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Abstract

Polymerization and depolymerization of cytoskeletal filaments against cellular struc-

tures can generate forces that are key to many cellular processes, such as cell motility

and chromosomes movements during cell division. Motions generated by these

forces induce global cytoplasmic flows and couple the dynamics of the polymerizing

filaments and other bodies immersed in the fluid through their long-range hydrody-

namic interactions (HIs). Previous theoretical and computational studies have largely

ignored HIs. We use three dimensional discrete simulations to study the relationship

between polymerization forces and their resulting flows and HIs. As a model system,

we choose a filament that is polymerizing against an obstacle, and is embedded in a

cylindrical array of parallel filaments of the same length. We consider three distinct

mechanical scenarios for the filaments within the array: (a) all of the filaments are

polymerizing with the same velocity; (b) they are all fixed in space, and (c) they are

freely suspended. We show that each of these conditions produce their unique cyto-

plasmic flows and each result in differentiable polymerization forces and velocities.

We also study the effect of buckling of filaments on polymerization forces and veloc-

ities and discuss the effect of HIs on the onset of buckling transition. Finally, we

show that HIs result in the bundling of the buckled filaments within the array.
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1 | INTRODUCTION

Polymerization and depolymerization of cytoskeletal filaments can

generate forces in the absence of molecular motors (Howard, 2001;

Mogilner, 2006). These forces are involved in many cellular motions,

such as cell's crawling motion driven by actin polymerization (Bray,

2000), as well as the motion of chromosomes (Joglekar, Bloom, &

Salmon, 2010) and the spindle positioning and assembly (Garzon-

Coral, Fantana, & Howard, 2016; Oriola, Needleman, & Brugués,

2018) during cell division, that depend on polymerization and depoly-

merization of microtubules. The polymerization forces have been

experimentally measured in-vitro for both microtubules (Dogterom &

Yurke, 1997) and actin filaments (Footer, Kerssemakers, Theriot, &

Dogterom, 2007).

Large number of theoretical studies have focused on the mecha-

nisms of force generation. The first mechanistic theory was proposed by

Peskin, Odell, and Oster (1993) for force generation by a polymerizing fil-

ament against an obstacle. In their Brownian ratchet model, a rigid fila-

ment polymerizes perpendicular to the surface of an obstacle. The

polymerization rectifies the diffusive motion of the obstacle, which

results in an effective pushing force that moves the obstacle in the direc-

tion of polymerization. For the polymerization to continue, the Brownian

fluctuations of the obstacle must open a gap large enough to intercalate

a monomer. Mogilner and Oster (1996) extended the formulation to
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flexible filaments and proposed elastic Brownian ratchet mechanism,

where the polymerization gap is generated by thermal bending undula-

tions of the filaments. These theories have since been extended to

accommodate other experimental observations. These include theories

for filaments with multiple crosslinked protofilaments such as microtu-

bules (van Doorn, T�anase, Mulder, & Dogterom, 2000), and theories that

include interactions with filament end-tracking proteins (Dickinson,

Caro, & Purich, 2004); see Holz and Vavylonis (2018) and Mogilner

(2006) and the references within for reviews on the topic. The interac-

tions included in these theories are local that is, they occur over the

length-scales of monomers and protein structures, which are significantly

smaller than the length of the filaments. The final result of each of these

theories is a relationship between the applied pushing force to the obsta-

cle and the filament's polymerization velocity that is, force-velocity rela-

tionship. Finding a force-velocity relationship is not the subject of this

work. Instead, we assume a force-velocity relationship is provided to us

by experiments and theories.

In most physiological conditions, the cytoskeletal filaments

exchange forces with motor-proteins and crosslinkers, leading to a

complex range of structures and rheological behavior. Examples

include viscoelastic (Bausch & Kroy, 2006), poroelastic (Moeendarbary,

Valon, Fritzsche, Harris, & Dale, 2013), active gel (Kruse, Joanny,

Jülicher, Prost, & Sekimoto, 2005), and soft glassy behaviors (Fabry

et al., 2001). In this study, to focus on the effect of HIs, we do not

include these interactions. In this limit, the polymerization forces and

velocities are fully determined once the force-velocity relationship is

complimented with equations that balances the polymerization force

against the drag force induced by pushing the filament (and/or obstacle

in case of a mobile obstacle) through the fluid medium.

The motion of the filaments and obstacles generate global cyto-

plasmic flows in scales of the largest dimensions of the moving objects

(Nazockdast, Rahimian, Needleman, & Shelley, 2017; Shelley, 2016).

As a result, objects that are separated by distances as large as the fila-

ments length interact with one another through these flows. These

nonlocal interactions are referred to as hydrodynamic interactions

(HIs), which play a key role in determining the drag force on the poly-

merizing filaments.

While previous discrete simulations have largely ignore HIs, there

have been a number of continuum modeling studies that account for

HIs and fluid-structure interactions; see Mogilner and Manhart (2018)

and Shelley (2016) for comprehensive reviews on actin and microtu-

bule assemblies, respectively. The main ingredients of these contin-

uum two-phase models are the momentum and mass transfer for the

cytoplasmic fluid and the filament phases and the mechanical coupling

between them. The cytoplasm is typically modeled as a Newtonian

fluid in Stokes flow, while—depending on the microstructural details

such as crosslinking and motor activities—different models have been

utilized for describing the mechanics of the filament phase. For exam-

ple, some studies model the cytoskeleton as a poroviscous material

(Cogan & Guy, 2010; Dembo & Harlow, 1986), and others use a

poroelastic description (Bottino & Fauci, 1998; Strychalski, Copos,

Lewis, & Guy, 2015; Strychalski & Guy, 2013, 2016). In these classes

of models, the coupling between the cytoplasm and the filament

phase is typically modeled through a friction term that depends on

their relative velocity. In many other studies the intracellular flows

and the viscous forces on the filaments are ignored, and the cytoskel-

eton is modeled as an elastic gel (Bottino, Mogilner, Roberts, Stew-

art, & Oster, 2002; Marcy, Prost, Carlier, & Sykes, 2004; Plastino &

Sykes, 2005). Another class of theories models the mixture of the

cytoplasm and its embedded filaments and motors as an active gel

(Brugués & Needleman, 2014; Kruse et al., 2005).

The main drawback of these continuum models is that the rela-

tionship between the micromechanical interactions of polymerizing

filaments with motors and obstacles and the emergent macroscopic

(continuum) behavior is not very clear. Thus, it becomes challenging to

choose the correct continuum model and sets of parameters that

describe a particular problem. Discrete simulations provide a natural

pathway to overcome this difficulty. The aim of this work is to use dis-

crete simulations to study how HIs between polymerizing filaments

and the surrounding cytoskeletal structures under different micro-

mechanical conditions can change the polymerization forces and

velocities.

Computational methods for simulating cytoskeletal filaments in

fluid medium can be divided into volume-based and particle-based

methods. In volume-based methods, the momentum equation in the

fluid domain (Stokes or Navier–Stokes equations) are solved by dis-

cretizing the entire fluid volume and solving for the fluid velocity

within the volume by imposing proper boundary conditions on the

immersed bodies and outer boundaries. Within this group, immersed

boundary method (IBM) has been used to simulate filaments (Lim &

Peskin, 2012; Wiens & Stockie, 2015), and has been extended to

include thermal fluctuations for applications to different cellular pro-

cesses (Atzberger, Kramer, & Peskin, 2007). The most widely used

particle-based method is the bead-spring model, where the filament is

represented by the collections of rigid spheres connected by springs

with bending stiffness, and varying degrees of extensional stiffness.

While some implementations of this method include HIs (Joung,

Phan-Thien, & Fan, 2001), most only include local drag on the beads

and the rods connecting the beads (Nedelec & Foethke, 2007).

The method used in this study is based on slender-body theory

(SBT) for filaments in Stokes flow, where the slenderness of the fila-

ment is used to asymptotically recast the solution to Stokes equation

in terms of integrals of point-forces along the filament's centerline.

These solutions are accurate to O ϵ2logϵ
� �

, where ϵ�1 is the aspect

ratio of the filament(s) (Johnson, 1980; Keller & Rubinow, 1976). We

have recently used SBT to develop a platform for large-scale simula-

tions of cytoskeletal assemblies that explicitly accounts for HIs, as well

as the filaments' flexibility, polymerization/depolymerization dynamics

and interactions with molecular motors Nazockdast, Rahimian, Zorin,

and Shelley (2017). A brief description of this platform is provided in

Supporting Information.

We have previously used this method in studying the pronuclear

positioning during the first cell division of Caenorhabditis elegans,

which involves centering of the pronuclei and alignment of the
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microtubule organizing centers with anterior–posterior axis of the cell

(Nazockdast, Rahimian, Needleman, & Shelley, 2017). One of the pro-

posed mechanisms for spindle and pronuclei positioning is the cortical

pushing model, where pushing forces are applied to the spindle and

pronuclei by polymerization of astral microtubules against the cellular

boundary. Figure 1 shows two snapshots of the pronuclei (modeled as

a rigid sphere) and their attached astral microtubules during pronu-

clear migration in cortical pushing model, and the cytoplasmic flows

generated by it. As shown in Figure 1b, even after the pronuclei are

properly positioned and are stationary, strong flows are generated

near the cellular boundaries by polymerization forces. One question

that arises is: How are the polymerization forces and velocities

influenced by interactions of polymerizing microtubules through the

cytoplasmic flows they generate?

Understanding the precise role of HIs in determining polymeriza-

tion forces in a problem such as pronuclear migration is very challeng-

ing, as it involves several parameters and geometrical complexities.

Instead, we take a reductionist approach and choose the special case

of a polymerizing filament embedded in a cylindrical array of parallel fil-

aments of identical lengths. We assume that the filament is polymeriz-

ing from the end that is nearly touching the obstacle, while the other

end is mechanically free and not polymerizing (inactive); see Figure 2a.

To draw clear contrasts between the effect of HIs in different

mechanical conditions, we consider three scenarios with distinct HIs. In

Scenario I, we assume the filaments within the array are all polymerizing

against the obstacle with the same velocity. A few physiological condi-

tions which closely resemble this condition are the polymerization and

depolymerization of kinetochore microtubules against chromosomes in

metaphase state (Joglekar, Bloom, & Salmon, 2010), (Tomographic

reconstructions of the mitotic spindle structure show that kinetochore

microtubules are not directly connected to the centrosomes in

C. elegans and their minus-ends may be mechanically free (Redemann

et al., 2017), while their plus-end is attached to the chromosomes) and

the polymerization of a network of actin filaments against beads that

are coated with proteins that promote Arpr2/3-mediated actin nucle-

ation and polymerization (Cameron, Footer, Van Oudenaarden, &

Theriot, 1999; Marcy et al., 2004), as well as nucleation and processive

assembly of actin filaments against beads that are coated with formin

(Kovar & Pollard, 2004; Romero et al., 2004).

In Scenario II, the filaments inside the array are not polymerizing

and are held fixed. Conditions similar to this scenario are the polymer-

ization of microtubules against cell cortex in the presence of actin

cytoskeletal network, or actin filaments polymerizing in the network

of other crosslinked actin filaments.

A large fraction of filaments and organelles are freely suspended

in the cytoplasm. How does the presence of these immersed bodies

affect the mechanics of polymerizing filaments? We study this effect

in Scenario III, where we assume the filaments within the array are

freely suspended and inactive.

The outline of the paper is as follows. We begin in Section 2.1 by

computationally studying the generated flows and the drag force on a

rigid filament polymerizing within an array of rigid filaments in the

three mentioned scenarios. In Section 2.1.1, we study how HIs in Sce-

narios I and II affect the polymerization velocities. In Section 2.2, we

extend our analysis to flexible filaments; we study the buckling transi-

tion induced by pushing forces from polymerization of a single fila-

ment against an obstacle, and the effect of buckling on the

polymerization velocity of a single filament. We then discuss the

effects of HIs of an arrays of filaments on the buckling transition, and

the resulting polymerization velocities in Sections 2.2.1 and 2.2.2.

Finally, in Section 2.2.3, we show how HIs can lead to bundling of

buckled polymerizing filaments.

2 | RESULTS

2.1 | Rigid polymerizing filaments

We start by studying the effect of HIs on polymerizing filaments,

when the viscous forces are much smaller than elastic forces and fila-

ments can be treated as rigid and straight. We consider an array of

NF = 20 parallel rigid filaments of the same length. As shown in

Figure 2b, the filaments ends are uniformly distributed over a surface

F IGURE 1 Simulation snapshots of the pronuclei (red sphere) and their anchored astral microtubules (600 yellow filaments) migrating from
the posterior pole of the cell (right side) to the anterior pole (left side), and the flow generated by the motion of this structure and the
polymerization of microtubules against cellular boundaries. (a) The initial stage of migration, where the pronuclei are moving toward the center;
(b) the later stage of migration, where the pronuclei are properly positioned [Color figure can be viewed at wileyonlinelibrary.com]
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of radius r where r/L = 0.1. The filaments are nearly touching the

obstacle from their polymerizing ends. For numerical tractability we

assume the filament tip is separated from the obstacle by a small gap

of size δ = 0.04 L. The reason for this is explained in the description of

the numerical platform provided in Supporting Information. We con-

sider three mechanically distinct model of interactions between the

filaments and the obstacle, and study the fluid flows and their effect

on polymerization forces in each model. For now, we neglect the cou-

pling between the end-force and polymerization velocity, and assume

all filaments are polymerizing with a fixed velocity irrespective of their

end-force. This allows us to only focus on the effect of HIs on the

generated flows and the drag coefficient of polymerizing filament(s).

Also, from this point on all the lengths are nondimensionalized by the

length of the polymerizing filament, L.

Let us begin by considering a single filament polymerizing against

an obstacle with a constant velocity, Vp. Since the polymerizing end of

the filament is fixed at the obstacle, the polymerization forces push the

filament away from the obstacle with the rate that the monomers are

added that is,—Vp. This outward motion generates a flow by dragging

cytoplasm from the obstacle into the fluid volume. See Figure 3a top

panel. The bottom panel of Figure 3a shows the magnitude of the fluid

velocity. The fluid flow is three dimensional, and the results are projec-

ted into the z − x plane for visualization. As it can be seen, because of

the long-range nature of HIs, the generated flows remain strong over

F IGURE 2 (a) Schematic presentation of a filament polymerizing against an immobile obstacle from one end, while the other end is free and
stable. (b) Schematic presentation of a polymerizing filament (yellow) of length L embedded in a cylindrical array of radius r, containing parallel
filaments of the same length. The filaments within the array are (I) polymerizing with the same velocity as the filament, (II) fixed, and (III) freely
suspended in space [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 Top panel: The 3D flows induced by the polymerization of filament(s) against an obstacle (z = 0 plane). (a) A single filament, (b) an
array of 20 polymerizing filaments (Scenario I), (c) a single polymerizing filament embedded in an array of 20 fixed filaments (Scenario II), and (d) a
single polymerizing filament embedded in an array of 20 freely suspended filaments (Scenario III). Bottom panel: the velocity magnitudes of those
flows in z − x plane, made dimensionless by the magnitude of polymerization velocity. The polymerizing ends are located at z = 0. The dashed
lines show the contours corresponding to velocity magnitude of 0.25. Note that the x-axis and y-axis limits are different in each figure. The
polymerizing filaments are shown as solid black lines in the bottom panels, except for Figure 3b (20 filaments are polymerizing) for visualization
purposes [Color figure can be viewed at wileyonlinelibrary.com]
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distances comparable to the filament's length. Note that in all the

results presented here, fluid velocity is nondimensionalized by Vp.

Next, we consider Scenario I, where the filaments within the array

are all polymerizing with the same velocity against the obstacle. An

example involving a similar setting is the polymerization and depoly-

merization of kinetochore microtubules against chromosomes in

metaphase state (Joglekar, Bloom, & Salmon, 2010), and formin-

mediated nucleation and rapid assembly of actin filaments (Romero

et al., 2004). As shown in the top panel of Figure 3b, the flows remain

strong outside of the array. This is demonstrated more clearly in the

bottom panel of Figure 3b that shows the spatial variations of the

fluid velocity magnitude in z − x plane, where z is the tangent direc-

tion of the filaments. The dotted white line is the contour

corresponding to velocity magnitude of 0.25 of the polymerization

velocity. The distances over which the velocity decays to 0.25 is

roughly 0.50, compared to ~ 0.3 for a single filament fluid flows.

In Scenario II, only one of the filaments is polymerizing against the

obstacle, while the rest are held fixed in space. This is similar to having a

polymerizing filament embedded in a network of other crosslinked fila-

ments, such as microtubules polymerizing in a crosslinked network of

actin filaments, or kinetochore microtubules (de)polymerizing against

chromosomes in a crosslinked network of other microtubules within the

mitotic spindle. The key mechanical feature of this condition is that the

motions of the other filaments are constrained. Figure 3c shows the flow

induced by the polymerizing filament (top), and the spatial variations of

the fluid velocity magnitude projected into z − x plane (bottom). The

transparent cylinder in the top panel marks the boundaries of the volume

beyond which the flows become negligible. As it can be seen, the flow

strength decays over very short distances, compared to a single filament

and an array of polymerizing filaments (compare the contours). In other

words, HIs between the fixed filaments significantly reduce the convec-

tive penetration of the fluid flows generated by the polymerizing fila-

ment. Thus, objects that are not within the vicinity of the polymerizing

filament are hydrodynamically decoupled from it, and HIs are screened.

The filament array, therefore, can be treated as a porous volume

in which the fluid permeability and the penetration length of the fluid

are decreased as more filaments are included in the array. The flow

inside a porous medium can be approximated using Brinkman equa-

tion (Brinkman, 1949)

μΔu−rp−
μ

κ
u=0 & r � u=0, ð1Þ

where κ is the permeability of the porous medium. The term (μ/κ)u is

the hydrodynamic drag force applied by the porous medium to the

fluid, because of the constrained motions of the filaments. The pene-

tration length of the fluid into the porous medium is proportional to

rp =
ffiffiffi
κ

p
. In Stokes regime the flows generated by a point-force decays

as 1/r, where r is the separation distance from the point-force. In a

Brinkman fluid, these flows decay as exp(−r/rp)/r (Cortez, Cummins,

Leiderman, & Varela, 2010), which makes the flows negligible at

r/rp�1. Brinkman equation gives good predictions of the behavior of

microtubule asters within confinements, when compared against

detailed simulations (Nazockdast, Rahimian, Needleman, & Shelley,

2017; Nazockdast, Rahimian, Zorin, & Shelley, 2017). Higdon and Ford

(1996) give a comprehensive comparative study of the accuracy of

Brinkman equation for fibrous networks over a wide range of volume

fractions.

Interestingly, the array of polymerizing filaments (Scenario I) can

also be modeled as a porous medium. In this case, the porous medium

is moving with a net velocity of U = − Vpq, where q is the tangent

direction of the filaments. The change of variable u0 = u + Vpq makes

this problem mathematically identical to having a uniform flow of

uext = Vpq over a fixed array of filaments in Stokes flow, which is

modeled by Equation (1). As the number of filaments increases the

penetration length of fluid into the porous medium decreases, and the

flows asymptote to those induced by a filled cylinder of radius r and

length L moving with velocity U = − Vpq, which would produce flows

similar to those shown in Figure 3b.

Table 1 lists the total force on the array of polymerizing filaments

as a function of the number of filaments for r/L = 0.1 and 0.4, aver-

aged over 30 different uniform distribution of the end-points on the

surface. The forces are nondimensionalized by the drag force of a sin-

gle filament with polymerization velocity, Vp. The results of the

Table show for the largest values of NF ∞, the drag forces are

asymptoting to a constant number for any given r, which is the drag

force of a cylinder of radius r and length L that is pushed back through

the fluid along its axis with velocity magnitude Vp.

Finally, we consider scenario III, where a single polymerizing fila-

ment is placed in an array of freely suspended parallel filaments of the

same length. Because the filaments within the array are free to move

(no constraint), the net force on each filament is identically zero. Thus,

the term (μ/κ)u, and its hydrodynamic screening effect are not present

in the continuum limit. Each filament, however, has a nonzero net

force moment. The sum of the symmetric part of these force moments

determines the stress contribution of the filament phase to the sus-

pension. The anti-symmetric component of the force moment tensor

is identically zero, because there is no external torque acting on the

filaments. In its simplest form, the stress of the filament phase can be

modeled in terms of an increase in shear viscosity (Du Roure, Lindner,

TABLE 1 The drag force on the array of polymerizing filaments as a function of the number of filaments for r/L = 0.1 and r/L = 0.4, (see
Figure 2b), made dimensionless by the drag force on an individual polymerizing filament

Number of filaments (NF) 2 5 10 20 30 40

Drag force (r/L = 0.1) 1.73 2.45 3.07 3.49 3.75 3.95

Drag force (r/L = 0.4) 1.95 4.02 6.30 8.81 9.96 10.33

Note: The values converge at large enough number of filaments for each given r.
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Nazockdast, & Shelley, 2019). In such conditions, the filament array

can be replaced with an effective viscosity, and the induced flow

would be identical to that of a single filament. The top panel of

Figure 3d shows a snapshot of the generated flows of a single poly-

merizing filament embedded in 20 freely suspended and parallel fila-

ments of the same length (r/L = 0.1), at early times before the

filaments are displaced considerably. The flow is very similar to the

flow of a single filament, which is in line with the argument that the

effect of filament array is to increase the viscosity of the medium. The

exact value of viscosity would have no effect on the rate of decay of

the flow away from the polymerizing filament and only increases the

drag force. The spatial variations of the fluid velocity magnitude near

the polymerizing end, shown in the bottom panel, highlights a few dif-

ferences with the single filament flows. This may arise because of

flow-induced migration of heterogeneously suspended filaments.

Overall, however, the flows seem fairly similar, as it is shown by their

contours of ju j = 0.25.

To summarize, we showed that an array of polymerizing filaments

effectively behaves as a porous cylinder, with dimensions of r and L,

as shown in Figure 2b, that is polymerizing with the same velocity as

the individual filaments. At large, enough number of filaments, the

drag force on the entire array converges to the drag of that cylinder

that is being pushed away from the obstacle. These effects are direct

consequences of HIs. In case of a single filament polymerizing in a

fixed array of filaments, the HIs are screened, and can be neglected

beyond the penetration length of fluid. If the filament is polymerizing

in a bath of freely suspended filaments, HIs are not screened, and the

main effect of the presence of the surrounding filaments is an

increase in the effective viscosity of the medium, and with that an

increase in the drag force on the polymerizing filament.

In the next section, we discuss the effects of HIs on the polymeri-

zation velocity, in the presence of a force-velocity relationship.

2.1.1 | Force-velocity relationship

Experimental and theoretical studies show that the compressive end-

forces reduce the polymerization velocity. This effect is described by

the force-velocity relationship. As mentioned in the introduction, we

do not attempt to find such a relationship here. Instead, we assume

the relationship is known through experiments and theories, and take

it as an input to our computations. In many asymptotic limits of the

Brownian Ratchet theories (Mogilner & Oster, 1996; Peskin et al.,

1993) and in many experiments (Dogterom & Yurke, 1997; Marcy

et al., 2004), the force-velocity relationship can be written in the sim-

ple form of: Vp =V
0
pexp −F=Fsð Þ, where V0

p is the polymerization veloc-

ity under no force and Fs is the stall force, which is determined by

microscopic parameters such as the size of the monomer, thermal

energy, filament's flexural modulus and its interactions with protein

complexes. We do not consider a specific form of the stall force.

Instead, the results are always presented in terms of the ratios of the

stall force to other forces in the problem, including the viscous and

elastic forces. We do, however, require that Fs is independent of the

drag or diffusion coefficients of the filaments and the obstacle. This

allows us to uncouple the force-velocity relationship from HIs. Previ-

ous theories show that this assumption holds in many physiological

conditions; see, for example, eq. 1 in Peskin, Odell, and Oster (1993)

and eqs. E2, E4, and E10 in Mogilner and Oster (1996). In the event

that this assumption does not hold, one needs to start with the origi-

nal Fokker–Plank equation that describes the probability of observing

the tip of the filament in space and time (see eq. 1 in Peskin, Odell,

and Oster (1993) and Appendix C in Mogilner and Oster (1996)). The

HIs modify the diffusion coefficient, and generate additional advective

fluxes that are induced by cytoplasmic flows. Note that—even though

they are not directly changing the force-velocity relationship—HIs

indirectly change the polymerization force (and velocity) through

balancing it with the drag force on the filament and the obstacle. This

is the effect that will be explored in this study.

Again, we begin with studying the simplest case of having a rigid

filament polymerizing against an obstacle from one end, while the

other end is free. Because the polymerizing end is fixed at the obsta-

cle, the polymerization forces push the filament away from the obsta-

cle with the same velocity as the polymerization velocity, but in the

opposite direction to open space for adding the newly formed fila-

ment materials. This pushing force is balanced against the hydrody-

namic drag force to determine the polymerization velocity of the

filament: −γkVp(q � n)γ + F = 0, where q and n are the filament's tan-

gent vector and the obstacle's surface normal vector, and γk is the fila-

ment's drag coefficient in its tangential direction. The term Vp(q � n) is
the polymerization velocity projected in n direction. The force acting

orthogonal to filament is given by the balance between the friction

forces from the obstacle and the hydrodynamic drag force: F⊥ = γ⊥(1

− q � n). In the absence of obstacle friction the filament will freely

polymerize in tangential direction. Here, in all of our analysis, we

assume that the polymerizing end of the filament is fixed (or trapped)

on the obstacle, which models infinite friction with the obstacle. Also,

we focus our attention to cases where filaments are parallel to the

normal direction of the obstacle. The extension to the general case

of the filaments that make an angle with the obstacle will be

studied in future works. Combining the force-velocity relationship,

Vp =V
0
pexp −F=Fsð Þ, with force balance gives

γkV
0
pexp −F=Fsð Þ= F: ð2Þ

We scale the forces with the viscous force, γkV
0
p , and the polymer-

ization velocity with V0
p . Equation (2) in dimensionless form is

~F = exp − ~F= ~Fs
� �

, or ~Vp = exp − ~Vp=~Fs
� �

ð3Þ

where ~Fs = Fs= γV0
p

� �
is the ratio of stall force to viscous drag force,

and we have dropped the subscript k for convenience. Equation (3)

can, then, be solved to give ~Vp =Vp=V
0
p as a function of given F~s. The

results are shown in Figure 4 as a function of 1/F~s. As expected, V~p

asymptotes to 1 for F~s�1 and approaches zero for F~s�1.
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We now consider the effect of HIs between the array of filaments

on the polymerization velocity of the filament. We specifically ask

how does the presence of other filaments change the end-force on the

polymerizing filaments? Once the end-force is known, the polymeriza-

tion velocity can be computed using force-velocity relationship.

Another useful definition to consider in this context is the effective

drag coefficient, γeff, defined as the ratio the end-force on the fila-

ment to the velocity by which the filament is pushed back toward the

fluid: γeff = Fend=V
0
p . Once γeff is computed from simulations, F~s can be

evaluated using the computed value for effective drag coefficient:

~Fs = Fs= γeffV
0
p

� �
. Having calculated F~s, the polymerization velocity can

be calculated from the curve in Figure 4.

In the previous section, we showed that for an array of polymeriz-

ing filaments the net force on the entire array converges to a constant

(see Table 1). As a result, the average force per filament (as well as γeff)

is continuously reduced with the number of filaments, and at large NF

it reduces as 1/NF. This is demonstrated in Figure 5a, that shows the

force per filament versus NF for 30 different distribution of end-points

on the obstacle's surface of dimensionless radii r = 0.1,0.4, and 1. The

ensemble average values are plotted with a thicker line. This reduction

in the end-force (and γeff) significantly increases the polymerization

velocity at large NF. This is illustrated in Figure 5b for different ratios

of stall force to viscous force, F~s, and r = 0.1. Same qualitative behav-

ior is observed in other values of r.

For example, consider a microtubule of length L = 5 μm, and

Fs = 4pN (Dogterom & Yurke, 1997), is polymerizing with

V0
p =0:7μm=s (Srayko, Kaya, Stamford, & Hyman, 2005) against an

obstacle of radius r = 1 μm, and immersed in a fluid of viscosity

μ = 1Pa � s, while the other end is inactive and free. The drag coeffi-

cient of a microtubule of radius 12 nm along its axis is γ = (4πμL)/ln

(ϵ2e−1) = 5.84pN � s/μm, where ϵ�1 is the ratio of the filament's

radius to its length, μ is the effective viscosity of the medium, and kb

is the Boltzmann coefficient. This makes the ratio of viscous to stall

force ~~F
−1
s =1:0. We can evaluate the dimensionless polymerization

velocity by interpolating the results of Figure 4, which gives ~Vp =0.56.

The end-force can then be computed using force-velocity relation-

ship: F = −Fsln ~Vp

� �
=2:3pN. Now consider an array of 20 microtu-

bules that are polymerizing against the same obstacle. We can use the

results of Table 1 to evaluate the effective drag coefficient of each fil-

ament in the array with r/L =0.2 as γeff = 3.49× γ/20 = 1.02pN � s/μm.

Using this value we can compute the ratio of viscous to stall force:

~F
−1
s =0:18. Then, we use Figure 4 to compute ~Vp =0.86, and

F = 0.6pN for each microtubule and FT = 12.1pN for the entire array.

This force is roughly five times larger than a single microtubules (com-

pared to 20 times if they were hydrodynamically uncoupled). Dou-

bling the number of microtubules in the array to NF =40 only changes

the total force to 15.1pN.

An important point to note is that if the filaments within the array

were depolymerizing instead, their effect on the polymerizing filament

would have been reversed: The end-force on the polymerizing filament

(as well as γeff) would have increased, resulting in a reduction in Vp,

compared to a single filament. This occurs because the depolymerizing

filaments would generate flows that are in the opposite direction of

those generated by polymerizing filament, thereby pulling the filament

toward (instead of away from) the obstacle and increasing the needed

force to push the filament away from the obstacle. Conditions become

more complicated when filaments are concurrently polymerizing and

depolymerizing against boundaries. Detailed simulations are needed to

study the effect of HIs in such conditions.

We now consider Scenario II. Figure 5c shows the end-force on a

single filament polymerizing against an obstacle in array of fixed fila-

ments as function of NF for 60 different uniform distribution of end-

points on the obstacle surface of radius r = 0.1. The presence of fixed

filaments reduces the penetration length of the fluid. This is analogous

to having an outer boundary with roughly the dimensions of the pene-

tration length around the filament (Nazockdast, Rahimian,

Needleman, & Shelley, 2017; Nazockdast, Rahimian, Zorin, & Shelley,

2017). This confinement effect causes the drag force (and γeff) to

increase with NF, which then leads to a decrease in the polymerization

velocity as shown in Figure 5d. However, the effects are not as strong

as those observed for polymerizing filaments, mainly because the fila-

ment is slender and the confinement effects from fixed filaments array

can only weakly change the drag force.

2.2 | Flexible polymerizing filaments

Next, we study the effect of filament's flexibility on the generated flows,

and the polymerization forces and velocities. We focus on the limit

where viscous forces are significantly larger than the thermal forces, so

that the filament's dynamics is dominated by viscous forces. The ratio of

advection velocity of the filament, that is induced by polymerization

F IGURE 4 The dimensionless polymerization velocity (scaled with
the polymerization velocity under no compressive force) as a function

of the ratio of viscous to stall force, ~F
−1
s = γV0

p

� �
=Fs, for a rigid

filament. The results are obtained by balancing the polymerization

force against the hydrodynamic drag force: ~Vp = exp − ~Vp=~Fs
� �

. The

line is the solution to this equation
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forces, to thermal diffusion velocity is given by Péclet number defined

as Pe = VpγL/kbT. The assumption of Pe � 1 is expected to hold in many

cellular settings. For example, for a microtubule of length 2 μm

immersed in C. elegans embryo of cytoplasmic viscosity of μ = 1 Pa � s
(Daniels, Masi, & Wirtz, 2006), the Péclet number is Pe = 408. When

Pe� 1, we can ignore the filament's net displacement due to thermal

diffusion, in comparison to those induced by viscous forces. To compare

the deformations induced by viscous and thermal forces both forces

should be evaluated in the length-scale of the persistence length of

the filament, lp. This modifies the Péclet number to

Pe=4πμVpl
2
p= kbTln ϵ−2e−1

� �� �
. Since lp/L�1 for microtubules and

lp/L > 1 for most actin-based processes, we expect the thermal undu-

lations to be negligible in comparison to buckling and bending defor-

mations induced by viscous forces, if the initial assumption of

VpγL/kbT�1 holds. We should note that we are only discussing the

filament's deformations beyond the buckling instability. Below the

buckling threshold and in the special case of a filament orthogonal to

the obstacle, the viscous forces only cause a net motion of the fila-

ment and the deformations are entirely induced by thermal undula-

tions. Note also that if the filament is not orthogonal to the obstacle,

it will bend under viscous forces well below the buckling threshold.

The shape of a flexible filament is time-dependent. The lengths of

polymerizing filaments are monotonically increasing with time. Elastic

forces scale as FE~E/L
2 and the viscous forces scale as FV =V

0
pγ, which

makes their ratio ~η= FV=FE =4πμV
0
pL

3= ln ϵ−2e−1
� �

E
� �

. We can see that

η~monotonically increases as L3 with time and, thus, the filament shape

and dynamics will not reach to a mechanical steady-state. The mechan-

ical problem in this form cannot be systematically analyzed in terms of

the ratios of viscous, elastic and stall forces. To circumvent this issue

we assume that the free end of the flexible filaments are shrinking with

the same rate as their other end is polymerizing, so that the length of

the filament remains unchanged with time. Note that the shrinking pro-

cess of the free end does not apply any force to the fluid, and has no

effect on the mechanics other than fixing the length of the filament. In

F IGURE 5 (a) The average force per filament as a function of the number of polymerizing filaments (NF), made dimensionless by the drag
force on a single filament. The filaments are uniformly distributed over surfaces of dimensionless radius r = 0.1,0.4, and 1. The thicker solid lines
are the forces for each r, averaged over 30 different uniform distribution of attachment points; the result of each distribution is shown with
thinner (lighter) lines. (b) Average polymerization velocity of an array of polymerizing filaments against the obstacle versus NF, for an array with

r = 0.1 and for different values of ~Fs = Fs=V
0
pγ. (c) The dimensionless end-force on a polymerizing filament, embedded in an array of fixed filaments

of the same length and r = 0.1; the filled square symbols are the forces, averaged over 60 different uniform distributions of attachment points
over the surface (open circles). (d) Filament's polymerization velocity at different values of F~s as a function of the number of fixed filaments [Color
figure can be viewed at wileyonlinelibrary.com]
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this treatment of the problem the ratio of the mentioned forces are

fixed in time, and mechanical steady-state can be achieved.

Let us consider a straight filament and introduce small deforma-

tions along its length, say from thermal fluctuations. These deforma-

tions can either relax (disappear) over time, or—if the compressive

forces are strong enough—they can grow with time and lead to buck-

ling instability. We have analyzed the transition to buckling instability

by performing linear stability analysis of the dynamic equations that

describe the filament's shape, which will be presented in later publica-

tions. Our stability analysis and simulation results show that the tran-

sition occurs at roughly η~c = 202. As an example, Figure 6 shows

different simulation snapshots of a buckled filament polymerizing

against an infinite wall with a constant velocity at η~ = 380, as well as

the generated cytoplasmic flows. Clamped boundary condition was

used in these simulations, that is, the angle of attachment was fixed

throughout the simulation. A video (anchor.mp4) of this simulation is

provided in Supporting Information. As expect, the generated flows

are qualitatively different from those observed for straight filaments

(see Figure 3a), and change direction with the beating of the filament.

Changing the boundary condition to hinged results in qualitatively dif-

ferent shape of the buckled filament, and the transition occurs at dif-

ferent ratios of viscous to elastic forces. A video (hinged.mp4)

depicting the simulation results for hinged boundary condition at

η~= 435 is provided in Supporting Information.

2.2.1 | The effects of HIs on buckling transition

We now discuss how HIs change the buckling transition in Scenarios I,

II, and III. Buckling transition occurs when the ratio of tangential force

on the polymerizing end to the elastic forces exceeds a critical value:

FendL
2=E = ~η> ~ηc≈202, where Fend = γV

0
p is the force on the polymeriz-

ing end. We showed in Section 2.1 that for an array of straight poly-

merizing filaments, the end-force continuously decreases with

increasing the number of filaments within the array. Because of this

reduction in end-forces, the buckling transition occurs at larger values

of η~, when compared to a single filament. For example, in an array

with r =0.1 and NF =20 the end-forces reduce to 0.20 of the value for

a single filament; see Figure 5b. Because the flexible filaments remains

straight before the buckling transition, their compressive forces are

identical to those of the rigid filaments. Thus, the buckling instability

in this array is expected to occur at η~c =202×5 = 1,010. This can be

confirmed by formal linear stability analysis and detailed simulations

(to be published elsewhere).

For a single filament polymerizing in an array of fixed filaments,

the end-force is increased with NF due to an increase in the effective

drag coefficient; Thus, the buckling transition occurs, accordingly, at

lower values of η~. Finally, in the case of a filament polymerizing in an

array of freely suspended filaments, the presence of filaments

increases the end-force by increasing the effective viscosity of the

medium and the transition to buckling is expected to occur at lower η~.

We are in the process of performing these simulations for a large

number of freely suspended filaments.

2.2.2 | The effect of buckling on the polymerization
velocity

As the filament undergoes buckling instability, its end-force is

reduced. As a consequence, the polymerization velocity of a flexible

F IGURE 6 Snapshots of the simulation of a single filament polymerizing against an obstacle (z = 1) at ~η= γV0
pL

2=E =383, and flows induced by

it. The polymerization induces a buckling instability, which results in qualitatively different flows compared to the flow of a rigid polymerizing
filament; see Figure 3a for the generated flow of a rigid filament [Color figure can be viewed at wileyonlinelibrary.com]
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filament is expected to increase in comparison with a rigid filament

under identical physical conditions and for a given force-velocity rela-

tionship. Figure 7a shows the variations of the polymerization velocity

(left-axis) and the end-force (right-axis) as a function of time at η~= 1,550

and Fs/Fb = 0.80, where Fb = 202E/L2 is the critical buckling instability

force. The large rate of decay (increase) of the end-force (polymerization

velocity) at early times is associated with the filament's buckling transi-

tion, while the small amplitude oscillations of the end-force and ~Vp at

long times is due to the beating of the buckled filament. The end-

force and polymerization velocity at very early times (before the sharp

decay) correspond to those values for a rigid filament.

Figure 7b shows the variations of dimensionless polymerization

velocity, ~Vp, with the ratio of viscous to stall force, ~F
−1
s , for different

ratios of Fs/Fb. Note that in defining ~Fs = Fs=γV
0
p we have used the

polymerization velocity in the absence of the end-force, V0
p . As it can

be seen, at small values of ~F
−1
s and small ratios of Fs/Fb the force-

velocity curves become independent of Fs/Fb, and asymptote to the

curve of a rigid filament. The deviation from the rigid filament curve

coincides with the transition to buckling. To show this consider the

product ~Vp
~F
−1
s Fs=Fb, which can be simplified as

~Vp
~F
−1
s

Fs
Fb

=
Vp

V0
p

γV0
p

Fs

Fs
Fb

=
γVp

Fb
: ð4Þ

Noting that if Vp is the polymerization velocity under compressive

force, the product is simply the ratio of the end-force to the critical

buckling instability force. As expected, the deviation from the rigid fil-

ament curve and filament buckling occur when this ratio is larger than

one: ~Vp
~F
−1
s

Fs
Fb
>1.

The results of Figure 7b can be extended to compute the polymer-

ization velocity in Scenarios I, II, and III, by replacing γ with the com-

puted values of γeff, when evaluating the ratio of stall to viscous

forces: ~Fs = Fs= γeffV
0
p

� �
. Other quantities, including Fb, are unchanged,

as they are not dependent on HIs.

As an example, consider a microtubule of length L = 5 μm, flexural

modulus of 10pNμm2 (Howard, 2001) and Fs = 32pN, is polymerizing

with V0
p =0:7μm=s against a chromosome within a spindle with effec-

tive viscosity of μ = 2.4×102Pa � s (Shimamoto, Maeda, Ishiwata,

Libchaber, & Kapoor, 2011). The drag coefficient of the microtubule is

γ = (4πμL)/ln(ϵ2e−1) = 1402pN � s/μm, and the ratio of viscous to stall

force is ~F
−1
s =30:67. Having Fb = 202E/L2 = 80pN, we can compute

the ratio of stall to buckling instability force: Fs/Fb≈0.4. We evaluate

the polymerization velocity by interpolating the results of Figure 7b

for Fs/Fb=0.4 and ~F
−1
s =30:67. Interpolation gives Ṽp=0.23

(or Vp = 0.16 μm/s), and also shows that the microtubule is in the

buckled regime. The end-force can, then, be computed using force-

velocity relationship: F = −Fsln ~Vp

� �
=47pN. Note that because the

end-force is significantly reduced after buckling, the computed value

is less than the buckling instability force.

Now consider the case of an array of 20 microtubules of the same

length, polymerizing over a chromosome modeled here as a disk with

radius of 1 μm (r/L = 0.1). We can use Table 1 to approximate the

effective drag coefficient of each microtubule as γeff = 3.49γ/20 =

244.5pN � s/μm, and compute ~F
−1
s =7:6, which is slightly below the

buckling transition point at Fs/Fb =0.4. Thus, in this scenario the

microtubules will be remain straight. We then interpolate the results

of Figure 7b, to compute ~Vp =0.35. The force-velocity relationship is

F IGURE 7 (a) Variations of the polymerization velocity (left-axis) and the end-force (right-axis) plotted as a function of dimensionless time,
~t= tV0

p=L, at η~= 1,550 and Fs/Fb = 0.8, where Fb = 202E/L2 is the critical buckling instability force. The sharp variations of the end-force and p at

early times is associated with the buckling transition. Small oscillations of ~Vp and the end-force at long times is due to the beating motion of the

buckled filament. (b) Filament's polymerization velocity as a function of the ratio of viscous to stall force, ~F
−1
s = γV0

p=Fs, plotted at different ratios

of stall force to critical buckling instability force, Fs/Fb. Note that the product Vp
~F
−1
s Fs=Fbð Þ is simply (γVp)/Fb. Thus when γVp/Fb<1, the filament

remains straight and the results asymptote to those of a rigid filament. When γVp/Fb>1, the filament buckles, which causes a decrease in the end-
force and an increase in the polymerization velocity [Color figure can be viewed at wileyonlinelibrary.com]
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then used to compute the end-force per microtubule as F≈34pN,

making the total force on the chromosome equal to FT = 680pN.

Note that such approximations remain accurate as long as the

flow generated by the surrounding filaments on each filament is uni-

form along the filament's length that is, the flow gradients along the

filaments are small. Strong flow gradients can result in a complex

range of behaviors, such as the buckling of filaments in shear and

extensional flows (Du Roure et al., 2019; Guglielmini, Kushwaha,

Shaqfeh, & Stone, 2012; Tornberg & Shelley, 2004). For a more rigor-

ous treatment of the problem see Stein and Shelley (2019), where a

coarse-grained model of arrays of flexible filaments is developed. In

the examples studied here the filaments are uniformly distributed,

parallel and of equal length and polymerization velocities. Because of

these simplifications, the generated flows by the surrounding fila-

ments are roughly uniform along its length, which can be seen in

Figure 3. Relaxing any of these assumptions may lead to more com-

plex flows. Consider, for example, a polymerizing filament surrounded

by an array of filaments with two populations of filaments that are

concurrently polymerizing and depolymerizing against the obstacle

with equal likelihood (see the top panel of Figure 8). The bottom panel

of Figure 8 shows the flows generated by such an array, as well as the

resulting shape of the polymerizing filament within that array.

Because of equal likelihood of polymerization and depolymerization,

once averaged over time, the array does not apply a net force to the

polymerizing filament. Nevertheless, as the figure shows, strong flow

gradients can be generated along the filament's length. Because of

these flow gradients the filament is slightly buckled at η~ = 100, which

is below the buckling instability limit of a single filament (η~c = 202).

Careful computational studies are needed to study the effect of varia-

tions of length, polymerization velocities, and the angles between the

filaments and the obstacles on HIs, and the resulting polymerization

forces and velocities.

2.2.3 | Bundling of buckled filaments by HIs

Next, we explore the effect of HIs on the dynamics of an array of

buckled filaments. Figure 9a shows snapshots of two simulations of a

pair of filaments polymerizing against an obstacle. The pushing forces

are strong enough to induce buckling instability in both filaments. The

simulations were done in 3D and clamped boundary condition was

used for the polymerizing ends. In the snapshot to left, the pushing

forces are slightly above the buckling instability of the pair, and in the

snapshot to the right, the forces are significantly larger. As a result,

higher frequency (shorter wavelength) modes of buckling are pro-

duced in the filament with larger end-forces. In both simulations HIs

cause the filaments to bundle at points where their buckling deforma-

tions are maximized. To ensure that the observed behavior is not a

numerical artifact, we have run the simulations for several different

discretization in time and space; we observe numerical convergence

in all cases. We have also varied the initial spacing between the fila-

ments, and have changed the boundary condition from clamped to

hinged. The same quantitative behavior was observed in all these

perturbations.

Figure 9b shows a snapshot of the simulation results for four fila-

ments at values of η~ significantly above the buckling instability of the

filaments. The same bundling of filaments is observed: The dark blue

filament is in touch with both the red and light blue filaments, and the

yellow filament is approaching the point of contact between the dark

blue and light blue filaments. Similar to pair of filaments, the bundling

occurs at locations where the buckling amplitudes are maximized.

Interestingly, the same behavior is observed in larger assemblies

of polymerizing filaments. Figure 9c,d shows snapshots of simulation

of 150 polymerizing filaments against a boundary in early and later

stages of buckling. Hinged boundary conditions were used in these

simulations. Again, we see the bundling of many filaments, at locations

that their buckling amplitudes are the largest. These results suggest

that the bundling occurs irrespective of the details of boundary condi-

tions and the number of filaments. Further studies are needed to

understand the underlying physics of this bundling behavior.

3 | CONCLUDING REMARKS

Polymerization of cytoskeletal filaments against boundaries is known

to produce forces and motion in cellular materials, including cell

F IGURE 8 Top panel: Schematic representation of a polymerizing
filament (shown as the thicker filament in the center of the cylindrical
array), embedded in an array of filaments that are polymerizing
(yellow) and depolymerizing (blue) simultaneously and with equal
probability. Bottom panel: The embedded polymerizing filament and
the flows induced by the array of (de)polymerizing filaments. The
simulations were performed at η~= 100, which is below the critical
buckling instability η~c = 202. Yet, the flows induced by the array cause
the polymerizing filament to slightly buckle [Color figure can be
viewed at wileyonlinelibrary.com]
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motility driven by actin polymerization and chromosome motions

induced by kinetochore microtubules assembly and disassembly.

These motions of the cytoskeletal filaments induce large-scale and

long-range cytoplasmic flows and HIs between the filaments and

other cellular objects. Previous theoretical and computational studies

of polymerization forces in the cytoskeleton largely ignore HIs. In this

study, we used detailed dynamic simulations that explicitly account

for HIs to demonstrate several important consequences of HIs on fila-

ments' polymerization forces and velocities against obstacles.

To demonstrate the fundamental differences between the HIs in

various mechanical conditions, we chose a simple model system com-

posed of a filament polymerizing against an immobile obstacle, and

surrounded by an array of parallel filaments of the same length with

ends that are uniformly distributed over a disk-like domain on the

obstacle (see Figure 2a). We assumed three distinct mechanical condi-

tions for the filaments within the array: (a) The filaments were poly-

merizing with the same velocity; (b) they were held fixed in space; and

(c) they were freely suspended. Through simulations, we showed that

each of these conditions produces its unique HIs, and results in signifi-

cantly different polymerization forces and velocities. We, then, stud-

ied the effect of buckling of flexible filaments on the polymerization

forces and velocities, and discussed the effect of HIs in the three

mentioned conditions on the onset of buckling transition. Finally, we

showed that HIs can lead to the bundling of polymerizing filaments, in

points where their buckling amplitudes are maximized; see Figure 9.

The model system studied here is, nevertheless, much simpler

than the cytoskeletal structures in physiological conditions. For exam-

ple, the length of microtubules and actin filaments within an assembly

can greatly vary, the filaments are not always parallel and do not nec-

essarily polymerize orthogonal to the boundaries, and the filaments

may be simultaneously polymerizing and depolymerizing. Most impor-

tantly, we have ignored the active forces from motor-proteins and

crosslinkers, which are key to the structure and mechanics of the

cytoskeleton. The effect of cytoplasmic flows and long-range fluid-

structure interactions in the presence of these forces and geometrical

variations remain largely unknown, even when the microscopic inter-

actions of motors and filaments are well-understood. Many more

computational studies are needed to explore these effects, which will

certainly lead to a host of interesting and complex phenomena involv-

ing the interactions of fluid flows with cytoskeletal structures. These

findings are key to developing microscopic coarse-grained theories for

the fluid dynamics of active cellular organizations (Mogilner &

Manhart, 2018; Shelley, 2016). Recent advancements in microscopy

have enabled us to visualize cytoskeletal components and measure

the involved dynamical variables with unprecedented resolutions

(Chen et al., 2014; Redemann et al., 2017). Full integration of this

microstructural data with dynamic simulations, that are equally

detailed in their structural and dynamical descriptions, will enable

developing models that can predict the behavior of the cytoskeleton

from individual filaments to the collective behavior of the assembly.
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