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Abstract

Nature-based solutions for water-resource challenges require advances in the science

of ecohydrology. Current understanding is limited by a shortage of observations and

theories that can further our capability to synthesize complex processes across scales

ranging from submillimetres to tens of kilometres. Recent developments in environ-

mental sensing, data, and modelling have the potential to drive rapid improvements in

ecohydrological understanding. After briefly reviewing advances in sensor technolo-

gies, this paper highlights how improved measurements and modelling can be applied

to enhance understanding of the following ecohydrological examples: interception

and canopy processes, root uptake and critical zone processes, and up-scaled effects

of land use on streamflow. Novel and improved sensors will enable new questions

and experiments, while machine learning and empirical methods provide additional

opportunities to advance science. The synergy resulting from the convergence of

these parallel developments will provide new insight into ecohydrological processes

and thereby help identify nature-based solutions to address water-resource chal-

lenges in the 21st century.
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environmental sensing, measurement, machine learning, modelling, interception, critical zone
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1 | INTRODUCTION

The interdisciplinary science of ecohydrology explores interactions

between the structure and function of ecological systems and the

movement and quality of fresh water. While aspects of this science

have been investigated for over a century (Mackay, 2019), the field

has experienced significant growth over the past two decades,

highlighted by the establishment of a new field-specific journal in

2008 (Smettem, 2008). The past decade has also seen an explosion in

our capability to sense and model the environment with the concomi-

tant beneficial outcome of being able to better manage water

resources. These advances in measurement and modelling have cre-

ated new opportunities to address interesting and important eco-

hydrological questions, such as

� How do vegetation canopies and their communities

interact with precipitation to affect the quantity and

quality of water fluxes, along with their spatial and

temporal variability?

� How do ecosystem processes in the critical zone—

the thin, dynamic, and life-sustaining skin of the terres-

trial earth that extends between the vegetation can-

opy, soil and groundwater (Grant & Dietrich, 2017)—

affect the partitioning of soil moisture between the

water that makes up transpiration and that which

eventually becomes groundwater and streamflow?

� As we scale these processes, how do changes to the

landscape affect the quantity, distribution, and quality

of streamflow?

These science questions are not only fascinating in their own

right but are also directly relevant to fundamental societal challenges

laid out in the United Nations Sustainable Development Goals, such

as access to clean water and sanitation, provision of food toward zero

hunger, and protection of life on land (Brauman, Daily, Duarte, &

Mooney, 2007; IPBES, 2019; Zalewski, 2000; Zalewski, 2014). In this

paper, these questions—relating to canopy processes, belowground

processes, and up-scaled effects—illustrate how recent improvements

in measurement and modelling can accelerate scientific discovery.

These advances in understanding can lead to decisions and policies

that promote a more sustainable world (Figure 1).

2 | ADVANCES IN MEASUREMENT AND
OBSERVATION

Observation of ecohydrological processes is challenging because of

the scale of the systems (spanning submillimeter to global), the
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remoteness of key processes (e.g., headwaters and deep aquifers), and

the breadth of informative and determinative parameters. Historically,

advances have been slow because the commercial market for the

required technologies has been small and, in some cases, existing

sensing systems have been written into antiquated standard methods.

However, in recent years, the technologies of sensing, housing, stor-

ing, transmitting, and disseminating data have been transformed in

performance and cost, profoundly enhancing the ability to make envi-

ronmental observations (e.g., Ensign et al., 2019; Tauro et al., 2018).

In the section below, recent advances in the measurement of key

state variables and information transmission pertinent to the physical

environment surrounding vegetation are described. The aim here is

not to provide an exhaustive list but rather a sampling of representa-

tive technologies gaining prominence and use in the field.

2.1 | Technological advances

2.1.1 | Solid state sensor technology

With the advent of mass technologies such as the smart phone and

autonomous vehicles, the market demand for high-performance sen-

sors has experienced tremendous growth. Many of these sensors are

well suited for use in environmental applications. For example, the

pressure sensors from diving watches are accurate to within 1 mm of

pressure-head up to depths of 10 m, cost under US$10 each, and

require only minimal energy (micro Amps; e.g., Stewart, Abou-Najm,

Rupp, & Selker, 2012). Accelerometers, regularly used in smartphones

and game controllers, are inexpensive and ubiquitous. Other examples

include sensors for gases (e.g., CO as used by Huwald et al., 2012),

turbidity, electrical conductivity, radiation (across the spectrum), tem-

perature, humidity, global positioning system location, flow, fluid

velocity, and many others. In each case, the combined accuracy, spa-

tial and temporal resolution, energy efficiency, stability, and cost have

all moved in favourable directions (see Sensorwiki.org for a compre-

hensive treatment of relevant microsensor technology).

2.1.2 | Computer control of sensing systems

Microcomputer systems such as the Arduino, Feather and Raspberry

Pi, costing a few US$ and allowing for programmed logging and com-

munication with very low power, have transformed the heart of envi-

ronmental sensing systems (e.g., Nadeau et al., 2009). Perhaps even

more importantly, these systems use high-level programming lan-

guages that are easily learned, and code can be shared and co-devel-

oped globally. Combined with version-controlled platforms such as

GitHub, these advances provide the underpinnings for a transforma-

tive community-based approach for the development and dissemina-

tion of sensing systems (see Open-Sensing.org for examples of

sensing systems based on these technologies).

2.1.3 | Data storage and transmission

Over the past decade, the challenges of storing and transmitting data

have been partially solved. Historically, the most costly aspects of

environmental sensing were mandatory scheduled site visits to

retrieve data and verify system operation. Global telemetry now

enables the remote acquisition of real-time data at much lower cost,

allowing for new scales of observation. For example, the Trans African

Hydro-Meteorological Observatory (TAHMO.org) now pays about US

$0.25 per month per station to send up to one megabyte of data to

the worldwide web from most African locations (Selker et al., 2020).

Satellite communication complements telephonic systems in providing

full global coverage, and, in 2019, we have seen the deployment of

the first space-based LoRa telemetry, which is expected to dramati-

cally reduce global data delivery costs from any point on earth

(e.g., http://lacuna.space/). Moreover, other advanced systems are

F IGURE 1 (a) The convergence of opportunities among high-
frequency environmental sensing, open source resources, and
machine learning in relation to (b) advancements in scientific
understanding, measurements and observations, and modelling that
will inform translation of ecohydrological science to policy
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also presently under construction, such as the SpaceX Starlink, which

has a constellation of 122 communication satellites in orbit https://

www.spacex.com/news/2019/11/11/starlink-mission, as well as

Amazon's Project Kuiper, which seeks to place 3,236 satellites in orbit

for global connection to the internet.

2.1.4 | Fittings, fixtures, and housings

The maturation of mass-market 3-D printing has allowed economical

and custom manufacturing of housings and fixtures; rather than

requiring moulds costing on the order of US$100,000, these compo-

nents can now be printed for US$5/kg. Further, these designs can be

shared globally, so that anyone can have complex housings and fix-

tures created locally and at low cost. This technology can be used

both commercially and in user-built contexts, in both cases offering

important cost savings and accessibility of necessary elements for

field-deployment of sensor systems.

2.2 | Transforming environmental sensing

While these technological advances are widely known, we are only

now developing the community infrastructure to translate opportunity

to reality. The Openly Published Environmental Sensing (OPEnS,

found at Open-Sensing.org) community is creating a forum for the

publication of solutions to diverse ecohydrological sensing problems,

while many labs around the world are carrying out closely related

work (e.g., Open-storm.org; Envirodiy.org). These platforms facilitate

the continued evolution of successful systems, where users across the

globe refine and republish improved and alternative systems. Even so,

commercial entities will always be the primary means of making sen-

sors broadly accessible, as most people will not have the time, equip-

ment, or expertise to manufacture their own systems for outdoor

deployment. Thus, the industry and forums such as OPEnS are

actively exploring collaborations that nurture the creative output of

instrument developers, while maintaining an environment where busi-

nesses can maintain viability. At this point, it appears that the “art” of

building and supporting environmental sensing systems is so special-

ized that companies could succeed by focusing on the production and

marketing of open-source designs. Interested readers are referred to

Turner, Hill, and Caton (2020) for a full discussion of open source

resources in ecohydrology.

An important platform for environmental sensors has arisen from

the development of unmanned aerial systems with differential global

positioning system accurate to 1 cm. These systems now provide for

low-cost optical sensing, including photogrammetry, thermal-imaging,

light detection and ranging, and hyperspectral imaging (e.g., Selker,

Tyler, Higgins, & Wing, 2015). The ability to apply stereo-imagery

methods, now often referred to as “structure from motion,” allows

millimetre-scale resolution of scenes spanning tens of kilometres

(e.g., Carrivick, Smith, & Quincey, 2016). These same unmanned aerial

system platforms can carry sensors for gas, radiation, dust, pollen, and

many other parameters of great utility to ecohydrologists (e.g., Hill,

Pypker, & Church, 2020; Schumacher & Christiansen, 2020; Toth &

Jóźków, 2016).

Commercially available “multiparameter sondes” have been trans-

formative in understanding the physical and chemical status of hydro-

logical systems. These systems have typically been based on classical

laboratory sensing approaches (e.g., ion-specific electrodes), adding

important innovations in power management, calibration, and

datalogging so that measurements can be effectively implemented

over month-scale deployments. New sensing approaches, such as

oxygen-sensitive fluorescent dye, have provided key capacity to mea-

sure dissolved oxygen with minimal recalibration required

(e.g., Wang & Wolfbeis, 2014), and spectrolysers supply high-

frequency stream chemistry data (e.g., Vaughan et al., 2017).

Laser technology has also affected instrumentation in hydrologi-

cal sciences. Advances in laser spectroscopy have revolutionized the

ability to quantify the stable isotopes of water (2H and 18O), dramati-

cally lowering the per sample cost and enabling continuous in-field

observations. These isotopes can be used to identify hydrological

sources, track ecohydrological processes, and elucidate how different

vegetation communities affect water partitioning between “green”

and “blue” water fluxes (Dubbert & Werner, 2019; Tetzlaff

et al., 2015). Laser disdrometers measure the fall velocity and diame-

ter distribution of drop sizes of precipitation. Distributed temperature

systems measure temperature along a fibre-optic cable with high spa-

tial and temporal resolution. In all of these cases, the instrumentation

is fundamentally complex and high cost, so the avenue for adoption

has relied on manufacturers developing complete solutions. Collabora-

tion between manufacturers and clients has been close, and many of

the most important advancements have been driven by the needs of

the user community. For example, CTEMPs.org has worked closely

with distributed temperature sensing producers to develop distributed

temperature sensing systems suited to environmental applications, to

reduce power consumption, and to improve temporal and spatial reso-

lution (e.g., Selker et al., 2006).

2.3 | Measurements and modelling

As ecohydrological knowledge and understanding expand, process-

based representations increase in complexity as additional interac-

tions and parameters are incorporated, for example, topography,

hydrologic connectivity, soil texture, tree height, and canopy density

(Band, Tague, Groffman, & Belt, 2001; Maxwell & Condon, 2016;

Pringle, 2003). Utility of measurements to constrain model structures

and parameter sets, which are associated with different subdomains

of models (ecological, surface, subsurface, etc.), has been an increasing

focus in model calibration. Multicriteria calibration increases the confi-

dence that the dominant ecohydrological processes are being appro-

priately represented (Kelleher, McGlynn, & Wagener, 2017). Including

measured data of different components of the ecohydrological system

(water balance, energy balance, and carbon uptake) in the calibration

process has been shown (Kuppel, Tetzlaff, Maneta, & Soulsby, 2018)
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to result in “the right answers for the right reasons” (Kirchner, 2006).

Diverse data sources—made possible by advances in measurement—

can help to reduce information redundancy and provide insight to the

processes represented in a model (Clark, Kavetski, & Fenicia, 2011;

Fatichi et al., 2016). As a corollary, model failure in adequately rep-

resenting observed processes provides an opportunity to learn and

improve conceptualizations (Birkel, Soulsby, & Tetzlaff, 2014).

To date, deductive reasoning has been the preferred strategy in

ecohydrology, where process-based models are developed based on

theory, and data are used to constrain parameters for a particular con-

text. Consistent physics in the models provides a rationale for applica-

tion to unobserved conditions, for example, prediction of the future

or exploration of hypotheticals. Now, with the volume and complexity

of big data being collected and shared, new methods are emerging to

more fully realize the potential of these data. The core capacity of

data-driven machine learning techniques is to quantify patterns in

data that were not otherwise apparent, which can deepen conceptual

understanding and feed into new theories.

Machine learning includes the automated identification of con-

nections between measurements and outcomes, wherein signals in

training data sets are identified and can be aggregated to obtain pre-

dictive models based purely on sets of observations. For example,

Shortridge, Guikema, and Zaitchik (2016) claim that machine learning

methods such as “random forest” provide significantly better predic-

tions of streamflow compared with physical models. A significant chal-

lenge in using machine learning in ecohydrology, or any application,

lies in the complexity of approaches. Many algorithms are available,

and each varies in complexity, computation time, data needs,

optimization, and effectiveness in pattern identification (Lange &

Sippel, 2020). However, there is limited guidance on how to use these

complex tools (Blair et al., 2019; Lange & Sippel, 2020; Olden,

Kennard, & Pusey, 2012), and interdisciplinary training and collabora-

tion between computer scientists and earth scientists are required to

obtain a reliable and robust result (Ben-Hamadou & Wolanski, 2011).

Machine learning tools have been made more accessible by auto-

mated software, for example, the Waikato Environment for Knowl-

edge Analysis, Weka (Kotthoff, Thornton, Hoos, Hutter, & Leyton-

Brown, 2017), an open-source user-friendly platform that identifies

the most suitable algorithm and the hyperparameter settings based on

the input dataset.

Currently, the number of applications in ecohydrology using this

approach is limited, though new efforts are emerging. For example,

boosted regression tree analysis identified the biotic and abiotic fac-

tors that affect variability in stemflow (Tanaka et al., 2017). In another

example, factorial analyses on rainfall partitioning revealed new

insights into processes that had hitherto been incompletely under-

stood (Nanko, Hudson, & Levia, et al. 2016; Tanaka et al., 2015). As

video (gigabytes per camera per day), hyperspectral images (terabytes

per camera per day), fibre-optic sensors (gigabytes per sensor system

per day), satellites (terabytes), and swarms of microsensing systems

(gigabytes) provide massive and diverse data related to ecological and

hydrological processes, the use of automated quantification of link-

ages between predictors and environmental responses will take a

central place in the study and prediction of ecohydrological systems.

These emerging techniques may challenge the historical preference

for process-based modelling, and, if effort is dedicated to the opportu-

nity, will result in new insights and greater understanding of these

intrinsically complex systems.

2.4 | Measurement challenges

Measurement and modelling developments are not without their chal-

lenges, and we can only address the gap between opportunity and

current practice by considering impediments to adoption. While tech-

nological advances have led to the development of novel and inexpen-

sive sensors, increasing the number and accessibility of measurements

is still challenged by issues of standardization, data curation, and

resource allocation.

We are accustomed to plugging devices into our computers and

having them work. This reflects the remarkable collaboration between

peripheral makers and operating-system developers, and the substan-

tial investment in making consumer electronics robust and reliable.

The limited size of the environmental sensing market and the diversity

of needs reduces the incentive for commercial interests to develop

plug-and-play solutions. Further, as a community, we have not devel-

oped common standards for communication between sensors and

data-communication systems. For example, the I2C protocol that

many new sensors employ is limited to just one meter of cable

between the sensor and the data system—a requirement that is often

not met in environmental applications.

Data management, while no longer costly by way of raw stor-

age, is challenging due to the need to properly describe, curate,

and archive the information. Data unification efforts are underway

at organizations such as the Consortium of Universities for the

Advancement of Hydrologic Science, Inc., the National Ecological

Observatory Network, the Long Term Ecological Research Net-

work, FLUXNET, and the National Center for Atmospheric

Research, among many others (see Richter et al., 2018). Nonethe-

less, the human effort required to maintain data integrity is large,

and significant effort must be committed to data management.

Although the biological community has developed inspiring infra-

structure for sharing of DNA sequences, the complex and diverse

nature of measurements in ecohydrology presents an additional

challenge to the problem of accurate and accessible archiving of

important data.

Even with new and low-cost sensors, resources are finite. Inter-

esting challenges persist around issues of precision, resolution and

coverage of spatial and temporal data, and how these issues relate to

our scientific goals and questions. Should investments in measure-

ments be targeted to testing specific hypotheses or to long-term mon-

itoring to provide a baseline from which new hypotheses can be

generated? What is the appropriate mix of cheaper sensors with low

precision that can be deployed with wide spatial coverage versus

more expensive and precise measurements? How can new technolo-

gies enhance and build upon existing measurement techniques? These
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are not issues of technology alone but will also be informed by (and

inform) our scientific understanding and policy decisions (Figure 1).

Taken as a whole, advances in sensors, microcomputing, 3-D

printing, unmanned aircraft, global telemetry, modelling, and data

interpretation are slowly transforming our ability to understand eco-

hydrological systems (cf. Levia et al., 2020). Improving the pace of

translation of novel sensors to useful tools requires the adoption of

clear and rigorous standards for meta-data and sensor interfaces.

Global collaboration on these systems will be fundamental to success,

with community efforts—such as Consortium of Universities for the

Advancement of Hydrologic Science, Inc.'s Water Data Services—

representing fundamental contributions to support these advance-

ments. If these challenges are overcome, the synergies created by the

convergence of opportunity among high-frequency environmental

sensing, open source resources (both hardware and software), and

machine learning have the potential and capability to help inform poli-

cies to mitigate the world's water problems (Figure 1). Such a conver-

gence will change the way ecohydrologists perceive, tackle, and solve

water-resource issues. No longer limited by small data sets, new

insights into ecohydrological processes can be uncovered and lead to

better environmental stewardship, thereby enabling ecohydrologists,

water resource planners, and policy analysts to translate science into

solutions (Figure 1).

3 | ADVANCING UNDERSTANDING AND
REPRESENTATION OF ECOHYDROLOGICAL
PROCESSES

3.1 | Canopy processes

Given the importance of interception loss as a component of total

evapotranspiration from many of the globe's forests (see Carlyle-

Moses & Gash, 2011), furthering our understanding of precipitation

partitioning processes should result in a greater understanding of pre-

cipitation recycling. Precipitation recycling can generate and intensify

the redistribution of water at scales far greater than the watershed

scale (e.g., Nobre, 2014; van der Ent, Savenije, Schaefli, & Steele-

Dunne, 2010) and is important for understanding water availability

downwind (Ellison et al., 2017; Keys et al., 2012). Innovations in

model predictions and measurement technologies discussed here will

allow a more holistic approach to forest-water interactions connecting

local, regional, and global scales and have important policy and man-

agement implications (Brubaker, Entekhabi, & Eagleson, 1993; Koster

et al., 1986).

Canopy interception loss has long been understood to comprise

evaporation from canopy storage both during and after a rain event

(see Horton, 1919). Although one of the simplest concepts in

ecohydrology, the controls on canopy-water storage and the mecha-

nisms that result in the evaporation of intercepted rainfall are still not

fully understood. Additionally, underlying assumptions known to be

invalid in many cases continue to populate the interception literature

and remain embedded in many canopy rainfall-partitioning models

utilized today. For instance, the wetting of a canopy during small

events of insufficient depth to saturate the canopy, or during the early

stages of larger events, is represented as a “water-box”—in which no

drainage occurs from the canopy until it reaches complete

saturation—in Rutter-Gash type interception models (see Junior

et al., 2019; Su, Zhao, Xu, & Xie, 2016; Valente, Gash, Nóbrega,

David, & Pereira, 2020). However, interception theory has long recog-

nized that canopy storage fills in an exponential manner with drainage

occurring throughout the wetting phase of the rain event (see

Leonard, 1967; Merriam, 1960).

Additionally, understanding the physical processes and atmo-

spheric conditions leading to the evaporation of intercepted rainfall

remains a formidable challenge (Carlyle-Moses & Gash, 2011; van Dijk

et al., 2015). Rutter (1967) suggested that the energy required to sus-

tain the evaporation of intercepted rainfall came from the air itself,

that there is a downwards sensible heat flux and/or a decrease in the

ambient air temperature within the canopy volume (van Dijk

et al., 2015). Stewart (1977) argued that this downward sensible heat

flux from above wetted canopies must involve large-scale advection

from surrounding dry land areas. In contrast, Shuttleworth and

Calder (1979) suggest that the lower atmosphere may already store

sufficient sensible heat or that sensible heat being released by precipi-

tation processes may maintain high evaporation rates from wetted

canopies (van Dijk et al., 2015). Additionally, van Dijk et al. (2015) sug-

gest that the use of conventional Penman-Monteith theory results in

less interception loss than what should be expected based on experi-

mental evidence from field studies (e.g., Cisneros Vaca, van der Tol, &

Ghimire, 2018). This underestimation of canopy interception loss, and

associated fluxes, has ramifications for climate and hydrological

modelling. For example, van Dijk et al. (2015) suggest that rainfall gen-

eration downwind predicted by weather and climate models may be

erroneous if water vapour and energy fluxes associated with intercep-

tion loss are not considered by land-surface models. Similarly,

Savenije (2004) states that underestimating interception loss may

result in hydrological model errors, particularly when automated cali-

bration leads to other parameter values being adjusted to compensate

for errors in interception.

In order to more fully understand wetting and evaporative pro-

cesses associated with canopy interception loss, precisely calibrated

high-temporal resolution measurements of canopy partitioning of

rainfall into interception loss and canopy drainage in the form of

throughfall and stemflow are required (e.g., Iida et al., 2017; Iida, Shi-

mizu, Shinohara, Takeuchi, & Kumagai, 2020). Sensor technologies, as

discussed above, offer great promise in propelling our understanding

of interception loss and understory precipitation dynamics. For exam-

ple, laser disdrometers, such as those developed by Nanko, Hotta, and

Suzuki (2006), allow for distinctions to be made between different

throughfall types (free-throughfall, canopy-drip, and canopy-splash)

and their relative quantitative importance (e.g., Levia

et al., 2019;Levia, Hudson, Llorens, & Nanko, 2017; Nanko, Hudson, &

Levia, 2016). By comparing the temporal characteristics of throughfall

type and depth relative to rainfall, disdrometer technology can pro-

vide important insight into the wetting of the canopy during a rain
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event. Additionally, disdrometers may also provide insight into the

role of larger raindrops on the interception loss process under differ-

ing forest and meteorological conditions. For example, the greater

kinetic energy associated with larger raindrop diameters has been

suggested by some (e.g., Calder, 1996) to delay canopy saturation and

reduce maximum canopy storage, and by others

(e.g., Dunkerley, 2009; Murakami, 2006) to increase evaporation

because larger drops are subjected to greater splash. Disdrometers,

along with other emerging sensor technology such as electromagnetic

rain gauges (Bong-Joo et al., 2019) and piezoelectric rain gauges

(Haselow, Meissner, Rupp, & Miegel, 2019), provide information on

drop size and associated kinetic energy, as well as more precise mea-

surement of event initiation, cessation, and intrastorm breaks.

Accelerometers that are mounted to a tree trunk can be used to

determine canopy interception storage due to increases in the mass

of the tree (van Emmerik et al., 2017) and may provide high-temporal

resolution information about canopy-wetting dynamics. Other low-

cost sensors that can be used to further our understanding of rainfall

partitioning processes by the canopy include the Arduino-based

stemflow sensor developed by Turner, Hill, Carlyle-Moses, and

Rahman (2019). Leaf-wetness sensors determine the instantaneous

time of stemflow initiation, while ultrasonic rangefinders measure the

distance to the liquid surface within the reservoir. Average stemflow

volume can be determined with a 10-s temporal resolution, and a

series of these units measuring both throughfall and stemflow can be

utilized to provide high temporal resolution understory rainfall mea-

surements. These, in turn, provide greater understanding of the inter-

actions between the canopy and lower portions of the critical zone

(Carlyle-Moses et al., 2018).

3.2 | Critical zone processes

Vegetation partitions soil-water into “green” water fluxes that sustain

biomass and “blue” water fluxes that supply groundwater recharge

and streamflow (Evaristo, Jasechko, & McDonnell, 2015). Both a

changing climate and changing landscapes can affect this partitioning.

These interactions between water and vegetation occur in a dynamic

feedback system within the critical zone where vegetation is

influenced by the zone's structure and function, and, in turn, the criti-

cal zone is altered by the vegetation.

This dynamism—in vegetation growth, root structure, and plant

physiology—is now being considered explicitly in ecohydrological

models (e.g., RHESSys (Tague & Band, 2004), EcH2O (Kuppel

et al., 2018; Maneta & Silverman, 2013; Simeone et al., 2019), tRIBS-

VEGGIE (Ivanov, Bras, & Vivoni, 2008), Cathy (Niu et al., 2014),

Tethys-Chloris (Fatichi, Ivanov, & Caporali, 2012), and FLETCH2

(Mirfenderesgi et al., 2016)). These models explicitly integrate energy

fluxes, water fluxes, and storage, as well as vegetation dynamics to

capture feedback between ecosystem productivity, hydrology, and

local climate. Still, a major remaining challenge is variation in temporal

scales used to develop and calibrate models [i.e., short-to-midterm

hydrological (e.g., streamflow and soil moisture) and ecological

dynamics (e.g., seasonal phenology)] and their intended use—

predicting long-term vegetation dynamics that affect water use. For-

tunately, some work is beginning to ameliorate this challenge

(Paschalis, Fatichi, Katul, & Ivanov, 2015).

Further advances in modelling ecohydrological processes in the

critical zone will require robust data sets that can identify when

models serendipitously yield plausible results, but for irrational or

unjustifiable reasons. Stable isotopes and other conservative tracers

can help resolve this dilemma. Isotopes and tracers can identify hydro-

logical sources of water, elucidate how different vegetation communi-

ties affect water partitioning between “green” and “blue” water fluxes

(Dubbert & Werner, 2019; Tetzlaff et al., 2015), and estimate the

travel-time distributions, all of which can further constrain model rep-

resentations (e.g., Botter, Bertuzzo, & Rinaldo, 2011; Calabrese &

Porporato, 2015; Guswa, Rhodes, & Newell, 2007; Smith, Tetzlaff,

Laudon, Maneta, & Soulsby, 2019). These data have also improved

the representation of the celerity of hydrological fluxes, as well as the

velocity of water particles and the mixing relationships within soils

(Benettin, Kirchner, Rinaldo, & Botter, 2015; Birkel, Tetzlaff, Dunn, &

Soulsby, 2011; McDonnell & Beven, 2014).

When integrated with explicit representation of vegetation

dynamics, these tracer-aided modelling concepts can help resolve the

influence of vegetation on ecohydrological partitioning (Douinot

et al., 2019; Penna et al., 2018; Sprenger et al., 2018) and provide

deeper insight into some of the most crucial phenomena of the

ecohydrological system, such as from where in the subsurface plants

extract their water (Piayda, Dubbert, Siegwolf, Cuntz, &

Werner, 2017; Volkmann, Kühnhammer, Herbstritt, Gessler, &

Weiler, 2016), over what spatial footprints (Geris, Tetzlaff,

McDonnell, & Soulsby, 2017) and over what timescales (Brinkmann

et al., 2018).

3.3 | Effects of landscape change on amount,
distribution, and quality of streamflow

Coupling aboveground and belowground processes across varied tem-

poral and spatial scales is crucial to understanding streamflow amount,

distribution, and quality. Observational studies indicate that an

increase in forest cover (whether natural or plantation) leads to a

decrease in overall water yield due to an increase in transpiration

(e.g., Andréassian, 2004; Bosch & Hewlett, 1982; Brown, Western,

McMahon, & Zhang, 2013; Brown, Zhang, McMahon, Western, &

Vertessy, 2005; Bruijnzeel, 2004; Filoso, Bezerra, Weiss, &

Palmer, 2017; Jackson, Jobbágy, & Nosetto, 2009). Increases in tran-

spiration, coupled with increased infiltration, have also been shown to

reduce peak flows but with variability in the magnitude of the

response (e.g., Calder & Aylward, 2006; Dadson et al., 2017; Filoso

et al., 2017). Effects of increased forest cover on baseflows and low

flows are more uncertain—with even the directionality of the effect

being unclear—due to interactions of increased flow regulation and

transpiration (e.g., Dennedy-Frank & Gorelick, 2019; Devito, Creed, &

Fraser, 2005; Filoso et al., 2017; Guswa, Hamel, & Dennedy-
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Frank, 2017; Homa, Brown, McFarigal, Compton, & Jackson, 2013;

Jensco & McGlynn, 2011; Laaha, Skoien, Nobilis, & Blöschl, 2013;

Smakhtin, 2001). In all cases, predictions of the effects of landscape

change on streamflow remain stubbornly imprecise. With respect to

water quality, the story is similar. Scientific consensus is that forest

cover reduces soil erosion, sediment load, nutrients, and pathogens

relative to other land uses. Our ability to quantify precisely the effects

of landcover change on water quality characteristics, however,

remains limited (Jasper et al., 2013).

Direct application of new and improved ecohydrological

methods relates to the emergence of ecosystem services as a

framework for decision-making and design (Brauman et al., 2007;

Guswa et al., 2014; Millennium Ecosystem Assessment, 2005;

National Research Council, 2004; Pascual et al., 2017; USEPA Sci-

ence Advisory Board, 2009). The Nature Conservancy has devel-

oped Water Funds with corporate and governmental partners

throughout Latin America. Projects in Brazil, Colombia, Ecuador,

Mexico, Panama, and Peru are designed to collect millions of dol-

lars in fees from water users and to use those funds for watershed

protection and improvement (Bremer et al., 2016; Goldman,

Benitez, Calvache, & Ramos, 2010). Through its National Forest

Conversation Program and Sloping Land Conservation Program,

China has spent over US$50B dollars to incentivize land conver-

sion to reduce erosion and flooding (Liu, Li, Ouyang, Tam, &

Chen, 2008; Ouyang et al., 2016). As of 2018, payments for

watershed services totalled over US$24B annually across more

than 380 different programs in over 60 countries (Salzman, Ben-

nett, Carroll, Goldstein, & Jenkins, 2018). Nature-based designs are

also being developed to address wastewater treatment (Dotro

et al., 2017; Jasper et al., 2013; Vymazal, 2010) and flood-damage

mitigation (Opperman, 2014). For example, the Yolo bypass in Cali-

fornia connects the Sacramento River to floodplains that store

excess flood flows, provide habitat for fish and migratory birds,

and offer recreational opportunities (Sommer et al., 2001). This

manipulation of the landscape that results from new policies can

be coupled with advances in measurement and modelling to

improve ecohydrological understanding of the effects of landscape

change on the amount, distribution, and quality of streamflow

(Figure 1). A related problem concerns streamflow controls on the

ecology of hosts and parasites of water-related diseases (Rinaldo,

Gatto, & Rodriguez-Iturbe, 2018).

In urban environments, ecohydrologists and other scientists are

increasingly called upon to assess the benefits and costs of trees

and other green infrastructure for stormwater management, heat-

stress mitigation, nutrient control, and many other benefits

(e.g., Berland et al., 2017; Dadvand & Nieuwenhuijsen, 2019; Elli-

son et al., 2017; Keeler et al., 2019; Kuehni, Bou-Zeid, Webb, &

Shokri, 2016; Ramamurthy & Bou-Zeid, 2014; Ramamurthy & Bou-

Zeid, 2017; Rugel, Carpiano, Henderson, & Brauer, 2019; Zölch,

Maderspacher, Wamsler, & Pauleit, 2016). Similarly, there is grow-

ing interest in understanding the potential for agricultural patterns

and practices to provide cobenefits, such as for nutrient manage-

ment, carbon storage, and groundwater recharge (e.g., Chaplin-

Kramer et al., 2015; Dahlke, Brown, Orloff, Putnam, &

O'Geen, 2018; Smith, Tetzlaff, Gelbrecht, Kleine, & Soulsby, 2020).

Ecohydrologists working in agricultural and urban areas are con-

fronted with very different environmental conditions than those in

more natural ecosystems. Improvements in environmental sensing

and empirical analysis will be essential to advancing understanding,

and policy will both draw upon that understanding and feed into

that understanding by promoting changes to landscapes from

which we can gain new insight (Figure 1).

4 | CONCLUSIONS

Low-cost sensors, data-management tools, and analytical approaches

provide opportunities to acquire, create, and interpret ecohydrological

knowledge in new ways. We now have the ability to observe previ-

ously unobservable phenomena, to design new experiments, and to

test new hypotheses. And, while controlled experiments with clear

hypotheses will always remain the gold standard in science, the ability

to observe the effects of landscape changes that are happening out-

side the realm of conventional scientific research can also enhance

current understanding. Tools from data science enable us to sift

through imperfect observations and discern signals—for example,

what happens to low flows when forest is converted to agricultural

use? If we implement best-management practices, how is water qual-

ity improved? Suddenly, routine and regular landscape manipulations

become opportunities for advancing our knowledge. This new mode

for science requires that we are willing to fund and support expanded

measurement and observation and the analysis of hydrological

impacts of landscape modifications that are outside scientists' control

(Figure 1).

New hypotheses and ideas about the effects of landscape

change on the amount, distribution, and quality of stemflow,

streamflow, or root-water uptake that grow out of these empirical

observations can be evaluated and tested with process-based

models. Integrating multiple sources of data and observations from

across multiple watersheds will improve model reliability (e.g., Clark

et al., 2011; Fatichi et al., 2016; Kirchner, 2006). Coming full circle,

such models can then be used to direct future experiments, moni-

toring, and observation to those landscape interventions that would

result in the greatest increases to our scientific understanding.

Additionally, advances in modelling can enable a hierarchy of

models with clear trade-offs between complexity, data require-

ments, and precision of response. Simple or screening models could

be used to evaluate future scenarios and questions of interest for

communities and identify whether or not landscape interventions

are likely to have an effect. More detailed models could then be

used to interrogate those scenarios as needed to inform land-

management decisions.

Convergence of climate and landscape changes with advances in

measurements and modelling creates an important opportunity for

the advancement of ecohydrological knowledge and understanding.

Innovative technological developments facilitate the measurement of
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new environmental characteristics, and inexpensive ubiquitous sen-

sors enable observation at resolutions and scales previously

unavailable. Bringing these advances to bear on ecohydrological ques-

tions related to canopy processes, belowground processes, and the

scaling-up of those processes will bring new insight to the interactions

between ecological and hydrological systems, which, in turn, will help

us address water-resource challenges in the 21st century.
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