially limit-
ing accuracy of results (Cucurachi et al. 2018) and result in 
difficulty using LCA to evaluate if CE strategies create net 
environmental benefits. Another persistent concern is the 
choice of LCA system model. Even before LCA was widely 
applied in the CE context, experts and practitioners debated 
the circumstances that call for using either attributional 
LCA (ALCA) or consequential LCA (CLCA; Brander et al. 
2019; Weidema et al. 2018). ALCA assigns the cumulative 
environmental impacts to all flows attributable to a product 
system at a fixed point in time, whereas CLCA measures the 
marginal impacts due to fulfilling the functional unit over 
time (Curran et al. 2005). In the CE context, CLCA may 
be essential to give a complete perspective on economy-
level transitions or innovative services designed to disrupt 
and rearrange existing supply chain networks (Haupt and 
Zschokke 2016). On the other hand, ALCA may be better for 
describing environmental tradeoffs of a specific product or 
design alternative or to provide straightforward information 
to decision makers and aid in ecolabeling to promote CE 
adoption in the market. Considering the broader literature, 
some studies bridge the gap by carrying both an ALCA and 
CLCA (Jones et al. 2017; Venkatachalam et al. 2018; Yang 
2016; Zanten et al. 2018), but this approach would magnify 
existing data challenges. To our knowledge, no literature has 
yet demonstrated the application of CLCA for modeling or 
decision making on CE implementation.

Material flow analysis and dynamics

MFA is “the systematic assessment of the flow and stock 
of materials within a system defined in space and time; it 
connects the sources, the pathways, and the intermediate 
and final sinks of a material” (Wen and Li 2010). As early 
as 1999, MFA was being used to describe and analyze sus-
tainable development challenges, and by extension promot-
ing CE (Ii et al. 1999). MFA can facilitate CE strategies by 
describing the location and composition of waste streams in 
the economy (Kuczenski and Geyer 2010), virgin resources 
yet to be extracted (Kesler et al. 2012), the accumulation 
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of “urban mining” stocks (Eygen et al. 2016), the routes 
of resource loss (NRDC 2012), sites of high consumption 
(UNEP International Resource Panel) and the secondary 
resources not suitable for reuse because of their composi-
tional quality or in-use dissipation (Ciacci et al. 2015). More 
recently, MFA has found extensive application in analyz-
ing waste minimization and material flows in the context of 
recycling (Haupt and Zschokke 2016; Pivnenko et al. 2016). 
MFA has been applied to evaluate CE strategies for many of 
the sectors described in earlier sections, including biomass 
systems (Marques et al. 2020) e-waste (Cordova-Pizarro 
et al. 2019; De Meester et al. 2019) metals such as copper 
(Gorman and Dzombak 2020) and rare earth elements (REE; 
Guyonnet et al. 2015), and highway infrastructure (Wen and 
Li 2010). Recent literature has also connected MFA to busi-
ness and innovation studies, for example, examining plastic 
flows as a precursor to CE innovation in a small island devel-
oping state (Millette et al. 2019a, b).

Despite methodological advances, the data-intense nature 
of MFA is a major barrier to more widespread application, as 
data quality and availability remain a challenge (Laner et al. 
2015; Wang and Ma 2018). For example, CE implementa-
tion requires data that are highly resolved at the regional or 
material level (Virtanen 2019), but insufficient information 
about specific materials or processes makes it difficult to 
generate regional MFAs (Haas et al. 2015; Haas et al. 2016) 
to aid project development. In broader applications, MFA 
has been integrated with other tools; for instance, combining 
MFA and thermodynamic analysis to determine benefits of 
industrial symbiosis and thereby provide evidence to stake-
holders on the value of CE (Sun et al. 2017a, b). MFA in 
combination with LCA may be useful to analyze both eco-
nomic and environmental factors of a CE pathway (Pomponi 
and Moncaster 2017a, b). Modeling the transition towards 
CE also calls for methods that account for change over 
time, such as MFA combined with system dynamics (Gao 
et al. 2020) or models that reflect changing socio-economic 
metabolism (Paulik and Hertwich 2016). Recent work pro-
posed economy-wide material flow accounting (ew-MFA) to 
estimate the generation of in-use stocks and waste generation 
over multiple years (Wiedenhofer et al. 2019) and ew-MFA 
has been integrated with global dynamic models to simulate 
circular economy scenarios at the global level (Hanumante 
et al. 2019). Data gaps can also be bridged using technology 
forecasting methods to enable scenario analysis (Althaf et al. 
2019) or uncertainty analysis when detailed material compo-
sition data are not available (Arowosola and Gaustad 2019). 
Key opportunities for future research include developing and 
validating MFA models for data-scarce scenarios and cou-
pling MFA with systems-level environmental or economic 
tools, as is discussed in the following section.

Input–output based models

The macroeconomic framework of input–output (IO) models 
provides a robust methodology for understanding complex 
interactions and structural interdependence between sectors 
of an economic system (Leontief 1991) and between these 
sectors and the environment (Leontief 1970a, b, c). Since 
redesigning physical systems towards CE will require sys-
tems transformations, IO models provide a suitable theoreti-
cal framework, despite their relatively low use in CE studies 
to date. Of particular promise are modifications such as envi-
ronmentally extended input–output (EEIO; Leontief 1970a, 
b, c; Matthews and Small 2001) and integration with MFA 
(Nakamura et al. 2007; Pfaff et al. 2018; Duchin and Levine 
2019). For example, EEIO-based studies have assessed eco-
nomic and environmental impacts CE strategies like waste 
reuse, product lifetime extension, closing material loops, and 
improving resource efficiency (Aguilar-Hernandez 2019; 
Donati et al. 2020). Methodologically, using EEIO methods 
to evaluate CE strategies will also require more data that 
capture structural changes due to increasing recycled materi-
als markets or marginally reducing demand due to product 
life cycle extension.

Various approaches have been taken to use IO analy-
sis in conjunction with MFA for evaluating CE scenarios 
(Surahman et al. 2017; Schiller et al. 2017), with the waste 
input–output MFA model (WIO-MFA) being one of the 
most established and widely used frameworks for IO-based 
CE studies (Towa et al. 2020). The model converts a mon-
etary IO table into a physical input–output table (PIOT), 
enabling analysis of product composition and material inten-
sity (Nakamura et al. 2007; Lenzen and Reynolds 2014). 
Through its dynamic-MFA extension (Nakamura and Kondo 
2018), based on the MFA model MaTrace (Nakamura et al. 
2014, 2017), WIO-MFA also enables consideration of 
changes in secondary material composition over time due 
to reuse and maintains supply–demand balance for the mate-
rial under investigation. In addition, the utility of EEIO and 
integrated IO-MFA for CE analysis may be further supple-
mented by integrating location-specific conditions through 
multiregional input–output (MRIO) models (Tisserant et al. 
2017; Stadler et al. 2018) and open source tools (Donati 
et al. 2020).

However, one major limitation of applying EEIO 
approaches to CE is that while these models are clearly able 
to simulate the impacts of all the strategies to achieve CE, 
their monetary-based analyses do not fully represent actual 
physical transitions in the economy (Hubacek and Giljum 
2003; Weisz and Duchin 2006). One way to improve CE 
insights gained from EEIO models is creation of hybrid 
and physical input–output table (PIOT) models (Hawkins 
et al. 2007; Hoekstra 2010; Kovanda 2018). Recent work 
focuses on hybrid Supply-Use Tables (HSUTs), which can 
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form a precursor for IO tables (Merciai and Schmidt 2018a, 
b), although implementation to make such tables available 
to the research community is still required. PIOTs will be 
particularly valuable for optimizing resource flows in the 
economy, given their ability to track a specific material flow 
through the whole system. In this sense, PIOTs share simi-
larity with MFAs, but can connect underlying mass flows 
to economic production, leading to calculation of material 
intensity per unit of production from any sector (Singh et al. 
2017). While this method can model structural changes as 
a result of transition to CE, PIOTs are data intensive and 
not yet widely used to inform strategic decisions (Hoekstra 
2010). One solution to this issue may be in the combina-
tion of process engineering models with the IO framework 
(Wachs and Singh 2018). In this approach, process models of 
production provide physical data to build PIOTs using a bot-
tom up approach which could then be extended to develop 
a computational algorithm for standardizing the “Process to 
PIOT” approach (Vunnava and Singh 2019). The strengths 
of this bottom up approach are modularity, reproducibility, 
and potential for automation (Vunnava et al. 2020; Singh 
et al. 2017). Developing these PIOTs may also benefit CE 
studies by providing regional data needed to implement 
MFA and contributing to WIO methods (Lenzen and Reyn-
olds 2014) that evaluate the impact of waste recycling.

Stakeholder engagement

Advances in data and modeling cannot be viewed as an end 
goal, even if that is where much of the literature stops in 
CE case studies, but rather as a conduit to providing action-
able information to stakeholders. While stakeholders are 
an explicit consideration in literature focused on circular 
business models, they are typically treated implicitly in 
sectoral studies (Rothenberg et al. 2020; Halloran et al. 
2014)(Hagelüken et al. 2016; Zhang et al. 2015). However, 
industry, academic, governance, consumers, and supply 
chain stakeholders, among others, will all play a key role 
in generating data, recognizing the value proposition of CE 
strategies, and ultimately changing business and innovation 
practices across the value chain (Moreno, et al. 2016; Vane-
gas et al. 2018; Perey et al. 2018; 2017a, b; Lenzen and 
Reynolds 2014; Ehrlichman et al. 2018). Literature points 
to a wide array of technical barriers facing stakeholders, 
including challenges identifying functional substitutes for 
high-impact resources, creating low-cost cleaner produc-
tion systems, implementing technical solutions for product 
lifespan extension, and deploying more efficient, scalable 
remanufacturing, recycling, and material recovery systems 
(Mantalovas and Di Mino 2019; Mantalovas et al. 2020; 
Calabi-Floody et al. 2020; Kumar et al. 2017; (Geisendorf 
and Pietrulla 2018; Bocken et al. 2014; Wever 2012). In 
parallel, market barriers also hinder stakeholder action on 

CE that is outside a primary business function or revenue 
stream (Nghiem et al. 2017; De Clercq et al. 2016). Parallel 
research and innovation in Internet of Things, blockchain 
solutions, and data-driven analyses along with data-driven 
manufacturing can enhance models that convey the ‘business 
case’ for CE strategies (Nobre and Tavares 2017; Carra and 
Magdani 2017; Ellen Mac Arthur Foundation 2016; Kova-
cova et al. 2020). Further, research into education, engage-
ment, and incentives will play a key role in understanding 
how consumers can become part of CE solutions (Wieser 
2016; Midgley et al. 2017).

Business and innovation

Literature on CE implementation clearly revolves around 
issues surrounding current business models and opportuni-
ties for innovation (Rothenberg et al. 2020; Fig. 1). Cur-
rent material use patterns in economic sectors described 
in Sect. 3 are predicated on ideas developed during for the 
Industrial Revolution that exploited specialization of labor 
and economies of scale to increase efficiency (Hounshell 
1985). As increased efficiencies allowed for lower prices, 
unit sales increased, thereby enabling even greater econ-
omies of scale and specialization of labor (Taylor 1911). 
For decades, the positive feedback loop of industrializa-
tion drove pseudo-exponential growth in material demands 
(Berkhout and Hertin 2004). However, in the late 1960s, the 
economy began to press against the biophysical limits of 
technologies for primary materials extraction, and planetary 
support systems for waste disposal (Ayres 2006). This trend 
was anticipated by a now-famous article that contrasted the 
“cowboy” economy predicated on ever-expanding domesti-
cation of an open frontier, and a “spaceship” economy predi-
cated on reuse and recycling of material streams within “a 
closed sphere of human activity” (Boulding 1966) .

The transition to a circular economy is an extension of 
the spaceship metaphor, in which returns will not accrue 
to scale, but from an increased capacity to utilize materials 
that were previously discarded (Ellen Macarthur Foundation 
2019). More recently, the exploitation of new information-
communication technologies (ICT) in old industries such 
as hotel, taxi, and manufacturing may be a new avenue for 
wringing efficiencies from the economy (Denning 2014; 
Cusumano 2015; Denning 2014; Cusumano 2015; Posen 
2015). In a technologically optimistic version of the tran-
sition to CE, adding information technologies (e.g., waste 
sorting), allows improvements in quality of life without 
pressing against thermodynamic limits that presage bio-
physical collapse. Where ICT can substitute for material 
redundancies and reduce waste, knowledge becomes the 
“ultimate resource,” and could hypothetically be unlimited 
(Simon 1981).



 S. Singh et al.

1 3

In the old model of industrialization, innovation could 
occur at a single point in the supply chain, without neces-
sitating management of feedback loops in material flows that 
increase complexity and scarcity. Further, standardization 
ensured both economies of scale and substitutability of parts 
(and labor), allowing innovators to plug into existing produc-
tion systems provided they met expectations of compatibility 
with existing standards. Whereas, a post-industrial model of 
innovation for a circular economy must operate at the larger 
scale of the entire system (Midgley et al. 2017), because 
recovery of post-consumer goods for reuse, remanufactur-
ing, or recycling creates feedback loops that present com-
plicated materials management issues, including collection, 
sorting, treatment, and reintegration into the economy.

Complex challenges, such as circular economy, require a 
shift in the paradigm of innovation as described by the early 
works of (Kuhn 1996). Transitions to CE will require over-
coming barriers to innovation that would be insurmountable 
without system-wide innovation as shown in Figure. Despite 
massive generation of waste materials in American urban 
centers, the problem of securing a reliable source of post-
consumer feedstock presents extraordinary risks to circular 
economy entrepreneurs (OECD 2019). Without consistent 
sources of “waste” material, technology and business models 
must be designed for flexibility, adaptability, and agility, at 
the expense of efficiency. These demands drive-up short-
term costs and business risks. The economies of scale typical 
of centralized production systems have to be replaced by 

economies of scope, in which the cost of any item becomes 
cheaper not as the scale of the market for identical items 
expands, but as the diversity of the market of differentiated 
items increases (Geisendorf and Pietrulla 2018). To achieve 
this economy, advances in technologies for the beneficial 
reuse of waste- and by-products must continue to become 
more sophisticated (Fig. 5).

Products derived from waste or used materials still suffer 
from a stigma that makes customers reluctant to become 
early adopters (Wieser 2016). The transition to a circular 
economy based on economies of scope will require thou-
sands, if not millions, of customers willing to become 
early adopters. Innovative business models will take time 
to become adopted among consumers and organizations 
(Rogers 2003) and will require changing how we view who 
participates in innovation, what the process of innovation 
looks like, and what the outcomes of innovation are (Midg-
ley et al. 2017) .

The logistics of material flows, and consumption or use 
patterns for products and services currently neglect the 
“true” holistic value of discarded materials versus virgin 
materials (Hedberg et al. 2019). To resolve these issues, 
seamless collection, sharing, and integration of data across 
value chains is necessary to drive data-informed decisions. 
Addressing systemic problems requires coordinated system-
wide solutions, and this necessitates a concerted effort from 
a broad range of stakeholders that work to create enabling 
conditions for effective collaborations (Ehrlichman et al. 

Fig. 5  Overcoming barriers to enable a paradigmatic shift to a circular economy
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2018) among institutions, industries, and regions. For centu-
ries, the feudal model of the master architect has dominated 
our concept of how innovation takes place. Although it has 
long been acknowledged that collaboration and knowledge 
sharing are essential to creativity and innovation (e.g., John-
son 2010), the myth of the lone genius has nevertheless per-
sisted in the public imagination (e.g., Ashton 2015).

An intention-based approach to innovation may be 
curated, structured, and conform to standards, even while 
allowing the result to emerge. Systemic innovation leverages 
open source experiments and porous organizational bounda-
ries (Mazzucato 2018). In systemic innovation, contributions 
may not be attributable to any single innovator or inven-
tor, given that at the scale of the whole system, individual 
contributions sometimes cannot be disaggregated from the 
whole. Paradigm shifts such as these have the ability to drive 
radical innovation, which could result in unpredictable and 
disruptive changes to the industrial paradigm of centralized 
and hierarchical control (Kuhn 1962). From this, new sys-
tems could be developed by changing stakeholder’s thinking, 
relationships, interactions and actions.

The concept of a circular economy is a fundamental 
departure from modern economic theory, but much of the lit-
erature is focused on incremental, rather than radical, inno-
vation. In many of the sectors reviewed, continued progress 
along the current trajectory will lead to significant gains. 
Several examples are shown in Figs. 2 and 4 of innovative 
opportunities with significant potential for future research, 
such as complete depolymerization to recover valuable raw 
materials and manage the growing plastic waste challenge 
or the use of electronics to fundamentally shift consumers’ 
daily behaviors towards sustainable choices. Among ena-
blers creating automated cloud-based platform that ena-
bles stakeholder engagement with insights from theoretical 
model will provide significant advancement in implementa-
tion strategies. A review of CE business models also points 
to critical opportunities and barriers to radical innovation 
and the attendant paradigm shift required for this transition. 
Two such priorities for future CE innovation research are 
the ability to achieve economies of scope, rather than econ-
omies of scale, and the potential for ICT and digitization 
to replace resource-intense products and services. Access 
to data, stakeholder collaboration and communication, and 
clear methodologies to measure outcomes are also critical 
elements that enable each industrial sector to address circu-
lar economy challenges and force a shift in the creation and 
adoption of innovative business models.

Conclusion

A wide body of research exists on CE implementation and 
this breadth points to clear progress at a theoretical level 
to both create innovative solutions and develop methods 
needed to assess the outcomes of their application. Existing 
CE reviews focus on definitions of CE, regional develop-
ments or focusing on opportunities in few single sectors. 
However, evidence of real implementation in sectors is less 
prevalent, and the literature remains relatively fragmented, 
where lessons learned from one sector are not necessarily 
conveyed to others and new business models are not fully 
validated in realistic case studies. Further methodologies are 
not consistently applied or there is a lack of standardization 
in use of modeling techniques to inform transition to CE. 
The findings from this literature review have implications 
on both fundamental research and investments in scale-up 
of clean technologies that can facilitate the transition to CE. 
The complex challenges and structure of the CE transition 
magnify the cross-cutting challenges in collecting data and 
implementing methods that have been largely adopted from 
the industrial ecology field. However, the diverse nature of 
CE stakeholders also offers promises for solutions to these 
challenges, through new approaches to coordination, data 
sharing, and estimating the value proposition of CE solu-
tions. Further, CE pathways provide a novel testing ground 
to understand social adaptation for recycling, radical inno-
vation towards economies of scope, and technical advances 
that will transform material management and recovery loops.
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