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Abstract— Relatively little work in human and robot control
has examined the control of underactuated objects with internal
dynamics, such as transporting a cup of coffee, a task that
presents little problems for humans. This study examined how
humans move a ‘cup of coffee’ with a view to identify principles
that may be useful for robot control. The specific focus was on
how humans choose initial conditions to safely reach a steady
state. We hypothesized that subjects choose initial conditions
that minimized the transient duration to reach the steady
state faster, as it presented more predictable dynamics. In the
experiment, the cup of coffee was reduced to a 2-D cup with a
sliding ball inside which was simulated in a virtual environment.
Human subjects interacted with this virtual object via a robotic
manipulandum that provided haptic feedback. Participants
moved the cup between two targets without losing the ball;
they were instructed to explore different initial conditions
before initiating the continuous interaction. Results showed
that subjects converged to a small set of initial conditions that
decreased their transient durations and achieved a predictable
steady state faster. Simulations with a simple feedforward
controller and inverse dynamics calculations confirmed that
these initial conditions indeed led to shorter transients and
less complex interaction forces. These results may inform robot
control of objects with internal dynamics where the effects of
initial conditions need further investigation.

I. INTRODUCTION

Humans are exquisitely adept at using tools and interacting
with dynamically complex objects. Tool use ranges from
simply using a fork to eat to highly involved actions, such
as cracking a whip. A seemingly mundane example of
physically interacting with an object with internal dynamics
or ‘complex object’ is transporting a cup of coffee: when a
person moves the cup, the cup enacts a force on the coffee.
The coffee then applies forces back on the cup and then
the hand. Despite these nonlinear interaction forces, humans
are extremely skilled at such tasks, which is surprising
considering the delays in their neural transmission rates and
noise in their systems [1]–[5]. Better understanding of how
humans manage complex objects with such dexterity may be
instructive for robotic control and manipulation [6].

The most frequently studied task in robotic manipulation
is the pick-and-place paradigm, and much of this research
has been confined to rigid objects [7]. Manipulating flex-
ible or underactuated objects presents significant challenges:
successful control would require models of deformation and
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complex interaction forces, which require daunting compu-
tations for both humans and robots [8]. Moreover, robotic
manipulation has focused on the pre-contact stage, i.e., on
planning the grasp, rather than the subsequent interaction. At
most, goal-directed object manipulation is limited to moving
the object to another position [9]. Goal-directed tool use with
continuous physical interaction has received relatively little
attention to date.

Current approaches in robotic control and motion gener-
ation have predominantly focused on steady-state behavior
and stability. However, when initiating an action from a
steady state, the system inevitably starts from initial con-
ditions and passes through a transient state, which may be
unstable. The transient state, between steady states, remains
to be thoroughly investigated. Nevertheless, further study
of transient dynamics would be of great use to the field
of robotics [10]–[12]. Since stability is critical for robot
controllers, the approach has been to build locally stabilizing
control policies that eliminate the effect of initial conditions
i.e., funneling initial conditions into the desired behavior
[13] [14]. These control policies effectively create basins
of attraction that span the entire state space. However, it is
also possible to control a dynamical system by appropriately
setting its initial conditions.

Recent studies in motor neuroscience have provided some
evidence that the brain generates movements by setting ap-
propriate initial conditions [15] [16]. Specifically, the neural
networks in the brain responsible for movement execution
behave as dynamical systems that are initialized with a de-
sired state and then driven into patterns of collective activity
[17]. In this spirit, Ernesti et al. generated a control policy for
a humanoid robot wiping a windshield that selected initial
conditions to tune transient behaviors using dynamic motion
primitives [18]. The present study examined how humans
start movements and whether they chose appropriate initial
conditions to set up predictable interactions.

Transient dynamics can create unpredictable interaction
forces; mastering this start-up transient to reach a desired
steady state is not trivial. The human motor system faces
significant limitations in its ‘hardware:’ transmission speed
peaks at ≈ 100 m/s and bandwidth in the human muscular
response rarely exceeds 5 Hz [19]. The human neuromotor
system can be variable and noisy, with an accuracy in timing
of around 9 ms [19]–[21]. These features challenge the
use of feedback control in continuous physical interaction
because loop times are not fast enough for adaptation and
error corrections [22] [23]. We hypothesize that humans deal
with these shortcomings in the neuromotor system by making
interactions with objects predictable.
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Fig. 1. (A) The task was inspired by transporting a cup of coffee, simplified
to a cup with a ball sliding inside. (B) Mechanical model of cart-pendulum-
system. (C) A participant holds the HapticMaster handle to move the cup
while viewing the corresponding graphics on a projection screen. The inset
shows the subject’s grip the robot handle. (D) Screen display. The inset
shows the definition of the ball angle, the ball at rest at the bottom of the
cup was considered 0 deg, clockwise direction from the bottom was defined
as a negative angle.

Previous work in our lab showed that in continuous
rhythmic interactions, subjects selected hand impedance val-
ues that increased predictability of the object dynamics,
even though this required increased mechanical effort [24].
However, in the previous studies, initial conditions of the
object were fixed, and the analysis only focused on steady
state behavior [25]. The present study aimed to answer
the following question: when given the option to choose
them, do humans explore and exploit initial conditions? We
investigated how humans physically interact with a non-
rigid object, transporting a ‘cup of coffee’ in a continuous
rhythmic manner. Three specific hypotheses were tested: 1)
Subjects will converge to a subset of all possible initial
conditions. 2) Subjects will shorten their transient duration.
3) Subjects will maximize the predictability of the task dy-
namics. Results from the human experiments were compared
with results from two simulations of the cart-and-pendulum
system: inverse dynamics control and forward simulations
using a coupled model with hand dynamics. These findings
may inform new control strategies for robotic manipulation
of complex objects.

II. METHODS

A. Mechanical Model

A cup of coffee is underactuated since the coffee motion
is coupled to motion of the cup and cannot be controlled
directly. For the virtual rendering, the real task was simplified
to a two-dimensional semi-circular cup with a ball inside,
displayed on a large projection screen (2.4x 2.4 m) (Fig.1C).
This simplification maintained the essential features of this
task: physical interaction, underactuation, and nonlinearity
[26]–[28]. The semi-circular cup was confined to moving
on a horizontal line with a ball sliding inside. Under the
premise that the ball was sliding and not rolling, the system
was mathematically equivalent to the model of a cart moving
on a line with a suspended pendulum. The ball represented a
weight at the end of the pendulum and the cup position on the
horizontal axis was equal to the cart position. The arc of the
cup outlined the rotational path of the pendulum, where the
clockwise direction was defined as negative (Fig.1). Subjects
moved the cup-and-ball system solely in the horizontal dir-
ection, using a robotic manipulandum. The robot transmitted
the force of the ball acting on the cup to the subject. The
equations of motion are described as the following:

(mc +mp)Ẍ = mpd[θ̇
2sinθ − θ̈cosθ] + Finter (1)

mpd[θ̇
2sinθ − θ̈cosθ] = Fball (2)

θ̈ = −Ẍ
l
cosθ − g

l
sinθ (3)

Finter is the force of the human hand interacting with the
cart. X and θ denote the cart position and the pendulum angle
respectively. Fball is the force of the pendulum (ball) on the
cup. Parameters of the system were: cart mass mc = 2.40
kg, pendulum mass mp = 0.60 kg, pendulum length l = 0.45
m, and gravitational acceleration g. The values were selected
so that the masses were light enough to avoid fatigue, but
heavy enough such that subjects experienced Fball.

B. Apparatus and Data Acquisition

During the experiment session, participants sat on a chair
approximately 2 m in front of the screen and held the
handle on a 3-DOF robotic manipulandum capable of haptic
feedback (Fig.1C). The motion of the robotic manipulandum
was limited to horizontal direction to guarantee that the
mathematical model and the virtual system had the same
dimension of motion. The force of the participant’s hand
interacting with the robotic handle, Finter, controlled the
position of the virtual cup X along a horizontal line [25],
[29]. When interacting with the handle, participants could
experience the system inertia and Fball acting on their hand
from the haptic feedback provided by the robot [29]. The
ball kinematics, virtual display and haptic feedback were
implemented using a custom-written C++ program that was
created based upon the HapticAPI (Moog FCS Control
Systems). The visual display showed two blue rectangular
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Fig. 2. (A) Time series of cup position and ball angle of a 120 trials of
one subject aligned by the moment of initiation. (B) Method for transient
calculation on one trial of one subject: based on cup and ball position
continuous Hilbert phase was calculated. The difference between cup phase
and ball phase was used to determine the beginning of the steady state of
the trial.

targets directly above a horizontal line which corresponded to
the desired peak-to-peak displacement of the cup. A yellow
semi-circular arc depicted the cup and the ball was visualized
as a white circle (Fig.1 D). The ball would escape from
the cup if the ball angle exceeded ±50 deg. The actual
displacement of the handle was 4 times smaller then the
visual displacement of the cup on the screen. The cup
model simulation was 7.5 times larger than the cup in the
virtual display. These parameters were chosen such that the
visuomotor gain was as close to 1:1 as possible so that
it would not stretch the perception of realism. The cup
kinematics, the interaction force Finter, and the computed
ball kinematics were recorded at 60 Hz.

C. Experimental Task

At the start of the trial, the cup was in the center of Box
A with the ball at the bottom of the cup (0 deg) (Fig.1).
Prior to starting the rhythmic task, subjects were encouraged
to explore the best initial conditions by ‘jiggling’ the cup
back and forth for as long as they wanted; this was called
the ‘Pre-Trial’ interval (Fig.2A). Once they felt ready to start
the trial they moved the cup towards Box B and continued
moving in rhythmic fashion between the two boxes without
losing the ball (|θ| < 50 deg). A metronome started when

the participant first reached Box B and continued to pace
their movements at 0.6 Hz for 15 s. The distance between
the centers of Box A and Box B was 0.3 m. Importantly,
subjects were not explicitly told to shorten their transient
duration. The experiment was divided into 4 sets of 30 trials
each, for a total of 120 trials. 13 right handed college-
age adults volunteered for the experiment (8 male). All
subjects gave written informed consent, approved by the
Northeastern University Institutional Review Board, prior to
the experimental session.

III. DATA ANALYSIS

The variables that tested the hypotheses were initial ball
angle, transient duration and predictability of the trial seg-
ment.

1) Initial Ball Angles (θ0): Initial conditions of the cup
and ball were defined at the time when the cup position was
at its left-most excursion (a local maximum) before subjects
started the continuous rhythmic movements (Fig.2A). All
movements prior to that moment were considered the ‘Pre-
Trial’ interval and movements after that time point were
considered to be in the trial. The most important variable
was the ball angle at the start of the trial, θ0. Cup velocity at
this local maximum of cup position was zero by definition;
ball velocity and cup position were evaluated, but proved to
be small and have minimal effect on the subsequent trial,
both in simulation and experiment.

2) Transient Duration: To calculate the duration of the
transient, a criterion for steady state first had to be de-
termined [30]. For the movement frequency of 0.6 Hz,
mathematical analysis showed that the ball and cup position
were in-phase (i.e. had zero phase difference) at steady
state. To identify when the transient trajectories approached
steady state, the instantaneous phase differences between
cup and ball position were computed using the Hilbert
transform (Fig.2B) [31]. Since human trajectories are prone
to variability, a threshold had to be set to define the onset
of relative zero phase difference between cup and ball. This
threshold was ±27 deg (±15 percent of 180 deg). The time
point when the phase difference entered and remained within
this threshold defined the end of the transient and start of the
steady state (bottom panel of Fig.2B).

3) Mutual Information: Predictability was mathematic-
ally operationalized by mutual information (MI) between
the input and output of the system. High MI indicates a
high degree of certainty [32]. Unlike cross correlation, MI
assesses both linear and nonlinear dependencies [33] [34]. In
the context of this study, MI quantified how much the cart tra-
jectory predicted the interaction force. The cart trajectory was
defined by its phase in state space, φ(t) = arctan

[
Ẋ

(2πfX

]
.

Finter(t) was defined above. MI was computed using the
following formula:

MI(φ, Finter) =

∫∫
P (φ, Finter)ln

[
P (φ,Finter)
P (φ)P (Finter)

]
dφdF

(4)
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P represents the probability density functions for φ(t) and
Finter(t), which were approximated via a linear interpolation
of nonlinear Gaussian smoothing kernels [32], [35]. MI was
calculated from the beginning to the end of the trial. It is
a dimensionless quantity and is displayed on a natural log
scale (nat).

IV. RESULTS

A. Experimental Results

Maintaining the target frequency of 0.6 Hz was challen-
ging for subjects; the average frequency attained was 0.58
Hz with a range of 0.55 Hz to 0.63 Hz. Note that 2 of 13
subjects had more than 40 percent failures, i.e. they lost the
ball, and were excluded from analysis. The percentage of
failed trials across the remaining subjects was 16.7 percent
and their average peak-to-peak amplitude was 0.308 m.

1) Initial Ball Angles (θ0): The average initial ball angles
across subjects changed from -9.69 deg in the first 5 trials
(standard deviation 9.94 deg) to an average of -22.28 deg in
the last 5 trials (standard deviation 10.59 deg). This change
was statistically significant (p = .0066). Fig.3A shows the
gradual change of ball angles across subjects that seemed
to converge and reach an asymptote after about 60 trials.
Subjects converged to a preferred initial condition, a result
that supported Hypothesis 1. The two other variables at
initiation, cup position and ball velocity, were negligible: the
mean X0 was -0.157 ± .019 m (the centers of Box A and
Box B were located at -0.15 m and 0.15 m respectively) and
the mean θ̇0 was -15.12 deg/s ± 31.65 deg/s.

2) Transient Duration: The transient duration decreased
over the 120 trials, supporting Hypothesis 2 (Fig.3B). In
the first 5 trials, transient duration was on average 8.02 s
(standard deviation 4.85 s), decreasing to an average of 3.67 s
(standard deviation 3.10 s) in the last 5 trials. This significant
decrease (p = 0.0024) showed that subjects reduced the
transient duration, although this was not an explicit goal of
the task.

3) Mutual Information: The MI between φ(t) and
Finter(t) increased from 1.137 nat in the first 5 trials to
1.385 nat in the last 5 trials (Fig.3C). A t-test confirmed the
statistical significance of this change (p = 6.850e−05). Parti-
cipants implicitly raised the predictability of their interaction
forces with the system, which supported Hypothesis 3.

B. Simulation Results and Hypothesis Testing

To further understand the subjects’ choice of initial con-
ditions given the known dynamics of the complex object,
inverse dynamic and forward dynamic simulations were
conducted. In the simulations, initial ball velocity was θ̇0
= 0 deg/s, and it was found that varying θ̇0 did not make a
significant impact upon the simulation results.

1) Effect of initial conditions on interaction force: In-
verse dynamics calculations were conducted for different
initial ball angles (θ0) to determine what interaction force,
Finter(t), was needed to obtain the instructed sinusoidal cup
displacement with frequency f , peak-to-peak amplitude A,
and time t: X(t) = (A/2)sin(2πft + π/2). In this case

Fig. 3. (A) Initial ball angle averaged across subjects over trials with
an exponential fit of the form Ae

−t
τ + B, τ = 48.13, R2 = 0.65. (B)

Transient durations averaged across subjects over trials with an exponential
fit of the form Ae

−t
τ +B, τ = 34.03, R2 = 0.68. (C) MI averaged across

subjects over trials on a natural log scale with an exponential fit of the form
A(1− e

−t
τ ) + B, τ = 27.22, R2 = 0.44. In all three panels the shaded

bands around the experimental mean denote one standard error.

f = 0.58, the subjects’ mean frequency, and A = 0.3 m.
This analysis did not infer a specific controller; instead it
calculated the Finter(t) required to generate the instructed
kinematic output using Eq. 1. Although X(t) and Ẋ(t)
were sinusoids, the kinematics of the ball θ(t) and θ̇(t)
were not necessarily sinusoidal. The form of the Finter(t)
profile was reliant upon the values of θ0 and θ̇0. Fig.4 (A,B)
displays two example profiles produced with two different θ0
that produced the same sinusoidal cup trajectories X(t), but
with different initial ball angles. Finter(t), generated with
θ0 ≈ 45.8 deg, rendered a profile that looks irregular and
has a relatively large range of forces (Fig.4B). In contrast,
the left Finter(t) profile using θ0 ≈ −28.4 deg (Fig.4A)
resulted in a completely predictable oscillatory force profile.

To convey the behavior of Finter(t), the force profile
Finter(t) was strobed at the maxima of the periodic cup
profile for a given θ0. The strobed force values were plotted
on the force-axis to produce a marginal distribution against
the given θ0. This analysis was repeated for every θ0 in
Fig.4C. This produced a distribution resembling a bifurcation
diagram for a period-doubling route to chaos in nonlinear
systems [36] [37]. The evolution of complex behavior from
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Fig. 4. (A) Example profile of a subject’s interaction force Finter(t), cart position X(t), and ball angle θ(t), for rhythmic cup displacement starting
with θ0 ≈ −28.4 deg; cup frequency and amplitude were 0.58 Hz and 0.3 m (peak-to-peak). At every maximum of X(t), the value of Finter was
determined, as indicated by the magenta points at each peak of X(t). The strobed force values were mapped onto the vertical force axis to obtain the
marginal distribution (shown by the magenta point on the y-axis). The marginal distribution of this profile is a single point due to the periodic profile.
These distributions were obtained for each simulation with different θ0. (B) Example profile of interaction force Finter(t), cart position X(t), and ball
angle θ(t), for a trial initiated with θ0 ≈ 45.8 deg; cup frequency and amplitude were 0.58 Hz and 0.3 m (peak-to-peak). The strobed force values render
a marginal distribution of a wider range due to the irregular Finter(t) as seen by the magenta points on the y-axis. (C) Marginal distributions of strobed
forces for all initial ball angles, θ0, calculated from inverse dynamics simulations, shown in black (left y-axis). The distributions for θ01 ≈ −28.4 deg and
θ02 ≈ 45.8 deg are in magenta. The figure also includes a histogram of θ0 for all experimental trials pooled over all subjects; different subjects appear
in unique colors (right y-axis). The peak of the histogram aligns with initial ball angles that render the low variability in the strobed forces.

simple dynamics has been extensively examined in research
on nonlinear dynamics [38]–[41]. This analysis found that
the most predictable input force profile was at θ0 ≈ −28.4
deg. To illustrate how subjects’ preferred initial angles, θ0,
compared to those predicted by inverse dynamics, the bottom
of Fig.4C includes a histogram of θ0 for all trials pooled over
all subjects (different subjects appear in different colors).
The initial angles subjects most frequently chose aligned
with θ0 values that produced the least complex force patterns
Finter(t) in the inverse dynamics simulation. This provided
support for Hypothesis 3 that subjects chose initial conditions
that favored simple interaction forces with more predictable
dynamics.

2) Effect of initial conditions on transient duration: To
derive predictions about transient duration, forward dynamics
simulations were performed. The cup-and-ball system was

connected to a model of hand impedance (Fig.5) [24]. The
hand interactive dynamics were represented by a spring K,
in parallel with a damper B. The desired trajectory was
expressed as Xdes(t), Ẋdes(t), which are the sinusoids that
describe cup displacement and velocity for the appropriate
frequency and amplitude of the cup displacement: Xdes(t) =
(A/2)sin(2πft + π/2). In the experiment, the actual cart
trajectory X(t) differed from Xdes(t), most likely due to the
ball force functioning as a perturbation. The hand impedance
functioned as a simple proportional derivative controller and
aided in minimizing the effects of this perturbation [24]. The
equations of motion of this coupled model are:

(mc +mp)Ẍ = mpd[θ̇
2sinθ − θ̈cosθ] + Finter (5)

θ̈ = −Ẍ
l
cosθ − g

l
sinθ (6)
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Fig. 5. The forward model with simple hand impedance coupled to the cart-
pendulum-system. The interactive dynamics are represented by a spring K,
in parallel with a damper B. The desired trajectory is denoted as Xdes(t).

Finter = −K(X −Xdes)−B(Ẋ − Ẋdes) (7)

K and B were considered constant during a trial. To obtain
an estimate for these two parameters from the experimental
data, an optimization procedure identified the values of K
and B that best approximated the experimental cup and ball
trajectories for each trial of each subject. The simulated f
and A were matched to the exact frequency and amplitude
for the particular trial. The objective function C was the root
mean square difference between all kinematic traces over the
entire trial, for more detail, refer to the work by Maurice et
al. [24].

To predict transient durations for different initial condi-
tions, this model was forward simulated for different initial
conditions. As the calculations proved to be sensitive to cup
frequency, they were performed for a range of frequencies
observed in the experimental data. The cup amplitude was
set to the average experimentally observed value of 0.3 m.
The results also varied with different stiffness and damping
values; hence, calculations were performed for a range of
K and B values estimated from the experimental data.
Sweeping through all these parameters within the range of
subjects’ observed behavior, the transient duration was calcu-
lated for each simulation run. The same analysis procedures
applied on the experimental data were used to obtain the
transient durations for the simulated data. Fig.6 summarizes
the transient durations for the relevant frequencies and initial
ball angles for K= 40 N/m and B= 50 Ns/m. These stiffness
and damping values were the modes in the estimates from
the subject data. The dark blue color represents the areas that
predicted the shortest transient durations.

To compare simulation and experiment, individual sub-
jects’ trials were superimposed (red points). Only subject
trials that had estimated stiffness and damping in the range of
K = 40±10 N/m and B = 50±20 Ns/m were included. The
figure shows trials in which the optimization-based determ-
ination for the impedance parameters were highly reliable
(C ≤ .10). Comparing the data with respect to the simulated
predictions shows that subjects chose initial conditions that
coincided with those in the model that produced the shortest
transient durations. These results provided further support for
Hypotheses 1, 2 and 3. Subjects preferred initial conditions
that shortened the transients and reached a predictable steady
state faster.

Fig. 6. Transient durations for different frequency and initial ball angles
simulated with the forward simulation using K= 40 N/m and B= 50 Ns/m.
Subject trials with estimated stiffness and damping in the range of K =
40± 10 N/m and B = 50± 20 Ns/m are superimposed.

V. DISCUSSION AND CONCLUSIONS

This study investigated strategies that humans adopt
when manipulating objects with underactuated dynamics. It
showed that, when given a choice, subjects chose initial
conditions that decreased their transients and reached a pre-
dictable steady state faster. Subjects chose initial ball angles
that were associated with less complex interaction forces,
demonstrating that subjects preferred predictable interaction
forces. Mutual information (MI) increased over trials demon-
strating that subjects interacted with the cup and ball in an
increasingly predictable manner. The initial ball angles and
frequencies that subjects chose matched initial ball angles
and frequencies that decreased their transient duration in a
forward simulation using impedance control. These results
are the first support for the hypothesis that humans can
identify initial conditions which minimize transients and
favor reaching a steady state faster, enhancing predictability.

The results presented here may inspire new control
strategies for robotic manipulation: strategies that exploit
initial conditions instead of trying to cancel their effects.
The notion of controlling a system by making small changes
to its parameters has been explored for systems with chaotic
dynamics. For example, Ott, Grebogi, and York used small
perturbations to system parameters to attain stable behavior,
rather than actively changing the system’s dynamics [42],
[43]. One could abstract these ‘accessible system parameters’
to be the initial conditions of the system; control of a system
is thus achieved by setting its initial conditions.

Based on these results and those from our earlier work,
we propose a new guiding principle for robot control:
exploit initial conditions to maximize predictability. It has
been shown in previous work that human-robot interaction
is augmented when human movement characteristics are
considered in robotic control [44]. The findings from this
present work provide insight on how to facilitate object
interaction, especially physical interaction and collaboration
with humans. As human-robot interaction becomes more
widespread, further investigation into human motor control
schemes will be crucial.

10160

Authorized licensed use limited to: Northeastern University. Downloaded on November 05,2020 at 17:23:36 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural
Science. McGraw-Hill Companies, 2000.

[2] A. J. Nagengast, D. A. Braun, and D. M. Wolpert, “Optimal control
predicts human performance on objects with internal degrees of
freedom,” PLoS Computational Biology, vol. 5, no. 6, 2009.

[3] F. Danion, J. S. Diamond, and J. R. Flanagan, “The role of haptic
feedback when manipulating nonrigid objects,” Journal of Neuro-
physiology, vol. 107, no. 1, pp. 433–441, 2012.

[4] C. J. Hasson, T. Shen, and D. Sternad, “Energy margins in dynamic
object manipulation,” Journal of Neurophysiology, vol. 108, no. 5, pp.
1349–1365, 2012.

[5] D. Sternad, “Human control of interactions with objects–variability,
stability and predictability,” in Geometric and numerical foundations
of movements. Springer, 2017, pp. 301–335.

[6] M. T. Ciocarlie and P. K. Allen, “Hand Posture Subspaces for
Dexterous Robotic Grasping,” The International Journal of Robotics
Research, vol. 28, no. 7, pp. 851–867, 2009.

[7] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser,
K. Okada, A. Rodriguez, J. M. Romano, and P. R. Wurman, “Analysis
and observations from the first Amazon picking challenge,” IEEE
Transactions on Automation Science and Engineering, vol. 15, no. 1,
pp. 172–188, 2018.

[8] F. Lamiraux and L. E. Kavraki, “Planning Paths for Elastic Objects un-
der Manipulation Constraints,” The International Journal of Robotics
Research, vol. 20, no. 3, pp. 188–208, 2001.

[9] Nicholas Roy, Paul Newman, and Siddhartha Srinivasa, “Physics-
Based Grasp Planning Through Clutter - MIT Press books,” in
Robotics: Science and Systems. MIT Press, 2013, vol. VIII, pp.
57–64.

[10] C. Fisher, C. Hubicki, and A. Patel, “Do Intermediate Gaits Matter
When Rapidly Accelerating?” IEEE Robotics and Automation Letters,
vol. 4, no. 4, pp. 3410–3416, 2019.

[11] M. Karlsson, A. Robertsson, and R. Johansson, “Detection and control
of contact force transients in robotic manipulation without a force
sensor,” in Proceedings - IEEE International Conference on Robotics
and Automation. IEEE, 2018, pp. 4091–4096.

[12] A. Stolt, M. Linderoth, A. Robertsson, and R. Johansson, “Detection
of Contact Force Transients in Robotic Assembly,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2015, pp. 962–968.

[13] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-
trees: Feedback Motion Planning via Sums-of-Squares Verification,”
The International Journal of Robotics Research, vol. 29, no. 8, pp.
1038–1052, 2010.

[14] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential
Composition of Dynamically Dexterous Robot Behaviors,” The In-
ternational Journal of Robotics Research, vol. 18, no. 6, pp. 534–555,
1999.

[15] A. Afshar, G. Santhanam, B. M. Yu, S. I. Ryu, M. Sahani, and K. V.
Shenoy, “Single-trial neural correlates of arm movement preparation,”
Neuron, vol. 71, no. 3, pp. 555–564, 2011.

[16] K. V. Shenoy, M. T. Kaufman, M. Sahani, and M. M. Churchland, “A
dynamical systems view of motor preparation. Implications for neural
prosthetic system design.” in Progress in Brain Research. Elsevier,
2011, vol. 192, pp. 33–58.

[17] G. Hennequin, T. P. Vogels, and W. Gerstner, “Optimal control
of transient dynamics in balanced networks supports generation of
complex movements,” Neuron, vol. 82, no. 6, pp. 1394–1406, 2014.

[18] J. Ernesti, L. Righetti, M. Do, T. Asfour, and S. Schaal, “Encoding
of periodic and their transient motions by a single dynamic move-
ment primitive,” in IEEE-RAS International Conference on Humanoid
Robots, 2012, pp. 57–64.

[19] R. G. Cohen and D. Sternad, “State space analysis of timing: ex-
ploiting task redundancy to reduce sensitivity to timing,” Journal of
Neurophysiology, vol. 107, no. 2, pp. 618–627, 2012.

[20] A. A. Faisal, L. P. Selen, and D. M. Wolpert, “Noise in the nervous
system,” Nature reviews neuroscience, vol. 9, no. 4, pp. 292–303, 2008.

[21] D. Sternad and C. J. Hasson, “Predictability and robustness in the
manipulation of dynamically complex objects,” in Advances in Exper-
imental Medicine and Biology. Springer New York LLC, 2016, vol.
957, pp. 55–77.

[22] M. M. Lone and A. K. Cook, “Review of pilot modelling techniques,”
in 48th AIAA Aerospace Sciences Meeting Including the New Horizons
Forum and Aerospace Exposition, 2010.

[23] M. Kawato, “Internal models for motor control and trajectory plan-
ning,” Current Opinion in Neurobiology, vol. 9, no. 6, pp. 718–727,
1999.

[24] P. Maurice, N. Hogan, and D. Sternad, “Predictability, force,
and (anti)resonance in complex object control,” Journal of Neuro-
physiology, vol. 120, no. 2, pp. 765–780, 2018.

[25] B. Nasseroleslami, C. J. Hasson, and D. Sternad, “Rhythmic Manipu-
lation of Objects with Complex Dynamics: Predictability over Chaos,”
PLoS Computational Biology, vol. 10, no. 10, 2014.

[26] S. Bazzi, J. Ebert, N. Hogan, and D. Sternad, “Stability and predict-
ability in human control of complex objects,” Chaos, vol. 28, no. 10,
p. 103103, 2018.

[27] S. Bazzi and D. Sternad, “Robustness in Human Manipulation of
Dynamically Complex Objects through Control Contraction Metrics,”
IEEE Robotics and Automation Letters, pp. 1–1, 2020.

[28] S. Bazzi, J. Ebert, N. Hogan, and D. Sternad, “Stability and Predictab-
ility in Dynamically Complex Physical Interactions,” in Proceedings -
IEEE International Conference on Robotics and Automation. Institute
of Electrical and Electronics Engineers Inc., 2018, pp. 5540–5545.

[29] R. van der Linde and P. Lammertse, “HapticMaster – a generic
force controlled robot for human interaction,” Industrial Robot: An
International Journal, vol. 30, no. 6, pp. 515–524, 2003.

[30] C. L. Phillips and R. D. Harbor, Feedback control systems. Simon
& Schuster, Inc., 1996.

[31] S. L. Hahn, Hilbert transforms in signal processing. Artech House,
1996, vol. 2.

[32] T. M. Cover and J. A. Thomas, Elements of Information Theory. John
Wiley & Sons, 2006.

[33] R. Kleeman, “Information theory and dynamical system predictabil-
ity,” Entropy, vol. 13, no. 3, pp. 612–649, 2011.

[34] T. DelSole, “Predictability and Information Theory. Part I: Measures
of Predictability,” Journal of the Atmospheric Sciences, vol. 61, no. 20,
pp. 2425–2440, 2004.

[35] B. W. Silverman, Density Estimation: For Statistics and Data Analysis.
Routledge, 2018.

[36] R. C. Hilborn, Chaos and Nonlinear Dynamics: An Introduction for
Scientists and Engineers. Oxford University Press, 2000.

[37] S. Strogatz, M. Friedman, A. J. Mallinckrodt, and S. McKay, Non-
linear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry, and Engineering. Westview Press, no. 5.

[38] T. Insperger, J. Milton, and G. Stépán, “Acceleration feedback im-
proves balancing against reflex delay,” Journal of the Royal Society
Interface, vol. 10, no. 79, 2013.

[39] E. N. Lorenz, The Essence Of Chaos. University of Washington
Press, 1995.

[40] R. M. May, “Simple mathematical models with very complicated
dynamics,” in The Theory of Chaotic Attractors. Springer New York,
2004, pp. 85–93.

[41] S. A. Campbell, J. Bélair, T. Ohira, and J. Milton, “Complex dynamics
and multistability in a damped harmonic oscillator with delayed
negative feedback,” Chaos, vol. 5, no. 4, pp. 640–645, 1995.

[42] C. Ott, B. Henze, G. Hettich, T. N. Seyde, M. A. Roa, V. Lippi, and
T. Mergner, “Good Posture, Good Balance: Comparison of Bioinspired
and Model-Based Approaches for Posture Control of Humanoid Ro-
bots,” IEEE Robotics and Automation Magazine, vol. 23, no. 1, pp.
22–33, 2016.

[43] E. Ott and M. Spano, “Controlling chaos,” in AIP Conference Pro-
ceedings, vol. 375, no. 1. American Institute of Physics, 1996, pp.
92–103.

[44] P. Maurice, M. E. Huber, N. Hogan, and D. Sternad, “Velocity-
Curvature Patterns Limit Human-Robot Physical Interaction,” IEEE
Robotics and Automation Letters, vol. 3, no. 1, pp. 249–256, 2018.

10161

Authorized licensed use limited to: Northeastern University. Downloaded on November 05,2020 at 17:23:36 UTC from IEEE Xplore.  Restrictions apply. 


