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a b s t r a c t 

While the role of stemflow in directing and concentrating water and nutrients at the tree 

base is rarely in dispute, its mathematical representation remains a subject of inquiry 

and research. A network model that seeks to estimate stemflow solute concentration and 

leaching is proposed. The model accommodates the physico-chemical properties of individ- 

ual furrows embedded within the tree bark and their interconnections. The within-furrow 

equations for water and solute transport that include leaching are first developed and in- 

tegrated along a rough-bark network topology to describe solute concentration and fluxes 

out of the network. The model is parameterized using published data on stemflow, field 

measurements of bark geometry, and laboratory experiments on bark leaching for potas- 

sium, magnesium, and calcium. The parameterization is intended to impose plausibility 

constraints and not to test model predictions at a particular site, a single event, or an in- 

dividual experiment. The outflow concentration is then analyzed as a function of the net- 

work complexity that includes asymmetry in the lengths or subpaths connecting network 

nodes. For a symmetric network, an effective ’channel-flow’ analogy may be used to repre- 

sent solute concentration at the outflow. However, as the asymmetry increases in subpath 

lengths, the efficiency of the bark network at moving solutes diminishes for the same rain- 

fall input onto the stem. The network representation featured here is by no means offering 

a ’finality’ to the stemflow mathematical representation. It must be viewed as an embry- 

onic step that opens up the possibility of using modern advances in network theories to 

link rainfall properties to stemflow water and solute input from a variety of tree species 

with differing bark microrelief configurations into the soil. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

Stemflow, the water that flows over the exterior of a plants trunk or stem, represents a fraction of the intercepted

precipitation directly striking the trunk or converging as branchflow onto the trunk. Even when stemflow constitutes less

than 2% of the gross incident rainfall, it almost always funnels more water per unit area to the base of the stem than either

rainfall or throughfall alone [1] . Hence, its role in directing and concentrating water and nutrients from the canopy into

the soil-root system can be substantial, yet understudied when compared to many hydrological fluxes. Perhaps this ’lag’
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in stemflow studies relative to other hydrological fluxes is not entirely surprising. While stemflow and concomitant solute

transport can be described using the Navier-Stokes equations, implementing these equations along the channel network

within the bark remains a formidable task. Any upscaling of these point-equations to arrive at stemflow fluxes, even from

a single tree, requires coarse graining non-linear and multi-scaled transport processes whose basic properties are rarely

measured. However, the time is ripe to begin confronting these challenges given the rapid progress in measurements and in

theories dealing with transport and chemical transformation in physical and biological networks [2–6] . 

For some rough-barked tree species, water collected from a tree crown is transmitted onto a complex network of ridges

and furrows distributed along the bark. This water collection mechanism is impacted by canopy structure [7,8] such as

branch number and branch inclination angle. Branch inclination alone was found to be a key factor affecting the quantity of

branchflow onto the stem. Some studies reported that about 80% of the impacting rainfall is being channeled as branchflow

when branch inclination angles exceed 60 ◦ above the horizontal [9] . In addition, the funneling effect of branches was greater

once branches were wet [9] suggesting that both intrastorm rain dynamics and antecedent hydroclimatic conditions play

a significant role [10–13] . Once collected, the water and solutes are then transported through the bark via a network of

interconnected ridges and furrows that can be hydrodynamically rough, smooth, or transitional. In a single furrow, water

flow responds to a number of forces including gravitational, frictional (viscous or turbulent), and under some conditions,

surface tension. The flow depth within the furrow may be small so that the flow resembles a porous medium, partially

full (resembling free surface flow) or overflowing (gravitational free-fall). The geometric properties of each furrow (e.g. their

length, angle, effective width, micro-roughness, and chemical properties) also vary along the bark, necessitating information

that is rarely collected in hydrological and ecological studies. Moving beyond the single furrow scale, connections between

multiple furrows within the bark and ridges also impose extra constraints that alter its ’aggregate’ behavior in ways that

remain to be explored and partly motivate the model development here. 

With regards to biogeochemical cycling, it has been shown that annual nutrient returns to forest soils for elements such

as potassium and sulfur is predominantly via throughfall and stemflow instead of litterfall [14] . Some studies [15] found

differences among canopy-only stemflow, stem-only stemflow, and canopy-and-stem stemflow indicating that differential

routing and transport through the canopy can affect stemflow chemistry. A greater diversity of bacteria occur on the bark

than leaf surfaces [16] and stemflow has been documented to transport atmospherically deposited dryfall and tree-derived

leachates to the tree base [17] . Thus, progress on stemflow in hydrology and biogeochemistry cannot ignore coupling be-

tween flow dynamics and solute transport. 

Motivated by these knowledge gaps on the physico-chemical dynamics of stemflow, the goal here is to evaluate a network

model representation that minimally seeks to estimate stemflow solute fluxes for various network complexities. Clearly, ac-

commodating all aspects and path details of stemflow dynamics along with solute transport is well beyond the scope of

a single study. Hence, the emphasis is on processes and mechanisms likely to be common for stemflow representation of

some rough-barked tree species. For this reason, the focus is on the ’channelization’ effects within and over the bark fur-

rows and its influence on washoff and leachate dynamics of solutes for events of heavy rain intensities. The work here does

not explicitly consider the actual collection mechanisms from foliage and branches and assumes the flow rate and chemical

fluxes at the upper most section of the bark is predetermined or externally supplied. More precisely, this modeling effort

is focused on comparing stemflow solute leaching and transport between single-path and multiple-path (i.e., network) sce-

narios. Even within this restricted scope, numerous assumptions and simplifications must be made when describing water

and solutes through the bark network. The proposed model does accommodate several (but not all) processes highlighted in

the introduction thereby making it suitable for both - diagnostic and prognostic purposes. Such a model is also intended to

be used in generating competing hypotheses about connections between the network properties and the physico-chemical

properties of the bark. It is also envisaged that a network representation of stemflow may enlighten the role of plant stem

on biogeochemical cycling in forests at longer time scales. 

2. The model 

Stemflow is assumed to occur within a network of connecting furrows embedded in the tree bark. Throughout, the flow

network is approximated by a directed graph characterized by edges that represent uninterrupted furrow and nodes as

shown in Fig. 1 . For convenience, nodes are indexed with integers and an edge connecting node i and node j is denoted e ij .

When a furrow ends, it is assumed that water traveling down the furrow will cross the ridge vertically and join the next

furrow directly below it. Hence, to describe stemflow and concomitant solute concentration, it is necessary to first describe

governing equations in a single furrow as a continuum [18] , and then ’upscale’ the outcome to the network level. For this

reason, the model development is divided into two general parts. The first part reviews the governing equations describing

the bulk velocity and solute concentration within a single furrow. The second part discusses minimal features of the network

topology connecting furrows, which then serves as the spatial integrating kernel for the single furrow equations to arrive at

water and solute fluxes out of the bark and into the soil. While stemflow is not solely restricted to furrows of rough-barked

trees, this study specifically focuses on the network modeling of stemflow in furrows that manifest in a variety of shapes

and sizes on different tree species ( Fig. 1 ). Since this work is the first instance where stemflow is described using a network,

the role of network symmetry/asymmetry and its impacts on macroscopic features pertaining to solute outflow from stems

is a logical first step. 
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Fig. 1. Rough-barked trees species with different bark microrelief configurations and ridge-furrow patterning, (a)–(d). The network model for stemflow 

solute transport developed covers furrows (see Suppl. Material, S1) regardless of ridge-furrow configuration. (a) Quercus serrata Murray (konara oak); the 

removal of blue dye (applied before a rain event) identifies areas on the tree stem where stemflow occurred over ridges and in furrows (photo credit: N. 

Imamura) described elsewhere [19] ; (b) Gleditsia triacanthos L. (honey locust) (photo credit: D.F. Levia); (c) Acer rubrum L. (red maple) (photo credit: D.F. 

Levia); (d) Carya tomentosa (Lam.) Nutt. (mockernut hickory) (photo credit: D.F. Levia) is another example of a rough-barked tree (i.e. a bark that exhibits 

a range of microrelief, becoming furrowed with age) that is to be used for illustration throughout this work. This mid-aged tree has a diameter at breast 

height of 0.493 m. Mapping bark geometry to a directed graph, (e) and (f). All edges are directed downward. (e) some furrows are traced in this section 

of the tree stem. When a furrow ends, the tracing extends over the ridge immediately below the dead end. (f) the resulting network is a directed graph 

with water entering from the nodes at the top and departing from the nodes at the bottom. The resulting network, extending over the whole tree stem, is 

composed of a sequence of patterns including isolated paths (i.e. single lines) and connected paths (multiple lines converging and diverging from nodes) 

with variable number of connections. Canonical patterns resembling these individual sequences are used in model calculations but the precise geometric 

scaling of the interconnected furrow dimensions is not matched. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

 

 

 

The following assumptions guide the model development: 

1. All flow travels through furrows in the tree bark. If the furrow ends, it is assumed that flow travels vertically downward

over the intervening ridge to the next furrow. 

2. The flow in furrows is free-surface gravity driven, meaning that surface tension effects and splashing from rain is mo-

mentarily ignored. 

3. The flow is established along the furrows and maintains its connectivity. Depending upon the rain intensity and tree
type, connected flow paths can be established in minutes to as much as an hour. 
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Fig. 2. Coordinate system for water flow on an inclined furrow at angle α. 
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Fig. 3. Flow geometry in a single furrow. The water depth within the furrow ( H ) and the effective furrow width ( B ) are shown. Note that H is assumed to 

be smaller than the furrow depth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1. Water flow in a single furrow 

It is assumed that the flow occurs in an inclined furrow characterized by an angle α from the horizontal. The coordinate

system is shown in Fig. 2 and the flow geometry is featured in Fig. 3 . That is, the x -direction defines the direction of the

flow within the furrow or the longitudinal direction, the y -axis defines the lateral direction, and the z -axis is the direction

orthogonal to the furrow base. Three geometric variables are now defined: The cross sectional area A c or the area normal

to the flow, the wetted perimeter P w 

(i.e., the perimeter of A c that is wet and in contact with the furrow wall), and the

furrow length l along the x direction. For this flow geometry and since the interest is in bulk (or area-averaged variables),

the simplified one-dimensional continuity equation along the x -direction for water flow is given by 

∂A c (x, t) 

∂t 
+ 

∂Q(x, t) 

∂x 
= S w 

(x, t) , (1)

where t is time, Q is the volumetric flow rate, and S w 

are the water sources and sinks that can include evaporation of

water from the furrow, direct rain onto the furrow, and absorption and subsequent storage of water by the wood. Unless

otherwise stated, all symbols to be used are defined in Tables 1 and 2 . The derivation of Eq. (1) assumes that water flow is

incompressible with a constant density ρ . A major simplification adopted now is to ignore the storage term in the furrow

( ∂ A c / ∂ t ) thereby ensuring steady-state conditions. Water storage capacities within the furrow can affect stemflow yield and

subsequent solute fluxes depending on bark properties [20] . However, a logical starting point is to explore the steady-state

conditions prior to any inclusion of the transient dynamics in water movement requiring bark-specific storage capacities.

Likewise, S w 

is also ignored meaning that (i) local evaporative losses, (ii) direct precipitation onto the free water surface

within the furrow, and (iii) any absorption or release of water from the furrow wood is ignored. For steady flow in the ab-

sence of S w 

, the continuity equation leads to a constant Q within a single furrow, which is to be determined from boundary

conditions on the network (later described). The bulk velocity u in a single furrow can now be defined as u = Q/A c . The

main force driving water along the furrow is ( ρA c l ) g sin ( α), where g is the gravitational acceleration. The resisting force is
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Table 1 

List of symbols (English). 

a w constant determined from furrow geometry 

A c cross sectional area of a furrow 

B total base width of a furrow section 

c relative concentration in a furrow, (q − q R ) /q R 
C d drag coefficient, u 2 ∗/u 2 

D, D d , D m total diffusion, dispersion, and molecular diffusion coefficients, D = D m + D d 
Da Damköhler number, [ γ A c l ] k c /( uA c q R ) 

ø Diameter of a tree at breast height 

e s mean protrusion of height into the water by furrow micro-roughness 

f Darcy-Weisbach friction factor, 8 C d 
f ( q ) solute leaching rate occurring across P w 
Fr Froude number 

g gravitational acceleration 

g f section factor for determining D d 
H depth of water in a furrow 

J solute mass flux in a furrow from positions x = a to x = b, a < x < b 

k c constant transport rate with units of mass flux 

l furrow length in x direction 

l c characteristic length scale in D d 
n order of transformation reaction in f ( q ) 

N f the total number of networks that can be packed onto the bark circumference of a tree 

Pe, Pe a Péclet numbers in lateral and axial directions, ul c / D m , ul / D 

P w wetted perimeter of a furrow 

q, q R solute concentration and maximum solute concentration near saturation 

Q volumetric flow rate in a single furrow 

r half-width of the furrow section, B /2 

Re b bulk Reynolds number, uR h / ν

R h hydraulic radius, A c / P w 
u bulk velocity in a single furrow, Q / A c 
u ∗ friction velocity, ( τ / ρ) 1/2 

S w water sources and sinks 

V volume of water surrounding bark in the leaching experiment 

x ′ relative horizontal position along furrow, x / l 

Table 2 

List of symbols (Greek). 

α angle from horizontal by a furrow 

β constant used in building sample networks to control symmetry in furrows 

δV fixed water sample volume in leaching experiment 

γ inverse of the hydraulic radius, P w /A c = R −1 
h 

λ arises in the solution of Eq. (17) , 
√ 

Pe a Da ( Pe a 
Da 

+ 4) 

ν kinematic viscosity of water 

ρ water density 

τ uniformly distributed stress on the area P w × l 

 

 

 

 

 

 

 

 

 

 

assumed to originate only from wall friction characterized by a uniformly distributed stress τ acting upon an area formed

by the wetted perimeter and furrow length ( = P w 

× l ). 

For steady and uniform flow, the local and advective acceleration terms can be ignored and these two forces (i.e. friction

and gravitational) are in balance leading to a kinematic representation of τ given by [21,22] 

u 

2 
∗ = 

τ

ρ
= 

A c 

P w 

g sin (α) , (2) 

where u ∗ = (τ /ρ) 1 / 2 is the friction velocity and the quantity R h = A c /P w 

is the hydraulic radius. If the flow is experiencing

finite acceleration (local and advective), then Eq. (2) must be replaced with the so-called Saint-Venant (or shallow water)

equations [23] discussed elsewhere [24] . To determine u , a link to u ∗ is now required and can be operationally achieved

using a drag coefficient C d defined here as C d = u 2 ∗/u 2 . With this representation, the well-known Chezy equation can be

recovered and is given by [22,25] 

u = C −1 / 2 

d 

√ 

R h g sin (α) . (3) 

It is to be noted that up to this point, Eq. (3) applies to both laminar and turbulent flow states within the furrow.

The distinction between these two flow states is based on how the bulk Reynolds number Re b = uR h /ν impacts C d or a

related quantity – the Darcy-Weisbach friction factor f = 8 C d [26–29] , where ν is the kinematic viscosity of water. The

factor 8 arises from the definition of mean wall stress in pipes and is conventionally maintained when relating a bulk drag
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coefficient to f in open channels. For small Re b (laminar flow), f = a w 

Re −1 
b 

[28,30] and Eq. (3) reduces to 

u = 

1 

a w 

g 

ν
R 

2 
h sin (α) , (4)

where a w 

only depends on the section geometry. For circular sections and based on the definition of Re b here, a w 

= 2

whereas for a wide channel, a w 

= 3 . Operationally, the flow rate Q within a furrow is predetermined from water balance

considerations within the network and what is sought is the water level (or A c ) and u . Combining Q = A c u with Eq. (4) leads

to an algebraic expression given as 

A c R 

2 
h = a w 

Q 

ν

g sin (α) 
, (5)

where the right-hand side quantity is known. For a given furrow section geometry, A c and R h can be uniquely related to

the water depth H within the furrow thereby allowing Eq. (5) to be solved for the single variable H . Once H is solved for,

A c and u = Q/A c can be readily determined. For illustration purposes, if the cross-sectional area in Fig. 3 is approximated by

a wide rectangle of known width B (derived from furrow geometry) and unknown water depth H with H / B < < 1, then

Eq. (5) reduces to 

H = 

[ 
Q 

B 

3 ν

g sin (α) 

] 1 / 3 
, u = 

Q 

BH 

= 

[(
Q 

B 

)2 g sin (α) 

3 ν

]1 / 3 

, (6)

where a w 

was set to 3. 

It will be remiss if a number of features about the canonical structure of these flow equations are not pointed out. To

begin with, Eq. (4) can be re-arranged and expressed in non-dimensional form to yield Eq. (7) 

F r 2 = 

u 

2 

gR h 

= 

[
sin (α) 

a w 

]
Re b , (7)

where Fr is a Froude number that is formed by the ratio of the flow inertia to the external field (gravitational here). Hence,

the bulk laminar flow in a furrow can be reduced to a relation between two dimensionless numbers: the Froude number

and the Reynolds number with geometric properties of the furrow acting as a scaling coefficient for this relation. Another

interesting feature is that when setting R h = A c /P w 

= Q(uP w 

) −1 , Eq. (4) can be expressed as 

u = 

1 

(a w 

P 2 w 

) 1 / 3 

[ 
g 

ν
Q 

2 sin (α) 
] 1 / 3 

. (8)

This outcome is identical to an exact solution derived from the Navier–Stokes equations presented elsewhere

[31,32] when ignoring local and advective acceleration terms, and area-averaging the point-wise velocity. Last, the deriva-

tion here can be extended to turbulent conditions, whether be they smooth, transitional, or fully rough [33] – provided the

dependency of f on Re b and relative roughness e s / R h is considered [22] , where e s is the mean protrusion height into the

water by the furrow micro-roughness assumed to be uniformly distributed along P w 

. 

2.2. Solute transport in a single furrow 

The conservation of solute mass is used to derive an equation for solute transport in the furrow. A unidirectional flow

is assumed so that the variation in solute concentration q in the spanwise direction is small relative to variation in the

streamwise direction. The exact conservation of solute over any interval a < x < b then dictates that 

d 

dt 

∫ b 

a 

A c (x ) q (x, t) dx + A c (b) J(b, t) − A c (a ) J(a, t) = 

∫ b 

a 

f (q ) P w 

(x ) dx, (9)

where J is the solute mass flux from positions x = a to x = b, f ( q ) is the solute leaching flux occurring across P w 

that depends

on the local concentration. Provided a and b remain constant in time, Eq. (9) reduces to 

∫ b 

a 

[
A c (x ) 

∂q 

∂t 
dx + 

∂ 

∂x 
( A c (x ) J ) − f (q ) P w 

(x ) 

]
dx = 0 . (10)

Expression (10) is true for any choice of a and b . Under the mild assumption that the integrand is continuous yields an

evolution equation for q along a furrow given by its common form 

A c (x ) 
∂q 

∂t 
+ 

∂ 

∂x 
( A c (x ) J ) = P w 

(x ) f (q ) . (11)

While this representation of q enables describing what happens in a furrow with streamwise geometric variations, it will

be further simplified so that network effects can be conveniently examined. 
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As with the water flow case, steady-state conditions are assumed (i.e. q (x, t) = q (x ) and J(x, t) = J(x ) ) and that the furrow

has uniform cross-sectional geometry ( A c ( x ) ≡ A c and P w 

( x ) ≡ P w 

), the basic model for transport along a single furrow

reduces to, 

∂ J 

∂x 
= γ f (q ) , (12) 

where γ = P w 

/A c = R −1 
h 

is the inverse of the hydraulic radius. If the furrow is a wide rectangular section, then γ = 1 /H

whereas for a cylindrical furrow flowing half-full ( H = r), γ = 2 /r where r is the radius of the cylinder. 

The solute flux J is given by its conventional form - an advective and dispersive transport term expressed as 

J = uq − D 

∂q 

∂x 
, (13) 

where D is the total diffusion coefficient that includes both molecular ( D m 

) and dispersive ( D d ) contributions (i.e. D = D m 

+
D d ). The dispersive term arises due to area-averaging of an inhomogeneous velocity field. For laminar flow conditions, the

dispersive contributions to J are dominated by the well-studied Taylor dispersion given by [2,34] 

D d 

D m 

= g f P e 
2 , (14) 

where Pe = ul c /D m 

is a radial or vertical Peclet number measuring the advective to diffusive transport, l c is a characteristic

length scale (radial or vertical), and g f is a factor that depends on the cross-sectional geometry. The original Taylor dispersion

in tubes yields l c = r (the pipe radius) and g f = 1 / 48 . In open channels, g f = 2 / 105 and l c = R h or H for a wide rectangu-

lar channel [35] . For turbulent flows, the dispersion coefficient D d = αd R h u ∗ [36,37] , where αd depends on the geometry

( αd ≈ 10 for wide open channels) and u ∗ can be inferred from Eq. (2) . 

With regards to the function f ( q ), a model of maximum simplicity that includes only leaching is employed and is given

as 

f (q ) = k c 

(
1 − q 

q R 

)n 

, (15) 

where k c is a constant having units of mass flux, n is the order of the transformation or reaction, and q R is the maximum

solute concentration near saturation. For n = 0 , leaching is a constant input process whereas for n = 1 , leaching is a first-

order generation process. 

For n > 1, the f ( q ) resembles higher-order reactions that may be encountered in heterogeneous chemical systems due

to presence of chemical segregation or blockage of some distant molecules to accessing the depositing surface. The most

applicable model for the leaching of potassium and other substances of interest (e.g. calcium, magnesium) in stemflow is a

binding/unbinding process with n = 1 [38] . With these approximations, a single second-order ordinary differential equation

describes q along x and is given by 

D 

d 2 q 

dx 2 
− u 

dq 

dx 
+ γ k c 

(
1 − q 

q R 

)n 

= 0 . (16) 

Eq. (16) can also be made dimensionless by defining the following variables: relative horizontal position x ′ = x/l along the

furrow length l , relative concentration c = (q − q R ) /q R , the longitudinal or axial effective Péclet number Pe a = ul/D (different

from Pe used in the determination of D so as to accommodate Taylor dispersion), and a type of a Damköhler number

Da = [ γ A c l] k c / (uA c q R ) defining a reaction rate to advective mass transport. The quantity in the squared brackets represent

the wetted surface area of the channel so that the numerator is a natural scale for the rate of solute production through

leaching and the denominator is a natural scale for solute transport by advection. The dimensionless form of the solute

continuity equation becomes [39,40] 

1 

Pe a 

d 2 c 

dx ′ 2 −
dc 

dx ′ + Da ( −c ) 
n = 0 , (17) 

where the focus is, again, on common values of n ( = 0,1). For n = 0 , 

c(x ′ ) = A + Da x ′ + 

B 

Pe a 
exp 

(
Pe a x ′ 

)
, (18) 

whereas for n = 1 , 

c(x ′ ) = A exp 

[
x ′ 
2 

( Pe a − λ) 

]
+ B exp 

[
x ′ 
2 

( Pe a + λ) 

]
, (19) 

with A and B are unknown coefficients to be determined using two boundary conditions at the edges of the furrow, and λ
is given by 

λ = 

√ 

Pe a Da 

(
Pe a 

Da 
+ 4 

)
. (20) 
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To provide realistic estimates of leaching parameters k c and q R , laboratory experiments were conducted on three solutes

common in stemflow biogeochemistry: potassium (K 

+ ), calcium (Ca 2+ ), and magnesium (Mg 2+ ). The laboratory experiments

were conducted as leaching into still water ( u = 0 ) from wood. The back side of the wood was coated with silicone sealant to

prevent leachate losses from the bark interior. This piece of bark was first placed in purified, deionized water. We anticipate

that the bark has some unbounded potassium, calcium, and magnesium on its surface and that these ions dissociate into

the water on a much faster timescale than those that are leached. After the initial immersion, the bark will leach potassium,

calcium, and magnesium into the water. Water samples were removed and analyzed to determine q at fixed time intervals

 i = 2, 4, 6, 12, 24 and 48 hours. The area contributing to the mass exchange between the bark and the water ( A w 

) was also

measured. The chemical solution was well mixed (i.e. ∂ q/∂ x = 0 ) so that measured q ( t i ) was uniform in the entire volume

of the water body V surrounding the bark section. Since water samples of fixed volume δV were sequentially drawn at fixed

time intervals t i for concentration measurements, V ( t i ) experiences a decremented jump every time a sample is taken. For

instance, if the initial water volume is V 0 , then V = V 0 for 0 ≤ t ≤ 2 hours, V = V 0 − δV for 2 ≤ t ≤ 4 hours, V = V 0 − 2 δV 

for 4 ≤ t ≤ 6 hours, etc. Because V is changing with each sampling time t i and noting that J = 0 for the experimental setup

here (by design), the scalar mass balance in Eq. (11) reduces to 

d(V q ) 

dt 
= k c A w 

(
1 − q 

q R 

)n 

, (21)

where k c is the sought unknown transport rate in Eq. (16) to be experimentally determined, and q R is now interpreted

as the maximum solute concentration in water. When modeling this experiment, it is to be noted that the solute amount

Vq is discontinuous because finite samples are being taken at discrete times. Similarly, the concentration q is a continuous

function of time with jump discontinuities in dq / dt for the same reason. Eq. (21) can be expressed as 

dq 

dt 
= 

k c A w 

V 

(
1 − q 

q R 

)n 

− q 

V 

dV 

dt 
, (22)

where the last term ( q / V )( dV / dt ) is a sum of δ – functions centered at sampling times t i and is zero elsewhere. The ratio

A w 

/ V is analogous to the aforementioned parameter γ but applied to the test vessel instead of a furrow. As a practical

matter, q can be determined by solving 

dq 

dt 
= 

k c A w 

V 

(
1 − q 

q R 

)n 

, (23)

on each subinterval [ t i , t i +1 ] and imposing continuity of q at each t i . Thus, for n = 1 , Eq. (23) can be integrated between two

consecutive sampling times t i , t i +1 to yield the constraint, 

q (t i +1 ) = q (t i ) e 
− k c A w 

q R V i 
(t i +1 −t i ) + q R 

(
1 − e 

− k c A w 
q R V i 

(t i +1 −t i ) 
)
, (24)

where t 0 = 0 , V i = V 0 − iδV is the water volume at t i . The experiment yielded six q ( t i ) measurements for i = 1 , 2 , 3 , 4 , 5

and 6, each satisfying Eq. (24) . The q (0) can be computed by extrapolation to t = 0 so as to estimate the initial unbound

potassium, calcium, or magnesium on the bark surface that dissociates when the bark is immediately immersed into clear

water. The two sought unknown quantities q R and k c can be solved from these six measurements by performing nonlinear

least-squares fit to the q ( t i ) measurements. 

The best fit result is shown in Fig. 4 illustrating the leaching properties of the bark for potassium. The best fitting pro-

cedure yielded optimal k c = 1 . 66 × 10 −1 mg cm 

−2 hr −1 and q R = 5 . 98 mg l −1 . The same technique was applied to calcium

( k c = 3 . 01 × 10 −2 mg cm 

−2 hr −1 and q R = 25 . 6 mg l −1 ) as well as magnesium ( k c = 3 . 91 × 10 −2 mg cm 

−2 hr −1 and q R = 5 . 64

mg l −1 ). Again, the extrapolation of the fitted model to t = 0 provides an estimate of q (0) > 0. 

Due to a greater reliance on ion exchange processes for divalent than monovalent cations [41] , there was a weaker

curvilinear fit for Ca 2+ and Mg 2+ when compared to K 

+ for the duration of bark saturation. The initial higher concentration

and then decline of calcium and magnesium concentrations was partly attributable to the washoff of unbound ions (between

the first and second measurements) followed by the subsequent rising of calcium and magnesium concentrations as the ion

exchange processes of bark leaching predominated. No such pattern was observed for potassium since it is primarily derived

from leaching [17] . In all cases, the model with n = 1 agrees with experiments for all three scalars analyzed. These values for

k c and q R with n = 1 are now used throughout to represent a plausible f ( q ) for each furrow in the network. These measured

bark leachate cation concentrations are within the range of actual stemflow leachate concentrations from other hardwood

species [20,42] thereby providing some generality to the parameterization of f ( q ). 

2.3. Scaling up from furrow to network level 

The water and solute transport equations must be solved in each furrow along the flow network embedded in the bark.

Geometric parameters R h , e s , r , and l can vary from furrow to furrow. Chemical and flow parameters (i.e. k c , q R and u ) also

depend upon the furrow properties and the flow rate so they also vary from furrow to furrow. The sign of u depends upon

the order of the indices because u represents flow velocity from node i to node j . As before, the particular solution for

the transport equations along each furrow corresponding to edge e ij is indicated with indices ij . For example, the solute
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Fig. 4. Determining optimal parameters k c and q R by fitting Eq. (24) to the six potassium, calcium and magnesium concentration measurements. Root 

mean square errors (in concentration units) for the three model fits are 0.042, 0.175 and 0.038, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

concentration along furrow e ij is denoted by q ij ( x ). For network flow problems, boundary conditions are interdependent and

complicate any upscaling from single furrow to stem. 

Physical boundary conditions are applied at each node to formulate the mathematical boundary conditions necessary to

solve the full system. In total, two boundary conditions for every edge are needed to determine the integration parameters

A and B in the solute transport equation. At the ‘top’ of the network, that is the portion corresponding to the top of the

stem, it is assumed that the inflow Q and the concentration (and subsequently the flux into the network) is known. At each

node, the concentration at the end of every connected edge is the same (i.e. continuity requirements - no storage at the

node). Likewise, the solute flux from the ends of all connected edges must sum to zero at a given node (i.e. what goes in

leaves the node). This condition is necessary to conserve the total solute mass and is analogous to Kirchoff’s Law for electric

circuits. The total solute flux out of the right end of an edge ( x ′ = 1 ) is defined to be 

J = 

(
uq − D 

dq 

dx 

)∣∣∣∣
x ′ =1 

. (25) 

It is necessary to provide a boundary condition for each flow exit node. Applying appropriate outflow conditions is a

challenging modeling and computational issue. In this case, the exact solution for q can be leveraged to determine appro-

priate Robin-type boundary conditions at outflow nodes. The key assumption is that if the length of an outflow edge were

to be extended to infinity, no solute transport would be allowed to travel back into the domain. Another interpretation of

such proposed outflow boundary condition is that it corresponds to a zero concentration gradient when l → ∞ . In other

words, the system is causal and changing the length of an exit edge does not change the solution for very large l . The par-

ticular solution for a furrow with an exit node on one end would correspond to B = 0 in Eq. (19) , where we only consider

the n = 1 case from this point onward because it explains the data well. This is equivalent to applying the Robin condition

at x ′ = 1 given by, 

dc(1) 

dx ′ − 1 

2 

( Pe a − λ) c(1) = 0 , (26) 

assuming x ′ = 1 corresponds to an exit node. In the limit l → ∞ , this corresponds to d c(1) /d x ′ = 0 . This condition amounts

to one additional constraint per exit edge. 
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(e)

Fig. 5. Sub-networks from a furrow network in bark are used as example networks for the model (see Fig. 1 ). The simplest sub-network is a single channel, 

(a) and (c). A modestly more complex system is shown in (b) and (d). If two sub-networks of type (d) are stacked together, it yields sub-network (e). At 

left (d), all edges have a length of 10 m. At right (e), the top and bottom edges have length of 5 m while the center edges have a length of 10 m. Thus, 

both networks traverse 20 m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Case studies for canonical networks of stemflow 

Three case studies are presented to demonstrate the efficacy of the network model for stemflow with leaching of K 

+ .
Two of the three examples come directly from Carya tomentosa bark (see Fig. 1 (d)–(f)), and the third evokes a more complex

network with asymmetry to represent mixing down a longer section of the tree stem. It can also be seen that these simple

networks shown in Fig. 5 (c)–(e) represent sub-networks in an entire stemflow network. A repeating topology of sub-graphs

like Fig. 5 (c)–(e) can be used to understand residence time and the impact of asymmetries through the complete stemflow

network. Hence, instead of dealing with repeating topology, the sub-graph pattern will be used for the entire stem for

illustration purposes. Such a representation does not preserve all aspects of the geometric complexity in the bark network,

but it allows for broad conclusions to be drawn about symmetry breaking along the paths (as shown later). For simplicity,

the furrows in these calculations are assumed to be rectangular with a constant width B though the approach allows for

other geometry to be used. 

Table 3 summarizes the parameter values used in the calculations. Measurements of the mockernut hickory tree bark

shown in Fig. 1 (d)–(f) were used to determine average furrow width ( B ) and height of 0.0056m and 0.01057m, respectively.

The furrow α is chosen based on observation of the bark furrows though we note from inspection of Eq. (4) that the model

is insensitive to this angle because stems are essentially vertical. The diameter at breast height (ø at 1.37m), routinely used

as a characteristic diameter in forestry studies, was also measured for the same tree and found to be 0.493m. If the width

between two channels is 0.0112 ( = 0.0056 x 2)m so as to account for a furrow-ridge combination, the total number of

networks that can be packed onto the bark circumference of this tree is 

N f = 

π(ø) 

2 B 

= 

3 . 14 × 0 . 493 

2 × 0 . 0056 

≈ 140 . (27)

For a similar rough-bark species, a sample rainfall event of 25 mm per 18 hours generates, on average 174cm 

3 per 5min

and a peak of 980cm 

3 per 5min in stemflow as measured and reported elsewhere [44] . Hence, the expected flow rate per

furrow is about 2 × 10 −8 m 

3 s −1 at such a peak value. We selected a Q = 4 ×10 −8 m 

3 s −1 (i.e. double) to reflect more

intense periods and/or higher rainfall intensities so as to amplify the significance of stemflow in the overall network. Yet,

despite this higher intensity, the resulting u and H yield a furrow-scale Reynolds number (see Table 3 ) that is much smaller
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Table 3 

Table of measured and computed model parameters used in all network model cal- 

culations. Values above the double bar indicate accepted physical constants or di- 

rect measurements from the tree bark. Values below the double bar are computed 

from the values above the double bar. 

g 9.8 m/s 2 

ν 1 . 004 × 10 −6 m 

2 /s 

Q 4 × 10 −8 m 

3 /s 

α 88 (deg) 

B 0.0056m 

D m from [43] 1 . 84 × 10 −9 m 

2 s −1 

k c 1 . 66 × 10 −1 mg cm 

−2 hr −1 

q R 5.98 mg l −1 

H 1 . 4 × 10 −4 m 

u 5 . 0 × 10 −2 m/s 

D 0.22 m 

2 /s 

R h 5 . 88 × 10 −3 m 

Pe a 0.056 

Da 99.9 

Re 7 

1

2

l=10

1 2

3

4 5

l=7.5 l=7.5

l=7.5 l=7.5

Fig. 6. The networks referred to in this figure are from Fig. 5 . Example solutions over networks (c) and (d) representing typical pathways shown in panels 

(a) and (b) of Fig. 5 . All lengths are measured in meters and concentrations are in mg/l. Network (d) is symmetric. The horizontal axis represents distance 

moving from top to bottom along a furrow. Since the network is symmetric, solutions along all paths are the same as evidenced by Eq. (28) . To demonstrate 

the role of the overall length of the network, the edge lengths of network (d) are chosen so that the total distance from top to bottom is 1.5 whereas the 

network (c) has length 1. Black open circles indicate the final concentrations at the bottom of networks c ( x = 10) and d ( x = 15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

than the critical value for transitional or turbulent flows in open channels and pipes ( >> 100). For this reason, the laminar

solution linking Q to u or H as well as the Taylor dispersion formulation are employed throughout. In all the examples, the

B and u are assumed to be uniform across the network. A non-uniform as well as transient solutions are possible but they

are not discussed to maintain focus on the network configuration. The equations to be solved are all in steady-state, which

requires a sufficiently long rainfall duration compared to any transient period prior to attainment of steady-state. Last, some

objections may be raised about the use of differing data sources (i.e. not from the same site, species, tree, or even single

event) to parameterize the furrow-scale flow and solute transport equations. Again, the goal here is only to use these data

sources to arrive at a set of plausible parameters for the study of network topology. This parameterization is not intended

to reproduce a particular experiment or data set. 

In Fig. 5 , two sample networks for model calculations are contrasted. An illustration of how the boundary conditions and

the solute equations are combined and solved is featured in the appendix. 

In the first example of a simple channel (network (c) in Fig. 5 ), the exact solution can be expressed analytically from

Eq. (19) , knowing that c(0) = −1 and that solutions must exponentially saturate to q R as x → ∞ : 

c(x ′ ) = − exp 

[
x ′ 
2 

( Pe a − λ) 

]
. (28) 

In fact, any of the networks (c), (d), and (e) will follow the same unique solution as long as the distance along all possible

paths from top to bottom is the same. Mixing occurs at the nodes only if there are paths covering different distances. This

point is illustrated in Fig. 6 . The solutions over both networks collapse onto a single curve as expected and begin saturating

at q R . Since the overall length of network (d) is longer than network (c) in this example, water resides in the furrows longer

so more leaching and increased concentration towards q occurs but following the same curve. 
R 
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12 β 12 (1 − β)

(a) Network (e) with varying edge

lengths using parameter β. The

representation shown has β = 1/2.

3

4

1

6

2

5

(b) Representation of the furrow

network with β = 1/4.

Fig. 7. Representations of network (e) (see Fig. 5 ) with variable edge lengths. Path lengths affect the residence time of water within the furrows. In network 

(e), there are eight possible paths through the network from top to bottom. There are a total of 40 meters of furrow in the network, independent of β . 

Fig. 8. Breakthrough or outflow concentration curve from network (e) as a function of asymmetry parameter β (see Fig. 7 ). The blue curve represents the 

average concentration from nodes 5 and 6. Each green line represents the length of one subpath through the network. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since mixing occurs at the nodes only if there are subpath differences, the edges of network (e) have been assigned

different lengths as shown in Fig. 7 . The parameter β is now used to vary the lengths of edges while keeping the total length

of all the furrows in the network constant. As such, the degree of asymmetry in the subpaths can be controlled by varying

β . In such a network, there are eight possible paths from top to bottom. In all these paths, there are seven different path

lengths 1 , which means there are seven different residence times. In Fig. 8 , the mean concentration leaving nodes 5 and 6

(and entering the soil) is shown as a function of β and labelled as a ’break-through’ curve. In the same figure, the individual

path lengths are presented as green lines. For instance, the top line corresponds to the subpath following edges 2–3, 3–4

(right side), and 4–6 that has the longest length of the eight subpaths. The bottom line corresponds to the subpath following

edges 1–3, 3–4 (left side), and 4–5, and it has the shortest length of the eight subpaths. While the network mixes solute at

nodes 3 and 4, greater asymmetry decreases transport and lowers q at outflow points. Intuitively, this can be explained by

the fact that difference between the solute concentration after traveling a distance l and full saturation is a quantity that

decays exponentially, e −l (for n = 1 ), so that the increases in furrow length and residence time have diminishing impact

(with q → q R ). The net output of two furrows with total length L is when each furrow has length L /2 for the simple reason

that this value maximizes e −x + e L −x . 
1 The reason why there are not eight unique path lengths is that two of the paths must always be of equal length. 
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Fig. 9. A completely wetted C. tomentosa tree trunk following a heavy rain event (photo credit: D.F. Levia). Future iterations of the network model for 

stemflow solute transport will include stemflow occurring both within furrows and over ridges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion 

The network model developed here for rough-barked tree species represents a first attempt to unpack the ’black box’ of

solute transport along tree trunks. The model is formulated so as it accounts for laminar and turbulent flow within bark

furrows and is able to capture solute leaching, concentration, and mass flux at any point along the network of intercon-

nected and interlocking furrows and ridges. The single furrow equations identified that the bulk velocity, depth, and scalar

concentration vary with 5 dimensionless quantities: Reynolds number, Froude number, a vertical and a longitudinal Péclet

numbers, and a Damköhler number. Future model iterations also will account for ridge flow as both ridges and furrows

leach solutes upon wetting ( Fig. 9 ). Nonetheless, the network approach proposed here can be imminently used to develop

reduced order models that interface with other approaches needed for describing soil biogeochemistry in forested ecosys-

tems. By reduced order models, we mean models that replace the complex network of interconnected furrows and ridges

with a bulk hydraulic quantity analogous to the effective single resistor-capacitor network in electric networks. 

It is envisaged that this network model representation will spawn developments of various hypotheses about the connec-

tions and linkages among network properties and the physico–chemical properties of bark. The initial focus was purposely

directed to the effects of symmetric and asymmetric relations (mainly distances between discrete junctions or nodes along

the bark network) on solute fluxes out of the stem. The formulation of stemflow as a directed network problem also opens

up the possibility of using percolation theory, where certain precipitation regimes can lead to ’order-disorder’ type phase
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transition (intermittent versus continuous stem flow into the soil) with critical exponents to be derived from the bark net-

work topology. This approach is timely given the rapid advances in imaging methods that can map the bark. 

Future work will hone in on some of the intricacies not included in this version of the model such as transient dynamics

in water and solute movement, spatially variable geometric and physio-chemical properties along the entire bark surfaces

[45] , antecedent conditions in bark moisture, and pH. We note that while we have captured the correct physical scale for

trees, our sample calculations do not yet capture the geometric complexity of furrow networks. We reserve this treatment

for future research. Further, while mathematically distinct, stemflow solute transport processes should be examined and

modeled for smooth-barked trees. In time, when rigorous and viable models are developed for rough- and smooth-barked

tree species, it will be possible to begin linking stemflow inputs per unit infiltration area to biogeochemical cycling in the

soil-root system. In tandem, the work here inspires future experiments to be designed (in the lab and field) where the bark

physio-chemical properties are to be measured and the mapping of flow lines for differing bark geometry are tracked in

time. The class of network models proposed here can then be used to link solute concentration time series output from the

stem to hydrological regimes and bark properties. 

Acknowledgments 

A.M.T. acknowledges the summer support from the University of Delaware through the Unidel Foundation. G.K. acknowl-

edges support from the U.S. National Science Foundation ( NSF-AGS-1644382 and NSF-IOS-175489 ). This work was also sup-

ported by JSPS KAKENHI Grant Number JP17KK0159. The code used is available at https://github.com/Louminator/stemflow . 

Appendix A. Detailed calculations for one network example 

In this appendix, how the system of solute transport equations along with the boundary conditions are solved on one

network is illustrated. Using conventional notation [2] , the beginning and end of a channel along with the intersection

of any two furrows is labelled a node. The sections between nodes are denoted “edges,” though these edges represent a

volume. Each edge connecting nodes i and j is called e ij . The example used here is for a moderately complex network with

flow starting at two nodes, flowing down two edges, mixing at a single node, and, splitting again into two separate edges.

This example corresponds to the network described in Fig. 5 (d), recreated here for reference as Fig. 10 . The set up of the

example is consistent with Section 3 . 

For convenience, furrows are assumed to be rectangular in cross section with uniform width B ( Fig. 11 ). The water depth

is determined from the flow rate per furrow using Eq. (6) . The flow rate per furrow is determined from total stemflow and

the number of furrows that can be packed along the circumference of the tree, also assumed to be constant. All measured

and computed parameters are as in Table 3 . Each edge has a length of 10m so that the entire system has a length of 20m. 

For n = 1 , Eq. (19) gives an exact solution to the second-order differential equation for c , the dimensionless relative

concentration at location x ′ , 0 ≤ x ′ ≤ 1, with unknown constants A and B . These constants will be calculated for each furrow

using a system of equations that accommodate the boundary conditions on the network. Keeping with the established

notation above, c ij represents the solution in one edge with its associated unknown coefficients A ij and B ij . 

To set up the matrix that will solve for A ij and B ij in each furrow, appropriate equations are found by calculating the

boundary conditions for each edge. Let M be the matrix of boundary condition equation coefficients, v be the vector of

unknowns, A ij and B ij , 1 ≤ i, j ≤ 5, and b be the vector corresponding to the right hand side of the boundary condition

equations so that we are solving the equation 

M v = b (29)

for v . 
1 2

3

4 5

Fig. 10. A moderately complex network for illustrating the calculations of solute transport along a bark. 

https://doi.org/10.13039/100000001
https://github.com/Louminator/stemflow
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Hij
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Ac,ij

Fig. 11. Cross-section of furrow represented by edge e ij . 

 

 

 

 

 

 

The first 2 boundary conditions are the known input at nodes 1 and 2, which we call q 0 , so we have in terms of q (the

dimensional solute concentration) 

q 13 (0) = (q 0 /q R ) − 1 , and q 23 (0) = (q 0 /q R ) − 1 . (30)

Evaluating Eq. (19) at x = 0 leads to 

A 13 + B 13 = (q 0 /q R ) − 1 , and A 23 + B 23 = (q 0 /q R ) − 1 . (31) 

For the third boundary condition, the net flux at node 3 must be 0. To find the net flux, we must calculate dq 
dx 

for each

edge. 

dq 

dx 
= q R 

[ 
A 

1 

2 l 
exp 

(
x 

2 l 

(
Pe a − λ

))
︸ ︷︷ ︸ 

α(x ) 

+ B 

1 

2 l 
exp 

(
x 

2 l 

(
Pe a + λ

))
︸ ︷︷ ︸ 

β(x ) 

] 
. (32) 

In this expression, the constitutive functions α( x ) and β( x ) are not to be confused with the parameters α (angle of

incline) and β (asymmetry parameter) used elsewhere in the paper. Recall we are using Eq. (13) to calculate flux, so our

general boundary condition is 

J 13 | x = l 13 
+ J 23 | x = l 23 

− J 34 | x =0 − J 35 | x =0 = 0 , (33) 

and it simplifies to 

q R 

[ 
d qα13 α13 | x = l 13 

+ d qβ13 β13 | x = l 13 
+ d qα23 α23 | x = l 23 

+ d qβ23 β23 | x = l 23 
− d qα34 − d qβ34 − d qα35 − d qβ35 

] 
= 0 (34)

where 

α = 

1 

2 l 
exp 

(
x 

2 l 

(
Pe a − λ

))
, (35a) 

β = 

1 

2 l 
exp 

(
x 

2 l 

(
Pe a + λ

))
, (35b) 

dqα = u − D 

2 l 

(
P e a − λ

)
, (35c) 

and 

dqβ = u − D 

2 l 

(
P e a + λ

)
. (35d) 

For the fourth, fifth, and sixth boundary conditions, we use continuity of concentration at node 3, i.e. 

q 13 | x = l 13 
− q 23 | x = l 23 

= 0 , (36) 

q 13 | x = l 13 
− q 34 | x =0 = 0 , (37) 

and 

q 13 | x = l − q 35 | x =0 = 0 . (38) 

13 
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Table 4 

Results from solving Eq. (29) . 

A 13 −1.00000000e+00 

B 13 −2.74205488e −18 

A 23 −1.00000000e+00 

B 23 −2.74205488e −18 

A 24 −3.05286378e −01 

B 24 0.00000000e + 00 

A 25 −3.05286378e −01 

B 25 0.00000000e + 00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, for boundary conditions 7 and 8, we use Robin boundary conditions to account for the outflow at nodes 4 and 5

as below 

β34 | x = l 34 
= 0 (39)

and 

β35 | x = l 35 
= 0 . (40)

Now that all the boundary conditions are in place, we can solve the system of equations numerically. The results we

found are listed in Table 4 . 

We note that the values of B 13 and B 23 , relative to A 13 and A 23 respectively, are below machine precision and can be

taken to be zero. 
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