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Abstract: Deforestation in the Brazilian Amazon is related to the use of fire to remove natural
vegetation and install crop cultures or pastures. In this study, we evaluated the relation between
deforestation, land-use and land-cover (LULC) drivers and fire emissions in the Apyterewa Indigenous
Land, Eastern Brazilian Amazon. In addition to the official Brazilian deforestation data, we used
a geographic object-based image analysis (GEOBIA) approach to perform the LULC mapping in
the Apyterewa Indigenous Land, and the Brazilian biomass burning emission model with fire
radiative power (3BBEM_FRP) to estimate emitted particulate matter with a diameter less than 2.5 pm
(PMy5), a primary human health risk. The GEOBIA approach showed a remarkable advancement
of deforestation, agreeing with the official deforestation data, and, consequently, the conversion of
primary forests to agriculture within the Apyterewa Indigenous Land in the past three years (200 km?),
which is clearly associated with an increase in the PM; 5 emissions from fire. Between 2004 and 2016
the annual average emission of PM; 5 was estimated to be 3594 ton year‘l, while the most recent
interval of 2017-2019 had an average of 6258 ton year~!. This represented an increase of 58% in the
annual average of PM, 5 associated with fires for the study period, contributing to respiratory health
risks and the air quality crisis in Brazil in late 2019. These results expose an ongoing critical situation
of intensifying forest degradation and potential forest collapse, including those due to a savannization
forest-climate feedback, within “protected areas” in the Brazilian Amazon. To reverse this scenario,
the implementation of sustainable agricultural practices and development of conservation policies to
promote forest regrowth in degraded preserves are essential.
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1. Introduction

Intact forest ecosystems offer exceptional ecosystem service value through climate change
mitigation, watershed regulation and biodiversity conservation. They are also crucial for human health
and the future survival of indigenous communities [1,2]. Conversely, forest loss through clearing
and biomass burning both contributes to greenhouse gas emissions and reduces evapotranspiration,
exacerbating climate warming. It also induces direct human health threats through the production
of dangerous fine particulate matter in the air [3,4]. The Amazon region has the largest rainforest in
the world; however, the anthropic pressure and associated land-use and land-cover (LULC) changes
have led to large-scale forest losses [5,6]. The consequences of Amazon deforestation are profound,
though they are yet to be fully understood. Amazon deforestation causes decreases in biodiversity [7],
alteration of rainfall regionally and perhaps globally [8,9], reduction in forest resilience to climate
change related drought and other disturbances [10], alteration of regional climate [11], impacts on
LULC dynamics [12], changes in water storage and hydrological dynamics [13] and enhancement of
drought risks and impacts [14].

The primary drivers to deforestation in the Brazilian Amazon include supplying the cattle, crop
and timber global markets, and local demands for food crops. Road expansion networks (both official
and unofficial) are also related to deforestation in the Brazilian Amazon. Critically, these deforestation
drivers are associated with controlled and uncontrolled fires [5,15]. In the state of Para, where
deforestation rates are among the highest in Brazil, Jusys [15] describes cattle ranching as the strongest
driver of deforestation. To reduce forest loss and degradation in the Amazon the delimitation of
protected areas and effective public forest management policies are essential [2,16-18].

Amazon deforestation rates fell overall between 1988 and 2012, which was the result of improvements
in governance, monitoring and legal structure [19]. Optimistic scenarios at the beginning of the 2010s even
envisioned the potential to the end of deforestation in the Brazilian Amazon by 2020 [20]. However,
in recent years (mostly 2018 and 2019), annual deforestation rates have increased markedly, particularly
in protected areas such as indigenous lands [21]. This new deforestation boom in the Brazilian
Amazon is being driven by the political turmoil and economic recession in Brazil [22,23], which has
favored deforestation and the expansion of agricultural activities in these areas, leading to increased
tensions over indigenous land rights, and endangering native peoples and other protected groups and
traditional lifestyles in the Amazon [23].

The effectiveness of conserving protected areas is primarily a function of government enforcement [2],
which can endanger conservation efforts when agreements and regulations are subverted and bypassed
for political reasons [24]. The work of Herrera et al. [25] examined the impacts of protected areas
created by the federal government and state agencies in the Brazilian Amazon, considering internal
impacts (within boundary) and spillovers (nearby). In the “Arc of Deforestation”, the internal benefits
estimated for federal protected areas and indigenous lands are higher than for state-created protected
areas. Within the “Arc of Deforestation” spillover benefits outside of the boundaries of protected areas
were small or insignificant. In the case of the state of Pard; however, both federal protected areas and
indigenous lands offer internal and spillover land protection benefits. These authors suggest that
political and economic factors, in addition to enforcement agency objectives and capacities, are crucial
for conservation strategies.

Typically, the deforestation and agricultural conversion processes employ fire for final clearing and
land preparation [26]. For example, van der Werf et al. [27] found that 75% of fire emissions in Southern
Amazon were associated with deforestation. Therefore, climate and human health sensitive trace gases
(e.g., CO and CO,) and aerosol emissions from fires are also expected to increase with deforestation.
Although several species of traces gases and aerosols are associated with fires, the particulate matter
with a diameter less than 2.5 um (PM5 5) is often chosen in studies related to fire emissions [28,29]
due to its human health risk and for being considered a good tracer for the other aerosols and trace
gases emitted from fires [4]. Amazon agricultural conversion and fire increases since 2018, along
with increasing droughts and heatwaves under climate change [30], the interaction of wildfire and
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R6G2B1 for the year 2019.

As Sao Félix do Xingu is the second Amazonian municipality with more deforestation since 2008
(more than 3800 km?) [21], this indigenous land is severely endangered. Pasture expansion is the main
deforestation driver in this region [35]. After a period of decreasing deforestation beginning in 2004
(139 km?) and reaching practically a rate of zero in 2012 (0.77 km?), annual deforestation rates started
increasing significantly again in Apyterewa during the last two years (19.82 km? and 85.25 km? in 2018
and 2019, respectively) [21] and are expected to increase even more in 2020 [36].
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2.2. Official Deforestation Data

We used the Brazilian official deforestation data from INPE for analyzing the historical deforestation
patterns in the Apyterewa Indigenous Land. These data were used to monitor deforestation increases
and LULC conversion in the Brazilian Amazon and were developed to drive inspections operations and
enforcement to curb illegal deforestation. There are two distinct projects within INPE’s deforestation
monitoring system: (i) the Brazilian Amazon Deforestation Satellite Monitoring Project (PRODES),
which monitors clear-cut deforestation and provides annual accurate official deforestation rates of the
Brazilian Amazon forest since 1988 [21], and (ii) the Near-Real Time Deforestation Detection System
(DETER), which provides, since 2015, deforestation alerts to warn authorities about deforestation in
Brazilian biomes [21]. In this work we used PRODES data from 2004 to 2019 and DETER data from
2016 to 2020. It should also be mentioned that the PRODES calendar does not consider the civil year;
for example, the 2019 deforestation considers the period from 1 August 2018 to 31 July 2019.

2.3. Land Use and Land Cover Mapping

In order to evaluate the LULC changes in the study area, we used two images from the operational
land imager (OLI) sensor on board the Landsat-8 satellite (path 225/row 064) obtained within a
three-year interval (11 August 2016 and 26 July 2019) [37]. These images contain geometric corrections
derived from control points of the Global Land Survey (GLS) database and terrain elevation data
from the Shuttle Radar Topography Mission (SRTM). We chose the images based on the availability
of clear-sky data and also acquired close to the same date to reduce variations in brightness due to
changes in solar elevation and azimuth angles, as well as to avoid misinterpretations resulting from
phenological changes in vegetation.

We adopted the geographic object-based image analysis (GEOBIA) approach to perform LULC
mapping in the Apyterewa Indigenous Land. This approach, which presents better results than
pixel-based alternatives, expands the analysis over the pixel reflectance information, segmenting
features, dividing the images in geo-objects selected by shape, compactness and texture, collecting
samples and performing classifications using geo-objects as a basic unit of analysis [38]. GEOBIA
minimizes the within-class spectral variability by assigning all pixels in the object to an identical LULC
class, better using the spatial information implicit within remotely sensed images such as size, shape
and texture of objects, as well as facilitating the integration of contextual and semantic relationships
among geographic objects [39].

The methodological procedure for obtaining LULC information involved five steps: (i) calculation
of spectral indices to highlight LULC classes; (ii) segmentation of the OLI images into geo-objects using
the multiresolution segmentation (MRS) algorithm, which groups pixels of each object according to
6 parameters assigned to each band: smoothness, color, weight, scale factor, shape and compactness [40];
(iii) collection of representative samples of each LULC classes of interest; (iv) geo-object classification
by the support vector machine (SVM) algorithm [41] and (v) post-processing, which relied on visually
evaluating if there were irregular or non-classified geo-objects in the resulting classification.

Spectral indices were utilized to increase the spectral separability of the different LULC classes
and to improve segmentation. We used the normalized difference vegetation index (NDVI) [42],
the soil-adjusted vegetation index (SAVI) [43] and the normalized difference water index (NDWI) [44],
since these indices are sensitive to variations in vegetation, soil background and water bodies,
respectively. Combining GEOBIA and vegetation indices allowed to better discriminate similar
spatiotemporal phenomena than using only pixel’s reflectance and spectral bands [45].

Segmentation parameters values, defined based on OLI images characteristics and tests applied
to the study area, were defined as follows: 50 for scale factor, 0.9 for shape and 0.8 for compactness.
These parameters are related to the minimum segment size and the level of spectral separation between
objects [46].

The sample dataset used to train the SVM algorithm was produced collecting 140 geo-objects for
each image following a stratified random sampling method. LULC classes were defined in this step,
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based on the interpretation key described by Coutinho et al. [47]. Classes were: water (water bodies,
such as rivers, 40 samples), anthropized areas (including pasture, mining, agriculture and other human
activities, 50 samples) and natural areas (natural forested areas with native vegetation and rocky
outcrops, 50 samples). These samples were collected by an experienced analyst using RGB compositions
in natural color following the method proposed by Sanchez et al. [48]. They considered this composition
as ideal to separate LULC classes in the Amazon using average spatial resolution images. We also
used the support of high-resolution Planet® images (https://www.planet.com/explorer/) from the same
dates of the OLI/Landsat-8 images to facilitate the collection of samples.

The classification of both 2016 and 2019 images considering spectral, spatial, morphological and
contextual information was then performed using the SVM algorithm, a supervised non-parametric
machine learning algorithm based on structural risk minimization strategies that reduce misclassification
errors [41]. This method computes an optimal hyperplane that maximizes the margin between different
classes by using a small number of training cases, which are called support vectors and was originally
designed for binary classification problems, but can be extended to multiple classes [49], presenting
good results with a limited number of training samples and areas where complex LULC patterns are
found [50].

From the calculation of the vegetation indices previously described, we were able to define with
confidence small rivers and exposed outcrop rocks, eliminating the chance of spectral confusion of
these LULC classes with vegetation, mining and bare soil cleared for pasture occupation. Furthermore,
the segmentation of the images using the MRS algorithm and parameters to group pixels into geo-objects
eliminated possible noises that can be commonly found in digital satellite images [51] and reduced
misclassifications of pixels from the same LULC class based on spectral and scalar variabilities, making
it possible to generate representative segments with compatible sizes, a factor that was then confirmed
by visual inspection. Visual inspection during post-processing guaranteed that all geo-objects were
classified, and that the classification was well performed. These processes enabled a more refined
classification using the SVM algorithm.

2.4. Fire Emissions Estimate

The fire emitted aerosol species chosen to be associated with deforestation in the study area was
PM; 5, since it is a good tracer for other aerosols and trace gases emitted from fires and in the meantime
detrimental for human health [52,53].

The annual PM;5 emitted from fires for the 2004-2019 period was estimated using the
Brazilian biomass burning emission model with fire radiative power (3BEM_FRP) implemented
on the PREP-CHEM-SRC emissions preprocessing tool version 1.8.3 [54]. For studies conducted in
South America, this model has the advantage of being parameterized for the continent (and region)
relative to global biomass burning inventories [55], while enabling the estimation of emissions on
flexible spatial resolutions [56]. MODIS active fires collection 6 products (MOD14 and MYD14) [57]
were the only data inputs in the 3BEM_FRP model, and fires were the only source of emission activated
in PREP-CHEM-SRC 1.8.3. The outputs generated consisted of the daily emission of several aerosol
pollutant species at the spatial resolution of 0.1 degree. Daily estimates of PM; 5 coverages were
isolated in the Apyterewa Indigenous Land and tallied to provide annual values. More details on the
model and tool used are described in Pereira et al. [54], Santos [55] and Freitas et al. [56], while the
application of this method is fully described in Mataveli et al. [28].

Here, we highlight that it is often difficult to estimate the fire radiative power for each active fire
detected by the MOD14 and MYD14 products, and this may introduce uncertainties to final estimates of
fire emissions. This includes the misdetection of small size or less intense fires and failure of detection
of fires because of cloud cover or smoke, and the reduced sensitivity of MODIS sensors for detecting
active fires and estimating the fire radiate power accurately at off-nadir viewing angles [58-60].
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loss from fire-drought related events cannot explain this upturn since no such anomalous rainfall
conditions have been observed in this area [5]; furthermore, our approach clearly identifies LULC
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interpretation key used. The classification via GEOBIA defined the ongoing forest degradation as an
anthropized area, which was done taking into consideration the spatial resolution of the
OLI/Landsat-8 images (0.001 km?). Although PRODES deforestation areas are collected at 0.001 km?,
this official data considers as smaller deforestation size 0.0625 km? to maintain consistency with
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The classification via GEOBIA defined the ongoing forest degradation as an anthropized area, which
was done taking into consideration the spatial resolution of the OLI/Landsat-8 images (0.001 km?).
Although PRODES deforestation areas are collected at 0.001 km?2, this official data considers as smaller
deforestation size 0.0625 km? to maintain consistency with long-term data. With this, PRODES may
consider selective logging or “forests under use” not necessarily deforestation, which is, therefore,
represented only by clear-cut events. Besides not accounting for degradation processes (which may
inflate small deforestation estimates) [63], PRODES also considers an exclusion mask containing the
deforestation from previous years to eliminate the possibility of old deforestation being mapped
again [21]. These are the main factors that may have caused differences between PRODES and our
GEOBIA product. We also note here that, according to [63], the increasingly small size of deforestation
patches in Brazil, less likely detected by PRODES or DETER, may also partially reflect attempts by larger
landowners to evade monitoring of deforestation activities. Finally, there was less open water observed
in 2016 than 2019 in our GEOBIA analysis. The difference in the class Water was not significant, but
the smaller area in 2016 could be explained by the extreme drought event in the Amazon during the
course of the El Nifio 2015-2016 event [64]. No large water bodies are identified within Apyterewa,
which can be seen in Figure 2.

The loss of natural areas (here, especially forests) and increase of anthropized areas are tightly
coupled in Amazon LULC dynamics and extremely common in the Xingu River basin, where the
Apyterewa Indigenous Land is located, due to the pressure of agricultural activities on protected
areas [22,65]. In this region, land grabbers and settlers enter protected areas for timber harvesting
and/or implement cattle ranching and agricultural activities [15,66]. As mentioned before, the extensive
livestock production is the major deforestation driver in this region, where pasturelands expand as a
response to the economic value of land [67] and the increasing beef exportation [68]. International
markets for Brazilian beef are opening again and exportation is returning to increase after the meat
inspection scandal that led traders to ban Brazilian meat in 2017 [69,70]. Related to this, the agricultural
sector has been profitable in recent years [71], especially soybean exportation [72]. This process
indirectly affects the region where Apyterewa is located: the advance of soybean into former cattle
pastures in the state of Mato Grosso has induced ranchers to sell their land and reinvest their money in
buying and clearing forest areas where land is cheaper, deeper in the Amazon region [69,73], especially
in the state of Para [68,70,72].

From the LULC classifications, it was possible to observe that the Apyterewa Indigenous Land
has most of the anthropized areas located close to its southern border (Figure 2), reflecting a migratory
flux from the nearby state of Mato Grosso. The border closer to Mato Grosso was the most deforested
area within Apyterewa in 2016 and showed an expressive increase in 2019. According to INPE
deforestation increment data, Apyterewa was the third most deforested indigenous land in the
Brazilian Amazon during the 2018 and 2019 period, and Sao Félix do Xingu had the second largest
deforestation rate among the municipalities of the Brazilian Amazon in the same period [21]. The boom
of deforestation alerts in July 2019 (Figure 3b) was also detected by other monitoring systems developed
by NGOs [74-77]. It should also be mentioned that deforestation in 2019 must be even higher than the
estimates obtained from the GEOBIA approach, since the image classified was obtained in July/2019 but
several deforestation alerts were emitted from August 2019 to December 2019 (Figure 3b). Nevertheless,
these values are comparable to PRODES because of the calendar adopted in this official data (ending
in July as previously described).

This increase in deforestation is also related to land conflicts. Sao Félix do Xingu is a municipality
exceeding 85,000 km?; more than 70% of this municipality is protected by law (45,000 km? for indigenous
lands and 16,000 km? for other protected areas). Nevertheless, the largest cattle herd in Brazil is located
in this municipality [78], leading to the aforementioned land conflicts. The demarcation of protected
areas is essential for their preservation as forest and indigenous territory offering dual protection of
human rights and traditional cultural heritage and practice and conservation and ecosystem services
of intact rainforest. Legal and well-defined initiatives can curb the advance of deforestation into
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indigenous lands, enhancing overall protection [79]. However, public policies to curb deforestation
and environmental inspections are key elements to guarantee positive outcomes [80,81]. As observed
by the occupation pattern in Apyterewa, this has not been respected. Literature shows a recent
increasing trend in deforestation rates among the indigenous lands and protected areas of the Xingu
corridor [22,36]. This arises from the pressure derived from the land occupation process that is
characteristic of the eastern region of Para [71,82], which moves small and medium-sized farmers
expelled by landowners towards increasingly remote areas. Furthermore, the pressure of livestock
and crop expansion on protected areas is magnified when headwaters of the important Xingu river
system lie outside of protected areas, leading to watershed degradation [83,84]. Certain indigenous and
political factions are defending the expansion of agriculture within indigenous lands [85,86]; however,
the production of soybean and cotton, for example, will increase the need for agrochemicals that may
affect the Xingu river and soil, causing the mortality of fishes and the alteration of soil properties.
Moreover, the resulting pollution may affect the indigenous communities living inside the land [87].

In addition to agricultural and cattle practices, the insecurity of property rights in this region is
another factor contributing to deforestation. Indigenous landowners such as the Parakana, ancestral
people of Apyterewa, even being protected by law, have limited resources to fight against illegal timber
harvesting, and deforestation is a general consequence [88]. Indigenous lands are historically focused
solely on the land within their legal boundaries, not outside, and, therefore, they do not consider the
neighbouring areas of influence [89].

The weakening of environmental law enforcement is coincident with the observed increase in
LULC changes and deforestation in this indigenous land, and the region generally, after 2018 [34,74,76].
This municipality has been a major deforestation frontier, driven almost exclusively by the expansion
of cattle ranching in a continuous and pervasive cycle of land degradation, abandonment and new
land conversion [78]. Currently, the consequence of depleting forest in the non-protected municipality
area with pasturelands has translated to pressure for illegal timber harvesting within protected areas,
leading to the advance of illegal deforestation in Apyterewa and other local indigenous lands [90].

The pattern of occupation in Apyterewa agrees with the one explained by Schwartzman et al. [65]
for indigenous lands of the Xingu River basin, with more pressure and occupation in the borders and
areas proximal to rivers. In the specific case of Apyterewa, it is observed that the occupation pattern is
more concentrated in the southeastern portion, which is surrounded by agricultural fields in proximity
to the urban areas. It is also noted an expansion from the southeast to the west (in direction to the Xingu
River) and north (in direction to the municipality of Altamira). The expansion of infrastructure vectors
such as small roads and paving projects have been advancing logging, mining and land speculation in
these areas [12,15]. This often spurs a large network of irregular roads into dense forests as a result of
the concurrent interests of migrant farmers and loggers to move the forest frontiers [15].

There has been an increase in the formation of pasturelands (or “glebas”, i.e., organized conjuncts
of fields suitable for pasture management) within Apyterewa. By the LULC interpretation key used
in this work based on Coutinho et al. [47], these areas primarily represent cattle ranching and with a
minority crop agriculture. We highlighted that few of these pasturelands areas were associated with
other forms of degradation in the Sao Félix do Xingu region [78] related to patterns of settlement and
land grabbing. As previously discussed, the major deforestation driver in Apyterewa is the LULC
conversion from forest to pasturelands; however, among the polygons of Anthropized areas, we also
detected an increase in mining, especially in the western and southwestern portion of the study area,
on the edges of the Xingu River and its affluent Sdo Sebastiao stream, respectively. From 2017 to 2019,
official deforestation alerts detected 11 polygons related to mining activities within Apyterewa [21].
Mining activities are expanding in the Amazon, including the Xingu River basin, and indigenous lands
such as Apyterewa, that include or are adjacent to river systems [74].

As our results showed, agriculture and forest loss have been expanding significantly within
the Apyterewa Indigenous Land. To reverse this scenario of deforestation within Apyterewa and
other indigenous lands, it is essential to increase the value of the standing forest compared to other
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land-uses that require deforestation [91] and reinvigorate robust monitoring to enforcement procedures
developed and utilized in the recent past. This crisis is occurring at a moment when the Amazon forest
broadly is at risk of passing a climate tipping point [22,92] from which the forest may not be able to
recover [93]. Even so, the Brazilian Amazon is not deeply involved in projects for promoting sustainable
development and forest preservation [94]. To date, conservation initiatives have spread more through
top-down enforcement policies than from positive local interventions and incentives in the Brazilian
Amazon [95]. Exploiting strategies to generate economic benefits for ranchers from maintaining
standing forest could mitigate deforestation inside and outside Apyterewa and other protected
areas of the Amazon. This strategy can be important for stimulating sustainable livestock practices,
boosting productivity, avoiding deforestation, reducing environmental liabilities in a traditionally
underperforming sector and promoting social and economic justice for rural peoples [78,79].

4.2. Fire Emissions in the Apyterewa Indigenous Land

The consequences of deforestation and LULC changes within the Apyterewa Indigenous Land,
and throughout the Amazon are linked to regional-wide and global atmospheric processes. To highlight
this we traced the expected emissions of harmful fine particulate aerosols produced by the burning
of forests for agricultural conversion. While aerosol pollutants are an atmospheric risk of land
conversion [96], intact Amazon forest provides environmental services of cooling the regional and global
atmosphere [97], regulating regional and interregional climate circulation patterns [8], and transporting
water/precipitation throughout the South American continent [98] that are also severely threatened
by deforestation. Considering our case of fine pollutants, as expected, as deforestation fell through
the 2000s and was low in the 2010s the average emissions of PM; 5 pollutants were low. Particularly
between 2011 and 2016, the average PM, 5 emission from fires was just 709 ton year~!. However,
along with the recent spike in deforestation, fire emitted pollutants have soared, with estimated PM; 5
emissions reaching over 10,000 tons in 2019. Nonetheless, it is important to highlight that deforestation
and fire emission estimates, driven directly by remote sensing products sensitive to fire, are not strong
linearly correlated, as observed in Figure 5. This helps highlight that deforestation does not always
utilize fire for removing the natural vegetation, and/or fire intensity and extent may vary relative to the
total area ultimately converted, potentially in part because of forest incursion fires [99]. On the other
hand, there are also other fire emission drivers that may act besides deforestation, such as the use of
fire for hunting purposes by the local communities, cleaning crop residues after harvest, pest control or
managing pasture lands (i.e., prescribed burnings for enhancing regrowth) [26,100,101]. Accordingly,
the work of Morgan et al. [102] showed that non-deforestation fire drivers are increasingly important
sources of emissions in the Amazon.

The 21st century drought events in the Amazon (years 2005, 2010 and 2015/2016) may have
favored the occurrence of fires and even likely counteracted declines in deforestation carbon emissions
during this period [99]. We observed this markedly in the annual expected PM; 5 fire emissions of
2005, when estimates were the highest (15,238 ton), approximately 247% of the annual average found
for the 2004-2019 period (4386 ton year‘l). No clear association was found between fire emissions
and the droughts of 2010 and 2015/2016. Here, we note that the expected increase in droughts and
heatwaves in the Amazon under climate change may also interact with the land conversion in the
Apyterewa Indigenous Land to drive forest towards a long-term low biomass savanna or savanna-like
state [32,103]. Such savannization may be of particular concern in drier amazon forest regions such
as the upper Xingu where there are five or more dry season months a year and less than 2000 mm
of precipitation annually [30]. Thus, the 2018 and 2019 marked increase in forest loss in Apyterewa
may interact with climate change by creating more fire prone microclimate conditions during drought,
creating a fire cycle, and degrading the forest more severely in the future [31], unless counteracted
by forest restoration [104]. Here we note that future studies should focus on understanding the
relationship between precipitation, air temperature and fire emissions over the Amazon basin and how
they affect different regions, for example, in terms of severe drought events.
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5. Conclusions

In this study we evaluated the relationships between deforestation, LULC drivers and fire
emissions in the Apyterewa Indigenous Land, Eastern Brazilian Amazon. We observed a remarkable
advance of deforestation within the study area in the past three years (200 km?) via the GEOBIA
approach. In 2016, the anthropized areas represented 4.7% of the Apyterewa Indigenous Land, while
the natural areas corresponded to 95.3%. Three years after, in 2019, the anthropized areas increased to
7.4% of the study area, while the natural areas were reduced to 92.6%. Regarding the fire emissions of
harmful aerosol pollutants, between 2004 and 2016 the annual average predicted emission of PM; 5
emitted from fires was 3954 ton year~!, while the recent period of enhanced exploitation (2017-2019)
had an average of 6258 ton year!.
approximately 58% in the study period, contributing to the air quality crisis in Brazil in late 2019.

The advance of the agricultural frontier is occurring within the Apyterewa Indigenous Land,
having significant atmospheric consequences, which are highlighted by the increasing PM, 5 aerosol
pollutant emissions from fire. These results expose a critical situation within “protected areas” in the
Brazilian Amazon. In order to reverse this destructive scenario, it is important to develop strategies
to preserve the standing forests that reflect their highly significant global and regional ecosystem
service values, including the carbon sink, the protection of human health from harmful fire-produced
aerosol and other pollutants, and other long-term economic potentials. Strategies should include
supporting sustainable egalitarian livestock and agricultural economies and practices in order to
reduce environmental liabilities in these traditionally underperforming sectors. These strategies are
crucial not only to avoid deforestation but are also of utmost importance to mitigate the environmental
and ecological impacts caused by forest loss and associated fire. The most robust response would also
address the threat of forest loss and savannization degradation feedback by promoting forest regrowth
in degraded preserves.

The annual average of PM; 5 associated with fires increased
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