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ET recycles around 60% of land precipitation back to the 
atmosphere1, which constrains the water resources avail-
able for human societies2. About 65% of ET is contributed by 

plant-mediated transpiration3, which is directly linked to ecosys-
tem productivity through stomatal conductance. Transpiration and 
ecosystem productivity are regulated by hydroclimatic stresses, that 
is, soil moisture4,5 and the vapour pressure deficit (VPD)6,7. Plant 
responses to these stresses affect the hydrological prediction8 and 
remain a dominant source of uncertainty in feedbacks between 
the biosphere and climate4,5,9. This uncertainty undermines the 
long-term predictability of water, carbon and energy budgets.

Soil moisture and VPD are often correlated (a lower soil mois-
ture is often accompanied by drier air), which maks it challenging 
to disentangle the effects of these two stressors on ET empirically10. 
However, VPD is projected to rise globally with increased air tem-
perature. By contrast, projected soil moisture changes are hetero-
geneous and uncertain11. As the impact of VPD on ET is likely to 
be amplified under elevated temperatures10, land surface and Earth 
system models need to correctly account for the impact of VPD 
stress at wide-ranging soil moisture states.

Soil moisture and VPD, which measure the supply and demand 
for water, simultaneously constrain water transport through the 
plant. The plant vascular system delivers water extracted from the 
soil up to the leaves. The plant’s water potential becomes more nega-
tive with increased water loss to the atmosphere. In the leaves, the 
extent of stomatal closure that controls the gas exchange of carbon 
dioxide and water vapour is also affected by leaf water potential. 
As leaf water potential adjusts to balance the supply and demand 
for water, it is intrinsically linked to VPD. Although this mecha-
nism has been recognized for decades12 to have profound ecological 
impacts13,14, it is commonly neglected in large-scale ET estimation. 
Instead, independent reduction functions for each of root-zone 
soil moisture and VPD are used, which are empirically calibrated 
and assigned per plant functional type15,16. Over long timescales, 
the empirical representations are able to achieve adequate skills 
in capturing the observed ET17, which motivates their wide usage 

in contemporary models. It remains unclear, however, whether 
empirical models can disentangle the ET responses to soil moisture 
and VPD variability. Recent studies demonstrated that incorporat-
ing plant hydraulics improves stomatal conductance and ET esti-
mates under dry conditions17,18, which implies misrepresented stress 
responses in empirical models.

Here, the responses of transpiration to soil and atmospheric 
moisture stresses are compared using a common empirical repre-
sentation as a reference and a hydraulic representation. Accounting 
for plant hydraulics in ET models has been partly challenged by the 
scarcity of hydraulic trait measurements. This challenge is further 
exacerbated by large inter- and intraspecific variability in hydraulic 
traits19, and the differences between in situ trait measurements that 
represent a particular plant segment and the effective stand-scale 
traits that are necessary for models20. To address these challenges, 
a model–data fusion approach was employed. This approach esti-
mates the traits that, when combined with a given model, best match 
the observed temporal variation of ET. Two soil–plant water trans-
fer models were set up using either a hydraulic representation of sto-
matal conductance or the more common empirical representation, 
with all else being the same. In both cases, the Penman–Monteith 
equation derived from an energy balance is used to describe ET as 
a function of stomatal conductance (Methods and Supplementary 
Note 1). Both approaches can be represented using a mathematical 
structure in which stomatal conductance (gs) is reduced from a ref-
erence value by multiplicative stress functions, for example:

gs ¼ g*s ð1�m lnDÞ ð1Þ

where g*s
I
 is the reference stomatal conductance at a VPD (D) of 

1 kPa and reduces with soil or plant water status, and m is the sen-
sitivity of stomatal conductance to VPD. For the empirical model, 
g*s
I
 reduces with decreasing soil moisture and m is held constant.  

As described in Methods, a stomatal-optimization based plant 
hydraulic model can be reformulated into the same form as equa-
tion (1) under light-saturated conditions. In that case, both g*s

I
 and 
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m are functions of leaf water potential and change over time based 
on soil moisture and VPD21,22. Note that both g*s

I
 and m are therefore 

associated with different quantities in the hydraulic and empirical 
models (Methods). Nevertheless, the equivalent functional form in 
equation (1) enables the study of each model’s VPD and soil mois-
ture sensitivities. The link between m and leaf water potential can 
be established using a dynamic optimality theory at the leaf scale 
that assume leaves maximize carbon gain over a certain time inter-
val subject to both hydrological and hydraulic constraints23. Both 
types of models were applied at 40 FLUXNET sites that covered a 
variety of plant functional types, climate types and stress regimes 
(Supplementary Table 1 and Extended Data Fig. 1). For each model, 
site-specific parameters, that is, empirical parameters and hydraulic 
traits, were retrieved using a Markov Chain Monte Carlo (MCMC) 
method (Methods and Supplementary Note 2). This ensures that 
each of the models performs optimally, and that any difference in 
model behaviour arises only from the model structure rather than 
an inappropriate parameterization of either model.

To evaluate the efficacy of model–data fusion in identifying 
hydraulic traits, the estimated ψ50 (xylem water potential at which 
50% of maximum xylem conductance is lost) for a given site was 
compared to the available measurements for the same species (Fig. 1).  
As one of the most extensively measured hydraulic traits, ψ50 char-
acterizes the reduction of xylem conductance (equation (8) in 
Methods) and the transpiration-available water under stress14. At 
most sites, the estimated ψ50 posterior distributions (grey areas in 
Fig. 1) are almost uniformly distributed, which suggests a low sen-
sitivity of ET to ψ50. This is because the leaf water potential mostly 
remains high and thus is rarely influenced by ψ50 (Extended Data 
Fig. 2). It is also affected by the trade-off of ψ50 with other hydraulic 
traits across MCMC samples that generate a similar ET (Extended 
Data Fig. 3). However, where the MCMC-inferred ψ50 has a nar-
rower posterior, such as at sites IT-Lav, IT-PT1 and US-Me2, the 
estimated probability distribution is centred around values mea-
sured for the dominant species (red lines in Fig. 1). Other retrieved 
plant hydraulic traits across the studied sites are shown in Extended 
Data Fig. 4. For the empirical model, the average value of m across 
the sites is estimated as 0.58, consistent with the estimate of 0.60 
obtained in a previous meta-analysis24 and predicted from stoma-
tal optimization theories under well-watered conditions21. These 
comparisons show that the model–data fusion approach retrieves 
site-specific traits that show consistency with the available indepen-
dent estimates. The model performance was optimized for further 
analysis of model structural differences.

Across the entire study period and at each site, the hydraulic and 
empirical models capture daily ET with similar skills, with a coef-
ficient of determination (R2) that ranges from 0.12 to 0.90 and root 
mean square error (RMSE) from 0.31 to 1.13 mm day−1 across the 
sites (Fig. 2a,d). Notably, when focusing on subperiods of certain 

stress regimes, the hydraulic model improves the estimation accu-
racy during high VPD (higher than the 75th percentile) subperiods 
(Fig. 2b,e). This result is consistent with previous findings that leaf 
water potential improves stomatal conductance estimation dur-
ing drought17,18, although these studies did not differentiate among 
VPD regimes. Note that the Bayesian information criterion of the 
hydraulic model is consistently lower than that of the empirical 
model across the sites (Extended Data Fig. 5), which suggests the 
improved model performance due to plant hydraulics is not solely 
because of an additional fitting parameter in this model. Figure 2 
suggests that the improvement by plant hydraulics is prominent 
under high VPD conditions in combination with both low (lower 
than the 25th percentile) and high soil moisture. By contrast, when 
low soil moisture conditions co-occur in combination with low 
VPD, there is no commensurate improvement in the performance 
of the hydraulic model over the empirical model (Fig. 2c,f).

To explore why the two models respond differently to high VPD 
conditions (Fig. 2), the degree to which VPD and soil moisture limit 
ET through stomatal conductance, termed the restriction effect 
(ΔET in Fig. 3), was evaluated for each model. It was quantified 
as the ratio between a benchmark ET and the modelled ET under 
observed stress (equations (14) and (15) in Methods). The bench-
mark ET was calculated using stomatal conductance under either soil 
moisture at the field capacity or a reference VPD of 0.6 kPa (ref. 10).  
That is, the restriction effect represents the relative increase of ET in 
the absence of either soil moisture or VPD stresses. For most sites, 
the ET estimated by the hydraulic model (EThydr) is limited less by 
soil moisture but more by VPD than the ET of the empirical model 
(ETempr) is (Fig. 3), and this effect is independent of site dryness 
(Extended Data Fig. 6). The pattern of Fig. 3 also holds when calcu-
lated for different subperiods of VPD and soil moisture (Extended 
Data Fig. 7). As expected, the VPD limitation of the hydraulic model 
is primarily accentuated under high VPD conditions and, analo-
gously, the empirical model shows the greatest soil moisture limi-
tation under low soil moisture conditions (Extended Data Fig. 7). 
This result suggests that, although both models provide a similar ET 
estimation on average (Fig. 2a,d), the sources of stress are distinct.

Further investigation of the underlying reason for this difference 
was enabled by the consistent mathematical form of gs (equation 
(1)) for both models. We attribute the greater VPD restriction effect 
of the hydraulic model to three primary factors (calculated as in 
Supplementary Note 3): (1) a difference in the optimized mean m 
and g*s

I
 with respect to those of the empirical model, (2) the temporal 

variability (dynamics) of g*s
I
, which varies in response to leaf water 

potential rather than to soil moisture, and (3) the dynamics of m in 
contrast to a constant m of the empirical model. The first factor is 
illustrated in Fig. 4a, which shows the optimized combinations of g*s

I
 

and m for all sites. In the empirical model, g*s
I
 varies independently  

from m. In the hydraulic model, by contrast, reducing the leaf water 

0

–5
ψ 50

 (
M

P
a)

–10

BE-Vie DE-Hai DK-Sor IT-Lav IT-PT1 IT-Ren
Site identity

RU-Fyo US-Blo US-Me2 US-MMS US-NR1

Fig. 1 | Comparison between measured and inferred ψ50. Red lines denote the available ψ50 measurements for dominant species at sites from Anderegg 
et al.13. Grey violins represent the posterior distributions estimated using the model–data fusion approach. Site locations are listed in Supplementary  
Table 1.
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potential under stressed conditions leads to a simultaneous decrease 
in g*s

I
 and increase in m (Methods). Thus, g*s

I
 and m are coupled via 

a hydraulic constraint that delineates a feasible region in the g*s
I
–m 

space (Fig. 4a, light and dark grey shaded areas). Note that the exact 
constraint varies in time and by site (Extended Data Fig. 8). This 
constraint promotes a trade-off between soil moisture and VPD 
stresses that results in a greater mean VPD sensitivity (greater �m

I
, 

red dots in Fig. 4a) compared with that in the empirical model. This 
difference in mean contributes 45% of ΔETVPD

hydr

I
 averaged across the 

sites (Extended Data Fig. 9). Aside from the difference in mean, 
the temporal variations of g*s

I
 and m differ between the empirical 

and hydraulic models. In the hydraulic model, under stressed con-
ditions g*s

I
 decreases and m increases with the marginal water-use 

efficiency as the leaf water potential drops (Methods and Extended 
Data Fig. 10)21,22. These magnify the restriction effect of VPD on ET. 
The difference between the static m for the empirical model and 
the dynamic m for the hydraulic model is illustrated in Fig. 4b. The 
median value of m increases by 51% under the most stressed condi-
tions. Across the sites, the dynamics of g*s

I
 and m have impacts on 

ΔETVPD
hydr

I
 that are 87 and 8%, respectively, as large as those of the 

dominant factor, that is, the difference in means. Nevertheless, the 
dynamics of m becomes more important under stressed conditions, 
and account for a 28% increase to that of the difference in means 
(Extended Data Fig. 9).

The above comparison between model structures was enabled by 
the model–data fusion approach, which resolves parameter uncer-
tainty by identifying optimal parameters and their uncertainty. The 
analysis here illustrates that in the presence of soil moisture–VPD cor-
relation, the current generation of stomatal conductance models com-
pensate between VPD and soil moisture sensitivities (Figs. 3 and 4).  
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Note that uncertainties exist in the hydraulic model, which include 
a lack of representation of plant water storage and embolism propa-
gation25, using time-invariant vulnerability curves without account-
ing for dynamic embolism refilling and the growth of new xylem26, 
and the assumption of constant rooting structure and biomass27. 
These factors introduce ‘legacy effects’ on the transpiration response 
to hydroclimatic stresses. Uncertainties also exist in the site-specific 
properties used to parameterize the model (Supplementary Table 1), 
although sensitivity analysis suggests that the main results are qualita-
tively robust with respect to rooting depth, a key parameter that affects 
plant water uptake (Supplementary Figs. 2 and 3). Nevertheless, as the 
compensating errors in the empirical model are induced by its struc-
ture, which is shared by most large-scale models without plant hydrau-
lics15,16, the qualitative results found here are expected to be robust.

Our findings highlight a stronger impact of atmospheric mois-
ture stress on ecosystem transpiration than that commonly repre-
sented in land surface models due to the effects of plant hydraulics. 
The current generation of models therefore probably underestimates 
the future impairment of ecosystem productivity and biosphere–
atmosphere interactions by elevated temperatures. They also prob-
ably overestimate the reduction in water resources during warmer 
droughts. As such, there is a need to incorporate plant hydraulics in 
the next generation of Earth system models. This need is already rec-
ognized, as doing so improves the predictions of plant vulnerability 
under droughts28. The mechanistic nature of plant hydraulic models  

may also facilitate accounting for changes of plant traits under  
climate change. Although plant hydraulic representations are slowly 
becoming more common in large-scale models29,30, the impact of 
such changing representations on ecosystem flux predictions remains 
understudied, and the majority of large-scale models still neglect 
plant hydraulics. However, as such representations become more 
widespread, parameterizing the traits will remain a key challenge. 
The model–data fusion approach used here points to the possibil-
ity of tackling this challenge by integrating models with large-scale 
observations. Doing so will improve the prediction of ecosystems 
and water resources under future droughts.
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Methods
Soil–plant model. The soil–plant model is described in Liu et al.31. Evaporation 
and transpiration are calculated based on energy balance on the ground and 
canopy surfaces (Supplementary Note 1). Transpiration (El) is a function of 
stomatal conductance (gs), which is computed using either an empirical a hydraulic 
representation.

In the empirical representation:

gs ¼ g*s;empr ð1�mempr lnDÞ ð2Þ

where the VPD sensitivity mempr is held constant and the reference stomatal 
conductance g*s;empr

I
 is restricted by the root-zone soil moisture15, that is:

g*s;empr ¼ gs;ref
XNl

i¼1

rðiÞmax 0;min
θi � θw
θs � θw

; 1

  
ð3Þ

where gs, ref is the maximum g*s;ref
I

; Nl is the total number of layers for the soil column 
from the ground surface to the maximum rooting depth (Zr). Here, Nl = 2 with the 
two layers separated at 0.3 m if Zr > 0.3 m, and Nl = 1 otherwise. r(i) is the fraction 
of roots in layer i. θs and θw are the stress thresholds when the soil moisture stress 
commences and when the stomata fully close, respectively. θi is the volumetric soil 
moisture in layer i. As few FLUXNET sites report soil moisture below 0.3 m, for 
Nl = 2, θ2 is modelled based on water balance, that is:

Zr;2
dθ2
dt

¼ L1;2 � L2;3 � El;2 ð4Þ

where Zr,2 is the thickness of the second layer; L1,2 and L2,3 are the leakage from 
the first to the second layer and out of the rooting zone, respectively, which are 
calculated from Darcy’s law as described elsewhere31. A boundary condition 
of constant water content (θbc) below the rooting zone is assumed for the L2,3 
calculation. El,2 is the plant water uptake from the second layer, modelled as 
El,2 = r(2)El following Oleson et al.15.

In the hydraulic model, the stomatal conductance is computed using the 
leaf-gas exchange optimality theory32, that is:

gs ¼ argmaxfcðgsÞ � λ feðgsÞ ð5Þ

where fc(gs) and fe(gs) are the carbon gain and water loss, respectively, following 
Fickian diffusion; λ is the marginal water use efficiency that describes the cost of 
loosing water in carbon units. As described elsewhere31, gs can be solved under a 
given λ by combining equation (5) with the biochemical demand for CO2 (ref. 33).  
λ has been shown to respond to leaf water potential (ψl) (ref. 22), that is:

λ ¼ λW expðβ0ψ lÞ ð6Þ

where λW is the marginal water use efficiency under the ambient CO2 concentration 
and well-watered conditions, β0 is the sensitivity parameter and ψ l

I
 is ψl averaged 

over the previous 24 h (refs. 22,34). λ depends on ψ l
I

 on a daily timescale rather 
than the instant ψl based on theoretical and observational studies, which suggests 
that λ varies at a longer timescale than gs and could evolve with soil water 
availability22,23,32,35–37. ψl controls water supply through the plant hydraulic system, 
which is solved by equating the supply to the demand determined by energy 
balance (Supplementary Note 1) according to the continuity assumption38:

El ¼
Zψ l

ψ r

gpðxÞdx ð7Þ

where ψr is the root water potential and gp is the whole-plant xylem conductance, 
which follows a vulnerability curve39:

gpðxÞ ¼ gp;max 1þ x
ψ50

� �a� ��1

ð8Þ

where gp,max is the maximum whole-plant xylem conductance and a is the curvature 
parameter of the vulnerability curve. The soil layer characterization is the same 
as that in the empirical representation. For sites where Nl = 2, the same water 
balance model (equation (4)) is used to model the second layer soil moisture. Here, 
El,2 is calculated using a resistance-based approach based on soil and root water 
potentials and the soil–root conductance31. The soil water potential is obtained 
based on soil texture and moisture content40, and the soil–root conductance is 
calculated using a cylinder root model that depends on the root depth, root area 
index and soil hydraulic conductivity41.

Next, the mathematical connection between the hydraulic representation and 
the empirical representation is described. Under light-saturated conditions, the 
solution of equation (5) can be linearized as32:

gs ¼ α �1þ ca
a0 λ

 1=2

D�1=2

" #
ð9Þ

where α contains parameters describing the biochemical demand for CO2 (ref. 33), 
ca is atmospheric CO2 concentration and a0 = 1.6 is the relative diffusivity of water 
vapour with respect to CO2. Denoting:

Φ ¼ ca
a0 λ

� �1=2

ð10Þ

equation (9) can be rearranged into the following form similar to equation (2)21:

gs ¼ g*s;hydr ð1�mhydr lnDÞ ð11Þ

where

g*s;hydr ¼ αð�1þΦÞ ð12Þ

mhydr ¼
1
2

Φ

Φ� 1
kD ð13Þ

in which kD = 2(1 − D−1/2)/lnD. Based on a Taylor series expansion, D−1/2 = 1 – (1/2)
lnD + O((lnD)2)D−1/2. Therefore kD ≈ 1 when D ≈ 1 kPa, that is, kD is the correction 
factor of the Taylor series approximation when D deviates from 1 kPa. It can be seen 
that g*s;hydr

I
 and mhydr are coupled through λ and thus leaf water potential. That is, 

as soil water is diminished, the cost of loosing water (in carbon units) to the plant 
increases, which results in an increased λ.

Datasets and site properties. The soil–plant model was applied at 40 sites in the 
FLUXNET2015 dataset42 across the globe, which covers a range of climate and 
land-cover types (Supplementary Table 1). Sites were chosen to ensure that soil 
moisture, net radiation, air temperature, humidity, precipitation, sensible and 
latent heat fluxes, wind speed and friction velocity were collected half-hourly 
or hourly for at least two years. Sites covered by savanna were excluded from 
the analysis due to the large spatial heterogeneity in vegetation cover. For each 
site, daytime measurements on days with no precipitation and daily minimum 
temperatures higher than 0 °C during the growing season were used as the study 
period to estimate plant traits and evaluate the model performance. April to 
October and November to March was considered as the growing season for sites 
in the Northern Hemisphere and Sourthern Hemisphere, respectively, except for 
evergreen broadleaf sites, where the growing season spans over the entire year. No 
groundwater access at these sites was documented in the literature listed in the 
FLUXNET2015 dataset information42. The site and data-filtering criteria helped 
reduce uncertainties introduced by a large soil evaporation, understory species, 
snow cover, frozen soil and groundwater access.

The leaf area index at each site was extracted from the MODIS (Moderate 
Resolution Imaging Spectroradiometer) product (MCD15A3H.006) with a 
spatial and temporal resolution of 500 m and 4 days43 using the Google Earth 
Engine and was linearly interpolated to the same temporal resolution as the 
flux measurements. Canopy and measurement heights were obtained from 
site-specific information44 or, if no site-specific information was available, the 
GLAS (Geoscience Laser Altimeter System) canopy height dataset45. Maximum 
rooting depth (Zr) was obtained from the literature (Supplementary Table 1) or, if 
not available, a synthesized global map46. The rooting profile across the layers (r(i)) 
was calculated as a function of depth using the shape function in Jackson et al.47, 
in which the total root area index and the distribution parameter were specified 
for each biome based on plant functional type and climate type48. Soil texture was 
obtained from the literature for each site (Supplementary Table 1) or extracted 
from the Harmonized World Soils Database49 if no information was available in  
the literature.

Model–data fusion using MCMC. Except for the described site-specific 
characteristics, a majority of the traits related to the soil–plant hydraulic system 
were systematically retrieved using a MCMC method to identify the most likely set 
of traits that leads to model outputs consistent with the observed ET at each site. In 
the empirical representation, the plant traits include gs,ref, mempr, θw and θs (equations 
(2) and (3)), and λW, β0, gp,max, ψ50 and a are the plant hydraulic traits used in the 
hydraulic representation (equations (6) and (8)). The soil parameters include the 
shape parameter of the soil water retention curve40 and θbc to account for uncertain 
subsurface hydrological conditions50. MCMC requires prior knowledge on the 
probability distribution of the target parameters. For the hydraulic representation, 
a flat prior distribution that spanned the possible range of each hydraulic trait 
based on meta-analyses22,51 was provided, that is, (0, 10,000) μmol mol−1 for 
λW, (−2, 0) MPa−1 for β0, (10−9, 10−5) m s−1 MPa−1 for gp,max (flat in a log scale), 
(−10, 0) MPa for ψ50 and (0, 8) for a. In addition to the prior ranges, physiological 
constraints from meta-analysis18,52 were also incorporated to avoid unrealistic 
combinations of hydraulic traits that nevertheless match data (Supplementary  
Note 2). For the empirical representation, based on the range of estimates in 
previous studies10,24, uniform priors of (0, 1) mol m−2 s−1 and (0, 1) ln(kPa)−1 were used 
for gs,ref and mempr, respectively. A uniform distribution between the soil water content 
that corresponded to a soil water potential of −10 MPa and the full saturation 
was used as the prior for θw, θs and θbc. A Gaussian prior was used for the shape 
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parameter of the soil water retention curve, with the mean and standard deviation 
from multisample measurements40 for the corresponding soil texture at each site.

Among all the collected data at each site, observations in a normal year and 
a dry year were chosen for use in the parameter retrieval to provide sufficient 
samples under both normal and stressed conditions. Here, a normal year had 
an average soil moisture and VPD within the growing season between the 25th 
and 75th percentiles for a given site; and a dry year had soil moisture below 
the 25th percentile and VPD higher than the 75th percentile. The difference 
between each pair of modelled and observed daily average ET representing the 
daily error was treated as independent and identically distributed, following a 
Gaussian distribution with zero mean and an unknown variance also estimated 
using MCMC. Thus conditional on a given set of parameters, the likelihood of 
observations can be computed and then used to sample the next generation of 
parameters. Each MCMC chain started randomly within the prior range and 
explored the parameter space following the Adaptive Metropolized Independence 
Sampling method with parallel tempering53, generating 20,000 samples. Twenty 
independent MCMC chains were used for each site. Within- and among-chain 
convergences were diagnosed by the Geweke and Gelman–Rubin values54. The 
converged MCMC chains, after 5,000 steps for the empirical representation and 
12,000 steps for the hydraulic representation, provided the estimation of the joint 
distribution of the target parameters. For evaluation of the model performance 
and the impact of hydroclimatic stresses, 100 sets of the target parameters were 
randomly selected from the converged joint distribution to model ET using the 
empirical and hydraulic representations, respectively.

Assessment of model behaviours. The accuracy of the modelled ET using the 
empirical and the hydraulic representations was evaluated using the coefficient of 
determination (R2) for the entire study period at each site and for four subperiods 
with different combinations of soil moisture and VPD stress. The four subperiods 
included days with high or low VPD in combination with high or low soil 
moisture. Days with high or low VPD were identified based on the daily VPD 
being higher or lower than its 75th or 25th, respectively, percentile at a given site, 
and likewise for soil moisture. To further investigate the response of each model 
to different types of hydroclimatic stress, the degree to which each type of stressor 
limits the modelled ET was evaluated. A benchmark stomatal conductance without 
soil moisture (VPD) limitation was calculated under a reference condition of soil 
moisture at the field capacity θ0 (VPD being D0 = 0.6 kPa following Novick et al.10) 
at all times, with all else being the same. The restriction effect of soil moisture 
(ΔETθ) and VPD (ΔETVPD) on ET were then calculated per site as the ratio between 
the corresponding benchmark ET to the ET calculated under observed stresses, 
that is:

ΔETθ ¼ ET gsðθ ¼ θ0;DÞ½ 
ET gsðθ;DÞ½  ð14Þ

ΔETVPD ¼ ET gsðθ;D ¼ D0Þ½ 
ET gsðθ;DÞ½  ð15Þ

Data availability
All datasets used in this study are publicly available from the referenced sources.

Code availability
The source code of the soil-plant model and the used MCMC algorithm is available 
at https://github.com/YanlanLiu/model-data-fusion.
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Extended Data Fig. 1 | Root zone soil moisture, soil water potential, and VPD across studied sites. Each box represents the 25th and 75th percentiles and 
the range across the entire record period. Outliers are marked using black dots.
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Extended Data Fig. 2 | Relation between the 95th percentile of the percentage loss of conductivity (PLC) and the flatness of posterior probability 
distribution of ψ50 across the studied sites. The flatness is quantified as (q75 − q25)/(p75 − p25), where q75 and q25 are the 75th and 25th percentiles of the 
posterior distribution, and p75 and p25 are the 75th and 25th percentiles of the prior distribution. A flatness of 0 indicates concentrated posterior and a 
flatness of 1 indicates a nearly uniformly distributed posterior. Horizontal bars represent the uncertainty ranges across posterior samples.
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Extended Data Fig. 3 | Correlation coefficient of ψ50 (MPa) with gp,max, a, and λW across posterior samples at the studied sites. Site information is listed in 
Supplementary Table 1.
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Extended Data Fig. 4 | Posterior distributions of retrieved plant hydraulic traits across studied sites. Each box denotes the 25th/75th percentiles and the 
range of posterior samples.
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Extended Data Fig. 5 | Bayesian Information Criterion (BIC) of the hydraulic and empirical models across the studied sites. Model likelihood averaged 
across MCMC ensembles at each site was used to calculate BIC.
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Extended Data Fig. 6 | Restriction effect of soil moisture and VPD on ET across sites with different dryness index. A replica of Fig. 3 (main text) but 
color-coded with dryness index. Dryness index is calculated as the ratio between long-term mean potential evapotranspiration and long-term mean 
precipitation. Circles and triangles represent soil moisture and VPD restricted ET, respectively.
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Extended Data Fig. 7 | Restriction effect of soil moisture and VPD on ET across sites during four sub-periods. The four sub-periods are the same as in 
Fig. 2 (main text), that is, a, high VPD low soil moisture; b, high VPD high soil moisture; c, low VPD low soil moisture; and d, low VPD high soil moisture. 
Symbols are the same as in Fig. 3 (main text).
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Extended Data Fig. 8 | Temporal average of the reference stomatal conductance (g*s
I

) and the VPD-sensitivity (m) at a, AU-Wom, b, BE-Vie, and c, 
IT-Isp. Blue and red dots represent the estimates under a light-saturated condition using the empirical and hydraulic models, respectively. The red belts 
indicate the hydraulic constraint. Grey areas show the contours of stomatal conductance (gs).
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Extended Data Fig. 9 | Impact of the dynamics of the VPD sensitivity (m), the dynamics of the reference stomatal conductance g*s
I

, and the difference 
in the mean of m and g*s

I
 on the restriction effect of VPD on ET estimated using the hydraulic model (ΔETVPD

Hydr
I

). The impacts averaged over a, the entire 
record period, and b, the stressed period, that is, when leaf water potential falls below its 75th percentile at each site, are plotted. Sites are listed from left 
to right in order of increasing dryness, as measured by the ratio of mean annual potential ET to mean annual precipitation.
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Extended Data Fig. 10 | Relation between the daily average leaf water potential (ψ l
I

) and (a–c) the VPD sensitivity (m) of the hydraulic model and (d–f) 
the reference stomatal conductance (g*s

I
) at three example sites. m was calculated using (1 − gs/g*s

I
)/ln(D) under light saturated conditions, where gs and 

g*s
I

 were calculated using the full stomatal optimization model (equation (5) in Methods).
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