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Abstract
An acknowledged weakness of neural networks
is their vulnerability to adversarial perturbations
to the inputs. To improve the robustness of these
models, one of the most popular defense mecha-
nisms is to alternatively maximize the loss over
the constrained perturbations (or called adver-
saries) on the inputs using projected gradient as-
cent and minimize over weights. In this paper, we
analyze the dynamics of the maximization step to-
wards understanding the experimentally observed
effectiveness of this defense mechanism. Specifi-
cally, we investigate the non-concave landscape
of the adversaries for a two-layer neural network
with a quadratic loss. Our main result proves that
projected gradient ascent finds a local maximum
of this non-concave problem in a polynomial num-
ber of iterations with high probability. To our
knowledge, this is the first work that provides a
convergence analysis of the first-order adversaries.
Moreover, our analysis demonstrates that, in the
initial phase of adversarial training, the scale of
the inputs matters in the sense that a smaller input
scale leads to faster convergence of adversarial
training and a “more regular” landscape. Finally,
we show that these theoretical findings are in ex-
cellent agreement with a series of experiments.

1. Introduction
Neural networks have achieved remarkable success in many
fields such as image recognition (He et al., 2016) and natural
language processing (Devlin et al., 2018). However, it has
been recognized that neural networks are not robust against
adversarial examples – prediction labels can be easily manip-
ulated by human imperceptible perturbations (Goodfellow
et al., 2014; Szegedy et al., 2013). In response, many de-
fense mechanisms have been proposed against adversarial
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attacks such as input de-noising (Guo et al., 2017), random-
ized smoothing (Ilyas et al., 2019), gradient regularization
(Papernot et al., 2017), and adversarial training (Madry et al.,
2017). Among these, one of the most popular techniques
is adversarial training, which proposes to add adversarial
examples into the training set as a way of improving the
robustness.

As oppose to earlier work that only adds adversarial exam-
ples several times during the training phase, more recently,
Madry et al. (2017) propose to formulate adversarial training
through the lens of robust optimization, showing substantial
improvement. More precisely, robust optimization for a loss
function L in its simples setting takes the form

min
θ∈Θ

E(x,y)∼D max
‖δ‖p6ε

L(θ,x+ δ, y),

where θ ∈ Θ is the parameter and (x, y) are the input
and label following some unknown joint distribution D.
The inner maximization problem is to find an adversarial
example, where δ is an adversarial perturbation with lp
norm constraint for some integer 1 6 p 6∞.

For neural networks, the inner maximization problem is typ-
ically non-concave and the most commonly used method in
implementation is through the first-order method – projected
gradient ascent. However, as pointed out by (Wang et al.,
2019), the degree to which it solves the inner maximization
problem has not been thoroughly understood. While there
are several papers providing great theoretical insights to the
convergence of adversarial training, they either formulate
the inner maximization problem as maximizing the first
order taylor expansion of the loss (Wang et al., 2019), or
treat the inner maximization problem abstractly as a general
function of data and study the convergence in the neural
tangent kernel regime (Gao et al., 2019). In our paper, we
make the first step to analyze the dynamics of projected
gradient ascent of neural networks.

The first question is about the effectiveness of projected gra-
dient ascent. To prove the effectiveness, we need to consider
the time cost of using projected gradient ascent in the inner
maximization problem. In (Madry et al., 2017), one claim
is that using projected gradient ascent can find the adver-
saries rapidly. That claim is very important since adversarial
training usually takes much longer than usual training due
to the inner maximization problem. Specifically, if we use
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gradient method in the alternative optimization problem for
both inner maximization and outer minimization, and de-
note the number of epochs taken to find adversaries with
given weights by n1, number of updates of weights by n2,
then the epochs taken by the adversarial training is n1n2.
To make the time cost of adversarial training bearable, the
fact that n1 is not large plays a key role here.

Another issue about effectiveness is whether the projected
gradient ascent can truly find a local maximum and not be
stuck at a saddle point. In (Madry et al., 2017), Madry et al.
claims the loss (as a function of model parameters) typically
has many local maximums with very similar values. So, if
the projected gradient ascent truly finds a local maximum,
the effectiveness of the adversarial training is trustworthy.

We summarize our first question below.

Questions 1. Does projected gradient ascent truly find a
local maximum rapidly?

The second question we try to explore is whether the scale
of inputs matters. In the adversarial training, ε’s scale is
usually in proportional to the scale of input x:

ε = rE‖x‖p.

For adversarial attacks on images, the ratio r is supposed to
be small, so as to reflect the fact that the attacks are visually
imperceptible.

For fixed r > 0, ε and the input scale E‖x‖p are closely
related – a smaller input scale implies a smaller ε. In the
implementation of image recognition using neural networks,
people usually rescale the image pixels to [0, 1] or [−1, 1].
While that seems not affecting regular optimization, it may
affect adversarial training. So, we have the following ques-
tion.

Questions 2. When we fix the ratio r, do smaller input
scales (implying smaller ε) help optimization of adversarial
training?

If the answer to Question 2 is positive, it will be helpful
in the future applications to rescale the inputs to a smaller
scale.

Both questions above have not been studied yet due to the
highly non-concave landscape of adversaries.

1.1. Our contributions

Our analysis provides answers to Question 1 and 2 for the
initial phase of the adversarial training, i.e. the weights are
drawn from Xavier initialization (Glorot & Bengio, 2010).
Even for this simple case, nothing has been discussed theo-
retically so far.

In Section 3 and 4, we provide the answer to Question 1 by
showing projected gradient ascent indeed can find a local

maximum rapidly by providing a convergence theorem.

Theorem 1.1 (Informal). Projected gradient ascent can
obtain an approximate local maximum, which is close to a
true local maximum on the sphere in polynomial number
of iterations when the learning rate is small enough. If we
further allow learning rate shrinking with time, projected
gradient ascent can converge to a local maximum.

In Section 5, we answer Question 2 by showing a smaller
scale helps in the perspectives of landscapes and conver-
gence of trajectories. From our theory, we show a smaller
input scale helps the trajectory converge faster if we had
a bad initialization. Besides, a smaller input scale makes
the local maximums concentrate better, which can partially
explain why the loss value of local maximums share similar
values (Madry et al., 2017). Lastly, we verify the previous
claims by extensive numerical experiments.

Our work mainly focuses on the initial phase of adversarial
learning, which may be a good start towards understanding
the first-order adversaries.

1.2. Related work

Adversarial attack and defense Besides projected gradi-
ent ascent, some other have also been proposed to generate
adversarial examples, such as FGSM (Goodfellow et al.,
2014), l-BFGS (Szegedy et al., 2013) and C& W attack
(Carlini & Wagner, 2017). Also, some attacks are pro-
posed to attack black-box models, in order to defend against
those attacks, many defense mechanisms have been pro-
posed (Brendel et al., 2017; Chen et al., 2017). However,
many of these defense models have been evaded by new
attacks (Athalye et al., 2018) except (Madry et al., 2017).
Besides, a line of work focus on providing certified robust-
ness and robustness verification (Weng et al., 2018; Wong
et al., 2018; Zhang et al., 2018), which also provide useful
insights theoretically.

Adversarial training The first work to propose adversar-
ial training is (Goodfellow et al., 2014), in which the authors
advocate adding adversarial examples during training to im-
prove the robustness. In (Madry et al., 2017), the authors
use projected gradient ascent to find adversaries and reach a
state of art performance. However, as we mentioned before,
running projected gradient method is very slow, and some
work (Shafahi et al., 2019) intend to solve this problem. Be-
sides, the introducing of adversarial training also motivates
a line of theoretical work, such as (Agarwal et al., 2018; Liu
& Hsieh, 2019; Yin et al., 2018). However, none of them
address the inner maximization problem using projected
gradient ascent.

Non-convex optimization Non-convex optimization is
notoriously hard to analyze. However, some work provide
valuable guide. In (Ge et al., 2015), the authors analyze
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the dynamics of noisy gradient descent in the non-convex
setting. Some following work including (Du et al., 2017)
show gradient descent can take very long to escape saddle
point but noisy gradient descent does not, and (Jin et al.,
2017) shows noisy gradient descent can converge to a sec-
ond order stationary point vert fast. In our setting, we do
not need extra noise, but can still yield a good convergence
result.

2. Preliminaries
Notations Throughout the paper, we use [n] to denote
{1, 2, · · · , n} and use ‖ · ‖p to denote lp norm. In particular,
for l2 norm, we use ‖·‖ or ‖·‖2 exchangeably. For any func-
tion L : Rd 7→ R,∇L and∇2L denote the gradient vector
and Hessian matrix respectively. We use B to denote ball and
S to denote sphere. We denote ∠[u,v] = uTv/(‖u‖‖v‖),
which is the cosine value of the angle between the two
vectors v and u. For a function h(x), we sometimes use
shorthand ∂h(x) for gradient ∂h(x)/∂x.

Setup Recall adversarial learning aims to solve the robust
optimization of loss function L:

min
θ∈Θ

E(x,y)∼D max
‖δ‖p6ε

L(θ,x+ δ, y),

where θ ∈ Θ is the parameter, (x, y) ∈ Rd × R is d-
dimensional input and scalar output, which follows a joint
distribution D. The corresponding empirical version for
samples {xi, yi}ni=1 is

min
θ∈Θ

1

n

n∑
i=1

max
∀i∈[n],‖δi‖p6ε

L(θ,xi + δi, yi). (1)

For fixed θ, solving the optimization problem (1) can be
optimized as n different optimization problems separately:
for each xi, we need to obtain a corresponding δi. In this
paper, we focus on studying the convergence rate of finding
adversaries, i.e. maximizing δ ∈ Rd when the constraint
is the l2-norm and the loss is the quadratic loss of shallow
neural network:

max
δ

L(θ,x+δ, y) = (y−f(a,W , δ+x))2, s.t. ‖δ‖22 6 ε2.

(2)
Here, f is a two-layer neural network:

f(a,W , δ + x) =
m∑
r=1

arσ(wT
r (x+ δ)).

In the above equation, a = (a1, a2, · · · , am)T is an m-
dimensional vector, W = (w1, · · · ,wm) is an m × d-
matrix and θ = (aT ,Vec(W )T )T , where Vec(·) is the
vectorization operator. We use σ to denote the softplus
activation function such that σ(x) = log(1 + ex).

We study the projected gradient ascent:

δt+1 = PB(0,ε)

[
δt + η

∂L(δt)

∂δt

]
, t > 0,

where B(0, ε) is a ball centered at 0 with radius ε in Eu-
clidean distance, and P is the projection operator. δ0 is
uniformly sampled in the ball B(0, ε).

In this paper, we always consider the problem under the
following settings unless we state explicitly otherwise.

1. wr’s are i.i.d drawn from d-dimensional Gaussian
N (0, κ2I), where 0 < κ 6 1 controls the magnitude
of initialization.

2. ar’s are i.i.d drawn from Bernoulli distribution, which
take ±γ with 1/2 probability.

3. There exist L,U > 0 such that L < |y − f(a,W , δ +
x)| < U for all δ ∈ B(0, ε).

4. δ0 is initialized by drawing from a uniform distribution
over B◦(0, ε), where B◦ stands for the interior of the
ball B.

In this paper, we will take the parameters according to
Xavier initialization, which means κ = d−1/2 and γ =
m−1/2.

Remark 1. We study the case when the weights are drawn
from commonly used distributions for initialization. Our
analysis can be viewed as studying the dynamics of finding
adversaries in the initial phase of training.

3. Main Results
We present our main results on the convergence of projected
gradient descent (PGD) in this section. Since the objective
of optimization is δ, we use L(δ) for loss and we denote
the constraint as c(δ) = ‖δ‖2 − ε2. For convenience, we
consider the minimization version:

L(δ) = −(y − f(a,W , δ + x))2.

The original problem in (2) is equivalent to:

min
δ
L(δ), s.t. c(δ) 6 0.

Then, the iterative optimization algorithm used becomes the
projected gradient descent (PGD)

δt+1 = PB(0,ε)

[
δt − η

∂L(δt)

∂δt

]
, t > 0.

Here, we provide the formal statement of our main results.
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Theorem 3.1 (Main Theorem). Suppose m = Ω(d5/2),
there exists εmax(m) = Θ

(
(logm)−2

)
and ηmax(m, ε) =

min{Θ
(
(logm)−2

)
, ε2}, if ε < εmax(m), for any η <

ηmax(m, ε), with high probability, in O(η−2) iterations,
projected gradient descent will output a point δt on the
sphere which is O(η1/2) close to some local minimum δ∗.

Remark 2. Our width requirement is much smaller com-
pared to the results with respect to neural tangent kernels
(Du et al., 2018; Jacot et al., 2018). The latter one re-
quires m = O(poly(n)), where n is the samples size. No-
tice the scale of ε only requires to be upper bounded by
O(poly((logm)−1), under that requirement, the activation
function will be activated along the update of δ with con-
stant probability when ‖x‖ is small.

Corollary 3.1 (Shrinking learning rate). Under the as-
sumptions of Theorem 3.1, for t̃ satisfying δt̃ ∈ εSd−1 and
the tangent component of ∂f(δt̃) (for every point on the
sphere, the tangent component of a vector is its projection
to the tangent plane at that point) being smaller than η1/2,
let Ds := ‖δt̃+s− δ∗‖2, if we shrink the learning rate after
t̃ , in a way that

δt̃+s+1 = PB(0,ε)

[
δt̃+s − ηs∂L(δt̃+s)

]
, t > 0, s > 0,

for η0 < η, as long as ηs → 0 as s → ∞ and
Πk
i=0(1 − γηi/2) → 0 as k → ∞, we will have Ds → 0.

Furthermore, if

ηsΠ
k
i=0(1− βηs+i

2
) 6 ηs+k+1 (3)

for all s, k ∈ N, where β is a constant depending on
(d,m, ε, η) and can be calculated explicitly, then for all
s ∈ N,

Ds 6 O(ηs).

Remark 3. One concrete example satisfying Eq. (3) is the
following one: if ηs = 2/(βs+βz) for large enough integer
z,

Ds 6 O(
1

z + s
).

3.1. Our interpretation

Our results state that for a wide enough one hidden layer
neural network, if the attack size ε is small, then we can
choose small enough learning rate, such that the trajectory
of PGD can quickly reach a point that is very close to one
of the minimizers. Besides, the minimizer is located on
the sphere with high probability. The theory can partially
explain the observation in (Madry et al., 2017): it does not
take too many iterations to find an adversary, which is the
key to guarantee the time cost of robust optimization modest.
Also, our theory is consistent with the observation that the
PGD will end up on the sphere for most samples in the
implementation of adversarial training.

4. Proof Sketch
In this section, we briefly sketch our proof. We show with
high probability, the gradient is non-vanishing in the ball.
Meanwhile, on the sphere, there is no saddle points. Besides,
the trajectory will not get stuck near local maximums and
can converge to a local minimum in polynomial number of
iterations.

Lemma 4.1 (Dynamics in the ball). For m =
Ω(d5/2), there exists εmax(m) = Θ

(
(logm)−1/2

)
and

ηmax(m, ε) = min{Θ
(
(logm)−1

)
, ε2}, if ε < εmax(m),

η < ηmax(m, ε) , with high probability, whenever δt+1 ∈
B◦(0, ε)

L(δt+1)− L(δt) 6 −Ω(η).

The above lemma shows the trajectory is very unlikely to
terminate in the ball since the (t + 1)-th step can make
progress if δt+1 ∈ B◦(0, ε).

Next, we focus on studying the dynamics on the sphere.
For constrained optimization, we can locally transform it
into an unconstrained problem by introducing Lagrangian
multipliers:

L(δ, λ) = L(δ)− λc(δ).

Under some regularity conditions, we can obtain the La-
grangian multiplier λ∗(·):

λ∗(δ) = argminλ ‖∂L(δ)− λ∂c(δ)‖.

There are two key quantities. The first quantity can be
viewed as an approximate gradient when we have con-
straints, which we will denote as Γ:

Γ(δ) = ∂L(δ, λ)|(δ,λ∗(δ)) =
∂L(δ)

∂δ
− λ∗(δ)

∂c(δ)

∂δ
.

Another important quantity can be viewed as the approxi-
mate Hessian of constraint optimization:

Ξ(δ) = ∂2L(δ, λ)|(δ,λ∗(δ)) =
∂2L(δ)

∂δ2
− λ∗(δ)

∂2c(δ)

∂δ2
.

For δ, δ′ ∈ εSd−1, if ∂2L(δ, λ∗) is ρ-Lipschitz, i.e.
‖∂2L(δa, λ

∗)−∂2L(δb, λ
∗)‖ 6 ρ‖δa−δb‖ for all δa, δb ∈

B(0, ε), we can obtain

L(δ, λ∗) 6 L(δ′, λ∗) + ∂L(δ′, λ∗)T (δ − δ′)

+
1

2
(δ − δ′)T∂2L(δ′, λ∗)(δ − δ′) +

ρ

6
‖δ − δ′‖3.

Since δ, δ′ are on the sphere, we know L(δ, λ∗) = L(δ)
and L(δ′, λ∗) = L(δ′), we have

L(δ) 6L(δ′) + Γ(δ′)T (δ − δ′) +
1

2
(δ − δ′)TΞ(δ′)(δ − δ′)

+
ρ

6
‖δ − δ′‖3.

(4)
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Further, we denote T (δ) as the tangent space at δ on the
sphere, and PT (δ) is the operator for projection to the tan-
gent space T (δ). The projected gradient descent can be
approximated in the manner stated in the following lemma.

Lemma 4.2 (Approximation of PGD). For any v̂ ∈ Sd−1,
let δ̃1 = δ0 + ηv̂ and δ̃2 = δ0 + ηPT0 · v̂

‖PB(0,ε)(δ̃1)− δ̃2‖ 6
4η2

ε
.

It is worth noting that Γ(δ) is actually the tangent compo-
nent of ∂f(δ)

Γ(δ) = PT (δ) · ∂f(δ).

As a result, for δt ∈ εSd−1

‖δt+1 − (δt − ηΓ(δt))‖ 6
4η2

ε
. (5)

We can use the above Eq. (4) and (5) to calculate the
progress at each step. Thus, in order to analyze the progress,
we only need to carefully analyze Γ and Ξ. In the following
paragraph, we discuss Γ and Ξ case by case.

For each point on the sphere, we loosely define “near” and
“away from” local optimums by looking into the angle be-
tween the gradient and the spherical normal vector. If the
gradient is parallel to the spherical normal vector at a point
on the sphere, then the point is a fixed point for projected
gradient descent. It is either a local optimum or a saddle
point. We will show such points are not saddle points under
some regularity conditions. Since c(δ) = ‖δ‖2 − ε2, the
unit spherical normal vector is δ/‖δ‖ at each point on the
sphere and the cosine value of the angle we are looking at is
∠[∂f(δ), δ]. If ∠[∂f(δ), δ] is close to ±1, then such δ is
close to a critical point.

Lemma 4.3 (Away from critical points on the sphere).
For m = Ω(d5/2), there exists a threshold εmax(m) =
Θ((logm)−1), if ε < εmax, with high probability, for any
δ ∈ εSd−1 and any 0 6 β 6 1 such that

∠[∂f(δ), δ] 6 β,

we have

‖Γ(δ)‖ >
√

1− β2‖∂f(δ)‖ > LBl
√

1− β2,

where Bl is of order Θ(1).

Recall L is the lower bound such that |y − f(a,W , δ +
x)| > L for all δ ∈ B(0, ε). The above lemma shows if
the trajectory is away from critical points, each step can
decrease the loss value by−Ω(η) since δt+1 ≈ δt− ηΓ(δt)
and L(δt+1) 6 L(δt) + Γ(δt)

T (δt+1 − δt) + O(‖δt+1 −
δt‖2).

The hard case is when the trajectory is near a critical point
on the sphere. We will first show that the critical points
on the sphere are not saddle points under some regularity
conditions.

Lemma 4.4 (Near critical points on the sphere). For
m = Ω(d5/2), there exists a threshold εmax(m) =
Θ((logm)−1), if ε < εmax, with high probability, there
exists universal constants φ, γ > 0, for any δ ∈ εSd−1,
such that

∠[∂f(δ), δ] > φ,

then for all ‖v‖ = 1,

sgn
(
(y − u)δT∂f(δ)

)
· vTΞv > γ.

Lemma 4.4 implies Ξ is either positive definite or negative
definite near a critical point, thus, none of the critical points
on the sphere are saddle points.

Since near a local minimum, the trajectory can converge to
that local minimum by traditional analysis technique, the
only thing left to deal with is when the trajectory is near local
maximums. The following lemma states the trajectory will
not be stuck near any local maximum with high probability.

We denote the set ∆−η = {δ : ∠[∂f(δ), δ] 6 −1 +
√
η/(LBl), δ ∈ εSd−1} and ∆+

η = {δ : ∠[∂f(δ), δ] >
1−√η/(LBl), δ ∈ εSd−1}. Notice that ∠[∂f(δ), δ] = ±1
when the spherical normal vector is parallel to the gradient
at δ. Thus, for small η, the two sets are the collections of
points near local maximums and local minimums respec-
tively.

Lemma 4.5 (Trajectory and local optimums). For learn-
ing rate η such that η < min{1,LBl}, if

arccos
(
∠[∂f(δ), ∂f(δ′)]

)
+ arccos

(√
(LBl)2 − η

(LBl)2

)
6
π

4

(6)

for all δ, δ′ ∈ εSd−1, the trajectory initialized by drawing
from a uniform distribution over B◦(0, ε) will never reach
∆−η . Meanwhile, if there exists t∗ such that δt∗ ∈ ∆+

η , then
for all t > t∗, δt ∈ ∆+

η .

From the discussions above, it is easy to see Lemma 4.5
holds for small enough ε and η. The above lemma states
the trajectory will not be stuck near local maximums and
‖Γ(δ)‖ > √η if δ /∈ ∆+

η for δ ∈ εSd−1. That can ensure
L(δt+1) − L(δt) 6 −Ω(η2) for δt, δt+1 ∈ εSd−1. As
a result, the trajectory can constantly make progress until
the trajectory reaches ∆+

η . Then, traditional techniques for
convex optimization can be applied and gives us the final
convergence result.
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(a) Input scale=0.01, ratio=0.1 (b) Input scale=0.01, ratio=1.0 (c) Input scale=0.01, ratio=10

(d) Input scale=1.0, ratio=0.1 (e) Input scale=1.0, ratio=1.0 (f) Input scale=1.0, ratio=10

(g) Input scale=100, ratio=0.1 (h) Input scale=100, ratio=1.0 (i) Input scale=100, ratio=10

Figure 1. Landscapes and trajectories on simulated data. We compare the landscapes and trajectories with three different input scales and
three different perturbation ratios. If the input scale is small enough (i.e. 0.01 here), the landscape has only one local minimum and PGD
can easily escape the local maximal with few steps even with large perturbation ratio such as 10 . On the other hand, if the input scale is
not small enough, we will have a less regular landscape with a lot of local minimums and it takes a lot of steps to escape from a local
maximum. For large input scales, we have to reduce the perturbation ratio, so as to make the landscape become more regular and make
escaping from the local maximums faster. Our simulations are based on two-dimensional inputs and two-layer neural networks. More
details can be found in the supplementary materials.

5. Implications and Extensions
So far, we have derived the theory about finding adversaries
in the initial phase of adversarial training. Through our
theoretical analysis, we also identify several interesting phe-
nomena concerning the scale of input x. In this section, we
briefly discuss the implications of our theory on experiments
and show how to extend our arguments to general losses.

5.1. Scale, Landscape and Convergence

In this subsection, we state the high level conclusions and
the details of the theoretical results are left in the supple-
mentary materials.

As we stated in the introduction, ε’s scale is usually formu-
lated in proportional to the scale of input x. In the empirical

optimization (1)

min
θ∈Θ

1

n

n∑
i=1

max
∀i∈[n],‖δi‖p6ε

L(θ,xi + δi, yi),

ε takes the form

ε = r

n∑
i=1

‖xi‖p
n

for small r > 0, where r stands for a small constant ratio.

In this section, we shed some light on Question 2, which we
restate here.

When we fix the ratio r, do smaller input scales (implying
smaller ε) help optimization of adversarial training?

Our answer to that question is positive — at least the input
scale matters in the initial phase of adversarial training.
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(a) Input scale=0.1 (b) Input scale=10 (c) Input scale=1000

Figure 2. Trajectories from local maxima to local minima on real-world data. We show the adversarial losses of each point on the
trajectories from local maxima with three different input scales and five different perturbation ratios. For a fixed perturbation ratio, a
smaller input scale means that escaping from local maxima is easier. If the input scale is small enough (i.e. 0.1 here), PGD can easily
escape the local maxima even with a large perturbation ratio such as 10 as shown in Fig. 2(a). If the input scale is not small enough,
escaping from a local maximum will be easier with a smaller perturbation ratio as shown in Fig. 2(b). If the input scale is too large,
escaping from a local maximum will be difficult even with a small perturbation ratio 0.001 as shown in Fig. 2(c). These results are
consistent with those on the simulated data in Fig. 1. The experiments are based on a real-world dataset MNIST and a practical multi-layer
CNN. More details can be found in the supplementary materials.

We experimentally and theoretically answer that question
from the perspectives of landscapes and convergence of
trajectories.

5.1.1. SMALLER INPUT SCALES IMPLY MORE REGULAR
LANDSCAPES

In our proofs, the concentration results for all quan-
tities such as supδ∈B(0,ε) ‖∂f(a,W , δ + x)/∂δ‖ and
minδ,δ′∈B(0,ε) ∠[∂f(δ), ∂f(δ′)] depend only on the scale
of ε since in the initial phase, a andW are drawn from ini-
tialization distributions which are independent to the inputs.
That fact implies with a fixed ratio r, a smaller input scale
will result in a smaller ε, so as to make all the concentration
results hold with a higher probability. Even if the ratio r is
large, which means the adversarial attack is more aggressive,
the concentration results can hold regardlessly.

Moreover,
min
δ,δ′

∠[∂f(δ), ∂f(δ′)]→ 1,

as ε→ 0, which means the angle between ∂f(δ) and ∂f(δ′)
will be very small if ε is small. Besides, for δ ∈ εSd−1,
δ is a local optimum if and only if δ is parallel to ∂f(δ).
Combining the above facts, it is natural to expect the local
minimums will be closer to each other when a smaller ε is
chosen. Actually, there is a threshold τε > 0, when ε is
smaller than τε, there is only one minimum on the sphere.

Theorem 5.1 (Informal). Under the settings of Theorem
3.1, there exists a threshold τε > 0, such that for ε < τε,
there is only one local minimum on the sphere with high
probability.

Theorem 5.1 implies in the initial phase of adversarial train-

ing, a smaller input scale of ‖x‖ actually can ensure there
exists only one single local minimum on the sphere which
is also the global minimum. Combined with previous re-
sults, the projected gradient descent is able to reach global
minimum with high probability.

In Figure 1, we can see for a fixed r, smaller input scale
make the landscape more regular, for instance, the upper left
one has only one local minimum. For a large input scale,
the landscape will become very complex (see subfigure (i))
unless we use very small perturbation ratio r (see subfigure
(g)) .

5.1.2. SMALLER INPUT SCALES HELP CONVERGENCE

Another interesting discovery is inspired by Lemma 4.5 in
the previous section. If ε is not small enough, Eq. (6) in
Lemma 4.5 cannot stand. Thus, when the initial adversary
δ0 ∈ B◦(0, ε) is close to one of the local maximums on
the sphere, it is possible that the trajectory of projected
gradient descent can reach the region ∆−η on the sphere,
who contains points close to local maximums. Too close
to a local maximum will result in a very small progress in
the loss decay at each step, which will take much longer
to reach a local minimum. As an illustration, we can see
from Figure 2 and 3, by judging from the decay rate of loss
function, we can see a smaller input scale leads to faster loss
value decay in the initial phase of adversarial training.

5.2. General losses

Previously, we have derived the theory with respect to
quadratic loss. In this subsection, we extend the theory
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(a) Epoch=0 (b) Epoch=10 (c) Epoch=100

Figure 3. The dynamics of trajectories from local maxima to local minima during the adversarial training process. We use the same setting
as that in Figure 2 and fix the input scale as 0.1. After a few epochs of adversarial training, escaping from local maxima is still easy for the
small input scale as shown in Fig. 3(b). However, escaping from local maxima will be significantly harder after a lot of training epochs as
shown in Fig. 3(c). This influence is more significant on large input scales compared to small ones.

to general losses of (x, y) ∈ Rd × R in the following form:

L(y, f(θ,x+ δ)),

where we still take f as a two-layer neural network dis-
cussed previously:

f(a,W , δ + x) =

m∑
r=1

arσ(wT
r (x+ δ)).

Taking derivative with respect to δ:

∂L

∂δ
=
∂L

∂f
· ∂f
∂δ
,

∂2L

∂δ2
=
∂L

∂f
· ∂

2f

∂δ2
+
∂2L

∂f2
· ∂f
∂δ

(∂f
∂δ

)T
.

Actually the only difference of deriving theory for general
losses compared to quadratic losses lies in the different form
of ∂L/∂δ. As long as ∂L/∂δ satisfies L < |∂L/∂f | < U
for all δ ∈ B(0, ε) for some L,U > 0, and |∂2L/∂f2|
is upper bounded by some constant B > 0, all our previ-
ous conclusions stand without changing the scale of ε and
η. Instead of going into too many details, we leave the
details to readers who are interested in checking. In the
later paragraph, we focus on discussing whether the above
assumptions are reasonable.

Generally, the loss chosen in the optimization has the follow-
ing property: L(y, f) = 0 if and only if y = f . The final
goal of optimization is to make L(y, f) small and in the
initial phase, since we initialize the parameters randomly,
we would expect f(θ,x+ δ) to be “far from” the label y,
in other words, |L(y, f)| is lower bounded by some posi-
tive constant L. Then, by continuity of the loss function,
if ε is small, the change of |L(y, f)| would be expected to
be small. As a result, it is reasonable to assume ∂L/∂δ
satisfies L < |∂L/∂f | < U for all δ ∈ B(0, ε) for some
L,U > 0. Also, with smoothness assumptions on L over
f , and smoothness assumptions on f over input x, since

the change of ε is over a compact set, |∂2L/∂f2| should be
upper bounded.

We wrap up this subsection with another concrete example
besides quadratic loss – cross entropy loss:

L(y, f) = −y log
( exp(f)

1 + exp(f)

)
−(1−y) log

( 1

1 + exp(f)

)
.

Then,

∂L

∂f
=

exp(f)

1 + exp(f)
− y, ∂2L

∂f2
=

exp(f)

(1 + exp(f))2
.

As discussed above, in the initial phase, we usually have the
estimated probability exp(f)/(1 + exp(f)) is not equal to
the true probability (here the true probability y is either 0 or
1). And with small ε > 0, we would expect ∂L/∂δ satisfies
L < |∂L/∂f | < U for all δ ∈ B(0, ε) for some L,U > 0.
Meanwhile, apparently 0 6 ∂2L/∂f2 6 1.

6. Conclusions and Future Work
In this paper, we theoretically characterize the dynamics
of finding adversaries in two-layer fully connected neural
networks in the initial phase of training. We also talk about
the experimental implications the theory brings. The main
take-away is that in the initial phase of adversarial training,
projected gradient method is trustworthy and a smaller input
scale can help the adversarial training perform better.

In the future, we hope to extend our theory to higher layer
neural networks and to the full dynamics involving weight
updates. When considering the full dynamics, as the adver-
sarial training process goes on, the weights become more
and more dissimilar to gaussian vectors. Usually, as the
adversarial training goes on, L(y, f) will goes to 0, so we
can expect the convergence rate on finding adversaries will
be slower since ∂L

∂δ = ∂L
∂f ·

∂f
∂δ and ∂L

∂δ should be close to 0.
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The landscape of adversaries in the later phase of training
will become very complicated due to the intervention of
δ and θ. More importantly, using first order optimization
method is possible to result in a cyclic dynamic. It is also
interesting to explore how to get rid of the cyclic dynamic
problem in the future.
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