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Abstract
Polymerization and depolymerization of cytoskeletal filaments against cellular struc-

Correspondence tures can generate forces that are key to many cellular processes, such as cell motility

Ehssan Nazockdast, Department of Applied
Physical Sciences, University of North
Carolina, Chapel Hill, NC 27599.

Email: ehssan@email.unc.edu

and chromosomes movements during cell division. Motions generated by these
forces induce global cytoplasmic flows and couple the dynamics of the polymerizing
filaments and other bodies immersed in the fluid through their long-range hydrody-
namic interactions (HIs). Previous theoretical and computational studies have largely
ignored Hls. We use three dimensional discrete simulations to study the relationship
between polymerization forces and their resulting flows and Hls. As a model system,
we choose a filament that is polymerizing against an obstacle, and is embedded in a
cylindrical array of parallel filaments of the same length. We consider three distinct
mechanical scenarios for the filaments within the array: (a) all of the filaments are
polymerizing with the same velocity; (b) they are all fixed in space, and (c) they are
freely suspended. We show that each of these conditions produce their unique cyto-
plasmic flows and each result in differentiable polymerization forces and velocities.
We also study the effect of buckling of filaments on polymerization forces and veloc-
ities and discuss the effect of HIs on the onset of buckling transition. Finally, we

show that Hls result in the bundling of the buckled filaments within the array.
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1 | INTRODUCTION

Yurke, 1997) and actin filaments (Footer, Kerssemakers, Theriot, &
Dogterom, 2007).

Polymerization and depolymerization of cytoskeletal filaments can
generate forces in the absence of molecular motors (Howard, 2001;
Mogilner, 2006). These forces are involved in many cellular motions,
such as cell's crawling motion driven by actin polymerization (Bray,
2000), as well as the motion of chromosomes (Joglekar, Bloom, &
Salmon, 2010) and the spindle positioning and assembly (Garzon-
Coral, Fantana, & Howard, 2016; Oriola, Needleman, & Brugués,
2018) during cell division, that depend on polymerization and depoly-
merization of microtubules. The polymerization forces have been

experimentally measured in-vitro for both microtubules (Dogterom &

Large number of theoretical studies have focused on the mecha-
nisms of force generation. The first mechanistic theory was proposed by
Peskin, Odell, and Oster (1993) for force generation by a polymerizing fil-
ament against an obstacle. In their Brownian ratchet model, a rigid fila-
ment polymerizes perpendicular to the surface of an obstacle. The
polymerization rectifies the diffusive motion of the obstacle, which
results in an effective pushing force that moves the obstacle in the direc-
tion of polymerization. For the polymerization to continue, the Brownian
fluctuations of the obstacle must open a gap large enough to intercalate

a monomer. Mogilner and Oster (1996) extended the formulation to
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flexible filaments and proposed elastic Brownian ratchet mechanism,
where the polymerization gap is generated by thermal bending undula-
tions of the filaments. These theories have since been extended to
accommodate other experimental observations. These include theories
for filaments with multiple crosslinked protofilaments such as microtu-
bules (van Doorn, Tanase, Mulder, & Dogterom, 2000), and theories that
include interactions with filament end-tracking proteins (Dickinson,
Caro, & Purich, 2004); see Holz and Vavylonis (2018) and Mogilner
(2006) and the references within for reviews on the topic. The interac-
tions included in these theories are local that is, they occur over the
length-scales of monomers and protein structures, which are significantly
smaller than the length of the filaments. The final result of each of these
theories is a relationship between the applied pushing force to the obsta-
cle and the filament's polymerization velocity that is, force-velocity rela-
tionship. Finding a force-velocity relationship is not the subject of this
work. Instead, we assume a force-velocity relationship is provided to us
by experiments and theories.

In most physiological conditions, the cytoskeletal filaments
exchange forces with motor-proteins and crosslinkers, leading to a
complex range of structures and rheological behavior. Examples
include viscoelastic (Bausch & Kroy, 2006), poroelastic (Moeendarbary,
Valon, Fritzsche, Harris, & Dale, 2013), active gel (Kruse, Joanny,
Jilicher, Prost, & Sekimoto, 2005), and soft glassy behaviors (Fabry
et al., 2001). In this study, to focus on the effect of Hls, we do not
include these interactions. In this limit, the polymerization forces and
velocities are fully determined once the force-velocity relationship is
complimented with equations that balances the polymerization force
against the drag force induced by pushing the filament (and/or obstacle
in case of a mobile obstacle) through the fluid medium.

The motion of the filaments and obstacles generate global cyto-
plasmic flows in scales of the largest dimensions of the moving objects
(Nazockdast, Rahimian, Needleman, & Shelley, 2017; Shelley, 2016).
As a result, objects that are separated by distances as large as the fila-
ments length interact with one another through these flows. These
nonlocal interactions are referred to as hydrodynamic interactions
(HlIs), which play a key role in determining the drag force on the poly-
merizing filaments.

While previous discrete simulations have largely ignore Hls, there
have been a number of continuum modeling studies that account for
Hls and fluid-structure interactions; see Mogilner and Manhart (2018)
and Shelley (2016) for comprehensive reviews on actin and microtu-
bule assemblies, respectively. The main ingredients of these contin-
uum two-phase models are the momentum and mass transfer for the
cytoplasmic fluid and the filament phases and the mechanical coupling
between them. The cytoplasm is typically modeled as a Newtonian
fluid in Stokes flow, while—depending on the microstructural details
such as crosslinking and motor activities—different models have been
utilized for describing the mechanics of the filament phase. For exam-
ple, some studies model the cytoskeleton as a poroviscous material
(Cogan & Guy, 2010; Dembo & Harlow, 1986), and others use a
poroelastic description (Bottino & Fauci, 1998; Strychalski, Copos,
Lewis, & Guy, 2015; Strychalski & Guy, 2013, 2016). In these classes

of models, the coupling between the cytoplasm and the filament
phase is typically modeled through a friction term that depends on
their relative velocity. In many other studies the intracellular flows
and the viscous forces on the filaments are ignored, and the cytoskel-
eton is modeled as an elastic gel (Bottino, Mogilner, Roberts, Stew-
art, & Oster, 2002; Marcy, Prost, Carlier, & Sykes, 2004; Plastino &
Sykes, 2005). Another class of theories models the mixture of the
cytoplasm and its embedded filaments and motors as an active gel
(Brugués & Needleman, 2014; Kruse et al., 2005).

The main drawback of these continuum models is that the rela-
tionship between the micromechanical interactions of polymerizing
filaments with motors and obstacles and the emergent macroscopic
(continuum) behavior is not very clear. Thus, it becomes challenging to
choose the correct continuum model and sets of parameters that
describe a particular problem. Discrete simulations provide a natural
pathway to overcome this difficulty. The aim of this work is to use dis-
crete simulations to study how HlIs between polymerizing filaments
and the surrounding cytoskeletal structures under different micro-
mechanical conditions can change the polymerization forces and
velocities.

Computational methods for simulating cytoskeletal filaments in
fluid medium can be divided into volume-based and particle-based
methods. In volume-based methods, the momentum equation in the
fluid domain (Stokes or Navier-Stokes equations) are solved by dis-
cretizing the entire fluid volume and solving for the fluid velocity
within the volume by imposing proper boundary conditions on the
immersed bodies and outer boundaries. Within this group, immersed
boundary method (IBM) has been used to simulate filaments (Lim &
Peskin, 2012; Wiens & Stockie, 2015), and has been extended to
include thermal fluctuations for applications to different cellular pro-
cesses (Atzberger, Kramer, & Peskin, 2007). The most widely used
particle-based method is the bead-spring model, where the filament is
represented by the collections of rigid spheres connected by springs
with bending stiffness, and varying degrees of extensional stiffness.
While some implementations of this method include Hls (Joung,
Phan-Thien, & Fan, 2001), most only include local drag on the beads
and the rods connecting the beads (Nedelec & Foethke, 2007).

The method used in this study is based on slender-body theory
(SBT) for filaments in Stokes flow, where the slenderness of the fila-
ment is used to asymptotically recast the solution to Stokes equation
in terms of integrals of point-forces along the filament's centerline.
These solutions are accurate to O(eZIOge), where € < 1 is the aspect
ratio of the filament(s) (Johnson, 1980; Keller & Rubinow, 1976). We
have recently used SBT to develop a platform for large-scale simula-
tions of cytoskeletal assemblies that explicitly accounts for Hls, as well
as the filaments' flexibility, polymerization/depolymerization dynamics
and interactions with molecular motors Nazockdast, Rahimian, Zorin,
and Shelley (2017). A brief description of this platform is provided in
Supporting Information.

We have previously used this method in studying the pronuclear
positioning during the first cell division of Caenorhabditis elegans,

which involves centering of the pronuclei and alignment of the



NAZOCKDAST

| WILEY-&

microtubule organizing centers with anterior-posterior axis of the cell
(Nazockdast, Rahimian, Needleman, & Shelley, 2017). One of the pro-
posed mechanisms for spindle and pronuclei positioning is the cortical
pushing model, where pushing forces are applied to the spindle and
pronuclei by polymerization of astral microtubules against the cellular
boundary. Figure 1 shows two snapshots of the pronuclei (modeled as
a rigid sphere) and their attached astral microtubules during pronu-
clear migration in cortical pushing model, and the cytoplasmic flows
generated by it. As shown in Figure 1b, even after the pronuclei are
properly positioned and are stationary, strong flows are generated
near the cellular boundaries by polymerization forces. One question
that arises is: How are the polymerization forces and velocities
influenced by interactions of polymerizing microtubules through the
cytoplasmic flows they generate?

Understanding the precise role of Hls in determining polymeriza-
tion forces in a problem such as pronuclear migration is very challeng-
ing, as it involves several parameters and geometrical complexities.
Instead, we take a reductionist approach and choose the special case
of a polymerizing filament embedded in a cylindrical array of parallel fil-
aments of identical lengths. We assume that the filament is polymeriz-
ing from the end that is nearly touching the obstacle, while the other
end is mechanically free and not polymerizing (inactive); see Figure 2a.

To draw clear contrasts between the effect of Hls in different
mechanical conditions, we consider three scenarios with distinct Hls. In
Scenario |, we assume the filaments within the array are all polymerizing
against the obstacle with the same velocity. A few physiological condi-
tions which closely resemble this condition are the polymerization and
depolymerization of kinetochore microtubules against chromosomes in
metaphase state (Joglekar, Bloom, & Salmon, 2010), (Tomographic
reconstructions of the mitotic spindle structure show that kinetochore
microtubules are not directly connected to the centrosomes in
C. elegans and their minus-ends may be mechanically free (Redemann
et al., 2017), while their plus-end is attached to the chromosomes) and
the polymerization of a network of actin filaments against beads that
are coated with proteins that promote Arpr2/3-mediated actin nucle-

ation and polymerization (Cameron, Footer, Van Oudenaarden, &

(b)

Theriot, 1999; Marcy et al., 2004), as well as nucleation and processive
assembly of actin filaments against beads that are coated with formin
(Kovar & Pollard, 2004; Romero et al., 2004).

In Scenario Il, the filaments inside the array are not polymerizing
and are held fixed. Conditions similar to this scenario are the polymer-
ization of microtubules against cell cortex in the presence of actin
cytoskeletal network, or actin filaments polymerizing in the network
of other crosslinked actin filaments.

A large fraction of filaments and organelles are freely suspended
in the cytoplasm. How does the presence of these immersed bodies
affect the mechanics of polymerizing filaments? We study this effect
in Scenario lll, where we assume the filaments within the array are
freely suspended and inactive.

The outline of the paper is as follows. We begin in Section 2.1 by
computationally studying the generated flows and the drag force on a
rigid filament polymerizing within an array of rigid filaments in the
three mentioned scenarios. In Section 2.1.1, we study how Hils in Sce-
narios | and Il affect the polymerization velocities. In Section 2.2, we
extend our analysis to flexible filaments; we study the buckling transi-
tion induced by pushing forces from polymerization of a single fila-
ment against an obstacle, and the effect of buckling on the
polymerization velocity of a single filament. We then discuss the
effects of Hls of an arrays of filaments on the buckling transition, and
the resulting polymerization velocities in Sections 2.2.1 and 2.2.2.
Finally, in Section 2.2.3, we show how HIs can lead to bundling of

buckled polymerizing filaments.

2 | RESULTS

2.1 | Rigid polymerizing filaments

We start by studying the effect of Hls on polymerizing filaments,
when the viscous forces are much smaller than elastic forces and fila-
ments can be treated as rigid and straight. We consider an array of
Ng =20 parallel rigid filaments of the same length. As shown in

Figure 2b, the filaments ends are uniformly distributed over a surface

FIGURE 1 Simulation snapshots of the pronuclei (red sphere) and their anchored astral microtubules (600 yellow filaments) migrating from
the posterior pole of the cell (right side) to the anterior pole (left side), and the flow generated by the motion of this structure and the
polymerization of microtubules against cellular boundaries. (a) The initial stage of migration, where the pronuclei are moving toward the center;
(b) the later stage of migration, where the pronuclei are properly positioned [Color figure can be viewed at wileyonlinelibrary.com]
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(a)

FIGURE 2

(a) Schematic presentation of a filament polymerizing against an immobile obstacle from one end, while the other end is free and

stable. (b) Schematic presentation of a polymerizing filament (yellow) of length L embedded in a cylindrical array of radius r, containing parallel
filaments of the same length. The filaments within the array are (l) polymerizing with the same velocity as the filament, (Il) fixed, and (lll) freely

suspended in space [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Top panel: The 3D flows induced by the polymerization of filament(s) against an obstacle (z = O plane). (a) A single filament, (b) an
array of 20 polymerizing filaments (Scenario ), (c) a single polymerizing filament embedded in an array of 20 fixed filaments (Scenario Il), and (d) a
single polymerizing filament embedded in an array of 20 freely suspended filaments (Scenario Ill). Bottom panel: the velocity magnitudes of those
flows in z — x plane, made dimensionless by the magnitude of polymerization velocity. The polymerizing ends are located at z = 0. The dashed
lines show the contours corresponding to velocity magnitude of 0.25. Note that the x-axis and y-axis limits are different in each figure. The
polymerizing filaments are shown as solid black lines in the bottom panels, except for Figure 3b (20 filaments are polymerizing) for visualization

purposes [Color figure can be viewed at wileyonlinelibrary.com]

of radius r where r/L =0.1. The filaments are nearly touching the
obstacle from their polymerizing ends. For numerical tractability we
assume the filament tip is separated from the obstacle by a small gap
of size § = 0.04 L. The reason for this is explained in the description of
the numerical platform provided in Supporting Information. We con-
sider three mechanically distinct model of interactions between the
filaments and the obstacle, and study the fluid flows and their effect
on polymerization forces in each model. For now, we neglect the cou-
pling between the end-force and polymerization velocity, and assume
all filaments are polymerizing with a fixed velocity irrespective of their
end-force. This allows us to only focus on the effect of Hls on the

generated flows and the drag coefficient of polymerizing filament(s).

Also, from this point on all the lengths are nondimensionalized by the
length of the polymerizing filament, L.

Let us begin by considering a single filament polymerizing against
an obstacle with a constant velocity, V,.. Since the polymerizing end of
the filament is fixed at the obstacle, the polymerization forces push the
filament away from the obstacle with the rate that the monomers are
added that is,—V),. This outward motion generates a flow by dragging
cytoplasm from the obstacle into the fluid volume. See Figure 3a top
panel. The bottom panel of Figure 3a shows the magnitude of the fluid
velocity. The fluid flow is three dimensional, and the results are projec-
ted into the z — x plane for visualization. As it can be seen, because of

the long-range nature of Hls, the generated flows remain strong over


http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

% | WILEY_&

NAZOCKDAST

distances comparable to the filament's length. Note that in all the
results presented here, fluid velocity is nondimensionalized by V,,.

Next, we consider Scenario |, where the filaments within the array
are all polymerizing with the same velocity against the obstacle. An
example involving a similar setting is the polymerization and depoly-
merization of kinetochore microtubules against chromosomes in
metaphase state (Joglekar, Bloom, & Salmon, 2010), and formin-
mediated nucleation and rapid assembly of actin filaments (Romero
et al., 2004). As shown in the top panel of Figure 3b, the flows remain
strong outside of the array. This is demonstrated more clearly in the
bottom panel of Figure 3b that shows the spatial variations of the
fluid velocity magnitude in z — x plane, where z is the tangent direc-
tion of the filaments. The dotted white line is the contour
corresponding to velocity magnitude of 0.25 of the polymerization
velocity. The distances over which the velocity decays to 0.25 is
roughly 0.50, compared to ~ 0.3 for a single filament fluid flows.

In Scenario Il, only one of the filaments is polymerizing against the
obstacle, while the rest are held fixed in space. This is similar to having a
polymerizing filament embedded in a network of other crosslinked fila-
ments, such as microtubules polymerizing in a crosslinked network of
actin filaments, or kinetochore microtubules (de)polymerizing against
chromosomes in a crosslinked network of other microtubules within the
mitotic spindle. The key mechanical feature of this condition is that the
motions of the other filaments are constrained. Figure 3c shows the flow
induced by the polymerizing filament (top), and the spatial variations of
the fluid velocity magnitude projected into z — x plane (bottom). The
transparent cylinder in the top panel marks the boundaries of the volume
beyond which the flows become negligible. As it can be seen, the flow
strength decays over very short distances, compared to a single filament
and an array of polymerizing filaments (compare the contours). In other
words, HIs between the fixed filaments significantly reduce the convec-
tive penetration of the fluid flows generated by the polymerizing fila-
ment. Thus, objects that are not within the vicinity of the polymerizing
filament are hydrodynamically decoupled from it, and Hls are screened.

The filament array, therefore, can be treated as a porous volume
in which the fluid permeability and the penetration length of the fluid
are decreased as more filaments are included in the array. The flow
inside a porous medium can be approximated using Brinkman equa-
tion (Brinkman, 1949)

pAu-vp-Lu=0& Vv - u=0, (1)
K

where « is the permeability of the porous medium. The term (u/x)u is

the hydrodynamic drag force applied by the porous medium to the

fluid, because of the constrained motions of the filaments. The pene-
tration length of the fluid into the porous medium is proportional to
rp = v/k. In Stokes regime the flows generated by a point-force decays
as 1/r, where r is the separation distance from the point-force. In a
Brinkman fluid, these flows decay as exp(—r/r,)/r (Cortez, Cummins,
Leiderman, & Varela, 2010), which makes the flows negligible at
r/r,> 1. Brinkman equation gives good predictions of the behavior of
microtubule asters within confinements, when compared against
detailed simulations (Nazockdast, Rahimian, Needleman, & Shelley,
2017; Nazockdast, Rahimian, Zorin, & Shelley, 2017). Higdon and Ford
(1996) give a comprehensive comparative study of the accuracy of
Brinkman equation for fibrous networks over a wide range of volume
fractions.

Interestingly, the array of polymerizing filaments (Scenario 1) can
also be modeled as a porous medium. In this case, the porous medium
is moving with a net velocity of U = —V,q, where q is the tangent
direction of the filaments. The change of variable u' = u + V,q makes
this problem mathematically identical to having a uniform flow of
u™* = V,q over a fixed array of filaments in Stokes flow, which is
modeled by Equation (1). As the number of filaments increases the
penetration length of fluid into the porous medium decreases, and the
flows asymptote to those induced by a filled cylinder of radius r and
length L moving with velocity U = — V,,q, which would produce flows
similar to those shown in Figure 3b.

Table 1 lists the total force on the array of polymerizing filaments
as a function of the number of filaments for r/L = 0.1 and 0.4, aver-
aged over 30 different uniform distribution of the end-points on the
surface. The forces are nondimensionalized by the drag force of a sin-
gle filament with polymerization velocity, V,. The results of the
Table show for the largest values of Ng oo, the drag forces are
asymptoting to a constant number for any given r, which is the drag
force of a cylinder of radius r and length L that is pushed back through
the fluid along its axis with velocity magnitude V,,.

Finally, we consider scenario Ill, where a single polymerizing fila-
ment is placed in an array of freely suspended parallel filaments of the
same length. Because the filaments within the array are free to move
(no constraint), the net force on each filament is identically zero. Thus,
the term (u/x)u, and its hydrodynamic screening effect are not present
in the continuum limit. Each filament, however, has a nonzero net
force moment. The sum of the symmetric part of these force moments
determines the stress contribution of the filament phase to the sus-
pension. The anti-symmetric component of the force moment tensor
is identically zero, because there is no external torque acting on the
filaments. In its simplest form, the stress of the filament phase can be

modeled in terms of an increase in shear viscosity (Du Roure, Lindner,

TABLE 1 The drag force on the array of polymerizing filaments as a function of the number of filaments for r/L = 0.1 and r/L = 0.4, (see
Figure 2b), made dimensionless by the drag force on an individual polymerizing filament

Number of filaments (Ng) 2 5
Drag force (r/L = 0.1) 1.73 2.45
Drag force (r/L = 0.4) 1.95 4.02

Note: The values converge at large enough number of filaments for each given r.

10 20 30 40
3.07 3.49 3.75 3.95
6.30 8.81 9.96 10.33
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Nazockdast, & Shelley, 2019). In such conditions, the filament array
can be replaced with an effective viscosity, and the induced flow
would be identical to that of a single filament. The top panel of
Figure 3d shows a snapshot of the generated flows of a single poly-
merizing filament embedded in 20 freely suspended and parallel fila-
ments of the same length (r/L =0.1), at early times before the
filaments are displaced considerably. The flow is very similar to the
flow of a single filament, which is in line with the argument that the
effect of filament array is to increase the viscosity of the medium. The
exact value of viscosity would have no effect on the rate of decay of
the flow away from the polymerizing filament and only increases the
drag force. The spatial variations of the fluid velocity magnitude near
the polymerizing end, shown in the bottom panel, highlights a few dif-
ferences with the single filament flows. This may arise because of
flow-induced migration of heterogeneously suspended filaments.
Overall, however, the flows seem fairly similar, as it is shown by their
contours of [u| =0.25.

To summarize, we showed that an array of polymerizing filaments
effectively behaves as a porous cylinder, with dimensions of r and L,
as shown in Figure 2b, that is polymerizing with the same velocity as
the individual filaments. At large, enough number of filaments, the
drag force on the entire array converges to the drag of that cylinder
that is being pushed away from the obstacle. These effects are direct
consequences of Hls. In case of a single filament polymerizing in a
fixed array of filaments, the Hls are screened, and can be neglected
beyond the penetration length of fluid. If the filament is polymerizing
in a bath of freely suspended filaments, Hls are not screened, and the
main effect of the presence of the surrounding filaments is an
increase in the effective viscosity of the medium, and with that an
increase in the drag force on the polymerizing filament.

In the next section, we discuss the effects of Hls on the polymeri-

zation velocity, in the presence of a force-velocity relationship.

2.1.1 | Force-velocity relationship

Experimental and theoretical studies show that the compressive end-
forces reduce the polymerization velocity. This effect is described by
the force-velocity relationship. As mentioned in the introduction, we
do not attempt to find such a relationship here. Instead, we assume
the relationship is known through experiments and theories, and take
it as an input to our computations. In many asymptotic limits of the
Brownian Ratchet theories (Mogilner & Oster, 1996; Peskin et al.,
1993) and in many experiments (Dogterom & Yurke, 1997; Marcy
et al., 2004), the force-velocity relationship can be written in the sim-
ple form of: V), = Vgexp(—F/Fs), where Vg is the polymerization veloc-
ity under no force and F; is the stall force, which is determined by
microscopic parameters such as the size of the monomer, thermal
energy, filament's flexural modulus and its interactions with protein
complexes. We do not consider a specific form of the stall force.
Instead, the results are always presented in terms of the ratios of the
stall force to other forces in the problem, including the viscous and

elastic forces. We do, however, require that F; is independent of the

drag or diffusion coefficients of the filaments and the obstacle. This
allows us to uncouple the force-velocity relationship from Hils. Previ-
ous theories show that this assumption holds in many physiological
conditions; see, for example, eq. 1 in Peskin, Odell, and Oster (1993)
and egs. E2, E4, and E10 in Mogilner and Oster (1996). In the event
that this assumption does not hold, one needs to start with the origi-
nal Fokker-Plank equation that describes the probability of observing
the tip of the filament in space and time (see eq. 1 in Peskin, Odell,
and Oster (1993) and Appendix C in Mogilner and Oster (1996)). The
HIs modify the diffusion coefficient, and generate additional advective
fluxes that are induced by cytoplasmic flows. Note that—even though
they are not directly changing the force-velocity relationship—HlIs
indirectly change the polymerization force (and velocity) through
balancing it with the drag force on the filament and the obstacle. This
is the effect that will be explored in this study.

Again, we begin with studying the simplest case of having a rigid
filament polymerizing against an obstacle from one end, while the
other end is free. Because the polymerizing end is fixed at the obsta-
cle, the polymerization forces push the filament away from the obsta-
cle with the same velocity as the polymerization velocity, but in the
opposite direction to open space for adding the newly formed fila-
ment materials. This pushing force is balanced against the hydrody-
namic drag force to determine the polymerization velocity of the
filament: —yV,(q - n)y + F = O, where q and n are the filament's tan-
gent vector and the obstacle's surface normal vector, and y| is the fila-
ment's drag coefficient in its tangential direction. The term V,,(q - n) is
the polymerization velocity projected in n direction. The force acting
orthogonal to filament is given by the balance between the friction
forces from the obstacle and the hydrodynamic drag force: F, = y,(1
—q - n). In the absence of obstacle friction the filament will freely
polymerize in tangential direction. Here, in all of our analysis, we
assume that the polymerizing end of the filament is fixed (or trapped)
on the obstacle, which models infinite friction with the obstacle. Also,
we focus our attention to cases where filaments are parallel to the
normal direction of the obstacle. The extension to the general case
of the filaments that make an angle with the obstacle will be

studied in future works. Combining the force-velocity relationship,

V= Vgexp(—F/Fs), with force balance gives
}’vaeXp(‘F/Fs) =F. (2)

We scale the forces with the viscous force, 7’va’ and the polymer-

ization velocity with Vg. Equation (2) in dimensionless form is
I:'=exp<—l:'/l-:s), or \7p=exp(—Vp/I:'S) 3)

where F, =F5/(yvg) is the ratio of stall force to viscous drag force,
and we have dropped the subscript || for convenience. Equation (3)
can, then, be solved to give \/p = Vp/VS as a function of given F. The

results are shown in Figure 4 as a function of 1/F,. As expected, V,

asymptotes to 1 for F;>> 1 and approaches zero for F, < 1.
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FIGURE 4 The dimensionless polymerization velocity (scaled with
the polymerization velocity under no compressive force) as a function

of the ratio of viscous to stall force, I:'s_1 = (yvg) /Fs, for arigid
filament. The results are obtained by balancing the polymerization
force against the hydrodynamic drag force: V,, = exp(— Vp/f:'s). The

line is the solution to this equation

We now consider the effect of Hls between the array of filaments
on the polymerization velocity of the filament. We specifically ask
how does the presence of other filaments change the end-force on the
polymerizing filaments? Once the end-force is known, the polymeriza-
tion velocity can be computed using force-velocity relationship.
Another useful definition to consider in this context is the effective
drag coefficient, y.s, defined as the ratio the end-force on the fila-
ment to the velocity by which the filament is pushed back toward the
fluid: yeg = Fend/Vg. Once 7. is computed from simulations, F; can be

evaluated using the computed value for effective drag coefficient:
Fo= Fs/(yeffvg). Having calculated F,, the polymerization velocity can

be calculated from the curve in Figure 4.

In the previous section, we showed that for an array of polymeriz-
ing filaments the net force on the entire array converges to a constant
(see Table 1). As a result, the average force per filament (as well as yf)
is continuously reduced with the number of filaments, and at large Ng
it reduces as 1/Ng. This is demonstrated in Figure 5a, that shows the
force per filament versus Nr for 30 different distribution of end-points
on the obstacle's surface of dimensionless radii r = 0.1,0.4, and 1. The
ensemble average values are plotted with a thicker line. This reduction
in the end-force (and y.f) significantly increases the polymerization
velocity at large Ng. This is illustrated in Figure 5b for different ratios
of stall force to viscous force, F;, and r = 0.1. Same qualitative behav-
ior is observed in other values of r.

For example, consider a microtubule of length L = 5pum, and
F; = 4pN (Dogterom & Yurke, 1997), is polymerizing with
VS=O.7pm/s (Srayko, Kaya, Stamford, & Hyman, 2005) against an
obstacle of radius r = 1pum, and immersed in a fluid of viscosity
u = 1Pa-s, while the other end is inactive and free. The drag coeffi-

cient of a microtubule of radius 12 nm along its axis is y = (4zul)/In

(e%e™!) = 5.84pN.s/um, where e < 1 is the ratio of the filament's
radius to its length, p is the effective viscosity of the medium, and k;,

is the Boltzmann coefficient. This makes the ratio of viscous to stall

-1 . . o
force ~F, =1.0. We can evaluate the dimensionless polymerization

velocity by interpolating the results of Figure 4, which gives \7,, =0.56.

The end-force can then be computed using force-velocity relation-
ship: F= —FSIn(Vp) =2.3pN. Now consider an array of 20 microtu-

bules that are polymerizing against the same obstacle. We can use the
results of Table 1 to evaluate the effective drag coefficient of each fil-
ament in the array with r/L =0.2 as ye¢ = 3.49 X y/20 = 1.02pN - s/pm.

Using this value we can compute the ratio of viscous to stall force:

l:'s_1 =0.18. Then, we use Figure 4 to compute \7,, =0.86, and
F = 0.6pN for each microtubule and FT = 12.1pN for the entire array.
This force is roughly five times larger than a single microtubules (com-
pared to 20 times if they were hydrodynamically uncoupled). Dou-
bling the number of microtubules in the array to Ng =40 only changes
the total force to 15.1pN.

An important point to note is that if the filaments within the array
were depolymerizing instead, their effect on the polymerizing filament
would have been reversed: The end-force on the polymerizing filament
(as well as y.¢) would have increased, resulting in a reduction in V,,
compared to a single filament. This occurs because the depolymerizing
filaments would generate flows that are in the opposite direction of
those generated by polymerizing filament, thereby pulling the filament
toward (instead of away from) the obstacle and increasing the needed
force to push the filament away from the obstacle. Conditions become
more complicated when filaments are concurrently polymerizing and
depolymerizing against boundaries. Detailed simulations are needed to
study the effect of Hls in such conditions.

We now consider Scenario Il. Figure 5¢ shows the end-force on a
single filament polymerizing against an obstacle in array of fixed fila-
ments as function of N for 60 different uniform distribution of end-
points on the obstacle surface of radius r = 0.1. The presence of fixed
filaments reduces the penetration length of the fluid. This is analogous
to having an outer boundary with roughly the dimensions of the pene-
length (Nazockdast,
Needleman, & Shelley, 2017; Nazockdast, Rahimian, Zorin, & Shelley,
2017). This confinement effect causes the drag force (and yes) to

tration around the filament Rahimian,

increase with Ng, which then leads to a decrease in the polymerization
velocity as shown in Figure 5d. However, the effects are not as strong
as those observed for polymerizing filaments, mainly because the fila-
ment is slender and the confinement effects from fixed filaments array
can only weakly change the drag force.

2.2 | Flexible polymerizing filaments

Next, we study the effect of filament's flexibility on the generated flows,
and the polymerization forces and velocities. We focus on the limit
where viscous forces are significantly larger than the thermal forces, so
that the filament's dynamics is dominated by viscous forces. The ratio of

advection velocity of the filament, that is induced by polymerization
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FIGURE 5 (a) The average force per filament as a function of the number of polymerizing filaments (Ng), made dimensionless by the drag

force on a single filament. The filaments are uniformly distributed over surfaces of dimensionless radius r = 0.1,0.4, and 1. The thicker solid lines
are the forces for each r, averaged over 30 different uniform distribution of attachment points; the result of each distribution is shown with
thinner (lighter) lines. (b) Average polymerization velocity of an array of polymerizing filaments against the obstacle versus Ng, for an array with

r = 0.1 and for different values of F = FS/ng. (c) The dimensionless end-force on a polymerizing filament, embedded in an array of fixed filaments

of the same length and r = 0.1; the filled square symbols are the forces, averaged over 60 different uniform distributions of attachment points
over the surface (open circles). (d) Filament's polymerization velocity at different values of F, as a function of the number of fixed filaments [Color

figure can be viewed at wileyonlinelibrary.com]

forces, to thermal diffusion velocity is given by Péclet number defined
as Pe = V,yL/k,T. The assumption of Pe >> 1 is expected to hold in many
cellular settings. For example, for a microtubule of length 2 pm
immersed in C. elegans embryo of cytoplasmic viscosity of u =1 Pa-s
(Daniels, Masi, & Wirtz, 2006), the Péclet number is Pe = 408. When
Pe > 1, we can ignore the filament's net displacement due to thermal
diffusion, in comparison to those induced by viscous forces. To compare
the deformations induced by viscous and thermal forces both forces
should be evaluated in the length-scale of the persistence length of
the filament, [,. This number to

modifies the Péclet

Pe=4zuV, I3/ (kyTin(e"2e71)). Since I,/L>>1 for microtubules and
I,/L > 1 for most actin-based processes, we expect the thermal undu-
lations to be negligible in comparison to buckling and bending defor-
mations induced by viscous forces, if the initial assumption of
VprL/k,T>> 1 holds. We should note that we are only discussing the
filament's deformations beyond the buckling instability. Below the

buckling threshold and in the special case of a filament orthogonal to

the obstacle, the viscous forces only cause a net motion of the fila-
ment and the deformations are entirely induced by thermal undula-
tions. Note also that if the filament is not orthogonal to the obstacle,
it will bend under viscous forces well below the buckling threshold.
The shape of a flexible filament is time-dependent. The lengths of
polymerizing filaments are monotonically increasing with time. Elastic
forces scale as Fg~E/L? and the viscous forces scale as Fy = ng, which
makes their ratio 7= Fy /Fg = 4zuVpL®/(In(e"2e 1) E). We can see that
77 monotonically increases as L3 with time and, thus, the filament shape
and dynamics will not reach to a mechanical steady-state. The mechan-
ical problem in this form cannot be systematically analyzed in terms of
the ratios of viscous, elastic and stall forces. To circumvent this issue
we assume that the free end of the flexible filaments are shrinking with
the same rate as their other end is polymerizing, so that the length of
the filament remains unchanged with time. Note that the shrinking pro-
cess of the free end does not apply any force to the fluid, and has no

effect on the mechanics other than fixing the length of the filament. In
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this treatment of the problem the ratio of the mentioned forces are
fixed in time, and mechanical steady-state can be achieved.

Let us consider a straight filament and introduce small deforma-
tions along its length, say from thermal fluctuations. These deforma-
tions can either relax (disappear) over time, or—if the compressive
forces are strong enough—they can grow with time and lead to buck-
ling instability. We have analyzed the transition to buckling instability
by performing linear stability analysis of the dynamic equations that
describe the filament's shape, which will be presented in later publica-
tions. Our stability analysis and simulation results show that the tran-
sition occurs at roughly 5. = 202. As an example, Figure 6 shows
different simulation snapshots of a buckled filament polymerizing
against an infinite wall with a constant velocity at 7 = 380, as well as
the generated cytoplasmic flows. Clamped boundary condition was
used in these simulations, that is, the angle of attachment was fixed
throughout the simulation. A video (anchor.mp4) of this simulation is
provided in Supporting Information. As expect, the generated flows
are qualitatively different from those observed for straight filaments
(see Figure 3a), and change direction with the beating of the filament.
Changing the boundary condition to hinged results in qualitatively dif-
ferent shape of the buckled filament, and the transition occurs at dif-
ferent ratios of viscous to elastic forces. A video (hinged.mp4)
depicting the simulation results for hinged boundary condition at
n = 435 is provided in Supporting Information.

2.2.1 | The effects of His on buckling transition

We now discuss how Hls change the buckling transition in Scenarios |,

I, and Ill. Buckling transition occurs when the ratio of tangential force

-0.5 -05 -0.5

on the polymerizing end to the elastic forces exceeds a critical value:
Fensz/E =17>7.~202, where Fenq = va is the force on the polymeriz-
ing end. We showed in Section 2.1 that for an array of straight poly-
merizing filaments, the end-force continuously decreases with
increasing the number of filaments within the array. Because of this
reduction in end-forces, the buckling transition occurs at larger values
of 57, when compared to a single filament. For example, in an array
with r =0.1 and Nr = 20 the end-forces reduce to 0.20 of the value for
a single filament; see Figure 5b. Because the flexible filaments remains
straight before the buckling transition, their compressive forces are
identical to those of the rigid filaments. Thus, the buckling instability
in this array is expected to occur at 7. =202 x5 = 1,010. This can be
confirmed by formal linear stability analysis and detailed simulations
(to be published elsewhere).

For a single filament polymerizing in an array of fixed filaments,
the end-force is increased with N due to an increase in the effective
drag coefficient; Thus, the buckling transition occurs, accordingly, at
lower values of 5. Finally, in the case of a filament polymerizing in an
array of freely suspended filaments, the presence of filaments
increases the end-force by increasing the effective viscosity of the
medium and the transition to buckling is expected to occur at lower 7.
We are in the process of performing these simulations for a large

number of freely suspended filaments.

2.2.2 | The effect of buckling on the polymerization
velocity

As the filament undergoes buckling instability, its end-force is

reduced. As a consequence, the polymerization velocity of a flexible

FIGURE 6 Snapshots of the simulation of a single filament polymerizing against an obstacle (z = 1) at ;7= ngLz/E =383, and flows induced by
it. The polymerization induces a buckling instability, which results in qualitatively different flows compared to the flow of a rigid polymerizing
filament; see Figure 3a for the generated flow of a rigid filament [Color figure can be viewed at wileyonlinelibrary.com]
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filament is expected to increase in comparison with a rigid filament
under identical physical conditions and for a given force-velocity rela-
tionship. Figure 7a shows the variations of the polymerization velocity
(left-axis) and the end-force (right-axis) as a function of time at 7 = 1,550
and F,/F, = 0.80, where F, = 202E/L? is the critical buckling instability
force. The large rate of decay (increase) of the end-force (polymerization
velocity) at early times is associated with the filament's buckling transi-
tion, while the small amplitude oscillations of the end-force and \7,17 at
long times is due to the beating of the buckled filament. The end-
force and polymerization velocity at very early times (before the sharp
decay) correspond to those values for a rigid filament.

Figure 7b shows the variations of dimensionless polymerization
velocity, Vp, with the ratio of viscous to stall force, ':_5—1‘ for different
ratios of Fy/Fp. Note that in defining Fs=F,/yVp we have used the
polymerization velocity in the absence of the end-force, Vg. As it can
be seen, at small values of F';l and small ratios of F,/F, the force-
velocity curves become independent of F,/F,, and asymptote to the

curve of a rigid filament. The deviation from the rigid filament curve
coincides with the transition to buckling. To show this consider the

product VpﬁglFs/Fb, which can be simplified as

v ﬁ715=vpyV2Fs 7V,
s Fb Vg Fs Fb

. 4
7 )

Noting that if V,, is the polymerization velocity under compressive
force, the product is simply the ratio of the end-force to the critical
buckling instability force. As expected, the deviation from the rigid fil-

ament curve and filament buckling occur when this ratio is larger than
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The results of Figure 7b can be extended to compute the polymer-
ization velocity in Scenarios |, I, and lll, by replacing y with the com-

puted values of y.s, when evaluating the ratio of stall to viscous
forces: Fs=F,/ (yeffvg). Other quantities, including F,, are unchanged,
as they are not dependent on Hils.

As an example, consider a microtubule of length L = 5 pm, flexural
modulus of 10pNpm? (Howard, 2001) and F, = 32pN, is polymerizing
with Vg =0.7um/s against a chromosome within a spindle with effec-

2.4x10%Pa-s (Shimamoto, Maeda, Ishiwata,
Libchaber, & Kapoor, 2011). The drag coefficient of the microtubule is

tive viscosity of u

v = (4zul)/In(e®e~?) = 1402pN - s/pm, and the ratio of viscous to stall

force is F‘;l =30.67. Having F, = 202E/L? = 80pN, we can compute
the ratio of stall to buckling instability force: F,/F, ~0.4. We evaluate

the polymerization velocity by interpolating the results of Figure 7b

for Fs/F,=0.4 and I:'s_1 =30.67. |Interpolation gives \7p=0.23
(or V, = 0.16 ym/s), and also shows that the microtubule is in the

buckled regime. The end-force can, then, be computed using force-
velocity relationship: F= -Fsln(Vp) =47pN. Note that because the

end-force is significantly reduced after buckling, the computed value
is less than the buckling instability force.

Now consider the case of an array of 20 microtubules of the same
length, polymerizing over a chromosome modeled here as a disk with
radius of 1 um (r/L = 0.1). We can use Table 1 to approximate the

effective drag coefficient of each microtubule as y¢ = 3.49y/20 =

244 .5pN - s/um, and compute ':_5—1 =7.6, which is slightly below the
buckling transition point at F,/F, =0.4. Thus, in this scenario the
microtubules will be remain straight. We then interpolate the results

of Figure 7b, to compute \7,, =0.35. The force-velocity relationship is

o
*F;/F, = 0.10
©-F,/F, = 0.20
| & F/F =040
& F,/F, =0.80
F,/F,=1.60
10°  p-1 10! 10°

L]

(a) Variations of the polymerization velocity (left-axis) and the end-force (right-axis) plotted as a function of dimensionless time,

t= tvg/L, at 7= 1,550 and F,/F, = 0.8, where F, = 202E/L2 is the critical buckling instability force. The sharp variations of the end-force and pat

early times is associated with the buckling transition. Small oscillations of \7,, and the end-force at long times is due to the beating motion of the

buckled filament. (b) Filament's polymerization velocity as a function of the ratio of viscous to stall force, f:';l = yvg/Fs, plotted at different ratios

of stall force to critical buckling instability force, F,/F,. Note that the product V,,I:'S_l(FS/Fb) is simply (yV,,)/Fp. Thus when yV,,/F, < 1, the filament
remains straight and the results asymptote to those of a rigid filament. When yV,/F,, > 1, the filament buckles, which causes a decrease in the end-
force and an increase in the polymerization velocity [Color figure can be viewed at wileyonlinelibrary.com]
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then used to compute the end-force per microtubule as F~ 34pN,
making the total force on the chromosome equal to F' = 680pN.

Note that such approximations remain accurate as long as the
flow generated by the surrounding filaments on each filament is uni-
form along the filament's length that is, the flow gradients along the
filaments are small. Strong flow gradients can result in a complex
range of behaviors, such as the buckling of filaments in shear and
extensional flows (Du Roure et al., 2019; Guglielmini, Kushwaha,
Shagfeh, & Stone, 2012; Tornberg & Shelley, 2004). For a more rigor-
ous treatment of the problem see Stein and Shelley (2019), where a
coarse-grained model of arrays of flexible filaments is developed. In
the examples studied here the filaments are uniformly distributed,
parallel and of equal length and polymerization velocities. Because of
these simplifications, the generated flows by the surrounding fila-
ments are roughly uniform along its length, which can be seen in
Figure 3. Relaxing any of these assumptions may lead to more com-
plex flows. Consider, for example, a polymerizing filament surrounded
by an array of filaments with two populations of filaments that are
concurrently polymerizing and depolymerizing against the obstacle
with equal likelihood (see the top panel of Figure 8). The bottom panel
of Figure 8 shows the flows generated by such an array, as well as the
resulting shape of the polymerizing filament within that array.

=== Array: depolymerizing fibers
Array: polymerizing fibers

mssss Polymerizing single fiber

03 05

FIGURE 8 Top panel: Schematic representation of a polymerizing
filament (shown as the thicker filament in the center of the cylindrical
array), embedded in an array of filaments that are polymerizing
(yellow) and depolymerizing (blue) simultaneously and with equal
probability. Bottom panel: The embedded polymerizing filament and
the flows induced by the array of (de)polymerizing filaments. The
simulations were performed at 7 = 100, which is below the critical
buckling instability 5. = 202. Yet, the flows induced by the array cause
the polymerizing filament to slightly buckle [Color figure can be
viewed at wileyonlinelibrary.com]

Because of equal likelihood of polymerization and depolymerization,
once averaged over time, the array does not apply a net force to the
polymerizing filament. Nevertheless, as the figure shows, strong flow
gradients can be generated along the filament's length. Because of
these flow gradients the filament is slightly buckled at = 100, which
is below the buckling instability limit of a single filament (7. = 202).
Careful computational studies are needed to study the effect of varia-
tions of length, polymerization velocities, and the angles between the
filaments and the obstacles on Hls, and the resulting polymerization

forces and velocities.

2.2.3 | Bundling of buckled filaments by His

Next, we explore the effect of Hls on the dynamics of an array of
buckled filaments. Figure 9a shows snapshots of two simulations of a
pair of filaments polymerizing against an obstacle. The pushing forces
are strong enough to induce buckling instability in both filaments. The
simulations were done in 3D and clamped boundary condition was
used for the polymerizing ends. In the snapshot to left, the pushing
forces are slightly above the buckling instability of the pair, and in the
snapshot to the right, the forces are significantly larger. As a result,
higher frequency (shorter wavelength) modes of buckling are pro-
duced in the filament with larger end-forces. In both simulations Hls
cause the filaments to bundle at points where their buckling deforma-
tions are maximized. To ensure that the observed behavior is not a
numerical artifact, we have run the simulations for several different
discretization in time and space; we observe numerical convergence
in all cases. We have also varied the initial spacing between the fila-
ments, and have changed the boundary condition from clamped to
hinged. The same quantitative behavior was observed in all these
perturbations.

Figure 9b shows a snapshot of the simulation results for four fila-
ments at values of  significantly above the buckling instability of the
filaments. The same bundling of filaments is observed: The dark blue
filament is in touch with both the red and light blue filaments, and the
yellow filament is approaching the point of contact between the dark
blue and light blue filaments. Similar to pair of filaments, the bundling
occurs at locations where the buckling amplitudes are maximized.

Interestingly, the same behavior is observed in larger assemblies
of polymerizing filaments. Figure 9¢,d shows snapshots of simulation
of 150 polymerizing filaments against a boundary in early and later
stages of buckling. Hinged boundary conditions were used in these
simulations. Again, we see the bundling of many filaments, at locations
that their buckling amplitudes are the largest. These results suggest
that the bundling occurs irrespective of the details of boundary condi-
tions and the number of filaments. Further studies are needed to
understand the underlying physics of this bundling behavior.

3 | CONCLUDING REMARKS

Polymerization of cytoskeletal filaments against boundaries is known

to produce forces and motion in cellular materials, including cell
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(a) Two simulation snapshots of a pair of filaments that are polymerizing against an obstacle. In the left snapshot, the viscous

forces are slightly above the buckling instability of the two-filaments. In the right snapshot, the viscous forces are significantly larger, resulting in
higher frequency (shorter wavelength) modes of buckling instability. In both scenarios Hls act as pair attractive forces between locations where
buckling is maximized. The tangent vector at the polymerizing end were kept constant throughout the simulations (clamped). (b) Simulation
snapshot of four strongly buckled filaments that are polymerizing against an obstacle (gray surface). The same bundling of filaments is observed.
(c,d). Snapshots of simulations of 150 polymerizing filaments in the early (c) and later (d) stages after the onset of buckling instability. Hinged
boundary condition was used in these simulations. In both instances, Hls cause several filaments to bundle where their buckling is maximized,
similar to what is observed for a filament pair and four filaments (Figures 9a,b) [Color figure can be viewed at wileyonlinelibrary.com]

motility driven by actin polymerization and chromosome motions
induced by kinetochore microtubules assembly and disassembly.
These motions of the cytoskeletal filaments induce large-scale and
long-range cytoplasmic flows and Hls between the filaments and
other cellular objects. Previous theoretical and computational studies
of polymerization forces in the cytoskeleton largely ignore His. In this
study, we used detailed dynamic simulations that explicitly account
for His to demonstrate several important consequences of Hls on fila-
ments' polymerization forces and velocities against obstacles.

To demonstrate the fundamental differences between the Hls in
various mechanical conditions, we chose a simple model system com-
posed of a filament polymerizing against an immobile obstacle, and
surrounded by an array of parallel filaments of the same length with
ends that are uniformly distributed over a disk-like domain on the
obstacle (see Figure 2a). We assumed three distinct mechanical condi-
tions for the filaments within the array: (a) The filaments were poly-
merizing with the same velocity; (b) they were held fixed in space; and
(c) they were freely suspended. Through simulations, we showed that
each of these conditions produces its unique Hls, and results in signifi-
cantly different polymerization forces and velocities. We, then, stud-
ied the effect of buckling of flexible filaments on the polymerization
forces and velocities, and discussed the effect of His in the three
mentioned conditions on the onset of buckling transition. Finally, we
showed that Hls can lead to the bundling of polymerizing filaments, in
points where their buckling amplitudes are maximized; see Figure 9.

The model system studied here is, nevertheless, much simpler
than the cytoskeletal structures in physiological conditions. For exam-
ple, the length of microtubules and actin filaments within an assembly
can greatly vary, the filaments are not always parallel and do not nec-
essarily polymerize orthogonal to the boundaries, and the filaments
may be simultaneously polymerizing and depolymerizing. Most impor-

tantly, we have ignored the active forces from motor-proteins and

crosslinkers, which are key to the structure and mechanics of the
cytoskeleton. The effect of cytoplasmic flows and long-range fluid-
structure interactions in the presence of these forces and geometrical
variations remain largely unknown, even when the microscopic inter-
actions of motors and filaments are well-understood. Many more
computational studies are needed to explore these effects, which will
certainly lead to a host of interesting and complex phenomena involv-
ing the interactions of fluid flows with cytoskeletal structures. These
findings are key to developing microscopic coarse-grained theories for
the fluid dynamics of active cellular organizations (Mogilner &
Manhart, 2018; Shelley, 2016). Recent advancements in microscopy
have enabled us to visualize cytoskeletal components and measure
the involved dynamical variables with unprecedented resolutions
(Chen et al., 2014; Redemann et al., 2017). Full integration of this
microstructural data with dynamic simulations, that are equally
detailed in their structural and dynamical descriptions, will enable
developing models that can predict the behavior of the cytoskeleton

from individual filaments to the collective behavior of the assembly.
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